

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Yogurt Enrichment with Grape Pomace: Effect of Grape Cultivar on Physicochemical, **Microbiological and Sensory Properties**

This is the author's manuscript

Original Citation:

Availability:

This version is available http://hdl.handle.net/2318/1637022 since 2017-05-22T09:42:06Z

Published version:

DOI:10.1111/jfq.12181

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

This is the author's final version of the contribution published as:

Marchiani, Roberta; Bertolino, Marta; Belviso, Simona; Giordano, Manuela; Ghirardello, Daniela; Torri, Luisa; Piochi, Maria; Zeppa, Giuseppe. Yogurt Enrichment with Grape Pomace: Effect of Grape Cultivar on Physicochemical, Microbiological and Sensory Properties. JOURNAL OF FOOD QUALITY. 39 (2) pp: 77-89. DOI: 10.1111/jfq.12181

The publisher's version is available at: http://doi.wiley.com/10.1111/jfq.12181

When citing, please refer to the published version.

Link to this full text: http://hdl.handle.net/2318/1637022

This full text was downloaded from iris - AperTO: https://iris.unito.it/

1	Yogurt enrichment with grape pomace. Effect of grape cultivar on physico-chemical,
2	microbiological and sensory properties
3	
4	Roberta Marchiani ^a , Marta Bertolino ^a , Simona Belviso ^a , Manuela Giordano ^a , Daniela
5	Ghirardello ^a , Luisa Torri ^b , Maria Piochi ^b , Giuseppe Zeppa ^a *
6	
7	^a Università di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo P.
8	Braccini 2, 10095, Grugliasco (TO), Italy
9	^b Università di Scienze Gastronomiche, Piazza Vittorio Emanuele, 9, 12060 Bra (CN) -
10	Italy
11	
12	*Corresponding Author
13	Giuseppe Zeppa - Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo P.
14	Braccini 2, 10095, Grugliasco (TO), Italy - Tel.: +39 011 670 8705; fax: +39 011 670 8549
15	- giuseppe.zeppa@unito.it
16	
17	Running head : Grape skin flour and yogurt quality
18	
19	Keywords : Yogurt, Grape skin, Grape pomace, Phenolic compounds, Volatile compounds
20	
21	
22	
23	
24	
25	
26	

27 Summary

28 Grape skin flours obtained from grape pomace of Chardonnay, Moscato and Pinot noir 29 varieties were used as sources of polyphenolic compounds in yogurt formulation during 30 three weeks of storage. Yogurt containing grape skin flour presented significantly higher 31 total phenolic content (+55%), antioxidant activity (+80%) and acidity (+25%) whereas 32 lower pH, syneresis (-10%) and fat (-20%) than control. Procyanidin B1 and vanillic acids were detected only in the yogurt added of Pinot noir flour while gallic acid, catechin and 33 34 quercitrin were the major phenolic compounds found in the yogurts with Moscato or 35 Chardonnay grape skins. Significant differences were highlighted for acidity and lactose 36 content while total phenolic content, antioxidant activity and lactic acid bacteria trend were 37 stable after production and storage. The liking test performed with consumers showed a 38 loss of textural quality for yogurts fortified with grape skin flours.

39

40

41 **Practical applications**

Grape skin is a nutritious, but underused, by-product of winemaking containing fibre and
antioxidants. Using a suitable production design, a new fortified yogurt formulation with
grape by-product could be optimized for enhance antioxidant consumers' daily intake.

The use of grape skin flour in the development of value-added food products will be a step toward making new functional foods, and partially solving waste management problem from wine production. The results of this study would provide an opportunity of dairyproducer to develop a novel product in agreement with consumers' preferences. This research represents a new approach in the development of novel dairy foods with high nutritional quality and with great potential applications on food industry.

51

53 Introduction

54 Grape (Vitis vinifera L.) is one of the world's largest fruit crops. Winemaking process uses 55 a considerable amount of fresh grape generating a huge mass of solid by-products that 56 correspond to approximately 13% of the total grape weight. This by-product, usually 57 referred to as grape pomace (GP), is generated after destemming and pressing grapes and is 58 composed of grape seeds and skins. The disposal of GP is costly and complicated due to 59 characteristics of its composition, such as its high sugar content and low pH. If not 60 properly treated, these characteristics pose a crucial environmental problem (Cheng et al. 61 2010).

62 Currently GP has different non-food applications: cattle feed (Özvural and Vural 2011), 63 solid fuel for gas production, compost-fertiliser, effective adsorbent of pollutant heavy 64 metals and even for the production of high-added value materials (e.g., pullulan and 65 laccase) (Arvanitoyannis et al. 2006). Because it is well known that GP is an interesting 66 source of fibre and antioxidants with significant nutritional activities, some research has 67 been performed towards using GP for food applications. For example, grape skin flour 68 obtained from GP has been used in baked goods (Walker et al. 2014), corn breakfast cereal 69 (Camire et al. 2007), and tomato puree (Lavelli et al. 2014) whereas grape seed flour has 70 been added to bread (Hoye and Ross 2011), meat (Özvural and Vural 2011), cereal bars, 71 pancakes and noodles (Rosales Soto et al. 2012), and minced fish muscle (Sánchez-Alonso 72 et al. 2007).

GP antioxidants can be considered completely safe in comparison with synthetic antioxidants and include polyphenol components such as anthocyanins, flavanols, catechins and proanthocyanidins (Rosales Soto et al. 2012). These compounds have a high antioxidant activity, which gives them potential health-promoting and disease-protective effects (Choi et al. 2010; Hogan et al. 2010). For this reason, these compounds have recently been considered as food additives or novel ingredients that can introduce extra

health benefits to various food products (Peng et al. 2010) and, at the same time, could be asolution for the waste disposal problem.

81 Yogurt is already considered to be a healthy food because it contains viable probiotic 82 bacteria, however, it does not contain fibre and phenolic antioxidant compounds 83 (Karaaslan et al. 2011). Available data on the GP addition into yogurt (Tseng and Zhao 84 2013) are encouraging regarding the feasibility of using GP as novel ingredient. The 85 objective of this study was to investigate the influence, over three weeks of storage a 4 °C, 86 of GP addition from different unfermented grape varieties (Chardonnay, Moscato and 87 Pinot noir) on gross composition, phenolic and volatile compounds, antioxidant activity, 88 lactic acid bacteria and consumer preferences of yogurt.

89

90 Materials and Methods

91 Chemicals

92 n-Hexane, sulphuric acid, sodium hydroxide, ethanol, methanol, trifluoroacetic acid, 2-93 octanol, 2,2-diphenyl-1-picrylhydrazyl (DPPH), Folin-Ciocalteu's phenol reagent, sodium 94 carbonate, pyruvic acid, lactic acid, citric acid, acetic acid, propionic acid, butyric acid, 95 tartaric acid, malic acid, glucose, lactose, fructose, gallic acid, protocatechuic acid, 96 procyanidin B1, 2,3,4-trihydroxybenzoic acid, catechin, vanillic acid, epicatechin, rutin 97 and quercitrin were purchased from Sigma-Aldrich (Milan, Italy). All chemicals were of 98 reagent or HPLC grade level. Ultra-pure water was produced with a Milli-Q System (Millipore, Milan, Italy). 99

100

101 Grape skin flour preparation

102 Non-fermented GP of three *Vitis vinifera* varieties Chardonnay, Moscato and Pinot noir
103 were provided from a winemaking factory (Fontanafredda, Alba, Italy). Skins were
104 mechanically separated, stored at -20 °C until drying, dried in an oven (Memmert, UFE)

550, Germany) at 54 °C for 48 h and then ground with a Retsch ZM200 grinder (Retsch
Gmbh, Germany) to obtain grape skin flour (GSF) with a particle size of less than 250 μm.
GPF was sterilized in an autoclave at 121 °C for 15 minutes before use in yogurt
production.

109

110 **Yogurt production**

111 Yogurt was prepared using UHT whole milk (fat 36.0 g/kg, proteins 31.0 g/kg and 112 carbohydrates 48.0 g/kg) purchased at the local market. Milk was put in a vat and milk 113 powder 3% (w/w) was added. When the temperature reached 42 °C, milk was inoculated 114 with starter culture YO-MIX 401 (Santamaria, Burago di Molgora, Italy), containing a 115 mixture of *Streptococcus thermophilus* and *Lactobacillus delbrueckii* subsp. *bulgaricus* 116 (2:1).

The inoculated milk was fermented at 42 °C until a final pH of 4.8 was obtained (approximately 6.5 h). At this point the sterile GPF was mixed with yogurt to reach a concentration of 60 g/kg and separated into pots. Samples were stored at 4 °C and analyses were performed immediately after production and at 1, 7, 14, and 21 days of storage. Two different yogurt productions were realised. Within each production yogurt was divided in four batches in which one without GSF (Control) and three fortified yogurts (FY) named Chardonnay, Moscato and Pinot noir.

