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Abstract

We study the Distance Critical Node Problem, a generalisation of the Critical Node Problem
where the distances between node pairs impact on the objective function. We establish complexity
results for the problem according to specific distance functions and provide polynomial and pseu-
dopolynomial algorithms for special graph classes such as paths, trees and series-parallel graphs. We
also provide additional insights about special cases of the Critical Node Problem variants already
tackled in the literature.

Keywords: Critical Node Problem, Connectivity measure, Shortest paths, Dynamic Programming,
Polynomial time algorithms.

1 Introduction

The Critical Node Problem (CNP) has been defined as a type of Interdiction Network Problem [43, 44]
which aims at maximally fragmenting a graph by deleting a subset of its nodes (and all incident edges
on such nodes) according to a specific connectivity measure. Considerable attention has been centered
on this problem in the literature due its numerous applications, including the identification of key
players in a social network [15], transportation networks vulnerability [26], power grid construction
and vulnerability [34], homeland security [16], telecommunications [4] or epidemic control [45] and
immunisation strategies [11, 17, 39]. An application in computational biology involving protein-protein
interaction networks has been proposed in [13].

Different connectivity measures can be considered according to specific applications of interest and
this choice typically leads to different optimal solution sets, as shown in [7, 41]. The connectivity
measures considered in the literature are often linked to the number of maximal connected compo-
nents, their maximum cardinality or the overall number of node pairs connected by a path (the so
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called pairwise connectivity) [11, 12, 21, 35, 36]. At the current state of the art, many heuristic
algorithms have been proposed for these problems [1, 5, 6, 7, 8, 32, 33, 39, 40]. We refer to [7, 41]
for a comprehensive literature review of problems involving the main graph fragmentation metrics.
Also, other alternative ways to quantify the fragmentation of a graph exist, such as: the network’s
diameter [3], single/multiple-commodity maximum flow or the shortest path between given source-sink
node pairs [18, 22, 29, 30].

In this work, we will consider a generalisation of the pairwise connectivity CNP, which we briefly recall
hereafter. An undirected graph G = (V,E) with a set of vertices V and a set of edges E is given and
we denote by n = |V | the number of vertices. We denote by S the set of deleted vertices, by cij the
pair weight (cost) of a connection between two nodes i and j in the graph G[V \ S] induced by set
V \S, and by ki the cancellation cost associated with the deletion of node i ∈ V . Considering a budget
K on the overall cancellation cost, the pairwise connectivity CNP can be formulated as follows:

min
∑

i<j

{cij : i, j are connected in G[V \ S]} (1)

∑

i∈V
kivi ≤ K vi ∈ {0, 1}, i ∈ V (2)

where each vi is a binary variable equal to 1 iff node i ∈ V belongs to set S (i.e. is deleted from
the graph). This CNP variant was proven to be (strongly) NP-hard on general graphs in [11, 2]. A
negative approximation result (under P 6= NP ) is also given in [2].

We will tackle the so-called Distance Critical Node Problem (D-CNP) as introduced in [42], where
objective function (1) is replaced by the term

∑
i<j cijf(dij). Quantity dij ≥ 0 denotes the length of

the shortest path between nodes i and j in subgraph G[V \ S] and f(dij) denotes the corresponding
cost. Function f(d) is assumed to be non-negative and non-increasing with d, which means that the
higher the value of a shortest path, the less the contribution in the objective. We also set d = ∞
to indicate the absence of a path between two nodes and assume f(∞) = 0 in the rest of the paper.
Shortest paths are computed according to positive edge weights of G denoted by wij for each edge
(i, j) ∈ E. The D-CNP contains the pairwise connectivity CNP when function f(d) is constant with
d (< ∞). Hence, we can state that the D-CNP is strongly NP-hard on general graphs. Notice that
the objective function and constraint (2) are linear with parameters cij and ki and thus we can always
rescale them to be integers (unless we need to work with irrational number for some specific reason).
At the same time, in the D-CNP we cannot assume without loss of generality that edge weights wij
are integers. Although multiplying all wij values by a rescaling factor does not affect the shortest
paths between two nodes, it can change the structure of the optimal solutions if f(d) is a non-linear
distance function. This occurs for instance for function f(d) = pd (with 0 < p < 1), analyzed in [42]
and later in the paper, for which a rescaling of the edge weights can induce a modification of the
optimal solution set of deleted nodes. Conversely, an inverse distance function such as f(d) = 1/d
(also introduced in [42]) is rescalable and the optimal solution is not affected by a rescaling of the edge
weights.

D-CNP may have numerous real-word applications such as in telecommunications and social net-
works [15, 42] where nodes that are distant enough cannot effectively communicate with one another.
Another relevant application comes from biological networks where the length of a path between two
nodes can be related to some chemical interaction: if a biochemical process is slow enough (i.e. it
involves too many steps for creating its final products), the reaction cannot effectively take place as it
is disfavoured against faster chemical reactions. A preliminary algorithmic analysis of the D-CNP has
been proposed in [9]. In [42], different non-negative and non-increasing penalty functions f(d) were
introduced and a linear programming model for undirected graphs was proposed.
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The pairwise connectivity CNP has also been studied over specially structured graphs. A class of
graphs strongly investigated is the class of trees T = (V,E). Complexity results and Dynamic Pro-
gramming (DP) algorithms have been provided in the literature.

In [20], it has been shown that the pairwise connectivity CNP on trees with unit pair weights, namely
when cij = 1 for all (i, j), is polynomially solvable (even with non-unit node cancellation costs ki)
while the case with non-unit pair weights is strongly NP- hard. Generalised results are provided in [2]
where it is shown that the CNP based on pair-wise connectivity, on the maximum cardinality of the
connected components and on the number of connected components is polynomially solvable on graphs
with bounded tree-width with unit pair weights. The formulations based on the maximum cardinality
of the connected components or their overall number is also treated in [35] where it is proven that such
versions are polynomially solvable on trees (even with non-unit node cancellation costs), k-hole graphs
for fixed k and series-parallel graphs. A slightly different version, called 3C-CNP was tackled in [27].
This problem variant calls for the minimization of the costs of deleted nodes in set S subject to the
constraint that the total connection costs of each connected component in the induced graph G[V \S]
is less than a threshold value. Interestingly, the 3C-CNP turns out to be polynomially solvable on
trees even in the case with non-unit pair weights. Instead, the pairwise connectivity CNP over trees
with the same input restrictions was shown to be strongly NP-hard in [20]. In [27], it is also shown
that the 3C-CNP is polynomially solvable on other specific graphs such as paths and interval graphs.

As it was done for the CNP, we provide complexity results and algorithms for the D-CNP by considering
special classes of graph: paths, trees and serial graphs. We derive general results for path graphs and
perform an analysis for trees and serial graphs based on some of the distance functions introduced
in [42].

We will restrict ourselves to the case with integer edge weights wij > 0 for all (i, j) ∈ E, node weights
ki > 0 and pair weights cij ≥ 0 for all i, j ∈ V . For each penalty function f(d), we have f(d) ≥ 0
for d ≥ 0. The assumption f(∞) = 0 holds without loss of generality. In fact, we could otherwise
consider a shifted function f ′(d) = f(d)− f(∞) with resulting objective function

∑

i<j

cijf
′(dij) =

∑

i<j

cijf(dij)−
∑

i<j

cijf(∞) (3)

which amounts to shifting the objective value by a constant factor.
The following classes of distance penalty functions are investigated:

• Class 1 : f(d) = 1 if d ≤ l where l is a generic parameter, and 0 otherwise.

• Class 2 : f(d) = M − d if d <∞, while f(∞) = 0, with M being an arbitrary large value.

• Class 3 : f(d) = pd with 0 < p < 1.

The distance function in Class 1 is suited to model situations where the communication between nodes
decreases drastically beyond a threshold distance. Example of applications for the analysis of social
networks can be found in [15, 14]. It is easy to see that when parameter l is larger than any path
length inside G[V \ S] (e.g. l ≥ ∑(i,j)∈E wij), the problems boils down to the pairwise connectivity
CNP.

Distance function of Class 2 is proportional to the Wiener index [23, 10] or mean geodesic path [31]
which is a classic metric for network analysis. Such a metric has been used for the analysis of chem-
istry [25], social [15] and communication [19, 28] networks.

The function of Class 3 is motivated by applications where a phenomenon (e.g. a virus) is propagated
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between two adjacent nodes with a certain probability, modelled by parameter p. This function is also
connected with the Hosoya polynomial considered in chemistry applications [24].

In the following, we refer to the decision version of the D-CNP as the problem asking whether a
solution of the D-CNP with value less than a target value Z exists. Such a problem will be denoted
as D-CNPD. Also, we assume that the computation of any function f(d) can performed in constant
time for any value of d.
The paper is organized as follows. In Section 2, we provide complexity results and dynamic program-
ming algorithms for D-CNP over paths. In Section 3, we move to D-CNP over trees and derive several
results and algorithms for the three classes of distance functions introduced above. Approaches and
a complexity analysis for series-parallel graphs are developed in Section 4. Conclusions and future
research trajectories are outlined in Section 5.

