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ABSTRACT  23 

Aroma is a primary hedonic aspect of a good coffee. Coffee aroma quality is generally defined by 24 

cup tasting, which however is time-consuming in terms of panel training and alignment, and too 25 

subjective. It is challenging to define a relationship between chemical profile and aroma sensory 26 

impact, but it might provide an objective evaluation of industrial products. This study aimed to define 27 

the chemical signature of coffee sensory notes, to develop prediction models based on analytical 28 

measurements for use at the control level. In particular, the sensory profile was linked with the 29 

chemical composition defined by HS-SPME-GC-MS, using a chemometric-driven approach. The 30 

strategy was found to be discriminative and informative, identifying aroma compounds characteristic 31 

of the selected sensory notes. The predictive ability in defining the sensory scores of each aroma note 32 

was used as a validation tool for the chemical signatures characterized. The most reliable models 33 

were those obtained for woody, bitter, and acidic properties, whose selected volatiles reliably 34 

represented the sensory note fingerprints. Prediction models could be exploited in quality control, but 35 

compromises must be determined if they are to become complementary to panel tasting. 36 

 37 

 38 

 39 

 40 

 41 
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INTRODUCTION  46 

Coffee aroma and flavor are the most important properties determining consumers’ preference and 47 

acceptance and, together with price, are the main aspects underlying a coffee’s commercial success.1–48 

3 Coffee companies must evaluate the quality of the beans they aim to buy, to determine the best 49 

coffees to use in their blends, and/or which coffees are of sufficiently high quality to be marketed as 50 

“single origin”. Several attributes are considered in qualifying a good coffee, including lack of 51 

defects, bean color and size, and flavor, the latter aspect being recognized as indispensable. Cupping 52 

protocols are international standards for cupping and grading coffees as a function of their sensory 53 

properties.4,5 54 

However, sensory methods are expensive and time-consuming in terms of panel training and 55 

alignment, and sometimes not sufficiently precise for a critical and objective evaluation; they are also 56 

rather difficult to apply at-line for immediate feedback. The sensory approach adopted to date has 57 

been quantitative descriptive analysis, with studies at the molecular level to disclose relationships 58 

between chemical composition and sensory response. The sensory lexicon related to coffee is a 59 

descriptive tool used worldwide to define aroma and flavor attributes quantitatively, through scaled 60 

scores. The lexicon used when measuring the sensory aspects of different flavor attributes is therefore 61 

of great importance, and must carefully be defined when comparing chemical and sensory data, 62 

because non-specific language may create confusion. This approach has successfully been used by 63 

trained professionals to evaluate coffee, enabling different panels to obtain the same intensity score 64 

for each attribute for a given sample.6–8 However, well-designed and standardized chemo-sensory 65 

evaluation is the key point to identify the chemicals responsible for a given sensorial note. The 66 

definition of a relationship between chemical profile and aroma sensory impact is thus an important 67 

challenge in both the analytical and the industrial fields, because it may enable food industries to 68 

obtain a further objective evaluation, independent of or complementary to the panel’s subjectivity, of 69 

their products. 70 
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Gas-chromatography combined with mass-spectrometry (GC-MS) is the analytical technique of 71 

election to study the composition of coffee aroma.9–12 Conversely, several different sampling 72 

approaches have been used to extract and concentrate flavor components, and more particularly 73 

volatile compounds, directly from ground coffee (powder) and/or from the coffee brew. Sample 74 

preparation is the crucial step in any analytical procedure, and must enable the recovery of chemical 75 

components representative of each sensory informative note.1,13–24 Furthermore, in quality control, 76 

the entire analytical procedure used to study chemicals related to the sensory experience should be 77 

integrated and fully automated. In this context, chemometrics acts as a bridge linking sensory 78 

properties to the chemical information underlying them; it can be used in quality assurance and 79 

control, in product/blend development, in benchmarking new products and evaluating their probable 80 

market impact, and in predicting preferences based on formulation changes.25,26 Furthermore, 81 

chemometrics can provide information about the chemicals that discriminate among sensory 82 

attributes, and link those chemicals to sensory perception through correlation models. The 83 

conventional strategy in aroma studies implies that a single odorant is considered together with its 84 

sensory description. Conversely, correlation through chemometrics makes it possible: to 85 

simultaneously measure all compounds eliciting a peculiar sensory perception, and to link the quali-86 

quantitative distribution of odorants and their mutual and cross-modal interactions to the odor 87 

perceived, through the sensory scores provided by the panel.13,21,27–29 However, reliable models that 88 

describe a sensory note representative of the variability of coffee require: a large number of different 89 

coffee samples, and fast analytical techniques applicable at-line or on-line, as a complement to the 90 

verdict of the sensory panel. Several studies have addressed the sensory-instrumental relationship 91 

relating to the sensory properties of coffee, but most looked at correlations among small and uniform 92 

pools of samples, without taking into account the wide variability of coffees caused by origin, post-93 

harvest processing, and roasting.21,30,31 94 
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This study is part of a wider project aiming to correlate the sensory characteristics of coffee aroma 95 

with its chemical composition, in order to provide an objective tool that is complementary to sensory 96 

evaluation, and that can be applied for routine use.  97 

This part of the study, in particular, focuses on the use of chemometrics as a tool to define the odorants 98 

characterizing the chemical signature of different coffee aroma notes, and to validate it for sensory 99 

score prediction (Figure 1). Coffee samples with particular sensory characteristics were included as 100 

representative of commercial coffees; samples were of different origins, species, and submitted to 101 

different post-harvest treatments, as occurs in quality control at the industrial level upon acceptance 102 

of incoming beans. Specimens were analyzed both sensorially and for their volatiles composition. 103 

Sensory evaluation was done by an expert coffee-cupping panel, through a quantitative descriptive 104 

analysis using a monadic approach. Sensory attributes included acidity, bitterness, woody, fruity, 105 

flowery, spicy, and nutty notes, aroma intensity, body, and astringency. Chemical analyses were 106 

carried out by headspace solid-phase micro-extraction combined with gas chromatography mass 107 

spectrometry (HS-SPME-GC-MS). This combination may also be included within automatic Total 108 