124

125 Physicochemical characteristics of GPF

The moisture content of the GSF was determined using a Eurotherm EUR thermo-balance (Gibertini, Milano, Italy) at 105 °C. Protein, fat and ash contents were determined according to AOAC official methods of analysis (Tseng and Zhao, 2013). The carbohydrate content was estimated by difference. Dietary fibre (TDT, SDF and IDF) was measured using the Megazyme Total Dietary analysis kit (Lee et al. 1992). All analyseswere performed in triplicate.

132

133 **Physicochemical characteristics of yogurt**

pH was measured with a Crison microph 2002 pH-metre (Crison Strumenti SpA, Carpi, Italy). Titratable acidity was determined via a potentiometric method (IDF 1991) and expressed as lactic acid per 100 g of yogurt. Yogurt syneresis was determined according to Celik et al. (2006), with some modifications. Yogurt (20 g) was centrifuged at 16,800 $\times g$ for 20 min at 4 °C using a Megafuge 11 R centrifuge (Thermo Fischer Scientific, Waltham, MA, USA). Syneresis was expressed as the volume of separated whey per 100 mL of yogurt (Wacher-Rodarte et al. 1993). Samples were analysed in triplicate.

141

142 Extraction of bioactive compounds

143 The extraction was carried out according to McCue and Shetty (2005), with slight 144 modifications. Briefly, each yogurt sample (10 g) was diluted with distilled water (2.5 mL) 145 and centrifuged (16.800 $\times g$, 40 minutes, 4 °C). The supernatant was harvested and filtered 146 through a 0.45-µm polypropylene membrane filter (VWR, Milan, Italy). Extraction was 147 carried out in triplicate on different pots and extracts were stored at 4 °C until analysis.

148

149 **TPC and RSA of yogurt**

The total phenolic content (TPC) was determined in triplicate using an assay modified from Apostolidis et al. (2007). Briefly, 1 mL of extract was transferred into a test tube and mixed with 1 mL of 95% ethanol and 5 mL of distilled water. To each sample, 500 μ L of 50% (v/v) Folin-Ciocalteu reagent were added and the resulting sample was mixed. After 5 min, 1 mL of 5% Na₂CO₃ was added and the reaction mixture was allowed to stand in the dark at room temperature for 60 min. Just before the end of the incubation time, samples were centrifuged (16.800 ×*g*, 10 minutes, 20 °C) and the supernatant absorbance was read at 725 nm with a UV-visible spectrophotometer (UV-1700 PharmaSpec, Shimadzu, Milan, Italy). The absorbance values were converted to the total phenolics and were expressed as micrograms of gallic acid equivalents per gram of sample (μ g GAE/g). Standard curves were established using various concentrations of gallic acid in water (R²= 0.997).

161 The radical scavenging activity (RSA) was determined using the 2,2-diphenyl-1-162 picryhydrazyl radical (DPPH) assay modified by Gadow et al. (1997). A sample extract (75 µL or distilled water for the blank) was placed in a test tube, and 3 mL of a 6×10^{-5} M 163 164 methanolic solution of DPPH' were added. The decrease in absorbance at 515 nm was 165 determined at the steady state (60 min of incubation at room temperature in the dark) after 166 a previous centrifugation step. All determinations were performed in triplicate on different 167 pots. The inhibition percentage (IP) of the DPPH by yogurt extracts was calculated 168 according to the formula

 $169 \qquad IP = \left[(A_{0min} - A_{60min})/A_{0min}\right] \times 100$

where A_{0min} is the absorbance of the blank at t = 0 min, and A_{60min} is the absorbance of samples at 60 min.

172

173 HPLC-DAD analysis

174 **Phenolic compound profiles**

175 HPLC-DAD analysis of yogurt extract was performed using a Thermo-Finnigan Spectra-176 System HPLC system (Thermo-Finnigan, Waltham, USA) equipped with a P2000 binary 177 gradient pump system, a SCM 1000 degasser, an AS 100 automatic injector, a UV6000LP 178 DAD and the ChromQuest software for data processing. Separation was achieved on a C₁₈ 179 RP Lichrosphere 250 × 4.6 mm, 5 μ m (Merck, Milan, Italy) column, equipped with a C₁₈ 180 RP Lichrosphere guard column 5 μ m (Merck, Milan, Italy). The mobile phase was 181 composed of trifluoroacetic acid/ultra-pure water (0.1:99.9, v/v) (A) and methanol (B). The

182 flow rate was 1 mL/min and the injection volume was 20 μ L. The elution program was as 183 follows: initial conditions of 95% A, held for 2 minutes, 80% A over 8 min, 25% A over 184 57 min, 0% A over 13 min, 95% A over 5 min. DAD spectra were recorded in full scan 185 modality over the wavelength range of 200 to 600 nm and at a discrete wavelength of 525 186 nm. Identification was achieved by comparing the retention times and spectra with those of 187 authentic standards. Phenolic compounds were quantified using the following external 188 standards: gallic acid (λ_{max} =270, R²=0.9998, LOD=0.01 mg/L), procyanidin B1 (λ_{max} =277, 189 $R^2=0.9997$, LOD=0.50 mg/L), (+)-catechin ($\lambda_{max}=280$, $R^2=0.9995$, LOD=1.00 mg/L), (-)epicatechin (λ_{max} =280, R²=0.9998, LOD=0.50 mg/L), rutin (λ_{max} =356, R²=0.9998, 190 191 LOD=0.06 mg/L) and quercitrin (λ_{max} =350, R²=0.9999, LOD=0.09 mg/L). Protocatechnic 192 acid, 2,3,4-trihydroxybenzoic acid, and vanillic acid were quantified using the gallic acid 193 calibration curve. The precision, evaluated by calculating the RSD% of the retention time 194 and the peak area for each analyte collected over a period of 3 weeks, was 1.90-7.89% for 195 gallic acid, 1.82-10.54% for protocatechuic acid, 1.18-6.04% for procyanidin B1, 1.59-196 9.57% for 2,3,4-trihydroxybenzoic acid, 1.32-15.74% for (+)-catechin, 0.29-10.65% for 197 vanillic acid, 2.13-9.17% for (-)-epicatechin, 1.22-11.36% for rutin, and 1.39-9.34% for 198 quercitrin.

199

200 Sugar and acid determination

Ion-exchange high-performance liquid chromatography was used to determine the organic
acid and sugar contents. The method of Adhikari et al. (2002) was used with slight
modification.

Yogurt samples (5 g) were added to 20 mL of 0.013 N H₂SO₄ (mobile phase) and mixed for 30 min with a horizontal shaker (PBI, Milano, Italy) at 100 oscillation/min. The slurry was subsequently centrifuged for 30 min at 5000 $\times g$ and 10 °C and the supernatant was filtered through a 0.45 µm polypropylene membrane filter (VWR, Milan, Italy). The HPLC system (Thermo Quest, San Jose, CA) was equipped with an isocratic pump (P1000), a multiple autosampler (AS3000) fitted with a 20 μ L loop, a UV detector (UV100) set to 210 and 290 nm, and a refractive index detector (Spectra System RI-150, Thermo Electro Corporation). The detectors were connected in series. Data were collected using ChromQuest ver. 3.0 (Thermo Finningan).

213 The analyses were performed isocratically at 0.8 mL/min and 65 °C with a 300×7.8 mm 214 i.d. cation exchange column (Aminex HPX-87H) equipped with a cation H⁺ microguard 215 cartridge (Bio-Rad Laboratories, Hercules, CA). The mobile phase was $0.013 \text{ N H}_2\text{SO}_4$, 216 which was prepared by diluting reagent grade sulphuric acid with ultrapure water and 217 degassing under vacuum. Identification was achieved by comparison with retention times 218 of authentic standards. A total of eight organic acids and three sugars were investigated, 219 including pyruvic acid, lactic acid, citric acid, acetic acid, propionic acid, butyric acid, 220 tartaric acid, malic acid, glucose, lactose and fructose.

221

222 Analysis of volatile compounds

223 The volatile compounds in the yogurt samples were extracted using headspace solid phase 224 micro-extraction (HS-SPME) and analysed by gas chromatography/mass spectrometry 225 (GC/MS). The analysis was carried out as described by Coda et al. (2011) with slightly 226 modifications. All samples were analysed in triplicate. The analysis was conducted using a 227 20 mL vial filled with 1.5 g of sample to which was added 5 µL of 2-octanol in ultra-pure 228 water (92.8 mg/L) as an internal standard. After an equilibration time of 30 min at 37 °C, 229 the extraction was performed using the same temperature for 40 min with a 50/30 μ m 230 DVB/CAR/PDMS fibre (Supelco, Milan, Italy) with stirring (250 rpm) before injection. 231 The fibre was desorbed at 260°C for 4 min in splitless mode. GC/MS analysis was 232 performed with a Shimadzu GC-2010 gas chromatograph equipped with a Shimadzu QP-233 2010 Plus quadrupole mass spectrometer (Shimadzu Corporation, Kyoto, Japan) and a DB- WAXETR capillary column (30 m × 0.25 mm, 0.25 μm film thickness, J&W Scientific
Inc., Folsom, CA, USA).