2 D-CNP over paths

We first establish complexity results for the D-CNP over a path graph, denoted by P, which can be
defined as a tree with two vertices (the first and the last one) with degree 1 while all other nodes have
degree 2. Clearly, all shortest paths in P trivially coincide with the unique paths connecting each
node pair. In the following we assume that there is no restriction on the input parameters cij , ki and
wij . Moreover, we suppose that there exists at least one d < ∞ such that f(d) > 0. We state the
following theorem.

Theorem 1: D-CNPD over paths is NP-complete for any function f(d) such that f(d) > 0 for
at least one distance value d <∞.

Proof. First, it is easy to see that the D-CNPD is in NP.
The proof is completed by a reduction from the Knapsack Problem (KP), a well-known combinatorial
optimization problem where n items i with integer weights w′i and profits p′i (with i = 1, . . . , n) and
a value W ′ (with

∑n
i=1w

′
i > W ′) are given. The decision version of KP, denoted by KPD, is NP-

complete and asks whether there exists a subset of items represented by a 0/1 vector x∗ such that
∑n

i=1w
′
ix
∗
i ≤W and

∑n
i=1 p

′
ix
∗
i ≥ Z ′, where Z ′ is a target profit value (Z ′ <

n∑
i=1

p′i).

Each KPD instance can be mapped into a D-CNPD instance over a path graph as follows:
We build a path graph with 2n nodes where two consecutive nodes 2i− 1 and 2i are associated with
each item i = 1, . . . , n. For each pair (2i − 1, 2i), we set the cancellation costs as k2i−1 = W ′ + 1
and k2i = w′i respectively. For i = 1, . . . , n, we introduce an edge between nodes 2i − 1 and 2i on
the one hand and nodes 2i and 2i+ 1 on the other, with an edge with weight w2i−1 2i = w such that
f(w) > 0. Finally, we set pair weights c2i−1 2i = p′i/f(w) for i = 1, ..., n and cjk = 0 for any pair of
nodes (j, k) 6= (2i − 1, 2i) for all i = 1, ..., n. This setting guarantees that the cost of a connection
in the graph is equal to pi for a node pair (2i − 1, 2i) and equal to zero for the other paths. Setting

K = W and Z =
n∑
i=1

p′i − Z ′ completes the reduction between the problems. It is straightforward to

see that such a reduction is polynomial in n. A scheme of the reduction above is displayed in Figure 1.

To establish the NP-completeness of the D-CNPD, we have to show that a KP instance is a “Yes”
instance (namely it admits a feasible solution) if and only if the related D-CNPD is a “Yes” instance.
Notice that, by construction, in the D-CNPD instance no odd node (2i− 1) can be deleted due to its
cancellation cost value.
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Figure 1: Example of a D-CNP instance obtained from a Knapsack instance.

Consider a “Yes” instance for the Knapsack problem. The corresponding solution vector x∗ provides
a D-CNP solution v∗ with v∗2i = x∗i and v∗2i−1 = 0 for i = 1, . . . , n and objective value equal to

n∑

i=1

p′i −
∑

i:v∗2i=1

p′i ≤
n∑

i=1

p′i − Z ′ = Z

which implies that the D-CNP instance is a “Yes” instance.

Likewise, consider the solution vector v∗ of a “Yes” D-CNPD instance with solution value

n∑

i=1

p′i −
∑

i:v∗2i=1

p′i ≤ Z

which implies
∑

i:v∗2i=1

p′i ≥ Z ′. Hence, the D-CNP solution provides a feasible solution for the related

KP instance with entries x∗i = v∗2i i = 1, . . . , n and overall profit greater than Z ′.

Corollary 1: D-CNPD over trees is NP-complete.

Proof. Since a graph path is a special case of a tree, the result holds.

An interesting observation is that the D-CNP is also NP-complete for certain functions f(d) in the
case of unit pair weights cij = 1, which differentiates it from the pairwise CNP. Consider the following
distance function

f(d) :=





p′1 if d0 ≤ d < d1

p′2 if d1 ≤ d < d2

. . .

p′n if dn−1 ≤ d < dn

0 if d ≥ dn, with dn > dn−1 > · · · > d1 > 0

. (4)

It can be used to provide a reduction from the Knapsack problem which is similar the one described
above. We can conclude that the D-CNP with distance function (4) is NP-complete, therefore the
D-CNP is NP-complete over trees, even for unit pair weights cij = 1, for a subset of distance functions.
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Dynamic Programming algorithms. We now derive two dynamic programming algorithms for
the D-CNP. We first consider no restriction on the parameters cij , wij , ki and distance function f(d)
except for the fact that node deletion costs ki can be scaled to integers. Given a node a ∈ P which
connects to m nodes down the path (“on the right” if one visualises the path graph horizontally and
with its first node placed on the left), we know at once which are these nodes and thus the respective
connection cost with a. Let us denote by Pa the subpath induced by consecutive nodes a, a+ 1, . . . , n.
We introduce a dynamic programming algorithm that considers a function Fa(m, k) defined as

Fa(m, k) := minimum objective value of a solution for subpath Pa with an overall cancel-
lation cost equal to k and m nodes in Pa still connected to node a. Node a is
included in the counting of m, i.e. m = 0 implies that a ∈ S.

We then state the following recursion by going backwards from the last node n to the first one:

Fn(m, k) =

{
0 if m = 0 and k = kn or m = 1 and k = 0

∞ if m = 0 and k 6= kn, or m = 1 and k > 0, or m > 1
. (5)

For a = (n− 1), . . . , 1; m = 0, . . . , (n+ 1− a); k = 0, . . . ,K:

Fa(m, k) =





min{Fa+1(p, k − ka), p = 0, ..., |Pa+1|}, if m = 0 and k ≥ ka
Fa+1(m− 1, k) +

∑a+m−1
i=a+1 caif(dai), if m > 0

∞ otherwise

(6)

Recursion (6) evaluates the deletion of node a (m = 0) from Pa for meaningful values of k (k ≥ ka) or
the deletion of nodes different from a (m > 0) in the rest of the subgraph. In the latter case, the cost
is given by the nodes which remain connected to node a: the term

∑a+m−1
i=a+1 caif(dai) is the sum of the

costs of connecting a to the reachable subpath on its right (Fa+1(m − 1, k)). This recursion scheme
is meaningful since we do not need to know precisely which nodes have been deleted in the subpath
in order to proceed. The optimal objective value can be obtained by function Fa(m, k) computed
for the first node of the path, namely when a = 1, after having processed all other nodes. This is
because, while for other nodes a > 1 the function Fa(m, k) returns an optimal value for a subpath of
P, F1(m, k) provides an optimal value for any deletion cost k for the complete path. Given in fact the
correctness of the recursive arguments and the definition of function Fa(m, k), it suffices to take the
minimum value of F1(m, k) by going through all possible entries of m and k. The optimal solution
value is thus given by

min{F1(m, k) : m = 0, . . . , n; k = 0, . . . ,K}.
We remark that a very similar method to derive the optimal solution value applies in all algorithms
introduced in the paper. Hence, we will not discuss this aspect in detail for subsequent dynamic
programs. Without going into details, we also point out that the optimal solution can be recovered by
implementing a backtracking strategy and refer the reader to [20] for further details. The following
proposition holds.

Proposition 2: D-CNP over paths is weakly NP-hard.

Proof. Clearly, the NP-completeness result stated for the D-CNPD in Theorem 1 implies that the
D-CNP over paths is NP-hard. Also, it easy to show that the proposed dynamic program is a pseu-
dopolynomial algorithm. To bound its running time, it suffices to observe that the number of com-
putations of function Fa(m, k) over all values of a,m and K can be bounded by O(Kn2). Since the
evaluation of recursion (6) is in O(n), we get a pseudopolynomial running time of O(Kn3).
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With the result stated in Proposition 2, we also have:

Proposition 3: D-CNP with ki = 1, i = 1, . . . , n is polynomially solvable over paths.

Proof. Since ki = 1 with i = 1, . . . , n, it immediately follows that K < n in any meaningful instance
of the D-CNP. Hence, given the complexity stated in Proposition 2, the dynamic program constitutes
a polynomial time algorithm with execution time bounded by O(n4).

Remark 1: With an increase of the computational running time by a factor n, the dynamic
programming algorithm can be also applied to compute an optimal solution for a chain, namely
when node 1 and node n of the path are connected by an edge. It suffices in fact to find the
best solution of the n path subproblems induced by the deletion of each node of the chain.