Analysis Systems (TAS), with which a large number of samples can be screened for quality control 109 

of in-cup coffee sensory quality.9,32,33 The demand for sensory quality control and evaluation is 110 

becoming crucial for coffee producers; the choice of this TAS method aimed to reconcile the need 111 

for full characterization with that of screening increasingly large numbers of samples. The choice of 112 

analytical strategy was driven by the need to balance these two requirements, but was also responsible 113 

for the strategy’s potentials and limits. 114 

 115 

Materials and Methods 116 

Reagents and Matrices  117 

Lavazza S.p.A. (Turin, Italy) kindly supplied coffee samples, consisting of roasted ground coffee 118 

suitable for a coffee-filter machine, over a period of 15 months. 119 
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156 coffee samples with distinctive sensory notes, originating from different countries (Ethiopia, 120 

Papua New Guinea, Colombia, Brazil, India, Indonesia, Tanzania, Uganda, and Vietnam), of the 121 

species Coffea arabica L. (Arabica) and Coffea canephora Pierre (Robusta), were analyzed in 122 

replicates. Table 1 lists twenty samples with their sensorial characterization. Samples 1-8 (five 123 

replicates each, n=40) were used during the first part of the study to determine the most suitable 124 

sample preparation method to study the relationship between chemical and sensory attributes.34 125 

Samples 9 to 20 (three replicates each, n=36) were a selection of samples specifically characterized 126 

by woody and bitter notes, with scores at the two extremes (highest-lowest) of a 0-10 scale; these are 127 

also indicated in the text as “stressed samples”. The roasting degree of each sample was carefully 128 

measured by ground bean light reflectance, with a single-beam Color Test 2 instrument Neuhaus 129 

Neotec (Genderkesee, Germany) at a wavelength of 900 nm, on 25-30 g of ground coffee. Roasting 130 

degree was set at 55° Nh, to be close to the international standardization protocol for cupping.5 131 

Samples were roasted within 24 h prior to cupping, and left for at least 8h to stabilize. For clarity, 132 

samples are labeled in the text with their origins.  133 

Pure reference standards for identity confirmation were from Sigma-Aldrich (Milan, Italy): table, and 134 

n-alkanes (n-C9 to n-C25) for Linear Retention Index (LRI) determination.  135 

Internal standards (ISTDs) for analyte response normalization were n-C13. A standard stock solution 136 

of ISTDs at 1000 mg/L was prepared in dibuthylphtalate (Sigma-Aldrich, Milan, Italy) and stored in 137 

a sealed vial at -18 °C. 138 

 139 

Headspace solid phase microextraction (HS-SPME) sampling 140 

The fiber was 1 cm length, coated with a polydimethylsiloxane/pivinylbenzene (PDMS/DVB), 65 141 

μm, conditioned before use as recommended by the manufacturer. The SPME device was from 142 

Supelco (Bellfonte, PA). Coffee aroma compounds were sampled by automated headspace solid 143 

phase microextraction (auto-HS-SPME), using a Combi-PAL AOC 5000 (Shimadzu, Milan, Italy), 144 
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assembled in-line with a Shimadzu QP2010 GC–MS system, controlled by Shimadzu GC–MS 145 

Solution 2.51 software (Shimadzu, Milan, Italy).  146 

HS-SPME of the coffee powder: 1.500 ± 0.010 g of powder were weighed in a septum-sealed gas vial 147 

(20 mL); the resulting headspace was sampled through the PDMS/DVB SPME fiber for 40 min at 50 148 

°C at a stirring speed of 350 rpm. The internal standard had previously been loaded onto the fiber35 149 

by sampling 5µL of a 1000 mg/L solution of n-C13 in dibuthylphtalate in a 20mL headspace vial for 150 

20 min at 50 °C, stirring speed 350 rpm. After sampling, the accumulated analytes were recovered by 151 

thermal desorption of the fiber for 5 min at 250 °C into the GC injector, and then transferred on-line 152 

to the gas-chromatographic column. All samples were analyzed in duplicate. 153 

 154 

GC-MS analysis conditions 155 

GC-MS analysis - Chromatographic conditions: injector temperature: 250 °C, injection mode: 156 

splitless; carrier gas: helium, flow rate: 1 mL/min; fiber desorption and reconditioning times: 5 min; 157 

column: SGE SolGelwax (100% polyethylene glycol) 300 mm x 0.25 mm i.d., 0.25 µm (SGE- 158 

Melbourne, Australia). Temperature program, from 40 °C (1 min) to 200 °C at 3 °C/min and to 250 159 

°C at 10 °C/min (5 min). 160 

MSD conditions: ionization mode: EI (70 eV), temperatures: ion source: 200 °C; quadrupole: 150 °C; 161 

transfer line: 250 °C; scan range: m/z 35-350. 162 

 163 

 Identification of volatile components. Aroma compounds sampled from the headspace of the coffee 164 

powder were identified through their linear retention indices (LRI)36,37 and EI-MS spectra, compared 165 

to those of authentic standards or, tentatively, to those collected in-house or in commercial libraries 166 

(Wiley 7N and Nist 05 ver 2.0 Mass Spectral Data). 167 

 168 

Descriptive sensory analysis of coffee aroma 169 
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The samples were submitted to sensory evaluation through quantitative descriptive analysis (QDA) 170 

by the Lavazza trained panel of experts in coffee evaluation, following the SCAA Q cupping and 171 

grading protocol.4,5,38 This protocol entails three tasting steps, after roasting to a set color (55-60 °Nh) 172 

and eight hours of sample stabilization: i) evaluation of the aroma by sniffing the dry ground coffee, 173 

ii) evaluation of the aroma by sniffing the brew 3 minutes after its preparation and stirring, and iii) 174 

flavor evaluation after 8-10 min. The attributes aftertaste, acidity, body, and balance are evaluated by 175 

tasting the brew, spraying it into the mouth to maximize retro-nasal vapors.  176 

In the preliminary part of the study, five panelists determined the notes to be considered: flavor and 177 

body (mouthfeel), astringency, and aroma intensity. In the second part, ten panelists assessed cup 178 

quality for flowery, fruity, woody, nutty, spicy, acidity, and bitterness. The quality and intensity of 179 

each attribute were evaluated simultaneously, upon a scale from 0 to 10. ANOVA analysis was run 180 

to verify panel alignment on each attribute. Average scores from experts whose evaluations were 181 

similar were used as “main scores” for the attributes under investigation.  182 

 183 

Data processing 184 

Chromatographic data were collected using Shimadzu GCMS Solution 2.5SU1 software(Shimadzu). 185 

