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We consider a notion of approximation for terms of de Groote-Saurin Λµ-calculus. Then

we introduce an intersection type assignment system for that calculus which is invariant

under subject conversion. The type assignment system also induces a filter model, which

is an extensional Λµ-model in the sense of Nakazawa and Katsumata. We then establish

the approximation theorem, stating that a type can be assigned to a term in the system

if and only if it can be assigned to same of its approximations.

Introduction

The Λµ-calculus is an extension of Parigot’s λµ-calculus (Parigot 1992), proposed by

de Groote (de Groote 1994a; de Groote 1994b) and developed by Saurin (Saurin 2005;

Saurin 2008b; Saurin 2010a). The interest of Λµ lies in the fact that it preserves the

separability property, namely the Böhm Theorem of the λ-calculus with βη-conversion

(Saurin 2005), which is not the case of λµ (David et al. 2001). Indeed many basic concepts

and properties from ordinary λ-calculus in the classic book (Barendregt 1984) extend to

Λµ: confluence of the reduction relation even in presence of the η-rule (Py 1998); Böhm-

out technique and separability (Saurin 2005); standardisation, head-normal forms and

solvability, Böhm trees (Saurin 2012).

The Approximation Theorem is a central result in the study of sensible λ-theories, re-

lating them to the structure of Scott’sD∞ λ-models. This was investigated byWadsworth,

Hyland and Levy leading to the construction of models based on Böhm trees in (Baren-

dregt 1984). The theorem states that the denotation [[M ]] of any term M in a domain

theoretic model is the directed sup of the denotations [[A]] of its approximations A, where

A is a partially defined term (including a constant Ω for the undefined parts) recording

the stable part of M reducts.

The invention of intersection type systems by Coppo and Dezani has further widened

the knowledge of the λ-calculus, and greatly simplified the proof of approximation the-

orems of various models and λ-theories, via the concept of filter model introduced in

(Barendregt et al. 1983) with Barendregt. With intersection types the approximation

theorem rephrases into the claim that M has a type σ if and only if there is an approxi-

mation A of M that can be typed by σ (Dezani et al. 2001).
† This work was partially supported by MIUR Project CINA and Ateneo/CSP Project SALT.
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In (van Bakel et al. 2011), joint work with van Bakel and Barbanera, we obtained

an intersection type assignment system by presenting Streicher and Reus’s model of λµ

(Streicher et al. 1998) as a filter model. In the same paper it was remarked that the type

system could be adapted to type all Λµ-terms, but this was not pursued any further

because Streicher and Reus’s model, on which the system has been based, does not

validate Parigot’s renaming axiom in the case of the larger set of Λµ-terms, where it has

been called the (βS)-rule by Saurin.

Recently Nakazawa and Katsumata (Nakazawa et al. 2012) have proposed a variant

of Streicher and Reus’s construction, which is a model of Λµ. Both Streicher-Reus and

Nakazawa-Katsumata models are D∞ λ-models with more structure, accommodating

the concept of continuation or, as it has been called by Saurin after Parigot’s suggestion,

stream.

The construction of D∞ models of the extensional Λµ–theories makes interesting the

study of the approximation property, and the pairing of the new models with Saurin’s

results on separability and Böhm trees for the Λµ-calculus. Here we pursue this goal by

means of an intersection type system adapted to Λµ where, as in (van Bakel et al. 2011),

we use two sorts of types namely term types (arrow types) and stream types (product

types), plus intersection and ω.

In this paper, after some basic facts about the Λµ theory (section 1), we study Saurin’s

notion of approximate normal form for Λµ, together with a pre-congruence relation such

that the set A(M) of approximants of a (closed) Λµ-term M is an ideal (section 2). We

then introduce our intersection type pre-order and type assignment system and prove

that it is invariant under subject conversion (section 3). It comes out that the set of

filters determined by the type pre-order is an “extensional Λµ-model” in the sense of

(Nakazawa et al. 2012), and that term interpretation coincides with the set of types

that can be assigned to terms (section 4). Finally we establish the main result of the

paper, namely that a term-type δ can be assigned to a Λµ-term M in some bases Γ,∆

(for term and stream variables respectively) if and only if δ can be assigned to some

approximation A of M in the same Γ,∆. By the filter model construction and known

results on “domain logic” (Abramsky 1991), this implies the approximation theorem for

extensional Λµ-models in the category of ω-algebraic lattices (section 5).

1. Λµ-calculus

The distinctive feature of the Λµ-calculus w.r.t. Parigiot’s λµ consists into abolishing the

distinction between named terms [α]M and unnamed or ordinary terms. In particular

the restrictions that in µα.M the subexpression M is named and that in λx.N term N is

unnamed are dropped. In the grammar below we have adopted Saurin’s notation (M)α

for Parigot’s and de Groote’s [α]M . This makes explicit the intuition that α represents

a potentially infinite stream of terms to which M is applied.

Definition 1.1 (Term Syntax).

M,N ::= x | λx.M | (M)N | µα.M | (M)α
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VarT and VarS are denumerable sets of term variables and stream variables respectively.

ΣΛµ is the set of terms generated by the grammar in Definition 1.1 and Σc
Λµ is the subset

of closed terms. Bound and free variables, written fv(M), are defined as usual, with both

λ and µ as binders. We identify terms up to renaming of bound variables and assume

Barendregt’s convention that free and bound variables have distinct names in the same

expression.

Definition 1.2 (Structural Substitution). For M,N ∈ ΣΛµ and α ∈ VarS define

M [α ⇐ N ] as the replacement of any subterm (P )α of M with α ∈ fv(M), by the

subterm (P )Nα. In particular:

((M)α)[α ⇐ N ] = (M [α⇐ N ])Nα.

M [α ⇐ N ] is de Groote’s notation for Parigot’s M [(P )α := (P )Nα], which we avoid

because of the use of the (bounded) metavariable P that might be confusing.

Definition 1.3 (Axioms).

(βT ) (λx.M)N = M [x := N ]

(βS) (µα.M)β = M [α := β]

(ηT ) λx.(M)x = M if x 6∈ fv(M)

(ηS) µα.(M)α = M if α 6∈ fv(M)

(µ) (µα.M)N = µα.M [α⇐ N ]

We write ⊢ M = N if this equality is derivable from the axioms above in the formal

extension to ΣΛµ of the βη-theory. We also use M =ax N to indicate that M = N is

an instance of axiom ax. When ⊢ is omitted or there is no subscript, M = N is just

syntactical equality, up to renaming of bound variables.

By orienting the axioms from left to right one obtains a non-confluent notion of reduc-

tion (Saurin 2008b):

µα.x η←− λy.(µα.x)y −→fst λy.µα.(x[α ⇐ y]) = λy.µα.x.

This is fixed by replacing the left-to-right version of the (µ)-axiom by rule (fst) below:

Definition 1.4 (Reduction). The reduction relation −→ over ΣΛµ is the compati-

ble closure of the rewriting rules obtained by orienting from left to right the axioms

(βT ), (βS), (ηT ) and (ηS), and adding the rule:

(fst) µα.M −→ λx.µα.M [α ⇐ x] if x 6∈ fv(M).

Lemma 1.5. The equality axiomatised in Def. 1.3 is the conversion relation induced by

the reduction −→.

Proof. Immediate. See also (Saurin 2008b).

The following is Theorem 2.16 in (Py 1998) and Theorem 3.1 in (Saurin 2010c).

Theorem 1.6 (Confluence of −→ w.r.t. Σc
Λµ). For M,M1,M2 ∈ Σc

Λµ:

M −→∗ M1,M2 ⇒ ∃M3 ∈ Σc
Λµ. M1,M2 −→

∗ M3.
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Corollary 1.7. For M,N ∈ Σc
Λµ:

⊢M = N ⇐⇒ ∃L ∈ Σc
Λµ. M −→

∗ L ∗←− N.

The restriction to Σc
Λµ in 1.6 and 1.7 is essential, as e.g. we have (Py 1998; Saurin

2010c):

x = x[α := β] βS
←− (µα.x)β −→fst (λy.µα.x[α ⇐ y])β = (λy.µα.x)β.