We can as well perform dynamic programming by objective values under the mild assumption that
the distance function f(d) is integer valued. Since the dynamic program involves similar arguments
as for the previous algorithm, we just outline the necessary definitions and recursions. Let us define
function Ka(m, z) as

Ka(m, z) := minimum deletion cost of a solution for subpath Pa = {a, ..., n} with objective
value z when m nodes in Pa are still connected to a (with m = 0 implying
a ∈ S).

We introduce the following recursion after an initialization step for Kn(m, z):

Kn(m, z) =





kn if m = 0 and z = 0

0 if m = 1 and z = 0

∞ if m ≤ 1 and z > 0, or m > 1

. (7)

For a = (n− 1), . . . , 1; m = 0, . . . , (n+ 1− a); z = 0, . . . ,
∑

i<j cijf(dij):

Ka(m, z) =





min{Ka+1(p, z) + ka, p = 0, ..., |Pa+1|}, if m = 0,

Ka+1(m− 1, z −∑a+m−1
i=a+1 caif(dai)), if

{
m > 0

z ≥∑a+m−1
i=a+1 caif(dai)

∞ otherwise

(8)

The optimal objective is given by

min{z : K1(m, z) ≤ K m = 0, . . . , n}.

To bound the execution time of the algorithm, notice that the number of function Ka(m, z) to compute
is O(n2

∑
i<j cijf(dij)) and each function demands O(n) operations. Thus, the running time is in

O(n3
∑

i<j cijf(dij)).

This second algorithm could be suitable for the case in which the cost pair cij are unitary and function
f(d) is not only integer valued but also bounded by a polynomial in the input n. For instance, the
distance function of Class 1 is 0/1 valued with a maximum value f(1) = 1. Likewise, a function of
Class 2 with the value of M bounded by O(nc) (with c ≥ 1) satisfies such conditions. We get the
following proposition.

7



Proposition 4: D-CNP with cij = 1, i, j = 1, . . . , n, f(d) integer valued and bounded by a
polynomial in the size of the input graph, is polynomially solvable over paths.

Proof. Since the sum
∑

i<j cijf(dij) with cij = 1 for all i, j = 1, . . . , n can be straightforwardly

bounded by O(f(1)n2), the running time of the dynamic programming algorithm reduces to O(f(1)n5)
thus showing the claim.

The results derived for the D-CNP over paths are summarised in Table 1.

D-CNP over paths cij wij ki complexity

≥ 0 > 0 > 0 O(Kn3)
≥ 0 > 0 = 1 O(n4)

with f(d) integer valued = 1 > 0 > 0 O(f(1)n5)

Table 1: Complexity results for the D-CNP over paths.

3 D-CNP over trees

In [20] it has been shown that the pairwise connectivity CNP over trees with non-unit pair weights
(cij ≥ 0) is strongly NP-hard. It is also shown that the same result holds even with the further input
restriction that ki = 1 for i = 1, . . . , n. Under mild assumptions on the distance function, this result
can be extended to a subset of the D-CNP instances over trees. Assume that f(d) > 0 for all d <∞.
This assumption holds for example for the Classes 2 and 3 defined in the Introduction. In such a case,
any instance of the pairwise CNP over a tree T = (V,E) can be reduced to an instance of the D-CNP
over the same tree with slightly different parameter values. Consider an instance of the CNP with pair
weights cij and node deletion costs ki. Since there is only one path between two nodes i, j ∈ V in a
tree, the pair i, j contributes to the objective function with a value cij if no node inside the path from i
to j is deleted and 0 otherwise. We can straightforwardly map this instance to a D-CNP instance with
node deletion costs ki, arbitrary edge weights wij and pair weights c′ij = cij/f(dij). Consequently,
each solution set S will have the same total deletion cost as for the CNP. Moreover, each pair of nodes
still connected in the induced graph T [V \S] contributes the same amount to the objective as for the
CNP and each solution set will have the same objective value for both problems. This mapping leads
to the following proposition.

Proposition 5: D-CNP with distance function f(d) such that f(d) > 0 for d <∞ is strongly
NP-hard over trees with non-unit pair weights cij ≥ 0.

Proof. From the reduction above, each instance of the weighted pairwise CNP is reducible to an
instance of the weighted D-CNP for any distance function f(d) such that f(d) > 0 for d <∞ and each
solution set S has the same deletion cost and objective function value. Therefore, such versions of the
D-CNP contain the instances of the weighted pairwise CNP over trees and are at least as difficult to
solve as the weighted pairwise CNP. From the strong NP-hardness of the weighted pairwise CNP over
trees, we can conclude to the strong NP-hardness of the weighted D-CNP over trees.
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Corollary 2: The D-CNP for Class 2 and Class 3 with non-unit pair weights over trees is
strongly NP-hard.

Proof. It is trivial to check that for Classes 2 and 3, we have f(d) > 0 for any d <∞, hence in both
cases the result of Proposition 5 holds.

Moreover, notice that the NP-completeness result over trees of Corollary 1 applies to all three classes
considered in this section. Given this general result, it is interesting to evaluate whether pseudopolyno-
mial or polynomial algorithms can be derived for the D-CNP when instances with restricting assump-
tions are considered. In fact, we try to characterize the border between strong and weak NP-hardness
of the D-CNP over trees by considering the three relevant distance functions provided in [42] and
recalled in the introduction.

We manage to provide different dynamic programming algorithms for these special variants of the
D-CNP. We remark that our algorithmic framework shares structural elements with the dynamic pro-
gramming approaches proposed in [20, 35, 27] for the CNP. However, the presence of a distance function
in the objective function requires a non trivial development of the necessary recursive arguments.

For further analysis, we denote by Ta the subtree of tree T rooted at node a ∈ V , and by ai with
i ∈ {1, ..., s} the children of a. Also, we define as Tai→s the subtree constituted by {a} ∪j=i,...,s Taj .
An example of a tree T rooted at node a is depicted in Figure 2 where subtree Ta2 is represented
by diamond shaped nodes while subtree Ta3→4 is represented by round shaped nodes. All recursions
in our dynamic programming approaches are based on traversing the tree in postorder (i.e. from the
leaves to the root) and from the right part of each tree level to the left one.

Figure 2: Example of a tree with subtree Ta2 represented by diamond shaped nodes and subtree Ta3→4

represented by round shaped nodes.

3.1 Class 1: f(d) = 1 if d ≤ l, f(d) = 0 otherwise.

For this distance function we can exploit the fact that the only relevant connections are the ones with
a distance less than instance parameter l. We will consider the following subcases arising by imposing
some restrictions on the input data cij , wij and ki.
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3.1.1 Case with cij = 1, ki = 1, wij ∈ N

To derive a dynamic programming algorithm, we introduce the following recursion functions:

Fa(m0, ...,ml, k) := minimum cost of a solution for subtree Ta when k nodes are deleted from Ta
and there are md nodes at distance d from a still connected to a.

Gai(m0, ..,ml, k) := minimum cost of a solution for subtree Tai→s when k nodes are deleted from
Tai→s and there are md nodes at distance d from a still connected to a.

For both functions, setting m0 = 0 implies that node a is deleted from the graph (a ∈ S). Also, in
case no feasible solution exists for functions Fa(·) or Gai(·), we will set the corresponding entries to∞.
The key idea is to traverse the tree starting from the leaves and proceeding from its right part to the
left one in each level of the tree. More precisely, we iteratively update the minimum cost reachable for
a subtree Ta rooted at node a by considering: the contribution of children of a on the right part of Ta
through function Gai(·); the contribution of the subtree of Ta right on the left of these nodes through
function Fai(·). For each node a, this corresponds to updating Gai(·) through functions Gai+1(·) and
Fai(·) until all its children a1, a2, . . . , as are considered. We also have Fa(·) = Ga1(·) since Ta = Ta1→s .

We can thus state the following recursive relations:

Fa(m0, ...,ml, k) = Ga1(m0, ...,ml, k), for any non-leaf node a ∈ V ; (9)

for non-leaf nodes a ∈ V and i < s; if a ∈ S, we have m0 = m1 = · · · = ml = 0 and

(10a)
Gai(m0, ...,ml, k) = min



Fai(p0, ..., pl, q) +Gai+1(0, 0, . . . , 0, k − q),

q = 0, ..., k − 1,

l∑

j=0

pj ≤ |Tai |



 ,

otherwise, if a /∈ S (m0 = 1), we have

(10b)

Gai(m0, ...,ml, k) = min



Fai(p0, ..., pl, q) +Gai+1(1,m1 − p1−waai

, . . . ,ml − pl−waai
, k − q)

+
l∑

d=0

l−d−waai∑

d′=0

pd(md′ − pd′−waai
),

q = 0, . . . , k,
l∑

j=0

pj ≤ |Tai |,
l∑

j=0

mj ≤ |Tai→s |,

pd−waai
≤ md d = 0, . . . , l with pd−waai

= 0 if d < waai



 .