Principal Component Analysis (PCA) was used to detect sample groups and outlier(s) within 186 

chemical and sensory data. Partial Least Square Discriminant Analysis (PLS-DA) was then performed 187 

on the sensory scaled samples (low-high score range) to identify the compounds most closely related 188 

to a sensory attribute, and Partial Least Square Regression (PLS) was used to correlate chemicals to 189 

sensory attributes, and to evaluate the ability of extracted chemical variables to predict sensory scores. 190 

HS-SPME-GC-MS profiles normalized to ISTD were used (i.e. analytes target ion areas versus the 191 

internal standard target ion area).  Auto-scaling was applied as data pretreatment: this step ensured 192 

that the contribution of each X variable (odorant) to the Y variable (sensory score) was unbiased. 193 

One-way ANOVA and t-test on the sensorial results, and PCA, PLS-DA, and PLS, were run by 194 

XLSTAT software (Addinsoft, Paris, France).  195 
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 196 

RESULTS AND DISCUSSION 197 

Qualitative descriptive profiles 198 

PCA is relevant in chemometrics mainly as a standard tool to display the qualitative aroma profiles 199 

of samples. In QDA, a panel of trained assessors rates a number of samples for perceived intensities 200 

of distinct attributes on scales; the panel follows reference protocols for specific food commodities 201 

(e.g. coffee or olive oil), depending on the panel’s experience and/or on the complexity of the matrix. 202 

By averaging these intensity ratings and replicates, a data matrix may be built up, in which the rows 203 

are food samples, and the columns the relative sensory attributes used to describe them25,26. Analysis 204 

of this data matrix by PCA can give information on both how coffee samples are related, and which 205 

sensory notes best describe each sample. PCA was applied to the mean QDA sensory scores for aroma 206 

and flavor of eight samples, analyzed in five replicates by five panelists; the bi-plot of scores and 207 

loadings are shown in (Figure 2). The PCs that accounted for 75.4% (PC1) and 14.4% (PC2) of the 208 

total variance were extracted. Focusing on sensory attributes, aroma intensity dominated Robusta 209 

samples (JAV, UGA INDO), and appeared to be correlated to spicy, woody, body, and bitter notes. 210 

Acid and bitter are normal taste attributes; however, previous studies demonstrated that there were 211 

correlations between volatiles and taste sensory attributes, since several volatiles and non-volatiles 212 

have common reaction pathways during roasting.21,28,30 213 

Moreover, panelists perceive odors via ortho- and retro-nasal pathways. This is the result both of 214 

compound mutual interactions and of cross-modal effects between odorants and taste, which can 215 

amplify or modify perception that, physiologically, occurs in the brain. These interactions do not 216 

occur at the molecular level.39–41 217 

Bitter notes were also closely related to nutty and astringent notes. In contrast, vectors for fruity, 218 

flowery, and acid were different from those of the above descriptors, and were positively correlated 219 

with Arabica samples (COL, PNG, INDIA, KAFA, BRA). Among these, the only exception is the 220 



10 
 

India sample (INDIA ARAB CHERRY) that shows sensory characteristics more similar to Robusta 221 

samples.  222 

 223 

From sensory evaluation to the related chemicals: a discriminative and informative guide  224 

A total of 95 compounds were identified (or tentatively identified). 17 compounds were unknown (or 225 

not unequivocally identified) by HS-SPME-GC-MS in the coffee powder samples. Table 2 reports 226 

the list of identified compounds with their Linear Retention Indices (LRIs). The coffee aroma 227 

chemical profile of the first 40 samples obtained by HS-SPME-GC-MS was processed by PCA, 228 

together with their sensory scores, to determine: whether groups and/or outliers were present, and the 229 

relationship between samples and chemical-sensory variables. As expected, as well as sensory quality 230 

analysis, PCA on the aroma chemical profile showed a discrimination ability, driven firstly by species 231 

(Figure 3A), and then, within species, by the sensory characteristics peculiar to each origin (Figure 3 232 

C, 3E). The Loadings Plot (Figure 3B) clearly showed that the sensory notes were split into two 233 

groups: 1) the acid, flowery, fruity notes, which were located in the 1st quadrant of the Cartesian 234 

plane, i.e. the location of the Arabica samples; 2) the bitter, nutty, woody, and spicy notes, lying in 235 

the 3rd quadrant, i.e. the location of the Robusta samples. Several chemical variables described this 236 

sample distribution, and thus these sensory notes (Figure 3B). Several pyrazines, (e.g. 2-n-237 

propylpyrazine, 2,6-diethylpyrazine, 2-methyl-3,5-diethylpyrazine, isopropenylpyrazine) and 238 

phenolic derivatives, such as guaiacols, characterized the Robusta samples and were more closely 239 

related to the roasty, tobacco, nutty, spicy, and woody notes, while furan derivatives, esters and 240 

ketones were linked to the sweet, fruity, and floral sensory attributes.9,22,42 241 

Within the Robusta samples: a) JAVA was the most nutty sample, characterized by compound #48 242 

(unk 4); b) UGA samples had high acidity and were chemically described by 2,3-butandione and 2,3-243 

pentandione, acetoxyacetone, hexanal, acetic acid, 1-hydroxy-2-butanone, and 1-H-pyrrole-2-244 

carboxaldehyde, compounds elicit musty, sour, pungent, buttery notes that can be related to acid 245 

attributes; c) INDO was the most woody, spicy, and bitter sample, and was more full-bodied and 246 
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astringent, mostly characterized by several pyrazines and phenolic compounds, as mentioned above 247 

(Figure 3D). 248 

Within Arabica, separation between samples was achieved on PC1 and PC2: a) KAFAs were 249 

characterized by high body, fruity note, and aroma intensity; chemical variables related to these 250 

sensory attributes were furfuryl alcohol, methyl acetate, 5-methyl furfural, 2-cyclopenten-1-one-3 251 

methyl, all of which are characterized by sweet, fruity, malty, and nutty notes; b) conversely, PNG 252 

was mostly characterized by acetyl furan, 2-furfuryl-5-methylfurane, 2-furanmethanol propanoate, 2-253 

furfuryl furan (Figure 3F).  254 

Although HS-SPME discriminates among analytes depending on their volatility/polarity, if used 255 

under standardized conditions it provides reliable information for fingerprinting studies, and is 256 

perfectly suitable for comparative analyses.43 Although PCA applied to comprehensive sensory and 257 

chemical data possesses great informative potential, it is difficult to define the chemical fingerprint 258 

of a single, specific, note for the purpose of discriminating samples by their sensory characteristics. 259 