2. Head Normal Forms and Approximants

In “sensible” theories of the ordinary λ-calculus a term M has computational meaning if

and only if it reduces to a head normal form (Barendregt 1984). By replacing β-redexes

in M by a constant Ω and equating ΩN = Ω = λx.Ω one obtains a context which remains

unchanged in any reduction out of M , because the only parts that can be affected by

reduction are those subterms replaced by Ω. If one orders λΩ-terms (which are obtained

by adding the constant Ω to the grammar of λ-terms) by the compatible closure of the

inequality Ω �M , one gets the notion of approximate normal form in the λ-calculus.

In this section we follow (Saurin 2010a) adapting this concept to Λµ, but for the

fact that we adapt to the present context Levy’s idea of taking ideals of approximate

normal forms in place of Böhm trees. To avoid technical intricacies, we do not consider

as approximant any element of the larger set of Λµ-terms extended with the constant Ω,

nor the reduction −→⊥ as e.g. in (Barendregt 1984) for ordinary λ-calculus, to calculate

approximate normal forms. Rather we directly associate approximate normal forms to

terms.

Definition 2.1 (Head Normal Forms). M ∈ ΣΛµ is a head normal form, M ∈ HNF,

if

M = λ~x0µα1λ~x1 . . . µαnλ~xn.(y) ~M0β1
~M1 . . . βm

~Mm.

M has a head normal form if ⊢M = H for some H ∈ HNF.

We say that a term of the shape (y) ~M0β1
~M1 . . . βm

~Mm is λµ-free.

Lemma 2.2.

H ∈ HNF & H −→∗ N ⇒ N ∈ HNF.

Proof. Let H = λ~x0µα1λ~x1 . . . µαnλ~xn.(y) ~M0β1
~M1 . . . βm

~Mm −→ N . If this is either

an ηT or an ηS reduction, the thesis is immediate. Otherwise either the contracted redex

is a subterm of the Mi,j or it is

µαhλ~xh . . . µαnλ~xn.(y) ~M0β1
~M1 . . . βm

~Mm

and according to rule (fst) its contractum in N is

λz.µαhλ~xh . . . µαnλ~xn.((y) ~M0β1
~M1 . . . βm

~Mm)[αh ⇐ z]

for some fresh z ∈ VarT . Since the application of structural substitution to a λµ-free term

results into a λµ-free term, in both cases N ∈ HNF as well.
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Definition 2.3 (Approximate Normal Forms).

A ::= Ω | λ~x0µα1λ~x1 . . . µαnλ~xn.(y) ~A0β1
~M1 . . . βm

~Am

Let A be the set of approximate normal forms.

Definition 2.4 (Pre-Congruence over A). Let � be the least pre-order over A and

≃ = � ∩ �, which are (pre-)congruences and such that:

1 Ω � A,

2 λx.(A)x ≃ A, if x 6∈ fv(A) and A is λµ-free,

3 µα.(A)α ≃ A, if α 6∈ fv(A) and A is λµ-free,

4 µα.A � λx.µα.A[α ⇐ x], if A 6= Ω and x 6∈ fv(A).

The requirement that A is λµ-free in clauses (2) and (3) above is actually redundant,

because if A is not λµ-free then λx.(A)x, µα.(A)α 6∈ A. Similarly in clause (4) if A = Ω

then µα.A 6∈ A.

Note that if x, α 6∈ fv(A) and A is λµ-free then:

A ≃ µα.(A)α � λx.µα.((A)α)[α ⇐ x] = λx.µα.(A)xα ≃ λx.(A)x ≃ A.

Definition 2.5 (Pre-Redex). A term R is a pre-redex if it has one of the shapes

(λx.M)N , (λx.M)α, (µα.M)N or (µα.M)β.

Pre-redexes are from (Saurin 2008a) Def. 3.17. The pre-redexes (λx.M)N and (µα.M)β

are actual redexes. The pre-redex (µα.M)N includes the (fst)-redex µα.M , which after

contraction gives rise to the (βT )-redex (λx.µα.M [α ⇐ x])N . The pre-redex (λx.M)α is

only a potential redex, which becomes an actual redex after a (fst)-reduction only if it

occurs as a subterm of some term in which α is bound.

Definition 2.6 (Approximants). Let φ : ΣΛµ→A be the map:

1 φ(λ~x0µα1λ~x1 . . . µαnλ~xn.(R) ~M0β1
~M1 . . . βm

~Mm) = Ω, if R is a pre-redex,

2 φ(λ~x0µα1λ~x1 . . . µαnλ~xn.(y) ~M0β1
~M1 . . . βm

~Mm) =

λ~x0µα1λ~x1 . . . µαnλ~xn.(y)φ( ~M0)β1φ( ~M1) . . . βmφ( ~Mm),

where φ( ~Mi) is the componentwise application of φ to the terms of the vector ~Mi.

For M ∈ ΣΛµ we define the sets:

A′(M) = {φ(N) ∈ A |M −→∗ N },

A(M) = {A ∈ A | ∃N. M −→∗ N & A � φ(N)}.

By the very definition we have that φ(M) 6= Ω if and only if M ∈ HNF. The set

A(M) is the downward closure of A′(M) w.r.t. �. If A ∈ A(M) then we say that A is an

approximant of M , and if A = φ(M) then it is called the immediate approximant of M .

Lemma 2.7. The map φ is well defined and total, in the sense that any M ∈ ΣΛµ has

either a pre-redex R in head position, or it is a head normal form.

Proof. By a straightforward induction over the structure of M .

Lemma 2.8.
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1 φ(λx.M) 6= Ω and φ(µα.M) 6= Ω iff φ(M) 6= Ω,

2 φ((M)N) 6= Ω and φ((M)α) 6= Ω iff φ(M) 6= Ω & M is λµ-free,

3 φ(M) 6= Ω⇒ φ(λx.M) = λx.φ(M) & φ(µα.M) = µα.φ(M),

4 M is λµ-free iff φ((M)N) = (φ(M))φ(N) & φ((M)α) = (φ(M))α.

Proof. Immediate by definition.

Lemma 2.9. If M is either a (βT ), (βS), (ηT ) or (ηS)-redex and N is its contractum,

then φ(M) � φ(N).

Proof. If M is either a (βT ) or a (βS)-redex then φ(M) = Ω � φ(N). If M is an

(ηT )-redex then M = λx.(M ′)x with x 6∈ fv(M ′). If φ(M) 6= Ω, then φ((M ′)x) 6= Ω by

Lemma 2.8, that is φ(M ′) 6= Ω and M ′ is λµ-free by the same lemma. Hence by (3) and

(4) of Lemma 2.8:

φ(M) = λx.φ((M ′)x) = λx.((φ(M ′))x ≃ φ(M ′) = φ(N).

By a similar argument we establish the thesis when M is an (ηS)-redex.

Lemma 2.10.

1 φ(M [α⇐ N ]) = φ(M)[α⇐ φ(N)],

2 φ(µα.M) � φ(λx.µα.M [α ⇐ x]), for x 6∈ fv(M).

Proof. Part (1) is proved by induction over M . The interesting case is when M =

(M ′)α, that is M [α⇐ N ] = (M ′[α⇐ N ])Nα. Now observe that

φ((M ′[α⇐ N ])Nα) = Ω⇐⇒ φ((M ′[α⇐ N ])N) = Ω,

since otherwise by part (2) of Lemma 2.8 we should have that (M ′[α⇐ N ])N is λµ-free,

which is impossible.

In case that φ((M ′[α⇐ N ])Nα) 6= Ω we have that M ′[α⇐ N ] is λµ-free, so that:

φ((M ′[α⇐ N ])Nα) =

= φ((M ′[α⇐ N ]))φ(N)α by (4) of Lemma 2.8

= (φ(M ′)[α⇐ φ(N)])φ(N)α by induction

= φ((M ′)α)[α⇐ φ(N)] by (4) of Lemma 2.8.

