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ABSTRACT
Tensor decomposition is used for many web and user
data analysis operations from clustering, trend detection,
anomaly detection, to correlation analysis. However, many
of the tensor decomposition schemes are sensitive to noisy
data, an inevitable problem in the real world that can lead
to false conclusions. The problem is compounded by over-
fitting when the user data is sparse. Recent research has
shown that it is possible to avoid over-fitting by relying on
probabilistic techniques. However, these have two major de-
ficiencies: (a) firstly, they assume that all the data and in-
termediary results can fit in the main memory, and (b) they
treat the entire tensor uniformly, ignoring potential non-
uniformities in the noise distribution. In this paper, we pro-
pose a Noise-Profile Adaptive Tensor Decomposition (nTD)
method, which aims to tackle both of these challenges. In
particular, nTD leverages a grid-based two-phase decompo-
sition strategy for two complementary purposes: firstly, the
grid partitioning helps ensure that the memory footprint of
the decomposition is kept low; secondly (and perhaps more
importantly) any a priori knowledge about the noise profiles
of the grid partitions enable us to develop a sample assign-
ment strategy (or s-strategy) that best suits the noise dis-
tribution of the given tensor. Experiments show that nTD’s
performance is significantly better than conventional CP de-
composition techniques on noisy user data tensors.

1. INTRODUCTION
Tensors are commonly used for representing multi-

dimensional data, such as user-centered document collec-
tions in the web and user interactions in social networks [20,
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Figure 1: A sample 3-mode tensor, partitioned into a grid
of sub-tensors, and its noise profile: the figure highlights (in
orange) a subset of the sub-tensors which are noisy

40]. [19], for example, incorporates contextual information
to the traditional HITS algorithm, formulating the task as
tensor decomposition. In [5], authors analyze the ENRON
email social network using tensor decomposition and in [32],
authors use tensors to incorporate user click information to
improve web search.

Consequently, tensor decomposition operations (such as
CP [13] and Tucker [34]) are increasingly being used to
implement various data analysis tasks, from clustering,
anomaly detection [20], correlation analysis [31], to pattern
discovery [16]. Yet, tensor decomposition process is subject
to several major challenges: One major challenge is its com-
putational complexity: decomposition algorithms have high
computational costs and, in particular, incur large mem-
ory overheads (also known as the intermediary data blow-up

problem) and, thus, basic algorithms and naive implemen-
tations are not suitable for large problems. Parallel im-
plementations, such as GridParafac [26], GigaTensor [17],
HaTen2 [15], TensorDB [18, 23, 22], were proposed to deal
with the high computational cost of the task.

A second problem tensor decomposition faces is that the
process can be negatively a↵ected from noise and low qual-
ity in the data, which is especially a concern for web-based
user data [6, 37, 38, 9] – in particular, especially for sparse
data, avoiding over-fitting to the noisy data can be a signif-
icant challenge. Recent research has shown that it is pos-
sible to avoid such over-fitting by relying on probabilistic
techniques [36], which introduces priors on the parameters,
it can e↵ectively average over various models and ease the
pain of tuning parameters. Unfortunately, existing proba-
bilistic approaches have two major deficiencies: (a) firstly,
they assume that all the data and intermediary results can



fit in the main memory and (b) they treat the entire tensor
uniformly, ignoring possible non-uniformities in the distri-
bution of noise in the given tensor.

In this paper, we propose a Noise-Profile Adaptive Tensor

Decomposition (nTD) method, which leverages a priori in-
formation about noise in the data (which may be user pro-
vided or obtained through automated techniques [29, 12])
to improve decomposition accuracy. nTD partitions the
user data tensor into multiple sub-tensors (Figure 1) and
then decomposes each sub-tensor probabilistically through
Bayesian factorization – the resulting decompositions are
then recombined to obtain the decomposition for the whole
tensor. Most importantly, nTD provides a resource allocation

strategy that accounts for the impact of the noise density of

one sub-tensor on the decomposition accuracies of the other

sub-tensors. In other words, a priori knowledge about noise
distribution among the sub-tensors (noise profiles depicted
in Figures 1 and 2) is used to obtain a resource assignment
strategy that best suits the noise distribution of the given
tensor.

This paper is organized as follows: In the next section,
we present the related work. Section 3 presents the rel-
evant notations and the background. Section 4 describes
the overview of the grid based probabilistic tensor decom-
position scheme. Section 5 introduces the proposed sample
assignment strategy (s-strategy) to adapt to di↵erent noise
profiles, leading to a novel noise adaptive tensor decomposi-
tion (nTD) approach. Section 6 experimentally evaluates the
e↵ectiveness of the nTD and its alternative implementations.
Experiments show that nTD indeed improves the decompo-
sition accuracy of noise polluted tensors and the proposed
sample assignment strategy (s-strategy) helps optimize the
nTD performance under di↵erent noise scenarios. We con-
clude the paper in Section 7.