It is therefore necessary to analyze the relationship between chemical compounds and sensory note 260 

descriptions in greater depth, looking at the chemical variables most closely correlated with each 261 

sensory note. Chemical variables showing a Pearson correlation coefficient above 0.5 (taken as cut-262 

off) were singled out to compare samples characterized by different sensory notes.  263 

Table 2 reports the variables related to each sensory attribute (except for aroma intensity, body, and 264 

astringency). It may be seen that specific sensory notes (e.g. acid and flowery, or woody, bitter, nutty, 265 

and spicy) are often described statistically by the same variables, i.e. the components statistically 266 

correlated with these notes are very often the same. These results confirm that a specific sensory note 267 

is described by component amounts and ratios, and rarely by single specific compounds. 17 268 

This may be due to the complexity of odor and taste perceptions, and to their mutual influence on the 269 

actual perceived flavor. Interactions among odorants give odor synesthesia, while interactions 270 

between odorants and tastants might give chemesthetic perception.2,3 Several examples of this 271 
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possible interaction are reported in Table 2; some note-related compounds were related statistically 272 

to the note (X), although their odor description reported in the literature is different when considered 273 

alone (X-L). For example, 2,3-Dimethylpyrazine alone has an odor description as nutty, and is also 274 

related to other sensory attributes.39  275 

The percentage contribution of each compound to the whole chemical profile, correlated statistically 276 

to a given sensory attribute, was monitored across all samples investigated. The percentage of each 277 

compound was calculated considering their normalized responses (analytes target ion areas versus 278 

the internal standard target ion area) within the whole targeted profile. Figure 4 shows a “heat map” 279 

of the samples, scored on the normalized percentage contributions of components  correlated with 280 

woody, nutty, and “fresh” notes (acid, flowery/fruity). The slots in each row are colored according to 281 

the magnitude of their values, from yellow (low percentage) to orange (high percentage). For instance, 282 

in Figure 4A, guaiacol mainly contributes to the profiles of INDO, UGA and JAVA samples. INDO 283 

samples had the highest contribution from variables related to woody. INDIA samples, despite being 284 

Arabica, showed sensory characteristics similar to Robusta, thus confirming from the chemical 285 

standpoint the sensory scores given by the panel (Table 1). Conversely, guaiacol, 1-H-pyrrole-2-286 

carboxaldehyde, (5H)-5-methyl-6,7-dihydrocyclopentanpyrazine, 2-furanmethanethiol, and 287 

difurfuryldisulfide were directly involved in defining the woody note. 17,19 288 

Not much may be deduced about the compounds linked to the fruity, acid, and flowery notes, because 289 

of the similarity of the chemicals involved. However, the variables found to be correlated to these 290 

notes agreed with the sensory scores of those samples (Table 1). For instance, fruity related 291 

compounds, such as acetic acid and 3-methylbutanoic acid, were massively present in KAFA 292 

samples, which achieved the highest score for the fruity note (Figure 4C).  293 

It is difficult to determine which compound specifically contributes to a given note, and how it 294 

contributes to it, for two reasons. The first is that the chemical definition of a sample’s sensory note 295 

(i.e. its aroma signature) is linked to its composition, not only qualitatively but also quantitatively, 296 
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and, in particular, to the ratios between components. The second is the narrow range of the scores of 297 

some notes, e.g. for nutty, from 0 to 3. When the range is narrow, seeking odorants that correlate to 298 

the sensory note becomes challenging. To overcome these limitations, the range of sensory scores 299 

must be maximized by selecting samples with “stressed” sensory notes, i.e. with high and low values. 300 

This enables a more precise definition of the aroma compounds involved with the note, so as to verify 301 

the method’s ability to correlate them with the sensory fingerprint.  302 

A selection of “stressed” sensory samples representative of each note considered, independently of 303 

species, origin, and post-harvest treatment, were analyzed and the chemical findings related to the 304 

sensory scores (Table 1). “Stressed” samples means a panel selection of a new pool of samples with 305 

considerable differences of sensory score within a given note. 306 

 307 

Definition of note-related compounds (NRC) on representative “stressed” sensory samples 308 

A supervised chemometric tool (PLS-DA) was applied to study note-related compounds. PLS-DA 309 

describes samples by calculating new variables that maximize separation between groups, while 310 

minimizing variability within groups. Samples with the lowest score (for each target note) were 311 

assigned to class 1, while those with the highest score were assigned to class 2. The impact of each 312 

compound on the separation of the pool of samples into the two classes (1 and 2) was evaluated by 313 

VIP (Variable Impact On Projections). The cut-off was arbitrarily chosen, for each note, as the point 314 

at which the VIP values dropped sharply in the histogram. Some points emerged from this selection: 315 

a) a single compound can contribute to the score of more than one sensory note. This was pointed out 316 

above (non-supervised data elaboration) and was reported by Ribeiro et al. 28 in a study on prediction 317 

models of the quality of Arabica coffee beverages; 318 

b) the accuracy of variable selection is not the same for all notes. Variables selected to describe the 319 

woody note were probably a consequence of clearer definition of the note (in terms both of maximized 320 
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scores and of panel alignment on the lexicon) across the group of samples, which led to more precise 321 

identification of the most significant note-related compounds. 322 

 323 

 Validation of NRC in terms of sensory score prediction capability 324 

The compounds identified with PLS-DA for each sensory attribute were used to study the correlation 325 

between chemical and sensory data on the whole data set, through a note-prediction model based on 326 

the Partial Least Square Regression (PLS) algorithm. Samples were randomly divided into three 327 

groups: a training set (131), a validation set (10), and a test set (15). Figure 5 shows the regression 328 

parameters, curve and validation set fit for woody note, and score prediction on the external test 329 

samples. The results showed correct sample distribution across the calibration interval, indicating the 330 

model is reliable for sensory score prediction. Prediction reliability was evaluated through the 331 

Standard Deviation Error in Calibration and in Prediction (SDEC and SDEP) from the predicted vs. 332 

experimental scores, calculated as follows:  333 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑃𝑃) = √
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤|𝚤𝚤� )2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
  334 

Where: 335 

𝑦𝑦𝑖𝑖=experimental value, 𝑦𝑦𝚤𝚤|𝚤𝚤� = predicted value, n= number of observations. 336 