236 The carrier gas (He) flow-rate was 1 mL/min. The temperature program began at 40 °C for 237 5 min, and then the temperature was increased at a rate of 10 °C/min¹ to 80 °C and 5 238 °C/min to 240 °C for 5 min. The injection port temperature was 250 °C, the ion source 239 temperature was 240 °C and the interface temperature was 230 °C. The detection was 240 carried out by electron impact mass spectrometry in total ion current mode (TIC), using an 241 ionization energy of 70 eV. The acquisition range was m/z 30–330. The identification of 242 volatile compounds was confirmed by injection of pure standards and the comparison of 243 their retention indices (a mixture of a homologous series of C₅-C₂₈ was used), MS data 244 reported in the literature and in the database (http://webbook.nist.gov/chemistry/). 245 Compounds for which pure standards were not available were identified on the basis of 246 mass spectra and retention indices available in the literature. Semiquantitative data ($\mu g/kg$) 247 were obtained by measuring the relative peak area of each identified compound in relation 248 to that of the added internal standard.

249

250 Microbiological analysis

For each yogurt type, sampling points were analysed using traditional microbiological methods (CFU). Streptococci were counted on M-17 agar (Oxoid, Milan, Italy) and lactobacilli were counted on Man Rogosa Shape agar (Oxoid, Milan, Italy). Both medium were incubated under microaerophilic conditions at 37 °C for 48 h.

255

256 Liking tests

Because a previous acceptance test that was done on a small scale with a restricted panel
(data not shown) indicated that better liking was found for the Moscato and Chardonnay
yogurts, we chose to use only the white varieties for liking test.

To assess the sensory acceptability of yogurt samples, a Central Location Test was conducted in Turin (Italy). The consumer test was performed at a stand for the University of Gastronomic Sciences during a public event named "European Researchers' Night". 256 regular consumers of yogurt (48% males, 52% females, 18-86 years, mean age 24) voluntarily participated in the sensory evaluation. Written informed consent was obtained from each subject after the experiment was described to them.

266 The test consisted of a sensory evaluation of the fortified yogurts (Moscato and 267 Chardonnay) and of the control sample. Yogurt samples (10 g) were served under blind 268 conditions in opaque white plastic cups (38 mL) sealed with a clear plastic lid and coded 269 with a random three-digit number. Samples were served in completely randomized order, 270 with the control served as the last sample for all subjects to limit the contrast effect 271 (Meilgaard et al. 2006). Consumers were asked to stir each sample with a plastic teaspoon, 272 observe its appearance, smell and taste it, and rate the yogurts for appearance, odour, taste, 273 flavour, texture and overall acceptance. Liking was expressed on a 9-point hedonic scale 274 ranging from 'dislike extremely' (1) to 'like extremely' (9) (Peryam and Pilgrim 1957). 275 Purchase interest (Would you buy this yogurt?) was also rated on a 7-point scale (1= 276 absolutely no, 7= absolutely yes). Participants were required to rinse their mouth with still 277 water for about one minute between samples. Consumers took between 15 and 20 minutes 278 to complete the evaluation. Liking data (appearance, odour, taste, flavour, texture and 279 overall acceptance) and declared purchase interest from consumers were independently 280 submitted to a two-way ANOVA model, assuming sample and subject as main effects, by 281 performing LSD (p < 0.05).

282

283 Data analysis

A one-way analysis of variance (ANOVA) with Duncan's test for mean comparison was used to highlight significant differences among samples. All calculations were performed

- using the STATISTICA for Windows statistical software (Release 7.0; StatSoft Inc., Tulsa,
- 287 OK, USA).

289 **Results and Discussion**

290 Chemical composition of GSF and yogurts

Fat values were significantly different among varieties, with the lowest value for Pinot noir, probably due to more loss of grape seeds during preparation of the GSF (Table 1). Pinot noir showed also the lowest protein value (88.3 g/kg), whereas the highest was for Chardonnay, at 97.0 g/kg. The highest values of soluble, insoluble and total dietary fibre were found in Moscato (90.2, 390.9 and 481.0 g/kg respectively) followed by Chardonnay and Pinot noir.

297 Concerning fortified yogurt (FY), the lowest protein contents (Table 2) were observed in 298 Pinot noir (208.4 g/kg) and Chardonnay (216.5 g/kg) yogurts, while the highest was found 299 in Moscato yogurt (246.5 g/kg). Fat evaluation revealed that FY containing Pinot noir had 300 a lower value than yogurt containing Moscato, with fat contents of 214.4 and 242.9 g/kg 301 (p<0.05), respectively.

302 Carbohydrates concentration were significantly different between FY samples; they were 303 higher in Pinot noir yogurt, followed by Chardonnay and Moscato yogurts. Moisture was 304 significantly different between yogurts and the Moscato FY had the highest value, 305 followed by yogurt containing Chardonnay and Pinot noir.

306

307 pH, acidity and syneresis of yogurt

High significant differences (p<0.001) were found for pH with respect to storage time and yogurt type, except on the 14th day (Table 3). The addition of GSF to yogurt instantly reduced the pH from 4.59 to 4.22-4.26, as previously reported by Tseng and Zhao (2013). The reduction in pH during storage corresponded to an increase in acidity (Tseng and Zhao, 2013). The highest increase was found in Moscato yogurt (+17.9%), while the lowest observed was for Pinot noir yogurt (+11.4%). Fortified yogurts had higher values of syneresis compared to the control during storage due to the addition of GSF and statistically differences were found between yogurt types $(p<0.001, \text{ except on the 1}^{\text{st}} \text{ day})$ whereas no differences were found with respect to storage time (p>0.05). The IDF present in GSF causes a rearrangement of the matrix gel, which was previously observed by García-Pérez et al. (2005) and Tseng and Zhao (2013). Chardonnay yogurt exhibited the highest value at each sampling time, while Pinot noir exhibited the lowest.

321

322 TPC and RSA of yogurt

As expected, all fortified yogurts exhibited a high and statistically significantly increase in the total phenolic content compared to the control yogurt (about 38%, 54% and 66% for Moscato, Chardonnay and Pinot noir respectively) at each sampling time (Table 3).

326 The TPC was stable generally during storage for all samples and only Moscato yogurt 327 showed statistically differences during the storage time (p < 0.05). The DPPH[•] values 328 indicated that all FYs had higher antiradical activity compared to the control. The RSA did 329 not decrease significantly during storage for FYs, whereas it changed significantly in the 330 control yogurt (p < 0.05). The RSA control value was lower on the 21st day of sampling than 331 for day 0, with a reduction of 75%. Similar studies (Karaaslan et al. 2011; Tseng and Zhao, 332 2013) stated that the RSA dropped during storage in yogurt containing 10% of red grape 333 extract and yogurt containing 3%, 2% and 1% of red wine grape pomace. As expected, in 334 our work, yogurt containing Pinot noir grape skin flour exhibited the highest RSA during 335 all storage times, whereas there was no statistically significant difference between yogurt 336 containing Moscato and Chardonnay.

- 337
- 338
- 339

340 Sugar and organic acid contents

341 The glucose values were higher in FYs compared to the control due to the addition of GSF 342 (Table 3) and were very different at each time of sampling (p < 0.001). The control and FY 343 containing Pinot noir were also significantly different during storage (respectively p < 0.01344 and p < 0.001). The glucose content dropped during storage in the control, with a reduction 345 of 38% between 0 and 21 days of storage (p < 0.01). The glucose content of FY containing Pinot noir increased on the 1st day (10.62 g/L) and remained approximately the same until 346 347 the 14th day (10.67 g/L), followed by a decrease at the last sampling time (10.29 g/L). This 348 trend could be explained by the dissolution of glucose from GSF into yogurt. Changes in 349 the glucose contents of Moscato and Chardonnay yogurts were not significant during the 350 storage time (p>0.05). As expected, the lactose content decreased during storage in all 351 yogurts. Lactose content at the beginning of storage was approximately 36 g/L in FY, 352 while at the end it was approximately 33 g/L. Fructose was observed in all FYs, and the 353 highest content was found in Pinot noir yogurt, followed by Chardonnay and Moscato 354 yogurts. As expected, the content of lactic acid increased during storage in all yogurts, and 355 by a higher percentage in the control yogurt than in FY. As a consequence, large 356 statistically significant differences were found at each sampling time among yogurt type 357 (p < 0.001). Citric acid content was similar among FYs but slightly different from control 358 yogurt (p < 0.05) and storage did not affect its content in the yogurts (p > 0.05). Malic and 359 tartaric acids are the most important organic acids of grape and they were found in all FYs. 360 FY containing Pinot noir exhibited the lowest content of tartaric acid during storage (1.72-361 2.05 g/L), while FY containing Moscato and Chardonnay showed similar values, except at 0 and 14th day of storage. During storage, highly significant differences were observed in 362 363 the malic acid contents of Moscato and Chardonnay yogurts (p < 0.001), which exhibited a 364 decreasing trend, while that of Pinot noir did not change during storage and had the highest values at each sampling time (0.48-0.51 g/L). The lowest values were found in Moscato
yogurt (0.15-0.19 g/L). Butyric, propionic and acetic acids were not found in any yogurt.