Part (2) is trivially true if φ(µα.M) = Ω. If not then, by part (1) of Lemma 2.8,

φ(M) 6= Ω so that by (3) of Lemma 2.8 we have that φ(µα.M) = µα.φ(M). On the other

hand by part (1) of the present lemma we know that φ(M [α⇐ x]) = φ(M)[α ⇐ φ(n)] 6=

Ω, hence

φ(λx.µα.M [α ⇐ x]) =

= λx.µα.φ(M [α ⇐ x]) by (3) of Lemma 2.8

= λx.µα.φ(M)[α ⇐ φ(x)] by part (1)

= λx.µα.φ(M)[α ⇐ x] since φ(x) = x.

But µα.φ(M) � λx.µα.φ(M)[α ⇐ x] holds by clause (4) of Def. 2.4.
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Lemma 2.11.

M −→∗ N ⇒ φ(M) � φ(N).

Proof. By induction over the length of the reduction M −→∗ N , using the fact that

� is a pre-congruence and lemmas 2.9 and 2.10 part (2).

A subset I ⊆ X over a pre-ordered set X is directed if for any finite Z ⊆ I, which is

bounded above in X , there exists z ∈ I which is an upper bound of Z. An ideal over X is

a downward closed directed subset I of X . Since ∅ is vacuously a finite bounded subset

of X , all ideals are non-empty.

Theorem 2.12. For all M ∈ Σc
Λµ the set A(M) is an ideal over (A,�).

Proof. The set A(M) is downward closed by definition, so that it remains to show that

A(M) is directed. First φ(M) ∈ A(M) 6= ∅. Next suppose that A1, A2 ∈ A(M), so that

there exist N1, N2 ∈ ΣΛµ s.t. M −→∗ Ni and Ai � φ(Ni) for i = 1, 2. Since reduction

cannot introduce new free variables and M is closed, we have that N1, N2 ∈ Σc
Λµ and,

by Theorem 1.6, there exists N3 ∈ Σc
Λµ such that

N1 −→
∗ N3

∗←− N2.

Consequently φ(N3) ∈ A(M) and A1, A2 � φ(N3) by Lemma 2.11.

Corollary 2.13. M ∈ Σc
Λµ has a head normal form if and only if A(M) is a non-trivial

ideal.

Proof. By Theorem 2.12A(M) is an ideal. On the other hand ifM −→∗ H ∈ HNF then

φ(H) ∈ A(M) by definition and we know that φ(H) 6= Ω. Vice versa if Ω 6= A ∈ A(M)

then there exists N such that M −→∗ N and A � φ(N), so that φ(N) 6= Ω. This implies

that N ∈ HNF.

3. Intersection Types for Λµ

Even if there is just one kind of terms in the Λµ syntax, to type them we have to make

assumptions also about stream variables. Consequently we follow (van Bakel et al. 2011)

by having two kinds of types for terms and term variables, and for stream variables.

Type syntax is motivated by the semantics (see section 4), where terms denote func-

tions from streams to term denotations, and streams are infinite tuples of term denota-

tions. Therefore term types are (intersections of) arrows of the shape σ→ δ where σ is a

stream type and δ a term type. Stream types are (intersections of) product types of the

shape σ = δ1×· · ·× δk×ω, where the δi are term types. The ending ω expresses the fact

that σ only encodes a finite information about any infinite stream s = 〈d1, . . . , dk, . . .〉

such that each di satifies the respective δi, while ω is the type of the infinite tail.

Definition 3.1 (Intersection Types).

TT : δ ::= ϕ | σ→ δ | δ∧δ | ωT

TS : σ ::= δ × σ | σ∧σ | ωS
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where ϕ varies over a denumerable set of atomic types.

TT is the set of term types and TS the set of stream types. When clear from the context

we shall write just ω in place of ωT or ωS.

Definition 3.2 (Subtyping). The relations ≤T and ≤S over TT and TS respectively

are the least preorders such that:

1 δ ≤T δ; σ ≤S σ

2 δ1 ≤T δ2 ≤T δ3 ⇒ δ1 ≤T δ3; σ1 ≤S σ2 ≤S σ3 ⇒ σ1 ≤S σ3

3 δ ≤T ω; σ ≤S ω

4 δ1∧δ2 ≤T δi; σ1∧σ2 ≤S σi, for i = 1, 2

5 δ ≤T δ1, δ2 ⇒ δ ≤T δ1∧δ2; σ ≤S σ1, σ2 ⇒ σ ≤S σ1∧σ2

6 ω ≤T ω→ω

7 ϕ ≤T ω→ϕ ≤T ϕ

8 (σ→ δ1)∧(σ→ δ2) ≤T σ→ (δ1∧δ2)

9 σ2 ≤S σ1, δ1 ≤T δ2 ⇒ σ1→ δ1 ≤T σ2→ δ2
10 ω ≤S ω × ω

11 (δ1 × σ1)∧(δ2 × σ2) ≤S (δ1∧δ2)× (σ1∧σ2)

12 δ1 ≤T δ2, σ1 ≤S σ2 ⇒ δ1 × σ1 ≤S δ2 × σ2

We abbreviate by δ1 ∼T δ2 the inequalities δ1 ≤T δ2 and δ2 ≤T δ1. Similarly for

σ1 ∼S σ2. Among the consequences of the above axioms we remark ω ∼T ω→ω and

ω ∼S ω × ω, which together imply ϕ ∼T ω × ω→ϕ. In the inequations (8) and (11) of

Def. 3.2 the ≤ can be replaced by ∼. Finally we shall implicitly use the fact:

ω ∼T ω→ω ≤T σ→ω ≤T ω,

which implies that σ→ δ ∼T ω if and only if δ ∼T ω.

Lemma 3.3 (Subtyping Properties).

1 ∀σ ∈ TS ∃k ∈ N, δ1, . . . , δk ∈ TT . σ ∼S δ1 × · · · × δk × ω,

2 δ1 × · · · × δh × ω ≤S δ′1 × · · · × δ′k × ω ⇐⇒ h ≤ k & ∀i ≤ h. δi ≤T δ′i,

3 If δ 6∼T ω and I is a finite and non-empty set of indexes then
∧

i∈I

(σi→ δi) ≤T σ→ δ ⇐⇒ ∃J ⊆ I. σ ≤S

∧

j∈J

σj &
∧

j∈J

δj ≤T δ.

Proof. Parts (1) and (2) follow by induction on derivations in the formal presentation

of ≤T and ≤S. Part (3) is standard with intersection types.

A basis for term variables Γ = {x1 : δ1, . . . , xn : δn} is a finite set with n ∈ N, pairwise

distinct xi ∈ VarT and (not necessarily distinct) δi ∈ TT ; dom(Γ) = {x1, . . . , xn} is

the domain of Γ. A basis for stream variables ∆ = {α1 : σ1, . . . , αm : σm} is a finite

set with m ∈ N, pairwise distinct αj ∈ VarS and (not necessarily distinct) σj ∈ TS ;

dom(∆) = {α1, . . . , αm} is the domain of ∆. Γ and ∆ are called bases for short. A

judgement is an expression Γ ⊢ M : δ | ∆, where Γ,∆ are bases, M ∈ ΣΛµ and δ ∈ TT .

The writing Γ, x : δ abbreviates Γ ∪ {x : δ} with x 6∈ dom(Γ). Similarly for α : σ,∆.
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Definition 3.4 (Type Assignment System for Λµ).

(Ax)
Γ, x : δ ⊢ x : δ | ∆

Γ, x : δ1 ⊢M : σ→ δ2 | ∆
(λ)

Γ ⊢ λx.M : δ1 × σ→ δ2 |∆

Γ ⊢M : δ1 × σ→ δ2 | ∆ Γ ⊢N : δ1 | ∆
(App)

Γ ⊢ (M)N : σ→ δ2 | ∆

Γ ⊢M : δ | α : σ,∆
(µ)

Γ ⊢ µα.M : σ→ δ |∆

Γ ⊢M : σ→ δ | α : σ,∆
(S)

Γ ⊢ (M)α : δ | α : σ,∆

(ω)
Γ ⊢M : ω |∆

Γ ⊢M : δ1 |∆ Γ ⊢M : δ2 | ∆
(∧)

Γ ⊢M : δ1∧δ2 | ∆

Γ ⊢M : δ1 | ∆ δ1 ≤T δ2
(≤)

Γ ⊢M : δ2 | ∆

As we shall see in the next section, terms denote functions from streams to term

denotations. The functional behaviour of a term is however different when it is a λ

or a µ-abstraction. Rules (λ) and (App) express the fact that ordinary λ-abstraction

and application deal with the first component of the stream, which is their (implicit)

argument. On the contrary µ-abstraction and application to a stream variable depend

on their stream argument as a whole; hence rules (µ) and (S) have the shape of arrow

introduction and elimination from simple type discipline. The remaining rules (ω), (∧)

and (≤) are familiar since (Barendregt et al. 1983).