 337 

The model showed close correlation between odorants selected and sensory scores. The predictive 338 

ability was good, i.e. Q2= 0.754, with a SDEP=1.175. 339 

 Similar results, although not as good, were obtained for the other sensory attributes (Table 3). The 340 

only exception was the nutty note, for which the model showed poor linearity (R2=0.467), a wide 341 

confidence limit (SDEC= 1.646) and very low predictive ability (SDEP= 1.426). This was chiefly 342 



15 
 

due to the difficulty over the lexicon used to define nutty and, as a consequence, to determine odorants 343 

linked to it. 344 

Although to differing extents, the results show good relationships between selected odorants and 345 

sensory scores. Average standard error in score prediction was ± 1, cross-validating the link between 346 

the compounds selected and the sensory note description. From this perspective, the chemical 347 

composition of woody and flowery notes was also investigated by sensomics.44,45 The preliminary 348 

results of this inter-approach validation showed reasonable consistency between chemometrics and 349 

sensomics for some of the target compounds. The compounds already confirmed by the sensomic 350 

approach are listed in Figure 6.  351 

The chemical structures of the volatiles identified as discriminant for the woody note are reported in 352 

Figure 7A. Figure 7B reports the chemical structures of a selection of the volatiles derived from the 353 

chemometric approach highly correlated (correlation coefficient >0.7) with those revealed by 354 

sensomics. These chemical compounds (A and B) were used in the PLS model prediction of the 355 

woody sensory scores. The chemometric-driven procedure can reveal the chemical aroma signature 356 

of the sensory attributes investigated. At present, both performance and predictive ability of the 357 

models are too closely related to the training set, and are also limited by its ability to cover the entire 358 

range of scores of samples under study, i.e. woody vs. flowery. Compared to flowery, the robustness 359 

of the woody note gives better prediction, thanks to two factors, namely the wide pool of samples, 360 

covering the whole sensory score range; and the good panel alignment in woody note lexicon 361 

recognition, providing a better estimation of an external test set.28–30,46 362 

Although this discussion has mainly focused on woody, nutty, and bitter notes, acid, spicy, and 363 

flowery/fruity notes were also considered; they acted similarly to the notes discussed in depth, 364 

including positive aspects and limitations. 365 

The chemometric-driven approach was found to be discriminative, informative, and predictive in 366 

revealing the chemical signature of the different coffee aroma notes. Discriminative, because it was 367 
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able to single out samples with peculiar aroma notes, independently of species, post-harvest 368 

treatment, and origins. Informative, because it exploited the complementary and simultaneous use of 369 

sensory and chemical data to define odorants able to describe the chemistry of aroma notes, stressing 370 

the method’s strengths and limitations. Predictive, because the panel-coherent sensory score 371 

prediction, based on this chemometric approach, confirmed and reinforced the relevance and 372 

significance of the volatiles selected by applying this procedure. Despite these positive results, the 373 

final goal is still a distant one, because the models need of a sufficient number of samples to cover 374 

the wide variability of samples (including seasonality); the accuracy in note definition and scoring 375 

must be improved, chemometric data treatment can be optimized to better fit the dynamic range in 376 

sensory evaluation. In any case, compromises must be made in applying a statistical model when 377 

sensory attributes are all evaluated together.  378 

The chemometric data-driven approach is promising for predicting sensory scores from chemical 379 

data, and appears to provide a complementary tool that can contribute to objective sensory evaluation, 380 

despite the great variability of coffee samples (origins, species, treatments, qualities) that are present 381 

in the day-to-day situation in quality control at the industrial level.  382 
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Figure captions 507 

Figure 1 Chemometric data treatment workflow in revealing the signature of the coffee aroma notes 508 

Figure 2 Biplot of scores and factor loadings obtained by PCA for aroma descriptors of QDA for 509 

coffees 1-8 (n=40). BRA: Brazil; COL: Colombia; JAV: Java; UGA: Uganda; PNG: Papua New 510 

Guinea; INDO: Indonesia.  511 

Figure 3 Scores and loading plots of the coffee samples obtained by chemical and sensory analysis, 512 

A and B all samples, C and D Robusta, E and F Arabica coffees. BRA: □; COL: ◊; JAV: Δ; UGA: X; 513 

PNG: * ; INDIA:   ; INDO:    ⃝ ; KAFA: +. For sample acronym see Table 1 and for loading 514 

identification see Table 2. 515 

Figure 4 Heat map of the percentage contribution of compounds correlated with:  A) woody, B) nutty 516 

and C) fresh notes (acid, flowery, fruity) 517 

Figure 5 A) parameters used to build the model, B) regression curve and validation set fit for the 518 

woody note, C) results of sensory score prediction on an external test samples  519 

Figure 6 Compounds characterizing woody and flowery aroma notes confirmed by sensomics. 520 

Figure 7 Chemical structures of the compounds highlighted by molecular sensory science as 521 

important in the characterization of woody and used in the woody note chemometric prediction 522 

model. (A) compounds shared between the two approaches (B) compounds derived from the 523 

chemometric-driven approach as highly correlated (correlation coefficient >0.7) with those pointed 524 

out by sensomics (Figure 6). Both (A) and (B) compounds were used in the PLS model prediction of 525 

the woody sensory scores. 526 

 527 
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Table 1 Coffee samples and sensory characteristics. Species (A: Arabica, R: Robusta), Treatment (N: Natural, W: Washed).  528 

# Sample 

acronym 

Type Species Treatment Acid Bitter Aroma 

intensity 

Flowery Fruity Woody Nutty Spicy Body Astringency 

SAMPLES WITH PECULIAR SENSORY ATTRIBUTES 

1 BRA BRAZIL LA2 A N 2 2 7 1 0 1 3 0 7 1 

2 COL COLOMBIA CL1 A W 4 1 8 3 3 0 0 0 7 1 

3 JAV JAVA WB1 MB R W 0 3 8 0 0 3 3 1 8 1 

4 UGA UGANDA STD R N 0 3 8 0 0 4 3 3 8 1 

5 PNG PAPUA NG Y A W 3 2 7 3 3 0 0 0 8 0 

6 INDIA INDIA ARAB CHERRY A N 2 4 8 0 0 2 2 3 8 1 

7 INDO INDONESIA EK1 R N 0 4 8 0 0 5 3 3 8 2 

8 KAFA ETIOPIA KAFA GR. 3 A N 4 1 8 3 6 0 0 0 7 0 

SELECTED SENSORY STRESSED SAMPLES 

9 BRALA2 BRAZIL LA2 A N 4 1 6 0 0 0 5 0 - - 

10 BRAGOU BRAZIL GOURMET A N 2 0 5 1 0 0 5 0 - - 

11 JAV JAVA MB R W 1 2 7 0 0 1 7 0 - - 

12 D2_65 INDO_CN R N 0 5 7 0 0 6 0 2 - - 
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13 D2_37 BRASILE RFA A N 3 0 8 0 0 0 8 0 - - 