For function Gai(·), we distinguish whether node a is deleted or not from the graph considering
Equations (10a) and (10b) respectively. When a ∈ S, we only have to consider in Equation (10a) the
minimum cost reachable in tree Tai plus the minimum cost in tree Tai+1→s over all distribution choices
of the overall number of deleted nodes k between Tai and Tai+1→s .

10



In Equation (10b), when node a 6∈ S, node a connects with its i-th child ai (if it is not deleted)
at a distance waai . Correspondingly, in order to compute the overall number of nodes connected
to a at a specific distance value in Gai(·), we have to consider the nodes in Tai connected with a
(and their distances) in the entries of function Gai+1(·) (i,e. terms m1 − p1−waai

, . . . ,ml − pl−waai
in

Equation (10b)).

Also, the third term in Equation (10b) counts the number of pairs of nodes inside Tai and Tai+1→s

which are connected by a path of length inferior to l. Each node inside Tai at distance d from node
a will connect to any node of Tai+1→s which is at distance d′ ≤ l − d − waai from a. For each target
distance d ≤ l, this amounts to connecting pd nodes from Tai to md′ − pd′−waai

nodes from Tai+1→s .

In the initialisation step of the dynamic program, for each leaf node a we have

Fa(m0, ...,ml, k) =





0 if m0 = m1 = · · · = ml = 0 and k = 1 or

m0 = 1, m1 = m2 = · · · = ml = 0 and k = 0

∞ otherwise

, (11)

while for each rightmost subtree Tas we have that:

if md = 0 with d = 0, . . . , l and k ≥ 1

(12a)Gas(m0, ...,ml, k) = min



Fas(p0, ..., pl, k − 1) :

l∑

j=0

pj ≤ |Tas |



 ,

otherwise, if m0 = 1 and md = 0 for 0 < d < waai

(12b)
Gas(m0, ...,ml, k) = min



Fas(mwaai

, ...,ml, pl−waai+1, ..., pl, k) +

l−waai∑

d=0

md,

pd = 0, ..., |Tas |−1 for d = (l − waai + 1), . . . , l



 ,

otherwise

(12c)Gas(m0, ...,ml, k) =∞.

If we denote by r the root node of the tree, the optimal solution value for the problem is given by

min

{
Fr(m0, ...,ml, k) :

l∑

d=0

md < n, k = 0, . . . ,K

}
.

The solution set of deleted nodes can be recovered by backtracking. We can state the following
proposition:

Proposition 6: The D-CNP over trees with cij = 1, ki = 1, i, j = 1, . . . , n and f(d) belonging
to Class 1 is polynomially solvable when parameter l is a constant.
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Proof. In our dynamic program, the number of functions Fa(·) and Ga(·) to compute for each node a ∈
V can be bounded by O((K+ 1)nl+1). Likewise, the computation of each function in Equations (10a)
and (10b) requires a number of operations which can be bounded by O((K + 1)nl+1). The overall
complexity is thus O(K2n2l+3). Since K < n because ki = 1, the execution time of the algorithm is
in O(n2l+5) which establishes a polynomial time algorithm when parameter l is a constant.

We remark that the proposed dynamic program provides a rather theoretical contribution for this
distance function class, since in practice the algorithm becomes intractable even for small values of
parameter l.

3.1.2 Case with cij = 1, ki ∈ N, wij ∈ N

We manage to derive a polynomial time algorithm when parameter l is a constant also for the case
with arbitrary cancellation costs of the nodes (ki > 0). It is sufficient to modify the above recursions
so that each entry Fa(·) and Ga(·) represents the minimum deletion cost a solution with objective
value k. Hence, we introduce the functions

Fa(m0, ...,ml, k) := minimum deletion cost of a solution for subtree Ta with objective value k and
md nodes at distance d from a still connected to a.

Gai(m0, ...,ml, k) := minimum deletion cost of a solution for subtree Tai→s with objective value k
and md nodes at distance d from a still connected to a.

As before, the entry value m0 = 0 means that a is deleted from the graph (a ∈ S) and no feasible
solutions are represented by setting Fa(·) = ∞ or Gai(·) = ∞. Using similar recursive arguments of
the previous dynamic program, we state the following recursions:

Fa(m0, ...,ml, k) = Ga1(m0, ...,ml, k), for any non-leaf node a ∈ V ; (13)

for non-leaf nodes a ∈ V and i < s; if a ∈ S, we have

(14a)
Gai(m0, ...,ml, k) = min



Fai(p0, ..., pl, q) +Gai+1(0, 0, . . . , 0, k − q),

q = 0, ..., k,

l∑

j=0

pj ≤ |Tai |



 ,

with m0 = m1 = · · · = ml = 0. Otherwise, if a /∈ S (m0 = 1), we have
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(14b)

Gai(m0, ...,ml, k) = min



Fai(p0, ..., pl, q) +

+ Gai+1(1,m1 − p1−waai
, . . . ,ml − pl−waai

, k − q −

−
l∑

d=0

l−d−waai∑

d′=0

pd(md′ − pd′−waai
)),

q = 0, . . . , k,

l∑

j=0

pj ≤ |Tai |,
l∑

j=0

mj ≤ |Tai→s |,

pd−waai
≤ md d = 0, . . . , l with pd−waai

= 0 if d < waai



 .

For each leaf node a we have

Fa(m0, ...,ml, k) =





ka if m0 = m1 = · · · = ml = 0 and k = 0,

0 m0 = 1, m1 = m2 = · · · = ml = 0 and k = 0

∞ otherwise

, (15)

For each rightmost subtree Tas we have:

if md = 0 with d = 0, . . . , l

(16a)Gas(m0, ...,ml, k) = ka + min



Fas(p0, ..., pl, k) :

l∑

j=0

pj ≤ |Tas |



 ,

otherwise, if m0 = 1 and md = 0 for 0 < d < waai

(16b)
Gas(m0, ...,ml, k) = min



Fas(mwaai

, ...,ml, pl−waai+1, ..., pl, k −
l−waai∑

d=0

md),

pd = 0, ..., |Tas |−1 for d = (l − waai + 1), . . . , l



 ,

otherwise

(16c)Gas(m0, ...,ml, k) =∞.

Notice that index k can be at most equal to the number of node pairs in the tree, namely it is upper
bounded by quantity n(n−1)

2 . The optimal solution value is given by:

min

{
Fr(m0, ...,ml, k) ≤ K :

l∑

d=0

md < n, k = 0, . . . ,
n(n− 1)

2

}

and the corresponding optimal solution set can be recovered by backtracking. We get the following
proposition.
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Proposition 7: D-CNP over trees with Class 1 distance function and input parameters cij = 1,
ki > 0, i, j = 1, . . . , n is polynomially solvable when parameter l is a constant.

Proof. Following the same reasoning in the proof of Proposition 6, the overall complexity of the pro-
posed dynamic programming algorithm is bounded by O((n(n−1)2 )2n2l+3). Hence, we get a polynomial
time complexity of O(n2l+7) when parameter l is a constant.

The results derived for the D-CNP with Class 1 distance function are summarised in the following
table.

D-CNP with Class 1 cij wij ki complexity

= 1 > 0 = 1 O(K2n2l+3)
= 1 > 0 > 0 O(n2l+7)

Table 2: Complexity results for the D-CNP over trees with Class 1 distance function.

3.2 Class 2: f(d) = M − d

We now consider the distance function of Class 2, i.e. f(d) = M−d or 0 when d =∞, with parameter
M being large enough to guarantee the non-negativity of the distance function for any value of d. For
instance, the value M can be reasonably bounded by the largest path length dmax = max{dij : i, j ∈
V } for path lengths dij between nodes i, j in the tree T .

Notice that for each triple of nodes i, j, k ∈ T with node k belonging to the unique path from i to j,
we have that f(dij) = f(dik) + f(dkj)−M . This observation considerably simplifies the computation
of each function Fa(·) and Gai(·) with respect to distance function of Class 1. In fact, the cost of
connecting node a to a subtree Tai rooted at its child ai is given by the connection cost of the nodes
connected to ai plus M −mwaai where m is the number of nodes connected to ai in Tai (including ai
itself).

3.2.1 Case with cij = 1, ki = 1 and wij ∈ N

For this case, we introduce the following recursion functions:

Fa(w,m, k) := minimal cost of a solution for subtree Ta when k nodes are deleted from Ta, m
nodes are still connected to a (including a itself) and the total cost of connecting
a to subtree Ta is w.

Gai(w,m, k) := minimal cost of a solution for subtree Tai→s when k nodes are deleted from
Tai→s , m nodes are still connected to a (including a itself) and the total cost of
connecting a to subtree Tai→s is w.