We write Γ ⊢M : δ | ∆ ambiguously for the judgement itself and for the claim that it

is derivable in the system of Def. 3.4. Below we write Γ(x) = δ if x : δ ∈ Γ, Γ(x) = ω else.

Similarly for ∆(α). By this we identify bases with functions from variables to TT ∪ TS
with values of the appropriate sort, which are equal to ω but for finitely many variables.

We set Γ ≤ Γ′ if and only if Γ(x) ≤T Γ′(x) for all x ∈ VarT ; ∆ ≤ ∆′ is similarly defined

w.r.t. ≤S. Also we define Γ1∧Γ2 as the least basis such that (Γ1∧Γ2)(x) = Γ1(x)∧Γ2(x),

and similarly for ∆1∧∆2.

Lemma 3.5 (Generation Lemma).

1 Γ ⊢ x : δ | ∆⇐⇒ ∃ δ′ ∈ TT . Γ(x) = δ′ & δ′ ≤T δ,

2 Γ ⊢ λx.M : δ | ∆⇐⇒ ∃ I, σi ∈ TS , δi, δ′i ∈ TT .

∀i ∈ I. Γ, x : δi ⊢M : σi→ δ′i | ∆ &
∧

i∈I(δi × σi→ δ′i) ≤T δ,

3 Γ ⊢ (M)N : δ | ∆⇐⇒ ∃ δ′ ∈ TT , σ ∈ TS . Γ ⊢M : δ′ × σ | ∆ & Γ ⊢ N : δ′ | ∆,

4 Γ ⊢ µα.M : δ | ∆⇐⇒ ∃ δ′ ∈ TT , σ ∈ TS . Γ ⊢M : δ′ | α : σ,∆ & σ→ δ′ ≤T δ,

5 Γ ⊢ (M)α : δ | ∆⇐⇒

∃δ′ ∈ TT , σ ∈ TS . ∆(α) = σ & Γ ⊢M : σ→ δ′ | ∆ & σ→ δ′ ≤T δ.

Proof. Standard.

Lemma 3.6 (Strengthening).

1 Γ, x : δ ⊢M : δ′ | ∆ & δ′′ ≤T δ ⇒ Γ, x : δ′′ ⊢M : δ′ | ∆,



Ugo de’Liguoro 10

2 Γ ⊢M : δ | α : σ,∆ & σ′ ≤S σ ⇒ Γ ⊢M : δ | α : σ′,∆.

Proof. Part (1) is proved as the in case of intersection type systems with subtyping

for the ordinary λ-calculus. The proof of part (2) is slightly more complex. Let

...
Γ′ ⊢M ′ : σ→ δ′ | α : σ,∆′

(S)
Γ′ ⊢ (M ′)α : δ′ | α : σ,∆′

be a subderivation of the derivation of Γ ⊢ M : δ | α : σ,∆ involving the application

of the subterm M ′ of M to the stream variable α, if any such subderivation exists.

Since σ′ ≤S σ implies σ→ δ′ ≤T σ′→ δ′ by the contravariance of the arrow in its first

argument, we can replace this subderivation by:

...
Γ′ ⊢M ′ : σ→ δ′ | α : σ′,∆′ σ→ δ′ ≤T σ′→ δ′

(≤)
Γ′ ⊢M ′ : σ′→ δ′ | α : σ′,∆′

(S)
Γ′ ⊢ (M ′)α : δ′ | α : σ′,∆′

Then an inductive argument over the derivation of Γ ⊢ M : δ | α : σ,∆ completes the

proof.

Remark 3.7. If x 6∈ dom(Γ) then Γ(x) = ω by convention. Therefore if Γ ⊆ Γ′ as sets

then Γ′ ≤ Γ as functions. Similarly ∆ ⊆ ∆′ implies ∆′ ≤ ∆. Now Lemma 3.6 reads as

the statement that the following strengthening rule is admissible:

Γ′ ≤ Γ Γ ⊢M : δ | ∆ ∆′ ≤ ∆

Γ′ ⊢M : δ | ∆′

From the above observation it follows that the weakening rule:

Γ ⊆ Γ′ Γ ⊢M : δ | ∆ ∆ ⊆ ∆′

Γ′ ⊢M : δ | ∆′

is a particular case of strengthening, and hence it is admissible as well.

Lemma 3.8 (Substitution).

1 Γ ⊢M [x := N ] : δ1 | ∆⇐⇒ ∃δ2 ∈ TT . Γ, x : δ2 ⊢M : δ1 | ∆ & Γ ⊢ N : δ2 | ∆

2 Γ ⊢M [α⇐ N ] : δ1 | α : σ,∆⇐⇒

∃δ2 ∈ TT . Γ ⊢M : δ1 | α : δ2 × σ,∆ & Γ ⊢ N : δ2 | ∆

Proof. The proof of part (1) is the standard one for type assignment systems to ordi-

nary λ-terms. Part (2) is by induction over the derivation of Γ ⊢M [α⇐ N ] : δ1 | α : σ,∆

(⇒) and of Γ ⊢ M : δ1 | α : δ2 × σ,∆ (⇐). Consider e.g. the case M [α ⇐ N ] =

((M ′)α)[α⇐ N ] = (M ′[α⇐ N ])Nα and the derivation ends by:

Γ ⊢ (M ′[α⇐ N ])N : σ→ δ | α : σ,∆
(S)

Γ ⊢ (M ′[α⇐ N ])Nα : δ | α : σ,∆
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for some δ′. By (3) of 3.5, Γ ⊢M ′[α⇐ N ] : δ′×σ→ δ | α : σ,∆ and Γ ⊢ N : δ′ | α : σ,∆.

By induction hypothesis (⇒) there exists δ′′ s.t.

Γ ⊢M ′ : δ′ × σ→ δ | α : δ′′ × σ,∆ (∗)

and Γ ⊢ N : δ′′ | ∆. Note that α 6∈ dom(∆) so that α 6∈ fv(N), hence the assumption

α : σ is never used in the derivation of Γ ⊢ N : δ′ | α : σ,∆, that is Γ ⊢ N : δ′ | ∆. Then

we derive Γ ⊢ N : δ′∧δ′′ | ∆ by rule (∧).

On the other hand δ′∧δ′′ ≤T δ′, δ′′ implies δ′×σ→ δ ≤T (δ′∧δ′′)×σ→ δ and (δ′∧δ′′)×

σ ≤S δ′′ × σ. Therefore from the derivation of (∗), by rule (≤) and by (2) of Lemma 3.6,

we obtain Γ ⊢M ′ : (δ′∧δ′′)× σ→ δ | α : (δ′∧δ′′)× σ,∆ as desired.

Theorem 3.9 (Subject Conversion).

⊢M = N & Γ ⊢M : δ | ∆ ⇒ Γ ⊢ N : δ | ∆

Proof. It suffices to check the axioms in Def. 1.3 and their symmetric equations. We

treat some relevant cases only, as the others are similar. Let us consider the axiom (µ):

(µα.M)N = µα.M [α⇐ N ]. Supposing that (µα.M)N has been given an arrow type, we

have:

Γ ⊢ (µα.M)N : σ→ δ | ∆

⇒ ∃δ′. Γ ⊢ µα.M : δ′ × σ→ δ | ∆ & Γ ⊢ N : δ′ | ∆ by (3) of 3.5

⇒ Γ ⊢M : δ | α : δ′ × σ,∆ by (4) of 3.5

⇒ ⊢M [α⇐ N ] : δ | α : σ,∆ by (2, ⇐) of 3.8

⇒ Γ ⊢ µα.M [α⇐ N ] : σ→ δ | ∆ by rule (µ).