14 D2_56 Vietnam GR 2  R N 0 4 8 0 0 7 1 1 - - 

15 INDOEK1 INDONESIA EK1 R N 0 4 8 0 0 7 1 3 - - 

16 INDIACHAB INDIA CHY AB R N 0 3 7 0 0 7 3 6 - - 

17 BUK BUKOBA R N 0 5 8 0 0 5 2 8 - - 

18 CON CONILON R N 0 4 8 0 0 4 2 4 - - 

19 VIEGR2 VIETNAM GR2 R N 0 3 6 0 0 4 3 2 - - 

20 UGA UGANDA 18 UP R N 0 4 8 0 0 6 1 7 - - 

529 
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Table 2 List of identified and *tentatively identified compounds.  

# Compound Name Odor Description11,36,37 Calc. LRI Lit. LRI Acid Fruity Flowery Bitter Nutty Woody Spicy 

1 Acetaldehyde  Fruity11 706 723        

2 Acetone Ethereal, Apple, Pear37 824 835        

3 Methyl acetate Ethereal, Sweet, Fruit37 828 839        

4 2-Methylfuran Chocolate, burnt, ethereal acetate11 885 864        

5 2-Butanone Ethereal37 906 905        

6 2-Methylbutanal Chocolate11 914 931        

7 3-Methylbutanal   Malty11 918 936        

8 2,5-Dimethylfuran Ethereal37  950 939        

9 2,3-Butanedione Buttery11 978 963        

10 2,3-Pentanedione   Buttery11 1058 1060 X  X     

11 2-Vinylfuran Nutty, coffee37 1071 1085        

12 Hexanal Tallowy, leaf-like11 1080 1098        

13 2,3-Hexanedione Buttery37 1130 1110        

14 1-Methyl-1H-pyrrole Woody37 1137 1140        

15 2-Vinyl-5-methylfuran - 1151 1152        

16 Pyridine Fishy11 1177 1177        

17 Pyrazine Sweet, Floral37 1209 1206    X    

18 Methylpyrazine Nutty37 1262 1268    X    

19 3-Hydroxy-2-butanone Buttery37 1281 1285        

20 1-Hydroxy-2-propanone Sweet-Caramel-like37 1297 1318 X  X     

21 2,5-Dimethylpyrazine   Nutty-Roasted, Cocoa37 1317 1321    X  X X 

22 2,6-Dimethylpyrazine Earthy-Chocolaty37 1324 1327    X  X X 

23 Ethylpyrazine Nutty-roasted37 1329 1343    X X-L X X 

24 2,3-Dimethylpyrazine Nutty, coffee, peanut butter, walnut, 
caramel eather37 1341 1354    X X-L X X 

25 1-Hydroxy-2-butanone Sweet-caramel-like36 1370 1381 X  X     
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# Compound Name Odor Description11,36,37 Calc. LRI Lit. LRI Acid Fruity Flowery Bitter Nutty Woody Spicy 

26 3-Ethylpyridine Tobacco, caramel-like37 1374 1384    X  X X 

27 2-Ethyl-5-methylpyrazine   Coffee-like37 1386 1399    X X-L X X 

28 2-Ethyl-3-methylpyrazine+ Trimethylpyrazine Raw Potato37 1399 1400    X-L X X X 

29 Unk 1(m/z: 54 [100%]; 43[78%]; 42[16.75%]) - 1405 - X  X     

30 2-n-Propylpyrazine * Green vegetable11 1413 1425    X X X X-L 

31 Unk 2(m/z: 112 [100%]; 68[73.76%]; 
40[24.93%]) - 1418 - X  X     

32 2-Furanmethanethiol   Roasted, Burnt, coffee-like37 1432 1440    X X X-L X 

33 2-Ethyl-3,6-dimethylpyrazine   Earthy, Baked11 1441 1449    X-L X X X 

34 Acetic acid Sour, Pungent11 1446 1454 X-L X      

35 2,6-Diethylpyrazine Hazelnut-like37 1457 1458    X X-L X X 

36 Furfural Sweet, Woody, Bready11 1462 1467 X  X     

37 Acetoxyacetone Fruity, Berry37 1468 1467        

38 Furfurylmethylsulfide Coffee-like odor37 1483 1496    X-L  X X 

39 3,5-Diethyl-2-methylpyrazine Coffee-like37 1489 1491    X X X X 

40 2,5-Dimethyl-3(2H)-furanone Caramel-like, fruity37 1496 1490 X  X     

41 Furfuryl formate Ethereal11 1497 1497        

42 Acetylfuran   Sweet-caramel-like37 1500 1498 X  X     

43 3-Methyl-2-Cyclopenten-1-one + 3,5-Diethyl-2-
Methylpyrazine 

Burnt, Rubbery, earthy + coffee-
like37 1509 1509    X X X X 

44 1-H-Pyrrole Sweet:ethereal11 1513 1525    X X X X-L 

45 Benzaldehyde + 2-Methyl-3(2H)-thiophenone 
*+ Furan-2-yl-propan-2-ol Sweet37 1519 1520        

46 2-Oxopropylpropanoate - 1531 1531        

47 Furfuryl acetate   Garlic, pungent vegetable, onion11 1538 1539        

48 Unk 4(m/z: 110[100%]; 109[86.72%]; 
53[50.99%]) - 1564 -        

49 5-Methyl Furfural Caramel-like37 1570 1562 X  X     

50 2,3-Butandiole + 1-(5-Methyl-2-furyl)2-
propanone - 1575 1582        

51 1-Methylethenylpyrazine Roasted, Nutty36 1590 -    X X-L X X 



28 
 

# Compound Name Odor Description11,36,37 Calc. LRI Lit. LRI Acid Fruity Flowery Bitter Nutty Woody Spicy 

52 Furfuryl propanoate Fruity37 1598 1603        

53 2-Furfurylfuran Caramel-like, earthy, mushroom37 1608 -       X 

54 (5H)-5-Methyl-6,7-dihydrocyclopentapyrazine Earthy36 1611 1611    X-L X X X 

55 1-Methylpyrrole-2-carboxaldehyde  Cracked/pop-corn37 1614 1635        

56 4-Hydroxybutanoate - 1621 -        

57 Unk 6 (m/z: 137[100%]; 94[61.57%]; 
122[37.71%]) - 1630 -        

58 2-Isopropenylpyrazine Caramel-like, Nutty36 1633 1633    X X-L X X 

59 2,5-Dihydro-3,5-dimethyl-2-furanone * - 1642 1640        

60 1-(1-methyl-1H-pyrrol-2-yl)-Ethanone * +    2-
Acetyl-5-methyl pyrrole - 1649 -        