2. RELATED WORK
As we discussed in the previous section, tensor analysis

is a commonly used technique for user-centered data analy-
sis [28, 24, 1, 21, 35, 14]. Alternating least squares (ALS) is
the most conventional method for tensor decomposition [13]:
at each iteration, ALS estimates one factor matrix while
maintaining other matrices fixed; this process is repeated
for each factor matrix associated to the modes of the in-
put tensor until convergence condition is reached. There
are two widely used toolboxes for tensor manipulation: the
Tensor Toolbox for Matlab [4] (for sparse tensors) and N-

way Toolbox for Matlab[3] (for dense tensors). Yet, due to
the significant cost [20] of tensor decompositions, various
parallel algorithms and systems have been developed. [33]
proposes MACH, a randomized algorithm that speedups the
Tucker decomposition while providing accuracy guarantees.
More recently, In [25], authors propose PARCUBE, a sam-
pling based, parallel and sparsity promoting, approximate
PARAFAC decomposition scheme. Scalability is achieved
through sketching of the tensor (using biased sampling) and
parallelization of the decomposition operations onto the re-
sulting sketches. TensorDB [18, 23] leverages a block-based
framework to store and retrieve data, extends array op-
erations to tensor operation, and introduces optimization
schemes for in-database tensor decomposition. HaTen2 [15]
focuses on sparse tensors and presents a scalable tensor de-
composition suite of methods for Tucker and PARAFAC de-

(a) uniform noise (b) slice-concentrated noise

(c) multi-modal noise

Figure 2: Alternative noise profiles of a tensor

compositions on a MapReduce framework. SCOUT [16] is a
recent coupled matrix-tensor factorization framework, also
built on MapReduce. In addition to parallelism, it also lever-
ages computation reordering as well as data transformation
and reuse to reduce the computational cost of the process.

In [11], authors develop a probabilistic framework,
pTucker, for modeling structural dependency from partially
observed multi-dimensional arrays. [39] implements a de-
terministic Bayesian inference algorithm, which formulates
CP factorization with a hierarchical probabilistic model and
employs Bayesian treatment by incorporating a sparsity-
inducing prior over multiple latent factors and the appropri-
ate hyperpriors over all hyperparameters, resulting in auto-
matic rank determination. [27] proposed a Bayesian frame-
work for low-rank decomposition of multiway missing obser-
vations tensor data. The method helps with the discovery
of the decomposition rank from the data; moreover, infer-
ence scales linearly with the observation size, which helps
the proposed approach scale very well. [10] proposes a loss
function that helps the tensor decomposition process handle
both Gaussian and grossly non-Gaussian perturbations.

3. BACKGROUND AND NOTATIONS
Intuitively, the tensor model maps a schema with N at-

tributes to an N -modal array (where each potential tuple
is a tensor cell). Tensor decomposition process generalizes
the matrix decomposition process to tensors and rewrites
the given tensor in the form of a set of factor matrices
(one for each mode of the input tensor) and a core ma-
trix (which, intuitively, describes the spectral structure of
the given tensor). The two most popular tensor decom-
position algorithms are the Tucker [34] and the CANDE-
COMP/PARAFAC (CP) [13] decompositions. While CP
decomposes the input tensor into a sum of component rank-



one tensors (leading into a diagonal core ), Tucker decom-
position results in a dense core. In this paper, we focus on
the CP decomposition process of user data tensors.

3.1 CP Decomposition
Given a tensor X , CP factorizes the tensor into factor

matrices with F rows (where F is a user supplied non-zero
integer value also referred to as the rank of the decomposi-
tion). For the simplicity of the discussion, let us consider a
3-mode tensor X 2 RI⇥J⇥K. CP would decompose X into
three matrices A,B, and C, such that

X ⇡ X̃ = [A,B,C] ⌘
FX

f=1

a

f

� b
f

� c
f

,

where a

f

2 RI, b
f

2 RJ and c

f

2 RK. The factor matrices
A, B, C are the combinations of the rank-one component
vectors into matrices; e.g., A = [ a1 a2 · · · aF ]. Since tensors
may not always be exactly decomposed, the new tensor X̃
obtained by recomposing the factor matrices A, B, and C
is often di↵erent from the input tensor, X . The accuracy
of the decomposition is often measured by considering the
Frobenius norm of the di↵erence tensor.

3.2 Parameters of Tensor Noise Profile
Noise distribution: Noise can be distributed in a tensor
in several ways:

• In uniform (uni) noise (Figure 2(a)), there is no un-
derlying pattern and noise is not clustered across any
slice or region of the tensor.

• Slice-concentrated (sc) noise (Figure 2(b)) is clustered
on one or more slices on the tensor across one or more
modes. For example, a particular data source (repre-
sented by one or more slices) may be known to provide
low quality, untrusted information.

• In multi-modal (mm) noise, again, the noise is clus-
tered; however, in this case the noise is expected to
occur when a combination of a subset of the values
across two or more modes are considered together as
in Figure 2(c).

Noise density: This is the ratio of the cells that are subject
to noise. In this paper, without loss of generality, we assume
noise is on cells that have values (i.e., the observed values
can be faulty, but there are no spurious observations) and,
thus, we define noise density as a ratio of the non-null cells.
Dependent vs. independent noise: Noise may impact
the observed values in the tensor in di↵erent ways: in value-

independent noise, the correct data may be overwritten by
a completely random new value, whereas in value-correlated

noise existing values may be perturbed (often with a Gaus-
sian noise, defined by a standard deviation, �).