The symmetric of axiom (µ) is proved similarly, by using Lemma 3.5 and (2, ⇒) of 3.8.

Let us consider the symmetric equation of axiom (ηT ), namely M = λx.(M)x where

x 6∈ fv(M). Suppose that Γ ⊢ M : ϕ | ∆; since ϕ ∼T ω × ω→ϕ, and Γ ⊢ x : ω | ∆, we

have Γ ⊢ (M)x : ω→ϕ | ∆ and hence Γ ⊢ λx.(M)x : ω→ω→ϕ | ∆ by rule (λ) and

finally Γ ⊢ λx.(M)x : ϕ | ∆ by rule (≤). This argument is the basis case of an inductive

proof establishing that Γ ⊢M : δ | ∆ implies Γ ⊢ λx.(M)x : δ | ∆ for all δ ∈ TT .

4. An Extensional Λµ Filter Model

The type system introduced in the previous section is motivated by the semantics of

Λµ-terms as defined in (Nakazawa et al. 2012). An extensional Λµ-model is essentially

a D∞ model endowed with more structure to provide stream denotations. There are

two domains: D for denotations and S for streams, which are assumed to satisfy the

domain equations D = [S→D] and S = D × S. The denotation [[M ]] is then a map

from environments e, interpreting term and stream variables in D and S respectively,

and from streams s ∈ S to denotations [[M ]] e s ∈ D. The space [S→D] is made of

Scott-continuous functions which implies that [[M ]] e will always use a finite amount

of information about s to yield a finite information of its value; in particular [[M ]] e s

depends only on a finite number of components of s.

It is known that intersection types denote the compact elements of ω-algebraic lattices,
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which can be recovered by taking filters of appropriate intersection type pre-orders.

Therefore, by considering a solution of the domain equationsD = [S→D] and S = D×S

in the category of ω-algebraic lattices, we show that the type assignment system in

Definition 3.4 induces a filter-model, which is an extensional Λµ-model. In the model the

denotation of a term M coincides with the filters of the types that can be assigned to

M , which is the content and of Theorem 4.8.

Definition 4.1 (Extensional Λµ-model). An extensional Λµ-model is a quadruple

(D,S, ::, [[·]]) where:

1 D and S are non-empty sets satisfying, up to isomorphism, the equations:

D = [S→D] ⊆ DS , S = D × S;

2 (::) : D × S→S is the inverse of the isomorphism S = D × S;

3 [[·]] : ΣΛµ→Env→S→D, where Env = (VarT →D) + (VarS→S), is such that:

[[x]]e s = e(x)

[[λx.M ]]e (d :: s) = [[M ]]e[x 7→ d] s

[[(M)N ]]e s = [[M ]]e (([[N ]]e) :: s)

[[µα.M ]]e s = [[M ]]e[α 7→ s]

[[(M)α]]e s = [[M ]]e e(α)

where e[x 7→ d](y) = d if x = y, e(y) else. e[α 7→ s] has a similar meaning.

Extensional Λµ-models are a variant of Streicher and Reus’s models in (Streicher et

al. 1998). In both cases one has that terms denote functions of infinite tuples of term

denotations; the difference is that the range of these functions is a parametric domain

of “results” according to (Streicher et al. 1998), and the set of term denotations itself

according to (Nakazawa et al. 2012).

Nakazawa and Katsumata’s construction models all Λµ-axioms, while Streicher and

Reus’s models do not validate all instances of axiom (βS), as remarked in (van Bakel et

al. 2011). The following is Theorem 1 in (Nakazawa et al. 2012).

Theorem 4.2 (Soundness). If (D,S, ::, [[·]]) is an extensional Λµ-model then for all

M,N ∈ ΣΛµ:

⊢M = N ⇒ [[M ]] = [[N ]].

A filter over an inf-semilattice is a non-empty, upward closed subset which is closed

under finite meets. Let FT and FS be the sets of filters over (TT ,≤T ) and over (TS ,≤S)

respectively. It is known from the literature that the set of filters over a countable inf-

semilattice is an ω-algebraic lattice w.r.t. subset inclusion, whose compact elements are

the upward cones of the elements of the original semilattice, also called principal filters.

Definition 4.3. For d ∈ FT and s ∈ FS define:

1 d :: s = {δ × σ ∈ TS | δ ∈ d & σ ∈ s},

2 d · s = {δ ∈ TT | ∃σ ∈ s. σ→ δ ∈ d}.
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(FT ,⊆) and (FS ,⊆) are taken with the Scott topology. The product FT ×FS and the

function space [FS→FT ] are in the category of algebraic lattices; in particular [FS→FT ]

is the space of the Scott continuous functions from FS to FT , ordered pointwise.

Lemma 4.4. If d ∈ FT and s ∈ FS then d :: s ∈ FS and d · s ∈ FT . Moreover the

mappings :: and · are continuous in both their arguments.

Proof. Standard.

Lemma 4.5. The mappings

(::) : FT ×FS→FS and λd ∈ FT λs ∈ FS . d · s : FT → [FS→FT ]

are isomorphisms of algebraic lattices.

Proof. By unfolding definitions and Lemma 4.4.

Definition 4.6. For e ∈ EnvF = (VarT →FT ) + (VarS→FS) we set:

Γ,∆ |= e⇐⇒ ∀x ∈ VarT . Γ(x) ∈ e(x) & ∀α ∈ VarS . ∆(α) ∈ e(α).

Then for all e ∈ EnvF and s ∈ FS define the map [[·]] : ΣΛµ × EnvF ×FS→FT by

[[M ]]e s = {δ ∈ TT | ∃Γ,∆. Γ,∆ |= e & Γ ⊢M : δ | ∆} · s.

Lemma 4.7. The mapping [[·]] in Definition 4.6 is well defined.

Proof. By Lemma 4.4, it suffices to show that the set

[[M ]]e = {δ ∈ TT | ∃Γ,∆. Γ,∆ |= e & Γ ⊢M : δ | ∆}

belongs to FT . By rule (ω) we have that ω ∈ [[M ]]e 6= ∅ and by rule (≤) it is upward

closed. To see that it is closed under finite meets let δ1, δ2 ∈ [[M ]]e, so that there exist

Γ1,Γ2,∆1,∆2 such that Γi,∆i |= e and Γi ⊢ M : δi | ∆i for i = 1, 2. Because of the

fact that e(x) and e(α) are filters for any x and α, Γi(x) ∈ e(x) implies (Γ1∧Γ2)(x) =

Γ1(x)∧Γ2(x) ∈ e(x), and similarly we have that (∆1∧∆2)(α) ∈ e(α). Hence we have

Γ1∧Γ2,∆1∧∆2 |= e.

On the other hand, since (Γ1∧Γ2)(x) ≤T Γi(x) and (∆1∧∆2)(α) ≤S ∆i(α) for all x

and α and i = 1, 2, by Lemma 3.6 we have that

Γ1∧Γ2 ⊢M : δi | ∆1∧∆2 (i = 1, 2)

from which, by rule (∧), we get

Γ1∧Γ2 ⊢M : δ1∧δ2 | ∆1∧∆2,

which establishes the thesis.

Theorem 4.8 (Filter Model). The structure (FT ,FS , ::, [[·]]) is an extensional Λµ-

model.

Proof. By lemmas 4.5 and 4.7 it remains to show that the mapping [[·]] satisfies the

equations in Def. 4.1. This follows by unravelling definitions and using Lemma 3.5. E.g.

we prove [[λx.M ]]e (d :: s) ⊆ [[M ]]e[x 7→ d] s as follows. If δ ∈ [[λx.M ]]e (d :: s) then
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σ→ δ ∈ [[λx.M ]]e for some σ ∈ d :: s. This implies that σ ∼S δ′ × σ′ for some δ′ ∈ d and

σ′ ∈ s, and that Γ ⊢ λx.M : δ′ × σ′→ δ | ∆ for some Γ,∆ |= e. By (2) of 3.5 we have

also Γ, x : δ′ ⊢ M : σ′→ δ | ∆. The fact that δ′ ∈ d implies Γ, x : δ′,∆ |= e[x 7→ d] and

therefore σ′→ δ ∈ [[M ]]e[x 7→ d], and we conclude from σ′ ∈ s that δ ∈ [[M ]]e[x 7→ d] s.