Setting m = 0 indicates that a ∈ S and setting Fa(·) = ∞ or Gai(·) = ∞ denotes the absence of
a feasible solution for the subproblems. Similarly to the same case with Class 1, we introduce the
following recursions:

Fa(w,m, k) = Ga1(w,m, k) for a non-leaf node a ∈ V ; (17)
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for each non-leaf node a ∈ V and i < s; if a ∈ S (m = 0 and w = 0)

(18a)Gai(w,m, k) = min
{
Fai(v, p, q) +Gai+1(0, 0, k − q),

v = 0, . . . , (|Tai |−1) ·M ; p = 0, . . . , |Tai |; q = 0, . . . , k − 1
}
,

otherwise, if a /∈ S (m > 0)

(18b)
Gai(w,m, k) = min

{
Fai(v, p, q) +Gai+1(w − v + pwaai ,m− p, k − q) +

+ (m− p)v + p(w − v + pwaai)− p(m− p)(M + waai),

v = 0, . . . , (|Tai |−1) ·M ; p = 0, . . . ,m; q = 0, . . . , k
}
,

By applying the same recursive argument of Equations (10a) and (10b), Equations (18a) and (18b)
compute the minimal value for function Gai by properly merging the results for subtrees Tai and
Tai+1→s . Equation (18b) related to the case a /∈ S is the most involved. Since any node that connects
to ai will connect to a, the connection cost of a node j ∈ Tai (connected to ai) to node a will be
M−dja = M−djai−waai = f(djai)−waai . Summing up the cost contributions of all nodes connected
to ai, we obtain that the connection cost of a to the nodes of Tai is v − pwaai . Correspondingly, the
connection cost of a to the nodes of Tai+1→s must be w − v + pwaai (function Gai+1(·)).
We also have to consider the connection costs between each node j ∈ Tai and k ∈ Tai+1→s , connected
through a. For each node pair (j, k), we have that f(djk) = M−djai−waai−daik = f(djai)+f(dak)−
(M +waai). Summing over all j and k we get a total cost contribution equal to (m− p)v+ p(w− v+
pwaai)− p(m− p)(M + waai).

The initial conditions for each leaf node a and rightmost subtree Tas are as follows:

Fa(w,m, k) =

{
0 if m = 0 and k = 1 and w = 0, or m = 1 and k = 0 and w = 0

∞ otherwise
; (19)

if m = 0, k ≥ 1 and w = 0

(20a)Gas(w,m, k) = min {Fas(v, p, k − 1) : v = 0, . . . , (|Tas |−1)M ; p = 0, . . . , |Tas |} ,
if m > 1

(20b)Gas(w,m, k) = Fas(w + (m− 1)waas −M,m− 1, k) +M − (m− 1)waas ,

otherwise

(20c)Gas(w,m, k) =∞ .

The optimal value for the problem is given by the quantity

min {Fr(w,m, k) : w = 0, . . . ,M |T |; m = 0, . . . , n; k = 0, . . . ,K}

where r is the root node of the tree. Considering the proposed dynamic program, we can state the
following proposition.

Proposition 8: D-CNP over trees with a distance function of Class 2 and unit pair weight
(cij = 1) and unit deletion costs (ki = 1) admits a pseudopolynomial algorithm with time
complexity O(K2n5M2).
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Proof. The number of functions Fa(·) and Ga(·) to compute for each value of w, m, k is bounded by
product [(n− 1)M + 1](n+ 1)(K + 1) values. The recursion steps which involve the largest number of
operations are given by Equations (10a) and (10b). These steps require [(n− 2)M + 1](n+ 1)(K + 1)
operations at most. Considering all nodes n, the running time of the dynamic programming algorithm
is thus bounded by O(K2n5M2).

With the result stated in Proposition 7, we also have:

Proposition 9: D-CNP over trees with a distance function of Class 2 and unit input parameters
cij , ki and wij is solvable in polynomial time.

Proof. Since the value of M is bounded by the sum of all edge weights, we have M ≤ n when wij = 1
for (ij) ∈ E. We also have K < n when ki = 1 for i ∈ T . Thus, the running time the dynamic
program is bounded by O(n9).

3.2.2 Case with cij = 1, ki ∈ N and wij = 1

For this case, we can straightforwardly adapt the recursive argument of the dynamic program in
Section 3.1.2. Without going into details, it suffices to change the definition of functions Fa(·) and
Ga(·) in the previous Section 3.2.1 to be the minimal total deletion cost of a solution with total
connection cost equal to k for the considered subtree. Notice that now the value of index k is upper

bounded by
n(n− 1)

2
M which constitutes a trivial bound on the total connection cost in the whole

tree. The following proposition holds.

Proposition 10: D-CNP with a distance function of Class 2 and unit pair weights and unit
edge weights is polynomially solvable over trees.

Proof. To bound the running time of the algorithm, we can apply the same reasoning in the proof of

Proposition 7 and get a time complexity of O(K2n5M2) with K =
n(n− 1)

2
M . Since M < n because

all (n− 1) edge weights in T are equal to 1, the time complexity reduces to O(n13).

3.2.3 CNP over trees with unit deletion costs and additive pair weights

Interestingly, the recursion functions Fa(·) and Ga(·) introduced in Section 3.2.1 could be used to tackle
the weighted pairwise connectivity CNP when the pair weights are integer and satisfy the following
additive property: cij = cik + ckj for each node k belonging to the unique path that exists between a
node i and a node j, with i, j ∈ V . In this CNP variant, the total connection between a node a and
the rest of the graph is bounded by the quantity Cmax = nmax{cij : i, j ∈ V }. The (slightly) modified
recursions for the CNP are as follows:

(21)Fa(w,m, k) = Ga1(w,m, k), for any non-leaf node a ∈ V ;
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for each non-leaf node a ∈ V and i < s, if a ∈ S (m = 0 and w = 0)

(22a)Gai(w,m, k) = min
{
Fai(v, p, q) +Gai+1(0, 0, k − q)

v = 0, ..., Cmax; p = 0, ..., |Tai |; q = 0, ..., k − 1
}
,

otherwise, if a /∈ S (m > 0)

(22b)
Gai(w,m, k) = min

{
Fai(v, p, q) +Gai+1(w − v − p caai ,m− p, k − q)

+ (m− p)v − p(m− p)caai + p(w − v − p caai)
v = 0, ..., w − pcaai ; p = 0, ...,m; q = 0, ..., k

}
.

The initial conditions for each leaf node a and rightmost subtree Tas are:

Fa(w,m, k) =

{
0 if m = 0 and k = 1 and w = 0, or m = 1 and k = 0 and w = 0

∞ otherwise
; (23)

if m = 0, k ≥ 1 and w = 0

(24a)Gas(w,m, k) = min {Fas(v, p, k − 1) : v = 0, . . . , Cmax; p = 0, . . . , |Tas |} ,

if m > 1

(24b)Gas(w,m, k) = Fas(w + (m− 1)caas ,m− 1, k)− (m− 1)caas ,

otherwise

(24c)Gas(w,m, k) =∞ .

The optimal solution value is given by

min {Fr(w,m, k) : w = 0, . . . , Cmax; m = 0, . . . , n; k = 0, . . . ,K}

The following propositions hold.

Proposition 11: The CNP over trees is solvable in pseudopolynomial time for the case of
additive pair weights and unit node deletion costs (ki = 1), with a time complexity bounded
by O(max{c2ij : i, j ∈ V }K2n5).

Proof. The number of Fa(·) and Ga(·) functions is bounded by O(CmaxnK) and for each set of indices,
the number of operations for computing the value of each function is also bounded by O(CmaxnK).
Hence, the DP algorithm requires at most O(max{c2ij : i, j ∈ V }K2n5) to find the optimal solu-
tion going over all nodes of the tree. This time complexity shows that the dynamic program is a
pseudopolynomial algorithm for the considered CNP variant.

Remark 2: In the case where cij = 1 for each edge (i, j) ∈ E, the complexity from the general
case computed above reduces to O(K2n7). Since ki = 1 with i = 1, . . . , n we have K < n in
any meaningful instance of the problem and thus the sketched DP algorithm has a polynomial
time complexity of O(n9).
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It is remarkable that our results for the D-CNP allow us to find classes of the CNP over trees based on
weighted pairwise connectivity that are solvable in (pseudo-)polynomial time. These results provide
further insight on the complexity of the CNP over trees with non-unit pair weights, which up to now
was only proved to be strongly NP-hard with general pair weights cij ∈ N and polynomially solvable
with unit pair weights cij = 1 [20].

The results derived for the D-CNP with Class 2 and related CNP variants are summarised in Table 3.

cij wij ki complexity

D-CNP with Class 2
= 1 > 0 > 0 O(K2n5M2)

with M = O(n) = 1 = 1 = 1 O(K2n7)
with M = O(n) = 1 = 1 > 0 O(n13)

CNP with additive cij
≥ 0 - = 1 O((max{c2ij : i, j ∈ V })K2n5)
≤ n - = 1 O(K2n7)

Table 3: Complexity results for the D-CNP with Class 2 and the CNP with additive pair weights over
trees.