4. GRID BASED PROBABILISTIC TEN-
SOR DECOMPOSITION (GPTD)

As we described above, noise may not be uniformly dis-
tributed on a tensor. In order to take into account the
underlying non-uniformities, we propose to partition the
tensor into a grid and treat each grid partition di↵erently
based on its noise profile. In this section, we present a

Algorithm 1 Phase 1: Monte Carlo based Bayesian decom-
position of each sub-tensor(extension of [36] to more than 3
modes)

Input: Sub-tensor X
~

k

, sampling number L

Output: Decomposed factors U (1)
~

k

, U (2)
~

k

, . . ., U (N)
~

k

1. Initialize model parameters U
(1)1
~

k

, U
(2)1
~

k

, . . ., U
(N)1
~

k

.

2. For l = 1, . . . , L

(a) Sample the hyper-parameter, ↵:

• ↵l ⇠ p(↵l|U (1)l
~

k

,U
(2)l
~

k

, . . . ,U
(N)l
~

k

,X
~

k

)

(b) For each mode j = 1, . . . , N ,

i. Sample the corresponding hyper-parameter, ⇥:

• ⇥

U
(j)l
~

k

⇠ p(⇥
U

(j)l
~

k

|U (j)l
~

k

)

ii. For i
j

= 1, ..., I
j

, sample the mode (in parallel):

U
(j)(l+1)
~

k(i
j

)
⇠ p

✓
U

(j)
~

k(i
j

)

����U
(1)l
~

k

, . . . ,U
(j�1)l
~

k

,

U
(j+1)l
~

k

, . . . ,U
(N)l
~

k

,

⇥

l

U
(j)
~

k

,↵l,X
~

k

◆

3. For each mode j = 1, . . . , N ,

• U
(j)
~

k

=

P
L

i=1 U
(j)i
~

k

L

Grid Based Probabilistic Tensor Decomposition (GPTD) ap-
proach which extends the wholistic Probabilistic Tensor De-
composition (PTD [36]) into a grid-based framework. Note
that, in and of itself, GPTD does not leverage a priori
knowledge about noise distribution, but as we see in Sec-
tion 5, it provides a framework in which noise-profile based
adaptation can be implemented.

Let us consider an N -mode tensor, X 2 RI1⇥I2⇥...⇥I

N ,
partitioned into a set (or grid) of sub-tensors X = {X

~

k

| ~k 2
K}, where K is the set of sub-tensor indexes. Without loss
of generality, let us assume that K partitions the mode i

into K

i

equal partitions; i.e., |K| =
Q

N

i=1 Ki

. Given a
target decomposition rank, F , the first step of the pro-
posed decomposition (GPTD) scheme is to decompose each
sub-tensor in X with target rank F , such that for each
X

~

k

, we have X
~

k

⇡ I ⇥1 U (1)
~

k

⇥2 U (2)
~

k

· · · ⇥
N

U (N)
~

k

, where

U(i) = {U (i)
~

k

| ~k 2 K} denotes the set of F -rank sub-factors1

corresponding to the sub-tensors in X along mode i and I
is the N -mode F ⇥ F ⇥ . . . ⇥ F identity tensor, where the
diagonal entries are all 1s and the rest are all 0s. Intuitively,
given a sub-tensor X

~

k

, each entry X
~

k(i1,i2,i3,...,i
N

) can be
expressed as the inner-product of N F -dimensional vectors:
X

~

k(i1,i2,...,i
N

)
⇡ [U (1)

~

k(i1)
,U (2)

~

k(i2)
. . . ,U (N)

~

k(i
N

)
]. We discuss the

sub-tensor decomposition process next.

4.1 Phase 1: Monte Carlo based Bayesian De-
composition of Sub-tensors

For decomposing individual sub-tensors, we rely on the
probabilistic approach proposed in [30, 36]: i.e., we describe

1If the sub-tensor is empty, then the factors are 0 matrices
of the appropriate size.



!!

!!

!!

!!

!!

!
"#

!
$#

!
%#

!
&#

!
"#

'"
"#

'$
"#

'%
"#

!
(#

'"
(#

'$
(#

'%
(#

"#$%&'(!%)*+,&-%./!0&1.2".%3,3.-! "#$%&4(!3-1/&2&-,$5!/&63-&2&-,!

!!
)"

"#

)$
"# )%

"#

!!
)"

$#

)$
$# )%

$#

!!
)"

%#

)$
%# )%

%#

!!
)"

&#

)$
&# )%

&#

!!
)"

*#

)$
*# )%

*#

!!
)"

+#

)$
+# )%

++#

!!
)"

,#

)$
,# )%

,#

!!
)"

(#

)$
(# )%

(#

Figure 3: Illustration of sub-tensor based tensor decompo-
sition: the input tensor is partitioned into smaller blocks,
each block is decomposed (potentially in parallel), and the
partial decompositions are stitched together through an it-
erative improvement process

the fit between the observed data and the predicted latent
factor matrices, probabilistically, as follows:

X
~

k(i1,i2,...,i
N

)

���U (1)
~

k

,U (2)
~

k

. . . ,U (N)
~

k

⇠N ([U (1)
~

k(i1)
,U (2)

~

k(i2)
. . . ,U (N)

~

k(i
N

)
],↵�1),

(1)

where the conditional distribution of X
~

k(i1,i2,...,i
N

)
given

U (j)
~

k

(1  j  N) is a Gaussian distribution with mean

[U (1)
~

k(i1)
,U (2)

~

k(i2)
, . . .,U (N)

~

k(i
N

)
] and the observation precision ↵.