The opposite inclusion, as well as all the other cases are similar.

5. The Approximation Theorem

The approximation property of the interpretation mapping [[·]] w.r.t. a model D states

that: [[M ]]e =
⊔
{[[A]]e | A ∈ A(M)} for all environment e, where [[·]] extends to approx-

imate normal forms by setting [[Ω]]e = ⊥, namely the bottom of D.

In case of the filter model generated by the intersection type assignment system in

section 4, it is equivalent to the statement that Γ ⊢M : δ | ∆ if and only if Γ ⊢ A : δ | ∆

for some A ∈ A(M). The if part is a rather easy consequence of the fact that any type

that can be assigned to Ω is equivalent to ω, so that if Γ ⊢ A : δ | ∆ when A = φ(M),

then A is M but for some subterms which have been replaced by Ω: then the derivation

of Γ ⊢ M : δ | ∆ is obtained from the type derivation of Γ ⊢ A : δ | ∆ typing with ω

exactly those subterms. The general case A ∈ A(M) is then proved by means of subject

conversion and the monotonicity property of typing w.r.t. �.

As usual the difficult part of the proof is the only if one. To adapt Tait’s computability

argument the concept of (syntactical) stream in Definition 5.4 and the subsequent remark

are crucial. Indeed a term represents a function of streams, which are represented not

by stream variables only, rather by contexts of the shape [ ]M1 . . .Mkα, which we call a

stream by overloading terminology.

In this section the type assignment system is extended to approximate normal forms

in A by allowing more subjects in the typing judgements, but without adding any new

type nor typing rule.

Lemma 5.1.

1 Γ ⊢ Ω : δ | ∆⇐⇒ δ ∼T ω,

2 Γ ⊢ A : δ | ∆ & A � A′ ⇒ Γ ⊢ A′ : δ | ∆, for A,A′ ∈ A.

Proof. (1): by induction over the derivation of Γ ⊢ Ω : δ | ∆, by observing that the

only possible rules by which the derivation can end are (ω), (∧) and (≤).

(2): by (1) we have that if A = Ω then δ ∼T ω, and the thesis is obvious. Otherwise

A = λ~x0µα1λ~x1 . . . µαnλ~xn.(y) ~A0β1
~M1 . . . βm

~Am, and either

A′ = λ~x0µα1λ~x1 . . . µαnλ~xn.(y) ~A
′
0β1

~A′
1 . . . βm

~A′
m

with ~Ai � ~A′
i (componentwise) for all i, or A = λx.(A′)x (x 6∈ fv(A′)), or A = µα.(A′)α

(α 6∈ fv(A′)) or A = µα.A′′ and A′ = λx.µα.A′′[α⇐ x] (x 6∈ fv(A′′)).

In the first case we use induction hypothesis and Lemma 3.5. In the last three cases we

observe that A −→
ηT ,ηS,fst A

′, namely by extending the relation −→ to A in those cases

in which A is closed under reduction and Ω is never in head-position. In these cases the

thesis follows by (the obvious extension of) Theorem 3.9.
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Lemma 5.2.

Γ ⊢ φ(M) : δ | ∆⇒ Γ ⊢M : δ | ∆.

Proof. By induction on the shape of φ(M). If φ(M) = Ω then the thesis follows

by (1) of 5.1. Otherwise φ(M) = λ~x0µα1λ~x1 . . . µαnλ~xn.(y) ~A0β1
~M1 . . . βm

~Am and M =

λ~x0µα1λ~x1 . . . µαnλ~xn.(y) ~M0β1
~M1 . . . βm

~Mm where ~Ai = φ( ~Mi) for all i. Then the thesis

follows by induction using Lemma 3.5.

Lemma 5.3.

∃A ∈ A(M). Γ ⊢ A : δ | ∆⇒ Γ ⊢M : δ | ∆.

Proof. If A ∈ A(M) then A � φ(N) and M −→∗ N for some N . Now:

Γ ⊢ A : δ | ∆ ⇒ Γ ⊢ φ(N) : δ | ∆ by (2) of Lemma 5.1

⇒ Γ ⊢ N : δ | ∆ by Lemma 5.2

⇒ Γ ⊢M : δ | ∆ by Theorem 3.9.

Definition 5.4 (Streams). A stream S ∈ Strm is an applicative context of the shape:

S = [ ]N1 . . .Nkβ, k ∈ N, N1, . . . , Nk ∈ ΣΛµ.

Streams are from (Saurin 2005; Saurin 2008b) and are simply called “contexts” in

(Nakazawa et al. 2012). When k = 0, the stream [ ]N1 . . . Nkβ is just [ ]β. Observe that:

(µα.M)N1 . . . Nkβ −→∗
fst,βT t

(µα.M [α⇐ N1 . . . Nk])β

−→βS
M [α⇐ N1 . . . Nk][α := β]

= M [α := β][β ⇐ N1 . . . Nk] as α 6∈
⋃k

i=1
fv(Ni).

This justifies the following notations, for S = [ ]N1 . . . Nkβ = [ ] ~Nβ ∈ Strm:

(M)S = (M) ~Nβ

M [α⇐ S] = M [α := β][β ⇐ ~N ]

M :: S = [ ]MN1 . . . Nkβ

by slightly overloading the notation of the semantic operator :: (although with a related

meaning). The following is a refinement of the computability interpretation in (van Bakel

et al. 2013).

Definition 5.5 (Computability Interpretation). For any bases Γ,∆ and δ ∈ TT , let

us define the set:

[δ]Γ,∆ = {M ∈ ΣΛµ | ∃A ∈ A(M). Γ ⊢ A : δ | ∆}.

Then for δ ∈ TT and σ ∈ TS we define the sets [[δ]]Γ,∆ ⊆ ΣΛµ and [[σ]]Γ,∆ ⊆ Strm

inductively as follows:

1 [[ϕ]]Γ,∆ = [ϕ]Γ,∆, for all atomic type ϕ,

2 [[ωT ]]Γ,∆ = ΣΛµ, [[ωS ]]Γ,∆ = Strm,
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3 M ∈ [[σ→ δ]]Γ,∆ ⇐⇒ ∀Γ′,∆′, S ∈ [[σ]]Γ′,∆′ . (M)S ∈ [[δ]]Γ∧Γ′,∆∧∆′ ,

4 [ ]β ∈ [[σ]]Γ,∆ ⇐⇒ ∆(β) ≤S σ,

5 M :: S ∈ [[δ × σ]]Γ∧Γ′,∆∧∆′ ⇐⇒M ∈ [[δ]]Γ,∆ & S ∈ [[σ]]Γ′,∆′ ,

6 [[δ1∧δ2]]Γ,∆ = [[δ1]]Γ,∆ ∩ [[δ2]]Γ,∆ and [[σ1∧σ2]]Γ,∆ = [[σ1]]Γ,∆ ∩ [[σ2]]Γ,∆.

Lemma 5.6.

1 δ ≤T δ′ ⇒ [δ]Γ,∆ ⊆ [δ′]Γ,∆ & [[δ]]Γ,∆ ⊆ [[δ′]]Γ,∆,

2 σ ≤S σ′ ⇒ [[σ]]Γ,∆ ⊆ [[σ′]]Γ,∆.

Proof. That [δ]Γ,∆ ⊆ [δ′]Γ,∆ is an obvious consequence of rule (≤) of the type sys-

tem. That δ ≤T δ′ ⇒ [[δ]]Γ,∆ ⊆ [[δ′]]Γ,∆ and σ ≤S σ′ ⇒ [[σ]]Γ,∆ ⊆ [[σ′]]Γ,∆ are shown

simultaneously, by checking the inequations in Def. 3.2 and by definition unfolding of

[[δ]]Γ,∆, [[δ
′]]Γ,∆, [[σ]]Γ,∆ and [[σ′]]Γ,∆.