367

368 **Profiles of phenolic compounds**

A total of nine compounds were identified and quantified: gallic acid, protocatechuic acid, procyanidin B1 (PB1), 2,3,4-trihydroxybenzoic acid (THA), catechin, vanillic acid, epicatechin, rutin and quercitrin (Table 4). None of these phenolic compounds were detected in control yogurt. In yogurt containing Moscato and Chardonnay GSF, gallic acid, protocatechuic acid, catechin, epicatechin, rutin and quercitrin were detected, while all phenolic compounds except for epicatechin were detected in yogurt containing Pinot noir GSF.

Statistically significant differences were found between yogurt types with respect to gallic
acid, while there were no statistically significant differences within each yogurt type
during storage.

379 Moscato FY exhibited the highest gallic acid content (3.6-4.2 µg/g), followed by FY 380 containing Chardonnay and Pinot noir. Protocatechuic acid was detected in all types of 381 FYs, and its content did not change significantly during storage (p>0.05). The only significant difference for protocatechuic acid content was found on the 14th day, in which 382 383 reporting levels of protocatechuic acid decreased in the following order: Moscato > 384 Chardonnay > Pinot noir. PB1 and THA were only detected in Pinot noir yogurt and their 385 contents did not change during storage (p>0.05). The PB1 content ranged from 26 to 30 386 mg/g. Catechin was the predominant polyphenol in all fortified yogurts, with the highest 387 levels in Moscato yogurt on the first day (19.3 $\mu g/g$) and Chardonnay yogurt on day 0 388 (22.9 μ g/g). Its content did not change significantly during storage (p>0.05). On the 1st, 7th and 14th day of storage, statistically significant differences in catechin content were found 389 390 between the yogurt types. Yogurts containing Moscato and Chardonnay exhibited higher

levels of catechin compared to yogurt containing Pinot noir. Epicatechin was present at similar levels in Moscato and Chardonnay yogurts. During the storage of these yogurts, the epicatechin content did not change significantly (p>0.05). According to Karaaslan et al. (2011), the catechin concentration was higher than epicatechin in yogurt to which grape callus extract had been added (*Vitis vinifera* cv. Merlot).

396 Vanillic acid was exclusively detected in Pinot noir yogurt, in which its content did not 397 change significantly during storage (p>0.05).

Rutin was detected in all three FYs, with higher values in Pinot noir (1st and 14th day) than

in Chardonnay and Moscato yogurts (p < 0.001) and its content did not change significantly

400 during the storage of the three yogurts (p>0.05).

401 A higher content of quercitrin was found at day 21 in Chardonnay yogurt with respect to 402 Moscato and Pinot noir yogurts (p<0.05). At days 14 and 21, the Pinot noir yogurt was 403 characterized by the lowest amount of quercitrin (respectively 4.7 and 4.6 µg/g). Quercitrin 404 content did not change significantly during the storage, except for the Chardonnay yogurt 405 for which a slight increase in the quercitrin level was observed at day 21. This could be due 406 to an increase in compound solubilisation into the yogurt, due to its ability to be extracted 407 into water.

408

409 Analysis of volatile compounds

A total of 48 compounds were found in control and FYs, which corresponded to 10 ketones
(2-pentanone; 2,3-pentanedione (diacetyl); 2-heptanone; acetoin; 6-methyl-5-hepten-2-one;
3-hydroxy-2-pentanone; 2-nonanone; 6-methyl-3,5-heptadien-2-one; 2-undecanone; 2tridecanone), four aldehydes (nonanal; benzaldehyde; 4-methylbenzaldehyde; dodecanal),
12 alcohols (isobutanol; 1-pentanol; 3-methyl-1-butanol; 1-hexanol; 2-hexen-1-ol; 1-octen3-ol; 1-octanol; 1-nonanol; benzyl alcohol; phenylethyl alcohol; 1,4-butanediol; 1dodecanol), 11 acids (acetic acid; isobutyric acid; butanoic acid; methacrylic acid;

417 pentanoic acid; hexanoic acid; 2-ethyl-hexanoic acid; heptanoic acid; octanoic acid; 418 nonanoic acid; benzenecarboxylic acid), one ester (β -phenylethyl acetate), two lactones (γ -419 caprolactone; δ-decalactone), three furan derivatives (2-pentyl-furan; furfural; 2-420 furanmethanol), four terpenoids (limonene; *cis*-linalool oxide; linalool; α-terpineol) and 421 one phenol (phenol). Table 5 displays the sums of all of the volatile compounds in each of 422 these chemical classes. Carbonyl compounds, such as aldehydes and ketones, are the major 423 volatile compounds responsible for the desirable flavour of yogurt (Cheng, 2010). Their 424 content is affected by the symbiotic relationship that occurs between S. thermophilus and 425 Lb. bulgaricus that are added as starter cultures (Routray and Mishra, 2011). As reported in 426 Table 5, ketones were the most abundant compounds observed, and their values increased 427 significantly during storage in all three FYs (p < 0.001). Highly statistically significant 428 differences (p < 0.001) were found between yogurt type at sampling days 0 and 21. On the 21st day of storage, the contents of ketones found in control and yogurt containing Pinot 429 430 noir, 1153.28 and 1092.65 µg/kg, respectively, were lower compared with those found in 431 white grape varieties. The ketone contents of yogurts containing Moscato and Chardonnay 432 were not significantly different. The ketone content increased at a rate of 11% (control), 433 23% (Pinot), 47% (Moscato) and 55% in Chardonnay. Of the ketones, 2,3-pentanedione, 2-434 heptanone and acetoin were the most abundant (data not shown), and they play an 435 important role in vogurt flavour, as reported by Routray and Mishra (2011). The most 436 abundant aldehyde was benzaldehyde. Its content ranged (data not shown) from 2.63 (control at 14th day) to 15.89 µg/kg (Moscato at 14th day). Moreover, all FYs demonstrated 437 438 higher amounts of these volatile compounds compared to the control. Sánchez-Palomo et 439 al. (2005) studied the volatile compound contents of the pulp and skin of Muscat grapes, 440 and reported that benzaldehyde was found in its skin. The same was found in Chardonnay 441 grape skin and juice by Rosillo et al. (1999). We could confirm a major portion of the 442 benzaldehyde content is due to the addition of GSF.

443 On the 21st day of storage FYs containing Moscato and Chardonnay exhibited higher
444 amounts of aldehydes compared to the Pinot noir and control yogurts.

445 The amount of alcohols increased during yogurt shelf-life in fortified yogurt, and their 446 levels were higher in FYs compared to the control. Moscato and Chardonnay showed an 447 average of ~300 µg/kg of alcohols during storage, which was higher compared to the 448 alcohol content in Pinot noir yogurt (~140 µg/kg). In FYs containing Moscato, phenylethyl 449 alcohol was the most abundant alcohol observed, and it ranged from 92.19 μ g/kg (21st day) to 157.69 µg/kg (14th day). This alcohol was also the most abundant compound found in 450 451 Moscato skin flour according to Sánchez-Palomo et al. (2005). The acid content within 452 yogurt types and sampling time was always highly significantly different (p < 0.001), except 453 for FY containing Moscato (p < 0.01). The total acids increased during storage ($21^{st} day > 0$ 454 day) in all yogurts except for Chardonnay. The percentage increase was 90% (control), 455 24% (Moscato) and 31% for Pinot noir. FY exhibited higher acid values compared to 456 control yogurt during storage, which is due to the typical acidity of GSF and the microbial 457 activity of starter microorganisms. On the 21st day of storage, FYs containing Moscato and 458 Pinot noir exhibited the highest acid levels compared to yogurt containing Chardonnay.

459 Esters were represented by β -phenylethyl acetate, which was found in all fortified yogurts.

460 The amount of this ester was higher in Moscato and Chardonnay (15.62 and 12.32 μ g/kg,

461 respectively), whereas less than $1 \mu g/kg$ was found in Pinot and control yogurts.

462 Lactones originate from lipolysis that occurs during yogurt fermentation, in which 463 unsaturated fatty acids lead to the formation of 4- or 5-hydroxyacids that readily cyclise to 464 γ- or δ-lactones (Cheng, 2010). The trend of the total lactones in control and FY containing 465 Chardonnay was not statistically significant during the storage time (p>0.05). On the 21st 466 day of storage, the highest total lactone content was found in yogurt containing 467 Chardonnay (4.00 µg/kg), followed by yogurt containing Moscato (2.35 µg/kg).

The amount of furan derivatives in samples was significantly higher in FY (p<0.001) compared to the control, probably due to the drying and sterilization process used to prepare grape skin flour before yogurt production.