We also impose independent Gaussian priors on the modes:

U (j)
~

k(i
j

)
⇠N (µ

U
(j)
~

k

,⇤�1

U
(j)
~

k

) i

j

= 1...I
j (2)

where I

j

is the dimensionality of the j

th mode. Given

this, one can estimate the latent features U (j)
~

k

by
maximizing the logarithm of the posterior distribution,
log p(U (1)

~

k

,U (2)
~

k

. . . ,U (N)
~

k

|X
~

k

). One di�culty with this ap-
proach, however, is the tuning of the hyper-parameters of
the model: ↵ and ⇥

U
(j)
~

k

⌘ {µ
U

(j)
~

k

,⇤
U

(j)
~

k

} for 1  j  N .

[36] notes that one can avoid the di�culty underlying the
estimation of these parameters through a fully Bayesian ap-
proach, complemented with a sampling-based Markov Chain
Monte Carlo (MCMC) method to address the lack of the an-
alytical solution. The process is visualized in Algorithm 1
in pseudo-code form.

4.2 Phase 2: Iterative Refinement
Once the individual sub-tensors are decomposed, the next

step is to stitch the resulting sub-factors into the full F -
rank factors, A(i) (each one along one mode), for the input
tensor, X . Let us partition each factor A(i) into K

i

parts
corresponding to the block boundaries along mode i:

A(i) = [A(i)T
(1) A(i)T

(2) ...A(i)T
(K

i

)]
T

.

Given this partitioning, each sub-tensor X
~

k

, ~

k =
[k1, . . . , ki, . . . , kN ] 2 K can be described in terms of these

Algorithm 2 The outline of the GPTD process
Input: Input tensor X , partitioning pattern K, and decomposi-

tion rank, F , and per sub-tensor sample count, L
Output: Tensor decomposition X̊

1. Phase 1: for all

~k 2 K

• decompose X
~

k

into U
(1)
~

k

, U
(2)
~

k

, . . ., U
(N)
~

k

with sample count L using Algorithm 1.

2. Phase 2: repeat

(a) for each mode i = 1 to N

i. for each modal partition, k
i

= 1 to K
i

,

A. update A
(i)
(k

i

) using U
(i)
[⇤,...,⇤,k

i

,⇤,...,⇤], for

each block X [⇤,...,⇤,k
i

,⇤,...,⇤]; more specifi-

cally,

• compute T
(i)
(k

i

), which involves the use of

U
(i)
[⇤,...,⇤,k

i

,⇤,...,⇤] (i.e. the mode-i factors

of X [⇤,...,⇤,k
i

,⇤,...,⇤])

• revise P [⇤,...,⇤,k
i

,⇤,...,⇤] using

U
(i)
[⇤,...,⇤,k

i

,⇤,...,⇤] and A
(i)
(k

i

)

• compute S
(i)
(k

i

) using the above

• update A
(i)
(k

i

) using the above

• for each

~k = [⇤, . . . , ⇤, k
i

, ⇤, . . . , ⇤]
– update P

~

k

and Q
~

k

using

– U
(i)
~

k

and A
(i)
(k

i

)

until stopping condition

3. Return X̊

sub-factors:

X
~

k

⇡ I ⇥1 A
(1)
(k1)
⇥2 A

(2)
(k2)

· · ·⇥
N

A(N)
(k

N

) (3)

The current estimate of the sub-factorA(i)
(k

i

) can be revised

using the following update rule [26]:

A(i)
(k

i

)  � T (i)
(k

i

)

⇣
S(i)

(k
i

)

⌘�1
(4)

where

T (i)
(k

i

) =
X

~m2{[⇤,...,⇤,k
i

,⇤,...,⇤]}

U (i)
~m

⇣
P

~m

↵ (U (i)T
~m

A(i)
(k

i

))
⌘

S(i)
(k

i

) =
X

~m2{[⇤,...,⇤,k
i

,⇤,...,⇤]}

Q
~m

↵
⇣
A(i)T

(k
i

)A
(i)
(k

i

)

⌘

such that, given ~m = [m1,m2, . . . ,mN

], we have

• P
~m

= ~N

h=1(U
(h)T
~m

A(h)
(m

h

)) and

• Q
~m

= ~N

h=1(A
(h)T
(m

h

)A
(h)
(m

h

)).

Above, ~ denotes the Hadamart product and ↵ denotes the
element-wise division operation.