Corollary 5.7.

Γ ≤ Γ′ & ∆ ≤ ∆′ ⇒ [[δ]]Γ′,∆′ ⊆ [[δ]]Γ,∆ & [[σ]]Γ′,∆′ ⊆ [[σ]]Γ,∆.

Proof. Routine, using Lemma 5.6 and the admissibility of the strengthening rule,

Lemma 3.6.

Lemma 5.8. If R is a redex and R′ its contractum, then for any S ∈ Strm:

(R′)S ∈ [[δ]]Γ,∆ ⇒ (R)S ∈ [[δ]]Γ,∆.

Proof. By induction over δ. In the base case δ = ϕ the hypothesis is equivalent to

(R′)S ∈ [ϕ]Γ,∆, that is Γ ⊢ A : δ | ∆ for some A ∈ A((R′)S). Since (R)S −→ (R′)S we

have that A((R′)S) ⊆ A((R)S) by Def. 2.6, and therefore (R)S ∈ [ϕ]Γ,∆ = [[ϕ]]Γ,∆.

The remaining cases are immediate consequence of the inductive hypothesis.

Lemma 5.9.

1 (M)x ∈ [σ→ δ]Γ,∆ & Γ(x) ≤T δ′ ⇒M ∈ [δ′ × σ→ δ]Γ,∆
2 (M)α ∈ [δ]Γ,∆ & ∆(α) ≤S σ & δ 6∼T ω ⇒M ∈ [σ→ δ]Γ,∆

Proof. (1): by assumption there exists A ∈ A((M)x) such that Γ ⊢ A : σ→ δ | ∆. If

A = Ω then A � φ((M)x) and σ→ δ ∼T ω by (1) of Lemma 5.1, and ω ∼T ω→ω ∼T

ω × ω→ω, we have that Γ ⊢ A : ω × ω→ω | ∆ and A � φ(M).

Now let us assume that A 6= Ω. Then for some P we know that (M)x −→∗ P and

A � φ(P ) 6= Ω. If P = (P ′)x with M −→∗ P ′ then P ′ is λµ-free and A = (A′)x with

A′ � φ(P ′). By (3) of Lemma 3.5 there exists some δ′ s.t. Γ(x) ≤T δ′ and Γ ⊢ A′ :

δ′ × σ→ δ | ∆.

If instead P 6= (P ′)x for any P ′ then two cases may occur. The first case is when:

(M)x −→∗ (λy.M ′)x −→βT
M ′[y := x] −→∗ P,

where M −→∗ λy.M ′. Since Γ(x) ≤T δ′ and we can assume that y 6∈ dom(Γ), from

Γ ⊢ A : σ→ δ | ∆ we infer Γ, y : δ′ ⊢ A[x := y] : σ→ δ | ∆ by (1) of Lemma 3.8, so

that by rule (λ) we get Γ ⊢ λy.A[x := y] : δ′ × σ→ δ | ∆, where λy.A[x := y] ∈ A since
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A 6= Ω and hence A[x := y] 6= Ω. Now if M ′[y := x] −→∗ P then M ′ −→∗ P [x := y] and

therefore λy.M ′ −→∗ λy.P [x := y].

On the other hand, if A � φ(P ) 6= Ω then A[x := y] � φ(P [x := y]) 6= Ω, hence

λy.A[x := y] � λy.φ(P [x := y]) = φ(λy.P [x := y]) by (3) of Lemma 2.8. But M −→∗

λy.M ′ −→∗ λy.P [x := y], so that λy.A[x := y] ∈ A(M).

It remains the case when: (M)x −→∗ (µα.M ′)x −→∗ P and (µα.M ′)x is the last term

of the shape (P ′)x in the reduction to P . Since φ(P ) 6= Ω while φ((µα.M ′)x) = Ω, it

must be the case that:

(M)x −→∗ (µα.M ′)x −→fst (λy.µα.M
′[α⇐ y])x −→∗ P,

which is an instance of the first case above.

To see (2) we reason as for part (1), since e.g. we have to treat the case:

(M)α −→∗ (µβ.M ′)α −→βS
M ′[β := α] −→∗ P.

There is however a third possibility, namely that:

(M)α −→∗ (λy.M ′)α −→∗ P.

But then P = (λy.P ′)α for some P ′ s.t. M ′ −→∗ P ′, which implies that φ(P ) = Ω, a

case that has been treated at the beginning of the proof of (1).

Lemma 5.10.

1 M λµ-free & M ∈ [δ]Γ,∆ ⇒M ∈ [[δ]]Γ,∆,

2 M ∈ [[δ]]Γ,∆ ⇒M ∈ [δ]Γ,∆.

Proof. (1) and (2) are proved by simultaneous induction over δ. The base case δ = ϕ

is obvious, as well as the case δ = ω. The case δ = δ1∧δ2 follows by induction. The only

relevant case is when δ = σ→ δ′ 6∼T ω.

Part (1): let S = [ ] ~Nβ ∈ [[σ]]Γ,∆ be arbitrary, then the thesis is proved if we can show

that (M)S ∈ [[δ′]]Γ,∆. If M is λµ-free then (M)S is such. On the other hand we know

that Γ ⊢ A : σ→ δ′ | ∆ for some A � φ(M ′) with M −→∗ M ′ (hence also M ′ is

λµ-free), and it must be the case that A 6= Ω by (1) of Lemma 5.1, since σ→ δ′ 6∼T ω.

If ~N = N1, . . . , Nk we have that φ((M ′)S) = (φ(M ′))φ(N1) · · ·φ(Nk)β since M ′ is

λµ-free so that φ(M ′) 6= Ω; on the other hand [ ] ~Nβ ∈ [[σ]]Γ,∆ implies thatNi ∈ [[δi]]Γ,∆
for i = 1, . . . , k where σ ∼S δ1 × · · · × δk × σ′ and ∆(β) ≤S σ′ by Lemma 3.3 (1).

By induction hypothesis (2) there exist A1, . . . , Ak such that Ai � φ(Ni) and Γ ⊢ Ai :

δi | ∆ for all i. From Ω 6= A � φ(M ′) and the fact that M ′ is λµ-free, it follows that

A itself is λµ-free and therefore we have that (A)A1 · · ·Akβ ∈ A((M ′)S) ⊆ A((M)S),

and Γ ⊢ (A)A1 · · ·Akβ : δ′ | ∆ that is (M)S ∈ [δ′]Γ,∆. From this the desired (M)S ∈

[[δ′]]Γ,∆ follows by induction hypothesis (1).

Part (2): suppose that M ∈ [[σ→ δ′]]Γ,∆. Let σ = δ1×· · ·×δk×ω and take Γ′ = Γ ∧{x1 :

δ1, . . . , xk : δk}. Then by induction hypothesis (1) xi ∈ [[δi]]Γ′,∆ for i = 1, . . . , k,

so that S = [ ]~xβ ∈ [[σ]]Γ′,∆ since trivially ∆(β) ≤S ω. By Def. 5.5 it follows that

(M)S ∈ [[δ′]]Γ′,∆ which implies, by induction hypothesis (2), that (M)S ∈ [δ′]Γ′,∆.

From this we get the desired M ∈ [σ→ δ′]Γ′,∆ by repeated applications of Lemma

5.9.
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For ~α = α1, . . . , αm and ~S = S1, . . . , Sm vectors of stream variables and streams

respectively, we abbreviate:

M [~α⇐ ~S] = M [α1 ⇐ S1] . . . [αm ⇐ Sm].