471 During all sampling times, the highest levels of terpenes were found in Moscato yogurt, 472 which was expected because Moscato grape is an aromatic variety characterized by 473 linalool, geraniol and nerol (Sánchez-Palomo et al. 2005). Varietal terpenoids such as 474 limonene, *cis*-linalool oxide, and α-terpineol increased in FY containing Moscato skin 475 flour during storage (p<0.001), probably due to release from aromatic grape skin, whereas 476 they decreased in FY containing Chardonnay.

477

478 Microbiological analyses

The addition of grape skin flour to yogurt did not affect the survival of starter strains during storage conditions and both *Streptococcus thermophilus* and *Lactobacillus delbrueckii* subsp. *bulgaricus* survived the addition of flours in all FY. After 21 days, *S. thermophilus* reached a concentration very similar to the control in all three FYs (data not reported). The final concentration of *S. thermophilus* in control yogurt was 9.33 log CFU/mL, whereas for FY the average concentration was 9.20 log CFU/mL.

The same trend was recorded for *L. bulgaricus*, which, at the end reached a lower concentration approximately 7.8 log CFU/mL for all yogurt tested compared to *S. thermophilus*. This result was expected, as a different amounts of starter were added to the product (ratio of 2:1 *S. thermophilus : L. bulgaricus*).

489

490 Liking test

The effect of fortification on overall consumer liking and purchase interest for yogurts is shown in Figure 1. A significant difference was found in liking among samples based on appearance (F = 22.74; p<0.0001), odour (F = 42.80; p<0.0001), taste (F = 125.46;

p<0.0001), flavour (F = 72.84; p<0.0001), texture (F = 40.50; p<0.0001), overall liking (F 494 495 = 102.04; p < 0.0001), and purchase interest (F = 54.98; p < 0.0001). The control sample was 496 acceptable and exhibited the highest scores for its appearance, odour, taste, flavour and 497 texture. In general, the results for the fortified yogurts distinguished them from each other. 498 Both of them had a low liking score that never reached the central value of the scale (5 =499 neither like nor dislike). The Moscato yogurt was disliked more, with a very low mean 500 liking score, especially for taste and flavour. In contrast, Chardonnay was the sample with 501 the highest mean scores for appearance, flavour and overall liking. Considering the overall 502 liking, Chardonnay yogurt was significantly better liked than Moscato yogurt. Thus, 503 samples prepared with Chardonnay reported a generally higher hedonic performance than 504 samples fortified with Moscato, suggesting a more suitable use in combination with yogurt. The results for purchase interest were highly correlated to overall liking, $(r^2 = 0.9996)$, 505 506 demonstrated the key role of liking on declared buying behaviour. Sensory evaluation 507 results suggested the need of further optimization of prototypes, indicating as Chardonnay 508 grape skin flour as most suitable for use in this application. In general, the observed low 509 acceptability for FYs was not surprising because a decrease in liking due to fortification 510 was expected. Indeed, the addition of bioactive compounds or plant-based phytonutrients 511 can result in a change in the sensory quality of enriched foods, which can strongly affect 512 the consumers' acceptance of such foods (Verbeke, 2006). Verbal comments informally 513 collected by participants after the end of the test, indicated that the fortified yogurts were 514 perceived as "too sour", "not enough sweet", with "unpleasant flavours", "not 515 homogeneous", and "grainy/sandy". It is probable that the unpleasant texture was due to 516 the perception of the grape skin flour particles.

517 It should be taken into account that the mean overall liking score obtained for the control 518 sample was just above the acceptability limit. Therefore, it can be hypothesized that the 519 fortification of a more pleasant control yogurt could induce a similar decrease in the liking 520 score, resulting in an overall liking above the acceptability limit (e.g., starting from an 521 overall liking of eight, a decrease in two points of the liking score would result in a final 522 overall liking equal to six, which would be higher than the acceptability limit).

523 In the future, it would be interesting to investigate the consumers' acceptance of the 524 fortified yogurt under informed conditions instead of in a blind test. Indeed, it has been 525 demonstrated that information regarding the health benefits of grape skin flour fortification 526 can increase the consumers' acceptance of fortified products (Cheng et al. 2010).

527

528 Conclusion

529 The feasibility of using grape skin pomace as an ingredient in yogurt production was 530 evaluated. The addition of grape skin flour to yogurt resulted in a significant increase in the 531 TPC and RSA with respect to control yogurt. The TPC and RSA values of fortified yogurts 532 were retained during yogurt storage and no significant changes were observed. Regarding 533 the differences found between grape cultivars, yogurt containing Pinot noir, a red cultivar, 534 showed the highest TPC and RSA values. At the same time, phenolic compounds, which 535 were only found in FY, were not influenced by storage. It is noteworthy that the addition of 536 grape skin flour did not affect the survival of starter strains during storage. The results 537 obtained based on acceptance testing suggested that Pinot noir cannot be used for addition 538 to yogurt due to the production of an undesirable aroma.

Results of the liking tests suggested that obtaining a higher preference by consumers will require decreasing the sour taste perception (by using sweeteners or a different yogurt with a lower acidity) and improving the texture by using grape skin flour with a lower particle size.

The results obtained in this study demonstrated that grape skin flour could be an alternativeand safe source of antioxidants in the daily diet. Grape skin might be used in dairy

applications, in particular for yogurt production, which could be a new way to use grapeby-products.

547

548 Acknowledgements

549 Research was supported by AGER (project No. 2010-2222).

550

551 **Declaration of interest**

The authors report no conflict of interest. The authors alone are responsible for the content and the writing of this article. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the Helsinki Declaration of 1964 and its later amendments or comparable ethical standards.

557

558 **References**

559 ADHIKARI, K., GRÜN, I.U., MUSTAPHA, A. and FERNANDO, L.N. 2002. Changes in

the profile of organic acids in plain set and stirred yogurts during manufacture and
refrigerated storage. J. Food Quality 25, 435–451.

APOSTOLIDIS, E., KWON, Y.I. and SHETTY, K. 2007. Inhibitory potential of herb,
fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and
hypertension. Innov. Food Sci. Emer. Technol. 8, 46–54.

565 ARVANITOYANNIS, I.S., LADAS, D. and MAVROMATIS, A. 2006. Potential uses and

applications of treated wine waste: a review. Int. J. Food Sci. Technol. 41, 475–
487.

568 CAMIRE, M.E., DOUGHERTY, M.P. and BRIGGS, J.L. 2007. Functionality of fruit
569 powders in extruded corn breakfast cereals. Food Chem. *101*, 765–770.

- 570 CELIK, S., BAKIRCI, I. and ŞAT, I.G. 2006. Physicochemical and organoleptic properties
 571 of yogurt with cornelian cherry paste. Int. J. Food Prop. *9*, 401–408.
- 572 CHENG, H. 2010. Volatile flavor compounds in yogurt: a review. Critical Rev. Food Sci.
 573 Nutrit. *50*, 938–950.
- 574 CHENG, V.J., BEKHIT, A.E.D.A, SEDCOLE, R. and HAMID, N. 2010. The impact of
 575 grape skin bioactive functionality information on the acceptability of tea infusions
 576 made from wine by-products. J. Food Sci. *75*, S167–172.
- 577 CHOI, Y.S., CHOI, J.H., HAN, D.J., KIM, H.Y., LEE, M.A., KIM, H.W., LEE, J.W.,
- 578 CHUNG, H.J. and KIM, C.J. 2010. Optimization of replacing pork back fat with 579 grape seed oil and rice bran fiber for reduced-fat meat emulsion systems. Meat Sci. 580 84, 212–218.
- 581 CODA, R., RIZZELLO, C.G., TRANI, A. and GOBBETTI, M. 2011. Manufacture and 582 characterization of functional emmer beverages fermented by selected lactic acid

583 bacteria. Food Microb. 28, 526–536.

- GADOW, A. VON, JOUBERT, E. and HANSMANN, C.F. 1997. Comparison of the
 antioxidant activity of aspalathin with that of other plant phenols of rooibos tea
 Aspalathus linearis), α-Tocopherol, BHT and BHA. J. Agric. Food Chem. 45, 632–
 638.
- 588 GARCÍA-PÉREZ, F.J., LARIO, Y., FERNÁNDEZ-LÓPEZ, J., SAYAS, E., PÉREZ-
- ALVAREZ, J.A. SENDRA, E. 2005. Effect of orange fiber addition on yogurt
 color during fermentation and cold storage. Color Research & Application *30*, 457–
 463.
- HOGAN, S., CANNING, C., SUN, S., SUN, X. ZHOU, K. 2010. Effects of grape pomace
 antioxidant extract on oxidative stress and inflammation in diet induced obese mice.
- 594 J. Agric. Food Chem. 58, 11250–11256.