4.3 Overview of GPTD
The two phases of the decomposition process are visual-

ized in Algorithm 2 and Figure 3.
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Figure 4: A sample grid and the corresponding pairwise
refinement dependencies among the sub-tensors per Equa-
tion 4

5. NOISE-PROFILE ADAPTIVE TENSOR
DECOMPOSITION

One crucial piece of information that the basic grid based
decomposition process fails to account for is potentially

available knowledge about the distribution of the noise across
the input tensor. Note that, in the second phase of the pro-
cess, each A(i)

(k
i

) is maintained incrementally by using, for

all 1  j  N , (a) the current estimates for A(j)
(k

j

) and (b)

the decompositions in U(j); i.e., the F -rank sub-factors of
the sub-tensors in X along the di↵erent modes of the tensor.
This implies that a sub-tensor which is poorly decomposed
due to noise may negatively impact decomposition accura-
cies also for other parts of the tensor. Consequently, it is
important to properly allocate resources to prevent a few
noisy sub-tensors among all from negatively impacting the
overall accuracy.

In [22], we studied how to allocate resources, in a way
that takes into account, user’s non-uniform accuracy pref-
erences for di↵erent parts of the tensor. In this paper, we
develop a novel noise-profile adaptive tensor decomposition
(nTD) scheme that focuses on resource allocation based on
noise distribution. More specifically, user provided or auo-
matically discovered [2, 37, 38] a priori knowledge about the
noise profiles of the grid partitions enables us to develop a
sample assignment strategy (or s-strategy) that best suits
the noise distribution in a given tensor. In particular, nTD
assigns the ranks and samples to di↵erent sub-tensors in
a way that maximizes the overall decomposition accuracy
of the whole tensor without negatively impacting the e�-
ciency of the decomposition process. Since probabilistic de-
composition can be costly, nTD considers a priori knowledge
about each sub-tensor’s noise density to decide the appro-
priate number of Gibbs samples to achieve good accuracy
with the given number of samples.

5.1 Noise Sensitive Sample Assignment: First
Naive Attempt

As we experimentally show in Section 6, there is a direct
relationship between the amount of noise a (sub-)tensor has
and the number of Gibbs samples it requires for accurate
decomposition. On the other hand, the number of samples
also directly impacts the cost of the probabilistic decom-
position process. Consequently, given a set of sub-tensors,
with di↵erent amounts of noise, uniform assignment of the

number of samples, L =
⇣

L(total)

|K|

⌘
, where L(total) is the to-

tal number of samples for the whole tensor and |K| is the
number of sub-tensors, may not be the best choice.

In fact, the numbers of Gibbs samples allocated to dif-
ferent sub-tensors X

~

k

in Algorithm 1 do not need to be the

same. As we have seen in Section 4.1, Phase 1 decomposi-
tion of each sub-tensor is independent from the others and,
thus, the number of Gibbs samples of di↵erent sub-tensors
can be di↵erent. This observation, along with observation
that more samples can provide better accuracy for noisy
sub-tensors, can be used to improve the overall decomposi-
tion accuracy for a given number of Gibbs samples. More
specifically, the number of samples a noisy sub-tensor, X

~

k

,
is allocated should be proportional to the density, nd

~

k

, of
noise it contains:

L(X
~

k

) = d� ⇥ nd

~

k

e+ L

min

, (5)

where L

min

is the minimum number of samples a (non-
noisy) tensor of the given size would need for accurate de-
composition and � is a control parameter. Note that the
value of � is selected such that the total number of samples
needed is equal to the number, L(total), of samples allocated
for the whole tensor:

L(total) =
X

~

k2K

L(X
~

k

). (6)

5.2 Noise Sensitive Sample Assignment: Sec-
ond Naive Attempt

Equations 5 and 6, above, help allocate samples across
sub-tensors based on their noise densities. However, they ig-
nore the relationships among the sub-tensors. In Section 4.2,
we have seen that, during the iterative refinement process
of Phase 2, inaccuracies in decomposition of one sub-tensor
can propagate across the rest of the sub-tensors. Therefore,
a better approach could be to consider how errors can prop-
agate across sub-tensors when allocating samples.

5.2.1 Accounting for Accuracy Inter-dependencies

among Sub-Tensors

More specifically, in this section, we note that if we could
assign a significance score to each sub-tensor, X

~

k

, that takes
into account not only its noise density, but also the position
of the sub-tensor relative to other sub-tensors, we could use
this information to allocate samples.

Let X be a tensor partitioned into a set (or grid) of sub-

tensors X = {X
~

k

| ~k 2 K}. According to the update rule
(Equation 4) in Section 4.2, if two sub-tensors are lined up
along one of the modes of the tensor, they can be used to
revise each other’s estimates. This means that the update
rule ties each sub-tensor’s accuracy directly to

P
1iN

K

i

other sub-tensors (that line up with the given sub-tensor
along one of the N modes – see Figure 4).
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Figure 5: Measuring the alignment of two sub-tensors: (a)
the sub-tensors with pairwise impact, (b) their compressions
onto their shared modes, (c) well-aligned tensors have simi-
lar distributions on this compressed representation, whereas
(d) poorly aligned tensors have dissimilar distributions

Moreover, we see that if the two sub-tensors are sim-
ilarly distributed along the modes that they share, then
they are likely to have high impacts on each other’s de-
composition; in contrast, if they are dissimilar, their im-
pacts on each other will also be minimal. In other words,
given two sub-tensors X