61 Furfurylalcohol Mild, slighly caramel-like37 1661 1664        

62 3-Methylbutanoic acid Acid, Herbaceous, Sour37 1667 1670 X-L X-L X-L     

63 3-Methyl-1,2-ciclohexanedione Saffron, burnt, chemical37 1678 -        

64 2-Furfuryl-5-methylfuran Alliaceous, earthy, mushroom37 1686 1636        

65 2-Acetyl-3-methylpyrazine* Nutty36 1694 1719    X X-L X X 

66 Furfurylpentanoate Fruity36 1702 1702        

67 2-Methyl-6-(1-propenyl)-pyrazine* - 1708 1719    X X X X 

68 Unk 11 (m/z:69[84-54%]; 41[100%];83 
m/z[31.67%]) - 1709 -        

69 1-Acetyl-1,4-dihydropyridine* - 1716 -    X    

70 Unk 12 (m/z: 140[100%]; 43[55%]; 
111[33.52%]) - 1726 -        

71 Unk 13 (m/z: 54[100%];  82[73.67%] ;  110 
[57.91%]) - 1729 -        

72 Unk 13b (m/z : 67 [100%]; 112[73.67%]; 
53[55.59%]) - 1734 -        

73 Unk 14 (m/z: 55; 84[48.75%];  54[26.45%]) - 1745 - X  X     

74 Unk 15 (m/z: 119[100%]; 43[26.78%]; 
64[25.39%]) - 1750 -        

75 Methyl nicotinate + other - 1767 1778    X  X X 
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# Compound Name Odor Description11,36,37 Calc. LRI Lit. LRI Acid Fruity Flowery Bitter Nutty Woody Spicy 

76 Unk 17 (m/z: 95[100%]; 43[28.81%]; 138 
[17.56%]) - 1772 - X  X     

77 Unk 18 (m/z: 123; 122[74.34%]; 126 [11.84%]) - 1777 -        

78 3-Methyl-2-butenoic acid Phenolic36 1786 -        

79 Unk 20 (m/z:139; 43[12.25%]; 154[50.48%]) - 1791 -    X    

80 2-Hydroxy-3-methyl-2-cyclopenten-1-one Caramel-like-Spicy37 1820 1839        

81 Furfurylpyrrole Geen, hay-like37 1853 1866    X  X X 

82 Guaiacol Smoky/sweet11 1860 -    X  X X-L 

83 2-Acetyl-5-methylfuran Caramel-like37 1885 - X  X     

84 3-Ethyl-2-hydroxy-2-Cyclopenten-1-one Caramel-like37 1885 -        

85 trans-Furfurylideneacetone* - 1897 -        

86 Phenylethanol Floral, woody, honey-like37 1902 1912    X  X-L X 

87 Maltol Sweet, Caramel-like37 1952 1960        

88 2-Acetylpyrrole Bitter, Roasted37 1962 1971    X   X 

89 Difurfurylether Coffee-like, mushroom37 1980 1977    X   X 

90 Phenol deriv* - 1997 -    X  X X 

91 1H-Pyrrole-2-carboxaldehyde Corny-Pungent37 2012 2035        

92 4-Ethylguaiacol   Spicy11 2021 2037    X  X X-L 

93 Nonanoic acid Nut-like, Fatty37 2150 2159        

94  4-Vinylguaiacol Clove-like11 2185 2193    X  X-L X-L 

95 Difurfuryldisulfide Mushrooms, caramel-like37 2536 2536        

Compounds with an “X” are related to each sensory note; “L” indicates that the compound alone directly elicits the peculiar note perception. Odor description is taken from 
literature references 11, 36, 37. 
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Table 3  