- HOYE, C. and ROSS, C.F. 2011. Total phenolic content, consumer acceptance, and
 instrumental analysis of bread made with grape seed flour. J. Food Sci. *76*, S428–
 436.
- 598 IDF (International Dairy Federation) 1991. Yogurt Determination of titratable acidity –
 599 potentiometric method, IDF Standard No 150 Brussels.
- 600 KARAASLAN, M., OZDEN, M., VARDIN, H. and TURKOGLU, H. 2011. Phenolic
- fortification of yogurt using grape and callus extracts. LWT Food Sci. Technol.
 44, 1065–1072.
- 603 LAVELLI, V., SRI HARSHA, P.S. C., TORRI, L. and ZEPPA, G. 2014. Use of
- winemaking by-products as an ingredient for tomato puree: the effect of particle
 size on product quality. Food Chem. *152*, 162–168.
- 606 LEE, S., PROSKY, L. and DEVRIES, J. 1992. Determination of total, soluble, and
- 607 insoluble dietary fiber in foods enzymatic gravimetric method, mes-tris buffer 608 Collaborative study. J. AOAC Int. *75*, 395–416.
- MCCUE, P.P. and SHETTY, K. 2005. Phenolic antioxidant mobilization during yogurt
 production from soymilk using Kefir cultures. Proc. Biochem. 40, 1791–1797.
- 611 MEILGAARD, M.C., CARR, B.T. and CIVILLE, G. V. 2006. Sensory Evaluation
- 612 *Techniques. Fourth Edition.* CRC Press, Boca Raton, FL.
- ÖZVURAL, E.B. and VURAL, H. 2011. Grape seed flour is a viable ingredient to improve
 the nutritional profile and reduce lipid oxidation of frankfurters. Meat Sci. 88, 179–
 183.
- 616 PERYAM, D.R. and PILGRIM, F.J. 1957. Hedonic scale method of measuring food 617 preferences. Food Technol. *11*, 9–14.
- 618 ROSALES SOTO, M.U., BROWN, K. and ROSS, C.F. 2012. Antioxidant activity and
- 619 consumer acceptance of grape seed flour-containing food products. Int. J. Food Sci.
 620 Technol. 47, 592–602.

- ROSILLO, L., SALINAS, M.R., GARIJO, J. and ALONSO, G.L. 1999. Study of volatiles
 in grapes by dynamic headspace analysis. J. Chrom. A 847, 155–159.
- 623 ROUTRAY, W. and MISHRA, H.N. 2011. Scientific and technical aspects of yogurt 624 aroma and taste: a review. Compr. Rev. Food Sci. Food Safety *10*(4), 208–220.
- 625 SÁNCHEZ-ALONSO, I., JIMÉNEZ-ESCRIG, A., SAURA-CALIXTO, F. and
- 626 BORDERÍAS, A.J. 2007. Effect of grape antioxidant dietary fibre on the
- 627 prevention of lipid oxidation in minced fish: Evaluation by different methodologies.
 628 Food Chem. *101*, 372–378.
- 629 SÁNCHEZ-PALOMO, E., DÍAZ-MAROTO, M.C. and PÉREZ-COELLO, M.S. 2005.
- Rapid determination of volatile compounds in grapes by HS-SPME coupled with
 GC–MS. Talanta *66*, 1152–1157.
- TSENG, A. and ZHAO, Y. 2013. Wine grape pomace as antioxidant dietary fibre for
- 633 enhancing nutritional value and improving storability of yogurt and salad dressing.
- 634 Food Chem. *138*, 356–365.
- 635 VERBEKE, W. 2006 . Functional foods: Consumer willingness to compromise on taste
 636 for health? Food Quality Pref. *17*, 126–131.
- 637 WACHER-RODARTE, C., GALVAN, M.V., FARRES, A., GALLARDO, F.,
- 638 MARSHALL, V.M.E. and GARCIA-GARIBAY, M. 1993. Yogurt production from
- reconstituted skim milk powders using different polymer and non-polymer formingstarter cultures. J. Dairy Res. *60*, 247-254.
- 641 WALKER, R., TSENG, A., CAVENDE, G., ROSS, A. and ZHAO, Y. 2014.
- 642 Physicochemical, nutritional, and sensory qualities of wine grape pomace fortified
 643 baked goods. J. Food Sci. *79*, S1811–S1822.
- 644
- 645
- 646

647 Fig. 1. LIKING OF APPEARANCE, ODOUR, TASTE, FLAVOUR, TEXTURE AND
648 OVERALL LIKING EXPRESSED BY 256 CONSUMERS FOR THE CONTROL AND
649 FORTIFIED YOGURTS.

651 Means within a sensory modality with different letters are significantly different; Fisher's

652 test, P≤0.05; error bars are standard deviations of means

666 Table 1. CHEMICAL COMPOSITION OF GRAPE SKIN FLOUR AND RESULTS OF

Chemical parameters	Moscato	Chardonnay	Pinot noir	Significance
Protein [‡]	93.5 ± 3.7^{b}	97.0±0.3°	88.3±1.1 ^a	**
Fat	$50.1 \pm 1.6^{\circ}$	41.0 ± 1.1^{b}	$23.2{\pm}1.1^{a}$	***
Carbohydrates	271.4 ± 0.4^{a}	$326.8{\pm}1.6^{b}$	$501.2 \pm 3.8^{\circ}$	***
Moisture	$57.9 \pm 0.5^{\circ}$	45.2 ± 1.1^{b}	20.8 ± 0.9^{a}	***
Ash	45.9 ± 0.6^{b}	63.9±0.2 ^c	20.9 ± 0.7^{a}	***
IDF	$390.9 \pm 0.5^{\circ}$	346.3 ± 3.9^{b}	$285.0{\pm}1.5^{a}$	***
SDF	90.2±1.7°	81.5 ± 1.1^{b}	62.9 ± 0.5^{a}	***
TDF	481.0 ± 1.2^{c}	426.2 ± 0.12^{b}	345.5 ± 3.5^{a}	***

667 ANALYSIS OF VARIANCE WITH DUNCAN'S TEST

^{*}The results are reported as g/kg of dry weight and represented as means ± standard deviation

669 IDF – insoluble dietary fibre; SDF – soluble dietary fibre; TDF – total dietary fibre)

670 a-c Different letters within a column are significantly different (P < 0.05)

671 ** P<0.05; *** P<0.01

672

673 Table 2. CHEMICAL COMPOSITION OF CONTROL AND FORTIFIED YOGURTS

674 AND RESULTS OF ANALYSIS OF VARIANCE WITH DUNCAN'S TEST

	Moscato	Chardonnay	Pinot noir	Control	Significance
Protein [‡]	246.5 ± 9.4^{b}	216.5±3.5 ^a	208.4 ± 4.8^{a}	260.4±8.1°	***
Fat	242.9±3.8°	236.5±1.3 ^b	214.4 ± 2.8^{a}	311.3 ± 3.4^{d}	***
Carbohydrates	461.3 ± 1.6^{b}	$488.2 \pm 5.0^{\circ}$	528.3 ± 5.5^{d}	365.9 ± 8.6^{a}	***
Moisture	839.1±0.6 ^c	829.9 ± 0.2^{b}	827.1 ± 0.4^{a}	$858.0{\pm}1.2^{d}$	***
Ash	57.0 ± 0.5^{ab}	58.0 ± 1.5^{b}	55.3 ± 1.1^{a}	$61.8 \pm 1.3^{\circ}$	***
[‡] The results are reported as g/kg of dry weight and represented as means \pm standard deviation					

^{a-d} Different letters within a column are significantly different (P<0.05)