~

j

and X
~

l

, we can compute an
alignment score, align(X

~

j

,X
~

l

), between X
~

j

and X
~

l

as

align(X
~

j

,X
~

l

) = cos(X~

l

~

j

X~

j

~

l

), where cos() is the cosine sim-

ilarity function and X~

b

~a

is the version of the sub-tensor X
~a

compressed, using the standard Frobenius norm, onto the
modes along which the sub-tensor X

~a

and X
~

b

are aligned
(Figure 5). Intuitively, this pairwise alignment score de-
scribes how the decomposition of one sub-tensor will impact
another and also indicate the degree of numeric error prop-
agation. A sub-tensor which is not aligned with the other
sub-tensors is likely to have minimal impact on the accuracy
of the overall decomposition even if it contains significant
amount of noise. In contrast, a sub-tensor which is well-
aligned with a larger portion of other sub-tensors may have
a large impact on the other sub-tensors, and consequently,
on the whole tensor. Consequently, while the former sub-
tensor may not deserve a significant amount of resources,
the accuracy of the latter sub-tensor is critical and hence
that tensor should be allocated more resources to ensure
better overall accuracy.

5.2.2 Sub-Tensor Centrality based Sample Assign-

ment

Therefore, given pairwise alignment scores among the sub-
tensors, one option is to measure the significance of a sub-
tensor relative to other sub-tensors using a centrality mea-
sure like PageRank (PR [7]), which computes the signifi-
cance of each node in a (weighted) graph relative to the

other nodes. More specifically, given a graph, G(V,E), the
PageRank score ~p[i], of a node v

i

2 V is obtained by solv-
ing ~p = (1 � �)A ~p + �~s, where A denotes the transition
matrix, � is a parameter controlling the random walk likeli-
hood , and ~s is a teleportation vector such that for v

j

2 V ,
~s[j] = 1

kV k . Therefore, given (a) the set (or grid) of sub-

tensors X = {X
~

k

| ~k 2 K} and (b) their pairwise alignment
scores, we can associate a significance score,

⌧

~

k

=
~p[~k]�min

~

j2K(~p[~j)]

max

~

j2K(~p[~j])�min

~

j2K(~p[~j])
,

to each sub-tensor X
~

k

by computing PageRank scores de-
scribed by the vector ~p. Given this score, we can then rewrite
Equation 5 as

L(X
~

k

) = d� ⇥ ⌧

~

k

⇥ nd

~

k

e+ L

min

, (7)

taking into account both the noise density of the sub-tensor
along with its relationship to other sub-tensors.

5.3 S-Strategy for Sample Assignment
The above formulation considers the position of each sub-

tensor in the whole sub-tensor to compute its significance
and then multiplies this with the corresponding noise density
to decide how much resources to allocate to that sub-tensor.
This, however, may not properly take into account the rela-
tionship among the noisy sub-tensors and the positioning of
sub-tensors relative to the noisy ones.

In this paper, we note that a better approach would be
to consider the noise densities of the sub-tensors directly
when evaluating the significance of each sub-tensor. More
specifically, instead of relying on PageRank, we propose to
use a measure like personalized PageRank (PPR [8]), which
computes the significance of each node in a (weighted) graph
relative to a given set of seed nodes. Given a graph, G(V,E),
and a set, S ✓ G(V,E), of seed nodes, the PPR score ~p[i], of
a node v

i

2 G(V,E) is obtained by solving ~p = (1��)A ~p+
�~s, where A denotes the transition matrix, � is a parameter
controlling the overall importance of the seeds, and ~s is a
seeding vector such that if v

i

2 S, then ~s[i] = 1
kSk and

~s[i] = 0, otherwise. Therefore, given (a) the set (or grid) of

sub-tensors X = {X
~

k

| ~k 2 K}, (b) their pairwise alignment
scores, and (c) a seeding vector

~s[~k] =
nd

~

kP
~

j2K nd

~

j

,

we associate a noise sensitive significance score,

⌘

~

k

=
~p[~k]�min

~

j2K(~p[~j])

max

~

j2K(~p[~j])�min

~

j2K(~p[~j])
,

to each sub-tensor X
~

k

based on the PPR scores, described
by the vector ~p, relative to the noisy tensors. Given this
score, we rewrite Equation 5 as

L(X
~

k

) = d� ⇥ ⌘

~

k

e+ L

min

. (8)

5.4 Overview of nTD
The pseudo-code of the proposed noise adaptive tensor

decomposition (nTD) process is visualized in Algorithm 3.
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Figure 6: RMSE and execution time (without sub-tensor parallelism) for nTD with di↵erent num. of noisy sub-tensors (4⇥4⇥4
grid; uniform noise; value independent noise; noise density 10%; total num. of samples = 640; L

min

= 9, F = 10; max. num.
of P2 iteration = 1000)

Algorithm 3 Overview of nTD: noise adaptive decomposi-
tion (with noise based resource allocation)

Input: original tensor X , partitioning pattern K, noisy sub-

tensor K
P

, and decomposition rank, F and total sam-

pling number L
Output: tensor decomposition, X̂

1. obtain the noise profile of the sub-tensors of X ,

2. for sub-tensor

~k 2 K, assign a decomposition rank F
~

k

= F
and a sampling number L

~

k

based on noise-sensitive sample

allocation strategy, described in Section 5.3.