3.3 Class 3: f(d) = pd with 0 < p < 1.

The distance function of Class 3 is multiplicative since we have f(dij) = f(dik) · f(dkj) for each node
k contained in the shortest path between i, j ∈ V .

To derive a DP algorithm for this D-CNP variant, we will require that each distance cost can be scaled
to an integer in our recursions. To this aim, we will consider the minimum power of 10, denoted by
µ, such that µpdij ∈ N for any node pair (i, j) ∈ V × V . Note that the value of parameter µ could
be exponentially large depending on the value of p and wij , which could compromise the performance
of an algorithm based on scaling f(d) to an integer value for any d. Still, it is interesting to state a
dynamic program based on exploiting the multiplicative property of the distance function over trees,
which can be used heuristically for D-CNP applications where only few decimal places need to be
considered for any distance cost.

3.3.1 Case with cij = 1, ki = 1 and wij ∈ N

We consider the case with unit pair weights and unit deletion costs and define the following recursion
functions:

Fa(c, k, σ) := minimal cost of a solution for subtree Ta when k nodes are deleted from Ta and
the total cost of connecting a to subtree Ta multiplied by µ is c. Index σ is
equal to either 0 if a ∈ S or 1 if a /∈ S.

Gai(c, k, σ) := minimal cost of a solution for subtree Tai→s when k nodes are deleted from Tai→s

and the total cost of connecting a to subtree Tai→s multiplied by µ is c. Index
σ is equal to either 0 if a ∈ S or 1 if a /∈ S.

As in the previous DP algorithms, if it is not possible to remove k nodes from Ta such that the total
cost of connecting a to subtree Ta multiplied by µ is equal to c, we have Fa(c, k, σ) = ∞ and/or
Ga(c, k, σ) =∞. Notice that, given the multiplicative property of the distance function over trees, in
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the recursive functions for each node a we do not need to consider the number of nodes still connected
in the subtrees rooted at its children.

Denoting by C(T ′) the connectivity cost of any subtree T ′, we derive the following recursions:

(25)Fa(c, k, σ) = Ga1(c, k, σ), for non-leaf node a ∈ V ;

for non-leaf nodes a ∈ V and i < s, if a ∈ S

(26a)Gai(c, k, σ) = min
{
Fai(b, q, σ

′) +Gai+1(0, k − q, 0),

b = 0, . . . , µC(Tai); q = 0, . . . , k − 1; σ′ = 0, 1
}
,

otherwise, if a /∈ S

(26b)

Gai(c, k, σ) = min

{
Fai(b, q, σ

′) +Gai+1 (c− pwaai (b+ µ), k − q, σ)

+ σ′
(
pwaai

(
b

µ
+ 1

)
+ pwaai

b

µ

(
c

µ
− pwaai

(
b

µ
+ 1

)))

b = 0, . . . , p−waai c− µ; q = 0, . . . , k; σ′ = 0, 1

}
.

The second line in Equation (26b) represents the total cost of connecting subtrees Tai and Tai→s .
When σ′ = 1, the first term in this line represents the connection cost of node a to all the nodes in
Tai . The second represents the connection cost between each node u ∈ Tai and v ∈ Tai→s . The cost for
connecting pair (u, v) is in fact given by pduaipwaaipdav . Summing over all possible node pairs (u, v)
gives the last term in Equation (26b). The initial conditions of the DP algorithm are:

Fa(c, k, σ) =

{
0 if σ = 0 and k = 1 and c = 0, or σ = 1 and k = 0 and c = 0

∞ otherwise
; (27)

if σ = 0 and k ≥ 1 and c = 0

(28a)Gas(c, k, σ) = min
{
Fas(b, k − 1, σ′) : b = 0, . . . , µC(Tai); σ′ = 0, 1

}
,

else if s = 1

(28b)Gas(c, k, σ) = min

{
Fas

(
c− σ′ pwaas (c+ µ), k, σ′

)
+ σ′ pwaas

(
c

µ
+ 1

)
, σ′ = 0, 1

}
,

otherwise

(28c)Gas(c, k, σ) =∞ .

The optimal solution value is given by

min {Fr(c, k, σ) : c = 0, . . . , C(T ); k = 0, . . . ,K; σ = 0, 1}

where r is the root node of the tree. The optimal solution set of deleted nodes can be recovered by
backtracking. We have the following proposition.
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Proposition 12: The D-CNP over trees with penalty function of Class 3, unit pair costs and
unit nodes cancellation costs can be solved with a time complexity of O(K2n2µ2).

Proof. The number of all possible combinations of the indices in functions Fa and Ga is bounded by
2[(n − 1)µpmin{wij ,(i,j)∈E} + 1](K + 1). The recursion step with the largest number of operations is
given by Equation (26b) which requires up to 2[(n−1)µpmin{wij ,(i,j)∈E}+1](K+1) operations. Hence,
the execution time of the DP algorithm can be bounded by O(K2n3µ2p2min{wij ,(i,j)∈E}) and thus by
O(K2n3µ2).

Given the complexity stated in the above proposition, the performance of the proposed dynamic
program is heavily affected by large values of µ which exponentially depends on the edge weights
wij . However, the DP algorithm can be modified to devise a more practical approximation algorithm,
which also provides a lower bound for the optimal objective value. Because of the exponential decrease
of the cost function, beyond a certain distance a pair of nodes will only increase the objective function
by a negligible amount. We propose to modify the algorithm presented in Equations (25) to (28c) by
truncating each term in the objective after a limited number of decimals set by an integer ν. In this
heuristic version of the algorithm, which we call H1, we set µ = 10ν and we truncate the value of each
term below the ν-th decimal. By limiting the value of ν and thus the precision at which we want to
solve the problem, we can maintain the complexity of the problem under control. We can state the
following property about this approximation algorithm:

Proposition 13: For the D-CNP over trees with penalty function Class 3, heuristic H1 con-
stitutes an approximation algorithm with time complexity O(K2n3µ2) and an approximation

bound of n(n−1)
2µ . The truncated objective of the approximate solution also underestimates the

optimal value by at most n(n−1)
2µ .

Proof. Since every term in the objective function is truncated at the ν-th decimal, multiplying these
terms by µ = 10ν is sufficient to obtain integers, so we can use the DP algorithm presented above with
complexity O(K2n3µ2) to obtain a heuristic solution Sh. Such a solution understimates each term in

the objective by at most µ−1 so that it underestimates the full objective by at most n(n−1)
2µ . Let S∗

be the true optimal solution of the problem with objective function f∗. The best truncated objective
value ftrunc provided by Sh will be at minimimum f∗− n(n−1)

2µ . Since the algorithm underestimates the
objective value of any solution, at least one solution (namely S∗) provides a truncated result inferior

to f∗ so that Sh has a truncated objective value between f∗ and f∗ − n(n−1)
2µ , which is a lower bound

on f∗. Moreover, the non-truncated objective value fh of Sh naturally provides an upper bound on
f∗. Since it overestimates ftrunc by at most n(n−1)

2µ , we have that fh takes a value between f∗ and

f∗ + n(n−1)
2µ , which completes the proof.

The desirable property of the approximation algorithm described above is that it provides both a
lower and an upper bound on the optimum.

3.3.2 CNP over trees with unit deletion costs and multiplicative pair weights

Adopting the same reasoning to establish a connection between the D-CNP and a CNP variant in
Section 3.2.3, we can tackle here the case of weighted pairwise CNP over trees where the following
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multiplicative relation between pair weights holds: cikckj = cij for any path between two nodes
i, j ∈ V through node k. We consider the case cij ∈ N. The multiplicative property allows us to use
the same function Fa and Ga defined in the previous section with the difference that factors pwaai

in the Equations (25)-(28c) are now substituted by the pair weights caai . We can state the following
proposition.

Proposition 14: The CNP over trees with unit deletion costs and multiplicative pair weights
(with cij ∈ N) is solvable in pseudopolynomial time with time complexity O(K2n3 max{c2ij :
i, j ∈ V }).

Proof. In this case the number of functions Fa(·) and Ga(·) to compute is at most 2[(n− 1) max{cij :
i, j ∈ V } + 1](K + 1). Also, the most demanding recursion step requires 2[(n − 1) max{cij : i, j ∈
V }+1](K+1) operations. Hence, the running time of the DP algorithm can be bounded byO(max{c2ij :

i, j ∈ V }K2n3).

Exploiting the previous complexity result, we can state the following proposition for the weighted
pairwise CNP for multiplicative weights.

Proposition 15: The CNP over trees with unit deletion costs and multiplicative pair weights
(with cij ∈ N) is weakly NP-hard.

Proof. The multiplicative structure of the pair weights allows us to apply the reduction from the
Knapsack problem provided in Section 2, therefore the pairwise CNP on such instances is NP-complete.
Given that we have derived an algorithm for it which is pseudoplynomial in parameters cij , the problem
is only weakly NP-hard.