677 *** P<0.01

678

679

680

681

682

683

684

686 Table 3. PHYSICOCHEMICAL PARAMETERS OF CONTROL AND FORTIFIED

687 YOGURTS DURING STORAGE AND RESULTS OF ANALYSIS OF VARIANCE

688 WITH DUNCAN'S TEST

Parameter [‡]	Days	Control	Moscato	Chardonnay	Pinot noir	Significance
	0	4.59±0.02 ^{cB}	4.22±0.02eA	4.26±0.01 ^{eA}	4.24±0.01 ^{cA}	***
	1	4.52±0.13 ^{cB}	4.12±0.01 ^{dA}	4.15±0.01 ^{dA}	4.13±0.01 ^{bA}	***
	7	4.30±0.02 ^{bC}	4.07±0.01 ^{cA}	4.09±0.10 ^{cA}	4.12±0.10 ^{bB}	***
рН	14	4.00±0.04 ^{aB}	3.90±0.02 ^{bA}	3.92±0.01 ^{bA}	3.96±0.02 ^{aAB}	**
	21	4.00+0.01 ^{aD}	3.86+- ^{aA}	3.88+0.01 ^{aB}	3.93+- ^{aC}	***
	Significance	***	***	***	***	
	0	0 72+0 03 ^{aA}	$0.90 + a^{B}$	0 89+0 01 ^{aB}	0 92+0 01 ^{aB}	***
	1	0.72±0.05	0.96±-bC	0.09 ± 0.01	0.92 ± 0.01	***
Acidity (lactic acid	7	0.79±- 0.80±_cA	1.00 ± 0.02^{cB}	1.01 ± 0.03^{bB}	1.00 ± 0.01 cdB	**
%)	14	0.07^{-1}	1.00±0.02	1.01±0.03	0.00 ± 0.01	ne
70)	21	0.99 ± 0.01	1.04 ± 0.01	1.00±0.04	1.02 ± 0.01	**
	<u>21</u> <u>C::C:</u>	0.99±-	1.0/±0.01	1.04±0.02	1.02±0.01	
	Significance	22 72 +0 21A	45 40 +0 200	40 CO + 0 25D	42.05 0 28B	***
	0	32.73 ± 0.31	45.49±0.39*	49.00±0.33	43.03 ± 0.26	**
	7	32.34 ± 0.91^{11}	40.92±1.99°	30.80 ± 2.21^{-1}	42.87 ± 1.11^{-1}	***
Syneresis (%)	14	33.36±0.23	40.39±0.38	40.33±0.32	43.21 ± 0.03	***
	21	34.03±0.33	40.03±0.37	40.45±1.27	43.34 ± 0.19	***
	Cignificance	32.02±0.10	43.82±0.33	40.15±0.07	43.13±0.42	
	Significance	$\frac{118}{0.28 \pm 0.04\text{A}}$	12.99 ± 0.60 Bab	$13.06 \pm 0.66^{\text{B}}$	$15.92 \pm 1.12C$	***
	1	9.36 ± 0.04 0.17 ± 0.05A	12.00 ± 0.00	13.90 ± 0.00 $14.42 \pm 0.11^{\circ}$	$15.05 \pm 1.15^{\circ}$ 15.14 ± 0.10 ^D	***
TDC	7	9.17 ± 0.03 0.20 ± 0.12A	13.30 ± 0.42	$14.43 \pm 0.11^{\circ}$ 12.60 ± 0.72 [°]	15.14 ± 0.10 15.00 ± 0.58D	***
$(\mu \alpha GAE \alpha^{-1})$	14	9.30 ± 0.13	12.23 ± 0.20	$13.00 \pm 0.73^{\circ}$ 12.04 ± 0.01°	13.09 ± 0.38 14.61 ± 0.08 ^D	***
(µg OAE.g)	21	9.40 ± 0.01 0.35 ± 0.17^{A}	12.21 ± 0.07 12.04 ± 0.46 ^{Bab}	$13.94 \pm 0.01^{\circ}$ $14.37 \pm 0.46^{\circ}$	14.01 ± 0.08 15.25 ± 0.51 ^D	***
	Cignificance	9.55 ± 0.17	12.94 ± 0.40 *	$14.37 \pm 0.40^{\circ}$	13.23 ± 0.31	
	o	$\frac{115}{20.21 \pm 3.21 \text{Ac}}$	23.35 ± 1.12^{A}	115 23.08 ± 1.64Å	$\frac{115}{30.70 \pm 2.80^{\text{B}}}$	*
	1	13.37 ± 0.50 Abc	23.33 ± 1.12 22.60 $\pm 1.00^{B}$	25.98 ± 1.04 25.20 ± 3.11 BC	30.79 ± 2.80 20.04 ± 0.76 ^C	**
DSA	7	13.37 ± 0.30 12.31 ± 0.42Abc	18.88 ± 4.20^{AB}	23.29 ± 3.11 18.05 $\pm 4.68^{AB}$	29.04 ± 0.70 28.24 ± 1.76 ^B	*
(_i%)	14	12.31 ± 0.42 12.18 ± 0.55 ^{Aab}	17.60 ± 4.29	18.93 ± 4.08 18.61 ± 1.80 ^{AB}	28.24 ± 1.70	*
(-1/0)	21	12.18 ± 0.53 11.53 ± 0.61 ^{Aa}	17.02 ± 3.28 18.07 ± 1.54 ^B	10.01 ± 1.00 20.67 $\pm 1.11^{B}$	26.80 ± 1.18 25.31 $\pm 0.68^{\circ}$	***
	Significance	*	10.97 ± 1.94	20.07 ± 1.11	23.31 ± 0.08	
	o	1 52+0 08cA	104+0.11B	7 12+0 01C	10.12+0.05aD	***
	1	1.33±0.08	4.94 ± 0.11 5.20±0.00 ^B	7.15±0.01	10.13 ± 0.05 $10.62\pm0.06^{\circ D}$	***
Chuassa	7	1.33 ± 0.12 1.27±0.11abA	3.20 ± 0.09	7.40±0.27	10.02 ± 0.00 10.57±0.01 ^{cD}	***
$(\alpha \mathbf{I}^{-1})$	14	1.27 ± 0.11 1.07±0.12aA	4.95±0.09	7.21±0.03	10.57 ± 0.01	***
(g.L)	21	1.07±0.13	4.78±0.31	7.10 <u>+</u> 0.20	10.37 ± 0.10 10.20±0.12bD	***
	Cignificance	1.11±0.15 **	4.90±0.23	7.23±-*	10.29±0.15	
	Significance	41.27+0.47dB	118 26.40±0.14dA	118 26.02+0.10cA	26.24+0.12cA	***
	0	41.37 ± 0.47	30.40±0.14	30.02 ± 0.10	30.24 ± 0.13	***
T	7	$41.13\pm0.40^{\circ}$	$33.42\pm0.20^{\circ}$	33.30±0.09 22.86±0.00bA	30.10 ± 0.33	***
$(\alpha \mathbf{I}^{-1})$	1.4	39.71±0.10 27.52±0.21bB	22.66±0.252A	22.41+0.07aA	22.47±0.20aA	**
(g.L)	21	37.32 ± 0.21	33.00±0.33	32.41 ± 0.97	22 62 0 19aB	***
	Z1 Significance	55.85±0.00***	33.32±0.19***	55.15±0.04***	33.02±0.18***	-44-
	Significance	nd	7 22 + 0 0 4aA	9.70 0.1 <i>c</i> aB	10.26+0.000	***
	0	nd	7.32 ± 0.04^{-1}	$0.22 \pm 0.02 \text{bB}$	12.30 ± 0.22^{10} 12.12 \ 0.17bC	***
Fructose (g.L ⁻¹)	7	nd	7.73±0.09 ^{and}	9.32 ± 0.03^{-2}	$13.13\pm0.17^{\circ\circ}$	***
	1.4	nd	7.91±0.02**	9.31±0.13**	13.20 ± 0.11^{10}	***
	14	nd	7.92±0.18 ^{cm}	9.47 ± 0.11^{cB}	13.20 ± 0.30^{80}	***
	Z1 Significance	na	8.24±0.05**	9.65±0.14**	13.23±0.02**	-44-
	Significance		0.04	0.05	0.04+0.01	
	1	0.05±0.01°	0.04±	$0.05\pm$	0.04 ± 0.01	ns
Duminia aaid	7	0.03±-	0.05±	0.04±0.01	0.04 ± 0.01	115
r yruvic acid	1.4	0.04±°	$0.03\pm$	0.04 ± 0.01	0.03 ± 0.01	115 **
(g.L ⁻)	21	0.02±an	0.04± ^B	0.04 ± 0.01^{2}	0.04 ± 0.01^{2}	*
	∠1 Significance	0.02± ***	0.04±-	0.04±0.01-	0.04±0.01-	*
	o	11 49±0 103D	115 8 67±0 00aC	IIS 8 46+0.04aB	115 8 22 ± 0 02ªA	***
Lactic acid	1	11.40 ± 0.10^{20}	$0.07\pm0.02^{\circ\circ}$	0.40±0.00 ^{mb}	0.22 ± 0.02^{m1}	***
$(g.L^{-1})$	7	11.70 ± 0.10^{-3} 12.62 hD	9.29±0.04	9.49±0.11***	9.10±0.15	***
	/	13.03±-*-	10.22±0.08	10.31±0.01	9.00±0.00	