3. obtain the decomposition, X̂ , of X using the GPTD al-

gorithm (Algorithm 2), given partitioning pattern K and

the initial decomposition ranks {F
~

k

| ~k 2 K} and sampling

number {L
~

k

| ~k 2 K},

4. Return X̂

6. EXPERIMENTAL EVALUATION
In this section, we report experiments that aim to assess

the e↵ectiveness of the proposed noise adaptive tensor de-

composition approach. In particular, we compare the pro-
posed approach against another grid based strategy, Grid-
Parafac. We further assess the proposed noise-sensitive sam-
ple assignment strategy (s-strategy) by comparing the per-
formance of nTD, which leverages this strategy, against GPTD
with uniform sample assignment, on user-centered data.

6.1 Experiment Setup
Key parameters and their values are reported in Table 1.

Data Sets. In these experiments, we used three user cen-
tered datasets: Epinions [41], Ciao [41], and MovieLens [?,
40]. The first two of these are comparable in terms of their
sizes and semantics: they are represented in the form of
5000⇥5000⇥999 (density 1.4⇥10�6) and 5000⇥5000⇥996

Parameters Alternative values

Noise Density 10%; 30%; 50%; 80%
# partitions 2 ⇥ 2 ⇥ 2; 4 ⇥ 4 ⇥ 4
Per sub-tensor Gibbs
sample count

1; 3; 5; 10; 30; 80

Target Rank (F ) 10

Table 1: Parameters – default values, used unless otherwise
specified, are highlighted

(density 1.7 ⇥ 10�6) tensors, respectively, and both have
the schema huser, item, timei. The MovieLens data set
(943⇥ 1682⇥ 2001, density 3.15⇥ 10�5) is denser and has a
di↵erent schema, huser,movie, timei. In all three data sets,
the tensor cells contain rating values between 1 and 5 or (if
the rating does not exist) a special “null” symbol.
Noise. In these experiments, uniform value-independent
type of noise were introduced by modifying the existing rat-
ings in the data set2. More specifically, given a uniform noise
profile and density, we have selected a subset of the existing
ratings (ignoring “null” values) and altered the existing val-
ues – by selecting a completely new rating (which we refer
to as value-independent noise).
Evaluation Criteria. We use the root mean squares error

(RMSE) inaccuracy measure to assess the decomposition ef-
fectiveness. We also report the decomposition times and
memory consumptions. Unless otherwise reported, the exe-
cution time of the overall process is reported as if sub-tensor
decompositions in Phase 1 and Phase 2 are all executed se-
rially, without leveraging any sub-tensor parallelism. Each

2Because of space limitations, we do not include results with
slice-concentrated, multi-modal, and value-dependent noise
; but the results for those types of results are similar to the
results presented in this section.



(a) RMSE (b) Memory requirement (c) Execution time

Figure 7: GPTD vs. GridParafac alternative (denoted as “Alt”); (uniform noise; value independent noise; noise density 10%;
F = 10; num. Gibbs samples per sub-tensor = 3; max. num. of P2 iteration = 1000; 4 sub-tensors with noise)
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Figure 8: (a)GPTD vs. GridParafac (2⇥ 2⇥ 2 grid; varying noise density; uniform noise; value independent noise; num. Gibbs
samples per sub-tensor = 3; F = 10; max. num. of P2 iteration = 1000); (b) GPTD with di↵erent num. of Gibbs samples
(4⇥ 4⇥ 4 grid; uniform noise; value independent noise; noise density 10%; F = 10; max. num. of P2 iteration = 1000

experiment was run 10 times with di↵erent random noise
distributions across the tensor and averages are reported.
Hardware and Software. We ran experiments on a quad-
core CPU Nehalem Node with 12.00GB RAM. All codes
were implemented in Matlab and run using Matlab R2015b.
For conventional CP decomposition, we used MATLAB Ten-
sor Toolbox Version 2.6 [4].

6.2 Discussion of the Results
We start the discussion of the results by studying the im-

pact of the s-strategy for leveraging noise profiles.
Impact of Leveraging Noise Profiles. In Figure 6, we
compare the performance of nTD with noise-sensitive sam-
ple assignment (i.e., s-strategy) against GPTD with uni-

form sample assignment and the two naive noise adapta-
tions, presented in Sections 5.1 and 5.2, respectively. Note
that in the scenario considered in this figure, we have 640
total Gibbs samples for 64 sub-tensors, providing on the av-
erage 10 samples per sub-tensor. In these experiments, we
set L

min

to 9 (i.e. very close to this average), thus requir-
ing that 576(= 64 ⇥ 9) samples are uniformly distributed

across the sub-tensors – this leaves only 64 samples to be
distributed adaptively across the sub-tensors based on the
noise profiles of the sub-tensors and their relationships to
other sub-tensors. As we see in this figure, the proposed nTD
is able to leverage these 64 uncommitted samples to signifi-
cantly reduced RMSE relative to GPTD with uniform sample
assignment. Moreover, we also see that naive noise adapta-
tions can actually hurt the overall accuracy. nTD-naive 1 and
2, both use biased sampling on the noise blocks and focus
on the centrality of sub-tensors. Thus, they perform worse
than uniform way. These together show that the proposed
s-strategy is highly e↵ective in leveraging rough knowl-
edge about noise distributions to better allocate the Gibbs
samples across the tensor. Note that, as expected, nTD is
costlier than GPTD as it requires additional preprocessing to
compute sub-tensor alignments in Phase 2. However, the re-
quired pre-processing is trivially parallelizable as discussed
next.
Impact of Sub-Tensor Parallelism. As we see in Fig-
ure 9, Phase 1 of the nTD algorithm (Algorithm 1) is