Summary of the performances of sensory notes prediction models 

AROMA NOTE R2LMO(10%) Q2(10%) SDEC Q2(15%)EXT SDEPEXT 

Woody 0.816 0.659 0.977 0.754 1.175 

Bitter 0.806 0.689 0.755 0.830 0.670 

Spicy 0.684 0.298 1.337 0.653 1.155 

Acid 0.831 0.497 1.019 0.734 0.890 

Fruity 0.661 0.193 0.837 0.568 1.115 

Flowery 0.793 0.342 1.047 0.475 1.244 

Nutty 0.467 0.302 1.646 0.634 1.426 
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WOODY BRA COL JAV UGA PNG INDIA INDO KAFA
2,5-Dimethylpyrazine 2.867 2.665 3.638 3.402 2.539 3.521 3.980 3.453
2,6-Dimethylpyrazine 3.460 3.088 4.515 4.018 3.130 4.298 4.681 3.529
Ethylpyrazine 1.437 1.208 2.220 1.957 1.216 1.779 2.192 1.353
2,3-Dimethylpyrazine 0.637 0.514 0.903 0.823 0.536 0.894 1.078 0.548
3-Ethylpyridine 0.121 0.081 0.119 0.132 0.101 0.198 0.229 0.100
2-Ethyl-5-methylpyrazine 1.260 1.121 2.230 1.888 1.095 1.781 2.256 1.370
2-Ethyl-3-methylpyrazine  + trimethylpyrazyne 1.589 1.346 2.640 2.270 1.359 2.458 2.979 1.568
2-n -Propylpyrazine 0.048 0.045 0.090 0.070 0.044 0.071 0.109 0.039
2-Furanmethanethiol 0.294 0.215 0.396 0.380 0.237 0.313 0.429 0.181
2-Ethyl-3,6-Dimethylpyrazine 0.907 0.753 1.840 1.500 0.659 1.649 1.991 0.659
2,6-Diethylpyrazine 0.348 0.286 0.726 0.597 0.296 0.619 0.898 0.356
Furfurylmethylsulfide 0.172 0.192 0.204 0.239 0.220 0.301 0.425 0.196
3,5-Diethyl-2-Methylpyrazine 0.152 0.124 0.391 0.312 0.134 0.324 0.454 0.174
3 Methyl-2-Cyclopenten-1-one + 3,5-Diethyl-2-Methylpyrazine 0.036 0.027 0.090 0.081 0.028 0.100 0.137 0.042
1H -Pyrrole 0.544 0.345 0.643 0.572 0.397 0.646 0.693 0.332
1-Methylethenylpyrazine 0.148 0.122 0.278 0.224 0.124 0.209 0.318 0.134
(5H )-5-Methyl-6,7-Dihydrocyclopentapyrazine 0.204 0.173 0.374 0.326 0.183 0.321 0.456 0.188
1-Methylpyrrole-2-Carboxaldehyde 0.878 0.738 0.820 0.895 0.860 0.944 0.976 1.089
2-Isopropenylpyrazine 0.226 0.170 0.423 0.367 0.186 0.407 0.573 0.195
2-Acetyl-3-Methylpyrazine 0.373 0.314 0.560 0.461 0.315 0.454 0.504 0.343
2-Methyl-6-(1-propenyl)-pyrazine 0.184 0.149 0.355 0.289 0.149 0.337 0.405 0.179
Methyl nicotinate +other 0.097 0.084 0.130 0.119 0.076 0.123 0.138 0.069
Furfurylpyrrole 1.047 1.053 1.666 1.368 1.120 1.315 1.707 1.032
Guaiacol 0.382 0.416 1.010 1.556 0.479 0.739 2.023 0.442
Benzeneethanol 0.159 0.104 0.143 0.319 0.132 0.192 0.270 0.095
Phenol deriv 0.275 0.291 0.533 0.657 0.300 0.402 0.712 0.285
4-Ethyl-guaiacol  0.319 0.302 1.188 1.251 0.302 0.610 2.220 0.173
4-Vinyl-guaiacol 1.828 1.944 5.542 5.350 1.609 1.879 5.397 1.015

NUTTY BRA COL JAV UGA PNG INDIA INDO KAFA
Ethylpyrazine 1.437 1.208 2.220 1.957 1.216 1.779 2.192 1.353
2,3-Dimethylpyrazine 0.637 0.514 0.903 0.823 0.536 0.894 1.078 0.548
2-Ethyl-5-methylpyrazine 1.260 1.121 2.230 1.888 1.095 1.781 2.256 1.370
2-Ethyl-3-methylpyrazine  + Trimethylpyrazyne 1.589 1.346 2.640 2.270 1.359 2.458 2.979 1.568
2-n -Propylpyrazine 0.048 0.045 0.090 0.070 0.044 0.071 0.109 0.039
2-Furanmethanethiol 0.294 0.215 0.396 0.380 0.237 0.313 0.429 0.181
2-Ethyl-3,6-dimethylpyrazine 0.907 0.753 1.840 1.500 0.659 1.649 1.991 0.659
2,6-Diethylpyrazine 0.348 0.286 0.726 0.597 0.296 0.619 0.898 0.356
3,5-Diethyl-2-methylpyrazine 0.152 0.124 0.391 0.312 0.134 0.324 0.454 0.174
3 Methyl-2-cyclopenten-1-one + 3,5-Diethyl-2-methylpyrazine 0.036 0.027 0.090 0.081 0.028 0.100 0.137 0.042
1H -Pyrrole 0.544 0.345 0.643 0.572 0.397 0.646 0.693 0.332
1-Methylethenylpyrazine 0.148 0.122 0.278 0.224 0.124 0.209 0.318 0.134
(5H )-5-methyl-6,7-dihydrocyclopentapyrazine 0.204 0.173 0.374 0.326 0.183 0.321 0.456 0.188
2-Isopropenylpyrazine 0.226 0.170 0.423 0.367 0.186 0.407 0.573 0.195
2-Acetyl-3-methylpyrazine 0.373 0.314 0.560 0.461 0.315 0.454 0.504 0.343
2-Methyl-6-(1-propenyl)-pyrazine 0.184 0.149 0.355 0.289 0.149 0.337 0.405 0.179
Methyl nicotinate +other 0.097 0.084 0.130 0.119 0.076 0.123 0.138 0.069
Guaiacol 0.382 0.416 1.010 1.556 0.479 0.739 2.023 0.442
Benzenethanol 0.159 0.104 0.143 0.319 0.132 0.192 0.270 0.095
Phenol deriv 0.275 0.291 0.533 0.657 0.300 0.402 0.712 0.285
4-Ethyl-guaiacol  0.319 0.302 1.188 1.251 0.302 0.610 2.220 0.173
4-Vinyl-guaiacol 1.828 1.944 5.542 5.350 1.609 1.879 5.397 1.015

ACID/ FRUITY / FLOWERY BRA COL JAV UGA PNG INDIA INDO KAFA
2,3-Pentanedione 0.299 0.337 0.189 0.184 0.346 0.190 0.094 0.314
1-Hydroxy-2-propanone 0.855 1.123 0.584 0.541 0.924 0.484 0.303 0.768
1-Hydroxy-2-butanone 0.077 0.098 0.044 0.048 0.080 0.042 0.027 0.071
Unk 1 0.379 0.447 0.246 0.241 0.375 0.177 0.110 0.329
Unk 2 0.132 0.143 0.090 0.100 0.140 0.089 0.059 0.138
Acetic acid 4.783 7.639 3.544 3.163 7.246 3.826 2.041 6.848
Furfural 3.243 5.369 2.003 2.334 4.131 1.600 1.020 4.023
2,5-Dimethyl-3(2H)-Furanone 0.645 0.730 0.484 0.521 0.739 0.501 0.357 0.739
Acetylfuran 1.393 1.892 0.926 1.104 1.814 1.202 0.990 1.784
5-Methyl Furfural 6.024 7.797 4.483 5.187 7.154 3.995 2.880 7.350
3-Methylbutanoic acid 2.346 3.072 2.140 2.713 3.533 2.032 2.412 5.151
Unk 14 0.263 0.327 0.192 0.173 0.299 0.189 0.123 0.273
Unk 17 0.338 0.471 0.258 0.293 0.430 0.241 0.182 0.419
Unk 21 0.826 1.032 0.563 0.671 1.068 0.696 0.412 0.937  
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