We report the results derived for the D-CNP with Class 3 and the CNP variant in Table 4.

cij wij ki complexity

D-CNP with Class 3 = 1 > 0 = 1 O(K2n2µ2)

CNP with multiplicative cij ≥ 0 - = 1 O((max{c2ij : i, j ∈ V })K2n3)

Table 4: Complexity results for the D-CNP with Class 3 and the CNP with multiplicative pair weights
over trees.

4 Complexity considerations for the D-CNP with Class 1 distance
function over series-parallel graphs

We will now consider instances of the D-CNP based on the distance function of Class 1: f(d) = 1
if and only if d ≤ l where l is a fixed parameter, and 0 otherwise. We refer the reader to [35] for a
description of series-parallel graphs and how to tackle them for CNP problems based on the cardinality
of the largest connected component or the number of connected components. We will however recall
a few definitions and facts about series-parallel graphs. Two-terminal graphs (TTG) G(s, t) with
source node s and sink node t represent the building blocks of a series-parallel graph, since such a
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graph can be obtained by performing series and parallel compositions of two TTGs at a time: the
series operation consists in merging nodes t1 and s2 of TTG graphs G1(s1, t1) and G2(s2, t2) while the
parallel operation consists in merging node s1 with s2 on one part and node t1 with t2 on the other
part. The full series-parallel graph G can be constructed by a set of series-parallel operations which
can be represented by a binary tree where the leaves are two-nodes single-edged graphs called K̂2 and
the construction can be performed by following the operations from leaves to root (each node being
either a series or a parallel operation between the graphs of the nodes below). Such a binary tree can
be identified in linear time [37, 38].

An example is given in Figure 3 where two TTGs are merged using a parallel operation. We will
consider instances with positive integer edge weights wuv as well as unit integer cancellation costs
ku = 1 and unit pair weights cuv = 1.

Figure 3: Example of a parallel operation between two TTGs of a series-parallel graph (on the left),
where the final result is displayed on the right.

4.1 Recursion functions and initial conditions

Dealing with series-parallel graphs is somewhat more intricate than dealing with trees, and the re-
cursion functions will have a larger set of indices, because between each pair of nodes more than one
path must be taken into account. Here we deal with the case where f(d) = 1 iff if d ≤ l; we develop a
dynamic programming recursion which is not computable in polynomial time in general, but becomes
polynomial when the l parameter is bounded by a constant, similar to what was done in Section 3.1.

Let Ĝ be a TTG with terminal nodes s, t. We consider distances dij between nodes of Ĝ. Two
nodes i, j are separated in Ĝ if dij > l. For a pair of separated nodes {i, j} (unordered) we denote by

d̂ij = min{dis+djt, dit+djs}; this quantity represents the minimum possible length for the intersection
of a path connecting i and j with the TTG Ĝ. We also define two matrices M and R with row and
column index set {1, 2, . . . , l,∞} as follows.

M: for d, d′ ≤ l, Md,d′ is the number of nodes i such that dsi = d, dit = d′; for d = ∞
(respectively d′ =∞) Md,d′ counts the number of nodes for which d > l (resp. d′ > l).

R: for d, d′ ≤ l, Rd,d′ is the number of separated node pairs in Ĝ for which d̂ij = d + d′

and (d, d′) = (dis, djt) or (d, d′) = (dit, djs). The indices with d =∞ (resp. d′ =∞) handle
the cases where the considered distance exceeds l, as above.

Our recursive functions are defined as:
FĜ(ps, pt, λ, k,M,R) = minimum cost for TTG graph Ĝ(s, t) when k nodes are deleted

from Ĝ, ps = 0 if s is deleted (1 otherwise) (and same for pt), the
minimum distance between s and t is λ. If it is not possible to find
a feasible configuration of indices, we put FĜ =∞. Note that the

22



“matrix indices” M and R have both O(l2) entries. Each entry
can take up to O(n) values for M and up to O(n2) values for R,

thus giving O(nl
2
) possible values for M and O(n2l

2
) for R.

The information contained in M(d,d′) will allow us to compute the new connections between the nodes
of two TTGs G1 and G2 when we merge them together. The parameter R(d,d′) will help us determine

the number of node pairs i, j that are separated in Ĝ1 or Ĝ2 but will not be separated in Ĝ12 because
a suitable path emerges when the two TTGs are merged. Note that this can only happen with a
parallel composition. Leaf nodes of the binary decomposition tree T (G) are then initialised with the
following relations. Let K̂2 = (V,E) with V = {s, t}, and a single edge E = {{s, t}}. We set as initial
conditions:
FK̂2

(1, 1, wst, 0,M,R) = 1 if:

(i) M(wst,0) = M(0,wst) = 1, and

(ii) M(d,d′) = 0 for all other d, d′ ∈ {0, . . . , l,∞}, and

(iii) R(0,0) = 1 if wst > l, R(0,0) = 0 if wst ≤ l, and

(iv) R(d,d′) = 0 for all other d, d′ ∈ {0, . . . , l}.
FK̂2

(0, 1, wst, 1,M,R) = 0 if:

(i) M(∞,0) = 1, and

(ii) M(d,d′) = 0 for d ∈ {0, . . . , l}, d′ ∈ {0, . . . , l,∞}, and

(iii) R(d,d′) = 0 for d, d′ ∈ {0, . . . , l}.
FK̂2

(1, 0, wst, 1,M,R) = 0 if:

(i) M(0,∞) = 1, and

(ii) M(d,d′) = 0 for all others d, d′ ∈ {0, . . . , l,∞}, and

(iii) R(d,d′) = 0 for all d, d′ ∈ {0, . . . , l}.
FK̂2

(1, 1, wst, 2,M,R) = 0 if:

(i) M(d,d′) = 0 for d, d′ ∈ {0, . . . , l,∞} and

(ii) R(d,d′) = 0 for d, d′ ∈ {0, . . . , l}
FK̂2

(ps, pt, λ, k,M,R) =∞ in every other case.

4.2 Recursion relations for series operations

We start by investigating the recursion relations between our DP functions on nodes of T (G) where a
series operation is realised between TTG graphs Ĝ1(s1, t1) and Ĝ2(s2, t2) by merging nodes t1 and s2
together, yielding a TTG Ĝ12(s, t) (with s = s1 and t = t2). Consequently we will have ps = ps1 and
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pt = pt2 . We can compute the functions FG12 from the functions FG1 and FG2 as follows:

FĜ12
(ps, pt, λ, k,M,R) = minFĜ1

(ps1 , p, λ1, q,M
(1),R(1))+

FĜ2
(p, pt2 , λ2, k − q − p,M(2),R(2))+

p

l∑

d1=0

l∑

d′1=0

l−d′1∑

d2=0

l∑

d′2=0

M
(1)
(d1,d′1)

M
(2)
(d2,d′2)

(29a)

with the minimization performed over ps, p, pt ∈ {0, 1}, q ∈ {0, . . . , k− p}, λ = λ1 +λ2 and the matrix
indices M, R satisfying the following relations:

M(d,d′) =M
(1)
(d,d′−λ2) +M

(2)
(d−λ1,d′) d, d′ ∈ {0, . . . , l} (29b)

M(∞,d′) =M
(1)
(∞,d′−λ2) +M

(2)
(∞,d′) +

l∑

δ=(l−λ1+1)+

M
(2)
(δ,d′) d′ ∈ {0, . . . , l} (29c)

M(d,∞) =M
(2)
(d,∞) +M

(1)
d,∞ +

l∑

δ′=(l−λ2+1)+

M
(1)
d,δ′ d ∈ {0, . . . , l} (29d)

R(d,d′) =R
(1)
(d,d′−λ2) +R

(2)
(d−λ1,d′)+∑

δ=0,...,l,∞

∑

δ′=0,...,l,∞:

δ+δ′>l and d+d′≤δ+λ1+δ′+λ2

M
(1)
(d,δ′)M

(2)
(δ,d′)+

∑

δ=0,...,l,∞

∑

δ′=0,...,l,∞:

δ+δ′>l and d+d′>δ+λ1+δ′+λ2

M
(2)
(d−λ1,δ′)M

(1)
(δ,d′−λ2) d, d′ ∈ {0, . . . , l}. (29e)

The third term in equation (29a) takes into account the new pairs that become connected if the
terminal t1 = s2 is not deleted. We note that in a series composition any path between nodes of G1

and G2 must necessarily include node t1 = s2, hence the length of shortest paths between node pairs
{i, j} with i ∈ G1, j ∈ G2 can be computed as dit1 +ds2j . Also, the shortest paths between node pairs
contained in G1, (resp. G2) cannot change after a series composition.