Lemma 5.11. Let Γ = {x1 : δ1, . . . , xn : δn} and ∆ = {α1 : σ1, . . . , αm : σm}. Suppose

that

Ni ∈ [[δi]]Γi,∆i
i = 1, . . . , n, & Sj ∈ [[σj ]]Γ′

j
,∆′

j
j = 1, . . . ,m.

where dom(Γi) ∩ dom(Γ) = ∅ and dom(∆j) ∩ dom(∆) = ∅ for all i, j. Then

Γ ⊢M : δ | ∆⇒ M̂ ∈ [[δ]]
Γ̂,∆̂

where Γ̂ = (
∧n

i=1
Γi)∧(

∧m
j=1

Γ′
j), ∆̂ = (

∧n
i=1

∆i)∧(
∧m

j=1
∆′

j) and

M̂ = M [~x := ~N ][~α⇐ ~S].

Remark 5.12. Observe that dom(Γ̂)∩ dom(Γ) = ∅ which is in accordance with the fact

that we can freely assume that ~x∩ fv( ~N) = ∅ so that ~x∩ fv(M [~x := ~N ]) = ∅. Also it is the

case that dom(∆̂)∩dom(∆) = ∅ and we assume that ~α∩ fv(~S) = ∅ so that ~α∩ fv(M̂) = ∅.

Proof. By induction over the derivation D of Γ ⊢ M : δ | ∆. If D ends by (Ax) or (ω)

the thesis is obvious. If D ends by (∧) the thesis follows by the induction hypothesis. If

D ends by (≤) the thesis follows by the induction hypothesis and Lemma 5.6. It remains

to consider the cases in which D ends by (λ), (App), (µ) and (S). Below we abbreviate

M ′′ = M ′[~x := ~N ][~α⇐ ~S] and N ′′ = N ′[~x := ~N ][~α⇐ ~S].

(λ): then M = λy.M ′ and the conclusion Γ ⊢ λy.M ′ : δ′ × σ→ δ′′ | ∆ has been derived

from the premise Γ, y : δ′ ⊢M ′ : σ→ δ′′ | ∆. For any Γ′,∆′ and arbitrary P ∈ [[δ′]]Γ′,∆′

we have:

M̂ ′ = M ′′[y := P ] ∈ [[σ→ δ′′]]
Γ̂,∆̂

by ind. hyp.

⇒ ∀S ∈ [[σ]]Γ′′,∆′′ . (M ′′[y := P ])S ∈ [[δ′′]]
Γ̂∧Γ′′,∆̂∧∆′′ by Def. 5.5

⇒ ∀S ∈ [[σ]]Γ′′,∆′′ . (λy.M ′′)(P :: S) ∈ [[δ′′]]
Γ̂∧Γ′′,∆̂∧∆′′

by Lemma 5.8

⇒ λ̂y.M ′ = λy.M ′′ ∈ [[δ′ × σ→ δ′′]]
Γ̂,∆̂

by Def. 5.5

since P ∈ [[δ′]]Γ′,∆′ and S ∈ [[σ]]Γ′′,∆′′ imply (P :: S) ∈ [[δ′ × σ]]Γ′∧Γ′′,∆′∧∆′′ , and

Γ̂ ≤ Γ′∧Γ′′ and ∆̂ ≤ ∆′∧∆′′.

(App): then M = (M ′)N ′ and the conclusion Γ ⊢ (M ′)N ′ : σ→ δ′′ | ∆ is derived from

the premises Γ ⊢M ′ : δ′ × σ→ δ′′ | ∆ and Γ ⊢ N ′ : δ′ | ∆. Then M̂ = (M ′′)N ′′ (with

M ′′ and N ′′ defined above) and, for arbitrary Γ′,∆′:

N ′′ ∈ [[δ′]]
Γ̂,∆̂

& ∀S ∈ [[δ′ × σ]]Γ′,∆′. (M ′′)S ∈ [[δ′]]
Γ̂∧Γ′,∆̂∧∆′ by ind. hyp.

⇒ ∀S′ ∈ [[σ]]Γ′,∆′. (M ′′)N ′′S′ = (M ′′)(N ′′ :: S′) ∈ [[δ′′]]
Γ̂∧Γ′,∆̂∧∆′

by Def. 5.5

⇒ (M ′′)N ′′ ∈ [[σ→ δ′′]]
Γ̂,∆̂

by Def. 5.5

since N ′′ ∈ [[δ′]]
Γ̂,∆̂

and S′ ∈ [[σ]]Γ′,∆′ imply (N ′′ :: S′) ∈ [[δ′ × σ]]
Γ̂∧Γ′,∆̂∧∆′

.
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(µ): then M = µα.M ′ and the conclusion Γ ⊢ µα.M ′ : σ→ δ′ | ∆ has been derived from

the premise Γ ⊢M ′ : δ′ | α : σ,∆. For any Γ′,∆′, let S ∈ [[σ]]Γ′,∆′ be arbitrary, then:

M̂ ′ = M ′′[α⇐ S] ∈ [[δ]]
Γ̂∧Γ′,∆̂∧∆′

by ind. hyp.

⇒ (µα.M ′′)S ∈ [[δ]]
Γ̂∧Γ′,∆̂∧∆′ by Lemma 5.8

⇒ µ̂α.M ′ = µα.M ′′ ∈ [[σ→ δ]]
Γ̂,∆̂

by Def. 5.5

(S): then M = (M ′)α and the conclusion Γ ⊢ (M ′)α : δ′ | α : σ,∆′ (where ∆ = α : σ,∆′

so that α = αj for some j) has been obtained from the premise Γ ⊢ M ′ : σ→ δ′ | α :

σ,∆′. For any Γ′,∆′, let S = [ ]~Pβ ∈ [[σ]]Γ′,∆′ be arbitrary, then we have:

M̂ ′ = M ′′[α⇐ S] ∈ [[σ→ δ′]]
Γ̂∧Γ′,∆̂∧∆′

by ind. hyp.

⇒ (̂M ′)α = ((M ′′)α)[α ⇐ S] =

= (M ′′[α⇐ S])~Pβ = (M ′′[α⇐ S])S ∈ [[δ′]]
Γ̂∧Γ′,∆̂∧∆′ by Def. 5.5

where Γ̂∧Γ′ = Γ̂ since Γ̂ ≤ Γ′, and similarly ∆̂∧∆ = ∆̂.

Theorem 5.13 (Approximation Theorem). For all M ∈ Σc
Λµ and δ ∈ TT :

Γ ⊢M : δ | ∆⇐⇒ ∃A ∈ A(M). Γ ⊢ A : δ | ∆.

Proof. The implication (⇐) is Lemma 5.3. To see (⇒) assume Γ ⊢ M : δ | ∆ with

Γ = {x1 : δ1, . . . , yn : δn} and ∆ = {α1 : σ1, . . . , αm : σm}. Now yi ∈ [δi]{yi:δi},∅ for

all i = 1, . . . , n because φ(yi) = yi; then by (1) of Lemma 5.10 yi ∈ [[δi]]{yi:δi },∆ being

λµ-free.

On the other hand [ ]βj ∈ [[σj ]]∅,{βj:σj }, for j = 1, . . . ,m, by Def. 5.5. Therefore, by

Lemma 5.11, Γ ⊢ M : δ | ∆ implies M̂ ∈ [[δ]]
Γ̂,∆̂

where Γ̂ = {y1 : δ1, . . . , yn : δn},

∆̂ = {β1 : σ1, . . . , βm : σm} and M̂ = M [~x := ~y][~α ⇐ ~[ ]β] = M [~x := ~y][~α := ~β]. Since

Def. 5.5 does not depend on the choice of variable names, it follows that M ∈ [[δ]]Γ,∆,

and we conclude that M ∈ [δ]Γ,∆ by (2) of Lemma 5.10.

Conclusions

We have provided an intersection type assignment system for Λµ, extending the system

in (van Bakel et al. 2011), that satisfies all the relevant properties of its homologous

intersection type systems for the λ-calculus. It can be argued that the system is a conser-

vative extension of that one in (Barendregt et al. 1983). The delicate though fundamental

property stated in the approximation theorem also is preserved, and its proof naturally

extends techniques and arguments from the λ-calculus.

We think that the use of type theoretic techniques can be useful also to overcome

technical difficulties in the study of the Λµ-calculus, in particular when treating open

terms in the proof of statements about closed terms only. Possible developments are in

the study of delimited control in the line of (Herbelin et al. 2008; Saurin 2010b).
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