(a) Execution time without sub-tensor parallelism

(b) Execution time with sub-tensor parallelism

(c) Execution time with di↵erent degrees of parallelism

Figure 9: Impact of sub-tensor parallelism on nGPTD (4⇥4⇥4
grid; uniform noise; value independent noise; noise density
10%; F = 10; num. Gibbs samples per sub-tensor = 3; max.
num. of P2 iteration = 1000; 4 sub-tensors with noise; Ciao
data set)

highly parallelizable as the sub-tensors resulting from grid-
partitioning can be decomposed in parallel. Similarly, the
pre-processing needed for computing the sample assignment
strategy in Phase 2 is also highly parallelizable: the most
expensive step of the process is the compression of the sub-
tensors on modes shared with their neighbors (since the re-
sulting sub-tensor graph is small, the PPR computation has
negligible cost) and that work can be done in parallel for
each sub-tensor or even for each cell in the resulting com-
pressed representation. Unfortunately, Phase 2, involving
incremental stitching and refinement of the factor matrices
(see Algorithm 2) cannot be trivially parallelised by assign-
ing di↵erent sub-tensors to di↵erent processors as the refine-
ment rules need to simultaneously access data from multiple
sub-tensors.
GPTD vs. GridParafac in the Presence of Noise In
its Phase 1, nTD relies on grid based probabilistic decomposi-
tion strategy. We next compare this grid probabilistic tensor
decomposition (GPTD) against the more conventional Grid-
Parafac . As we see in Figure 7, GPTD provides significantly
better accuracy than the conventional approaches and also
requires significantly lesser memory. As we expected, we
also see that increasing the number of sub-tensors results in
a significant drop in the per-sub-tensor memory requirement

(therefore improving the scalability of the tensor decompo-
sition process) – though the execution time of the second
phase of the process (where the initial decompositions of
the sub-tensors are stitched together) increases due to the
existence of more sub-tensors to consider.

An important observation in Figure 7 (b) is that the mem-
ory requirement for the conventional techniques is very sensi-
tive to data density: While theMovieLens tensor has smaller
dimensionality then the other two, it has a slightly higher
density (3.15 ⇥ 10�5 vs. 1.7 ⇥ 10�6). Consequently, for
this data set, the memory consumptions of the conventional
techniques (especially when the number of grid partitions
used are low) are significantly higher than their memory
consumptions for the other two data sets. In contrast, the
results show that the probabilistic approach is not sensitive
to data density and GPTD has similar memory usage for all
three data sets.
Impact of Noise Density. These results are confirmed in
Figure 8(a) & (c), where we vary the noise density between
10% and 80%: as we see here, for all considered noise densi-
ties and for all three data sets, the RMSE provided by GPTD
is significantly better than the RMSE provided by the con-
ventional GridParafac and this RMSE gain does not come
with a significant execution time penalty.
Impact of Numbers of Samples. A key parameter of
the GPTD algorithm is the number of Gibbs samples used per
sub-tensor in Phase 1. As we see in Figure 8(b)&(d), as we
would expect, increasing the number of Gibbs samples helps
reduce the decomposition error (measured using RMSE) ;
however having more samples increases the execution time
of the algorithm. It is important to note that, when the
number of Gibbs samples is low, the algorithm is very fast,
indicating that the worst case complexity of the Bayesian
iterations arises only when the number of Gibbs samples is
very high. Most critically, as we have already seen in Fig-
ures 7 and 8(a), the GPTD algorithm does not need too many
Gibbs samples: using a few (in these experiments, even just
1) Gibbs samples per sub-tensor is su�cient to provide sig-
nificantly better accuracy than GridParafac, as reported in
Figures 7 (a), with similar or better time overhead, as re-
ported in Figure 7 (c).

7. CONCLUSIONS
Web-based user data can be noisy. Recent research has

shown that it is possible to improve the resilience of the
tensor decomposition process to overfitting (an important
challenge in the presence of noisy data) by relying on proba-
bilistic techniques.However, existing techniques assume that
all the data and intermediary results can fit in the main
memory and (more critically) they treat the entire tensor
uniformly, ignoring potential non-uniformities in the noise
distribution. In this paper, we proposed a novel noise-

adaptive decomposition (nTD) technique that leverages rough
information about noise distribution to improve the tensor
decomposition performance. nTD partitions the tensor into
multiple sub-tensors and then decomposes each sub-tensor
probabilistically through Bayesian factorization. The noise
profiles of the grid partitions and their alignments are then
leveraged to develop a sample assignment strategy (or s-
strategy) that best suits the noise profile of a given tensor.
Experiments with user-centered web data show that nTD is
significantly better than conventional CP decomposition on
noisy tensors.
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