The number of nodes at distances (d, d′) from the terminal in the Ĝ12 TTG resulting from the series

composition is represented by indices M
(i)
(di,d′i)

by taking into account that nodes in

G1 at distance d′1 from t1 are at a distance d′1 +λ2 from t in G12 while nodes in G2 at distance d2 from
s2 are at a distance d2+λ1 from s in G12. The node pairs which are separated by a distance larger than
l inside Ĝ1 and Ĝ2 cannot become closer in a series composition. This justifies equations (29b)–(29d).

Equation (29e) deals with the number of separated pairs in Ĝ12. After adding the R(1), R(2) values
for a given (d, d′), possible pairs i, j with i in Ĝ1, j in Ĝ2 must be counted.

Equations (29) compute a minimum over O((K + 1)(l + 1)n2(l+2)(l+1)) quantities and each of them
requires to perform a sum over O((l + 1)3) terms, such that the time complexity for computing the
function on the left-hand side is O(Kl4n2(l+2)(l+1)).
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4.3 Recursion relations for parallel operations

In a parallel operation, terminals s1, s2 and t1, t2 respectively are merged together, so that s = s1 = s2
and t = t1 = t2. A key issue in a parallel composition is that the shortest path between a pair of
nodes within G1 (resp. G2) can become shorter since a new, shorter path can emerge, going through
G2 (resp. G1) — see Figure 4 for an idea of the situation.

Figure 4: Example of a parallel operation between two TTGs with the shortest path between nodes
a and t2 changing after the parallel operation (the shortest path is displayed with dashed edges, edge
weights are unitary).

In view of this we state the following recursion for the case of parallel composition — in the equations,
θ(x) = 1 iff x ≥ 0, else it is 0.

FG12(ps, pt, λ, k,M,R) = minFG1(ps, pt, λ1, q,M
(1),R(1))+

FG2(ps, pt, λ2, k − q + ps + pt,M
(2),R(2))+

∑

d1,d′1,d2,d
′
2=0,...,l,∞:

min{d1+d2,d′1+d′2}≤l

M
(1)
(d1,d′1)

M
(2)
(d2,d′2)

+

∑

d,d′=0,...,l:
d+d′+λ2≤l

R
(1)
(d,d′) +

∑

d,d′=0,...,l:
d+d′+λ1≤l

R
(2)
(d,d′): (30a)

with the minimization performed over ps, pt ∈ {0, 1}, q ∈ {0, . . . , k − p} and λ such that λ =
min{λ1, λ2}. The matrix indices M, R are required to satisfy the following relations:

M(d,d′) =M
(1)
(d,d′) +M

(2)
(d,d′) d, d′ ∈ {0, . . . , l}

(30b)

R(d,d′) =R
(1)
(d,d′)θ(d+ d′ + λ2 − l)+

R
(2)
(d,d′)θ(d+ d′ + λ1 − l)+

∑

δ1,δ′1,δ2,δ
′
2=0,...,l,∞:

min{δ1+δ2,δ′1+δ′2}>l
δ1+δ′2<δ

′
1+δ2

M
(1)
(δ1,δ′1)

M
(2)
(δ2,δ′2)

+

∑

δ1,δ′1,δ2,δ
′
2=0,...,l,∞:

min{δ1+δ2,δ′1+δ′2}>l
δ1+δ′2≥δ′1+δ2

M
(1)
(δ1,δ′1)

M
(2)
(δ2,δ′2)

d, d′ ∈ {0, . . . , l}

(30c)
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Equation (30a) counts the number of node pairs that become connected after merging Ĝ1, Ĝ2 with
a parallel composition. The first summation appearing in the expression is extended over all indices
d1, d

′
1, d2, d

′
2 ∈ {0, . . . , l} satisfying the specified conditions; they count the number of pairs i, j with i

in Ĝ1, j in Ĝ2 that become connected by a path shorter than l. The second and third summations
count the number of pairs i, j with both nodes in Ĝ1 (resp. Ĝ2) that become connected by a path
shorter than l after the parallel composition.

Equation (30c) deals with the consistency of the matrix index R also taking into account the new pairs
formed by a node in Ĝ1 and a node in Ĝ2. Such pairs are counted by using the M values in the two
summations which extend over all the δ1, δ

′
1, δ2, δ

′
2 ∈ {0, . . . , l,∞} combination of indices satisfying the

specified conditions.

4.4 Results

We can make the following statement:

Proposition 16: The D-CNP problem on series-parallel graphs, when f(d) belongs to Class
1, is solvable in polynomial time when l is bounded by a constant with unit pair weights and
node deletion costs.

Proof. Equation (30) computes a minimum between O((K + 1)(l + 1)n2(l+2)(l+1)) quantities, each
of them requires to perform a sum between O((l + 1)4) terms, such that the time complexity for
computing the function on the left-hand side is O(Kl5n2(l+2)(l+1)). The optimal result is recovered
by backtracking from the recursion function of the root node of the binary tree T (G) with minimum
value over all indices.

Since the complexity of the parallel operation is larger, it is the one which determines the maximum
time complexity of our algorithm, which is O(K2l6n2(l+2)(2l+3)). When l is bounded by a constant
and since K < n, such an expression is bounded by a polynomial in n.

The above results establishes polynomiality for the problem on a special class of graphs, e.g. graphs
with bounded diameter.

Even though the algorithm can be trivially extended to the case of non-unit cancellation costs, pa-
rameter K then becomes arbitrarily large and the algorithm is only pseudo-polynomial. We can,
however, use the same redefinition as proposed in previous sections, i.e. exchange the definition of
the value of the FĜ functions and the value of index k, so that k now represents the value of the
objective function while F is the minimum deletion cost necessary to obtain such a connectivity value.
Since the objective is at maximum n(n− 1)/2, the total complexity of the algorithm will then become
O(l6n2(l+2)(2l+3)+4), which yields the following property:

Proposition 17: The total time complexity for computing the solution to the D-CNP over
series-parallel graphs when f(d) belongs to Class 1 is bounded by O(l6n2(l+2)(2l+3)+4) so that
the problem is solvable in polynomial time even with non-unit nodes cancellation costs, when
l is a fixed parameter.

It is obvious that the time complexity of both algorithms renders them impractical in concrete situa-
tions unless parameter l is very small. Nonetheless, these results allow us to identify interesting cases
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of specially structured graphs for which the D-CNP is still a polynomial problem.

5 Conclusions

We proposed Dynamic Programming algorithms for the Distance Critical Node Problem over trees
(including the special case of a path) and series parallel graphs. The D-CNP is a generalisation of the
CNP based on pairwise connectivity which consist in multiplying the connectivity value by a distance-
based penalty function f(d) which is non-decreasing. We have seen that the characteristics of this
function are crucial in order to generalise results from the CNP to the D-CNP on specially structured
graphs, such as trees. The problem was first shown to be polynomially solvable on paths when either
the nodes cancellation costs or either the pair weights or edge weights are arbitrary (positive). When
both the cancellation costs and the pair weights are arbitrary though, the problem is shown to be
weakly NP-hard and a pseudo-polynomial algorithm is provided. The case with arbitrary deletion
costs and edge weights is less clear cut as function f(d) needs to respect particular conditions in order
to reproduce the demonstration of NP completeness.

The problem was then analysed over trees, which require to work with a specific function f(d).
We have provided DP algorithms for three classes of functions that were presented in [42]. The
function we called Class 2 induces a D-CNP that can be solved polynomially with arbitrary cancellation
costs. However, instances with arbitrary edge weights can only be solve pseudo-polynomially by our
algorithms. The D-CNP based on Class 1 can be solved polynomially with arbitrary cancellation costs
when its input parameter l is considered fixed. Finally, the problem base on Class 3 can be solved
polynomially with either arbitrary deletion costs or edge weights, provided that we work at fixed
precision on each term of the objective function. Since the D-CNP without pair weights on trees can
be reconducted to an instance of the pair weighted CNP where the pair weights obey special relations,
we manage to prove that the pair weighted CNP can still be solved pseudo-polynomially on trees on
special instances, refining the results presented in [20].

Finally, we provided polynomial time algorithms to solve the D-CNP on series-parallel graphs with
distance function of Class 1 when parameter l is fixed, with arbitrary node deletion costs. Overall,
the presence of a distance-based penalty function in the objective complicates the analysis of the
problem compared to the simple pairwise-based CNP. However, we have proved that it is possible to
generalise some polynomial results to the D-CNP under certain conditions. It could be interesting to
find other classes of graphs on which particular incarnations of the D-CNP can be solved (pseudo-
)polynomially. For example, since all graphs considered in this work belong to the category of graphs
with low tree-width, it would be interesting to see whether some of the results could be generalised on
general graphs with bounded tree-width. In certain cases, such as Class 2 over trees, we have provided
algorithms which become pseudo-polynomial in the presence of arbitrary edge weights, even with unit
cancellation costs. This raises the question whether these instances are NP-hard in the weak sense
or whether a better polynomial time algorithm could be uncovered. We believe these are interesting
starting points for future developments concerning the study of the complexity of the Distance Critical
Node Problem.
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