	14	14.50±0.37°C	10.55±0.21 ^{dB}	10.55±0.34 ^{cB}	9.80±0.16 ^{cA}	***
	21	15.63±0.24 ^{dD}	11.11±0.01 ^{eB}	11.38±0.02 ^{dC}	10.65±0.09 ^{dA}	
	Significance	***	***	***	***	
	0	1.99±0.10 ^B	1.76±0.08 ^A	1.75±0.09 ^A	1.74±0.07 ^A	*
	1	1.97±0.10 ^B	1.75±0.07 ^A	1.78±0.08 ^A	1.78±0.09 ^A	*
Citric acid	7	2.00±0.09 ^B	1.76±0.08 ^A	1.77±0.08 ^A	1.74±0.06 ^A	*
$(g.L^{-1})$	14	1.89±0.04 ^B	1.74±0.05 ^{AB}	1.72±0.12 ^A	1.71±0.09 ^A	ns
	21	2.01±0.06 ^B	1.75±0.07 ^A	1.77±0.08 ^A	1.76±0.06 ^A	**
	Significance	ns	ns	ns	ns	
	0	nd	2.59±0.01 ^{bC}	2.51±0.04 ^{bB}	2.01±0.02 ^{cdA}	***
	1	nd	2.25±0.01ª	2.09±0.24ª	2.05±0.09 ^d	ns
Tartaric acid	7	nd	2.68±0.02 ^{bB}	2.79±0.20 ^{bB}	1.89±0.06 ^{bcA}	***
$(g.L^{-1})$	14	nd	2.55±0.20 ^{bB}	2.85±0.03 ^{bC}	1.72±0.10 ^{aA}	ns
	21	nd	2.74±0.11 ^{bB}	2.67±0.23 ^{bB}	1.77±0.08 ^{abA}	***
	Significance		**	**	**	
	0	nd	0.19± ^{bA}	0.32±0.01 ^{cB}	0.50±0.01 ^C	***
	1	nd	0.19± ^{bA}	0.31±0.01 ^{cB}	0.51±0.02 ^C	***
Malic acid	7	nd	0.16±0.01 ^{aA}	0.28±0.01 ^{bB}	0.49±0.01 ^C	***
$(g.L^{-1})$	14	nd	0.15± ^{aA}	0.28±0.01 ^{bB}	0.48±0.02 ^C	***
	21	nd	0.17±0.02 ^{aA}	0.27±0.01 ^{aB}	0.51±0.03 ^C	***
	Significance	ns	**	***	ns	

689 ^{*}The results are represented as means ± standard deviation

690 a-cValues in each column having different lowercase letters are significantly different at P< 0.05 within storage time. Values in each row

having different capitals letters are significantly different at P< 0.05 within yogurt type.

692 * P< 0.05; ** P< 0.01; *** P<0.001; ns not significant

693 nd: not detected; where not specified, standard deviation are less than 0.01

709 Table 4. PHENOLIC COMPOUNDS OF CONTROL AND FORTIFIED YOGURTS

710 DURING STORAGE AND RESULTS OF ANALYSIS OF VARIANCE WITH

711 DUNCAN'S TEST

	Days	Moscato	Chardonnay	Pinot noir	Significance
	0	3.6±0.5 ^B	2.7 ± 0.2^{AB}	1.5±0.1 ^A	*
	1	$4.2 \pm -^{C}$	2.6 ± 0.2^{B}	1.7 ± 0.1^{A}	**
C-11::-1 [†]	7	$3.9 \pm 0.3^{\circ}$	$2.7\pm^{\mathrm{B}}$	1.6 ± 0.2^{A}	**
Gallic acid*	14	$3.8\pm^{C}$	$2.6 \pm -^{B}$	1.6 ± 0.1^{A}	***
	21	4 ± 0.3^{C}	2.7 ± 0.2^{B}	1.7 ± 0.1^{A}	**
	Significance	ns	ns	ns	
	0	1.1±0.3	$1.2\pm$	0.7±0.1	ns
	1	1.5 ± 0.1	1.2 ± 0.1	1.1 ± 0.4	ns
Protocatechuic	7	1.2 ± 0.9	1.2 ± 0.1	0.8 ± 0.1	ns
acid	14	$1.4{\pm}0.2^{B}$	1.2 ± 0.1^{AB}	$0.8\pm^{ m A}$	*
	21	1.1 ± 0.2	1.1±0.3	1.2 ± 0.1	ns
	Significance	ns	ns	ns	
	0	nd	nd	2.6±0.1	
	1	nd	nd	2.7±0.1	
Due errouidiu D1	7	nd	nd	2.9±0.4	
Procyanidin B1	14	nd	nd	$2.9\pm$	
	21	nd	nd	3.0±0.2	
	Significance			ns	
	0	nd	nd	1.7±0.1	
	1	nd	nd	2.2±0.1	
2,3,4-	7	nd	nd	2.3±0.3	
acid	14	nd	nd	2.4±0.1	
dela	21	nd	nd	1.7 ± 0.6	
	Significance			ns	
	0	17.9±1.5	22.9±3.4	5.1±0.2	ns
	1	19.3 ± 0.1^{B}	18.8 ± 0.6^{B}	5.3 ± 0.6^{A}	**
	7	18.8 ± 0.1^{B}	18.1 ± 1.2^{B}	6.6 ± 3.1^{A}	***
Catechin	14	18.0 ± 0.1^{B}	19.0±0.7 ^B	7.0 ± 0.3^{A}	***
	21	16.1±1.7	17.2±0.1	6.7±0.3	ns
	Significance	ns	ns	ns	
	0	nd	nd	3.5±0.3	
	1	nd	nd	3.4±0.1	
Vanillic	7	nd	nd	3.1±0.5	
acid	14	nd	nd	2.9 ± 0.2	
	21	nd	nd	3.3±0.2	
	Significance			ns	
Epicatechin	0	0.3±	$0.4\pm$	nd	

	1	$0.4\pm$	$0.3\pm$	nd	
	7	$0.3\pm$	$0.3\pm$	nd	
	14	$0.3\pm$	$0.3\pm$	nd	
	21	$0.3\pm$	$0.3\pm$	nd	
	Significance	ns	ns		
	0	3.1±0.1	3.7±0.4	5.3±1.0	ns
	1	$3.9\pm^{A}$	3.4 ± 0.1^{B}	5.6 ± 0.1^{C}	***
Dertin	7	3.7±0.7	3.4±0.1	5.1±1.0	ns
Kuun	14	4.0 ± 0.1^{B}	$3.3\pm^{A}$	5.2 ± 0.1^{C}	***
	21	4.3±0.3	4.1 ± 0.1	5.0±0.4	ns
	Significance	ns	ns	ns	
	0	6.3±0.6 ^{AB}	9.9 ± 1.2^{abB}	4.6 ± 1.0^{A}	*
	1	$8.4{\pm}0.6^{B}$	$8.9{\pm}0.5^{abB}$	4.9 ± 0.2^{A}	**
Oversitain	7	7.7±1.4	8.6 ± 0.5^{a}	4.5±0.9	ns
Quercitrin	14	$8.9\pm^{\mathrm{B}}$	8.8 ± 0.1^{aB}	4.7 ± 0.1^{A}	***
	21	$9.3{\pm}2.3^{AB}$	11.4 ± 0.4^{bB}	4.6 ± 0.5^{A}	*
	Significance	ns	*	ns	

712 The results are reported as $\mu g/g$ and represented as means \pm standard deviation

713 a-cValues in each column having different lowercase letters are significantly different at P< 0.05 within storage time. Values in each row

having different capitals letters are significantly different at P< 0.05 within yogurt type.

715 * P< 0.05; ** P< 0.01; *** P<0.001; ns not significant

- 716 nd: not detected; where not specified, standard deviation are less than 0.1

- . 20

730 Table 5. VOLATILE COMPOUNDS OF CONTROL AND FORTIFIED YOGURTS

731 DURING STORAGE AND RESULTS OF ANALYSIS OF VARIANCE WITH732 DUNCAN'S TEST

	Days	Control	Moscato	Chardonnay	Pinot noir	Significance
	0	1030.51 ± 36.98^{bB}	$927.48{\pm}20.49^{aA}$	$914.32{\pm}11.02^{bA}$	$887.81{\pm}28.12^{aA}$	***
	1	995.20 ± 38.40^{abC}	969.05 ± 14.49^{bBC}	$899.04{\pm}50.88^{\rm bAB}$	$881.72{\pm}54.39^{aA}$	*
S V (†	7	1017.23 ± 43.42^{ab}	857.83±100.24ª	912.81±61.76 ^b	978.09 ± 17.87^{b}	ns
∑ Ketones*	14	$893.43{\pm}75.08^{aB}$	$898.02{\pm}12.06^{abB}$	761.96 ± 56.57^{aA}	959.24±5.74 ^{bB}	**
	21	1153.28±109.31cA	1367.59±49.81 ^{cB}	1425.31±25.26 ^{cB}	1092.65±14.77 ^{cA}	***
	Significance	*	***	***	***	
	0	9.87±0.66 ^{cA}	18.43 ± 2.15^{abC}	23.69 ± 2.61^{cD}	14.92±0.53 ^B	***
	1	5.60±0.27 ^{aA}	17.51 ± 0.51^{aB}	23.28±1.34 ^{cD}	19.94±0.31 ^c	***
N 411.1 1	7	5.91±0.31 ^{aA}	20.75 ± 2.02^{bcB}	23.30±0.57 ^{cB}	18.31±6.74 ^B	**
∑ Aldehydes	14	$7.70{\pm}1.50^{bA}$	22.51 ± 0.47^{cD}	19.84±1.91 ^{bC}	15.34±0.79 ^B	***
	21	8.28±1.02 ^{bcA}	16.95±1.05 ^{aC}	15.59±0.54 ^{aC}	13.23±1.83 ^B	***
	Significance	***	*	***	ns	
	0	55.52±1.00 ^{cA}	263.87±34.02 ^{bC}	332.55±22.25 ^{bD}	115.79±3.42 ^{bcB}	***
	1	$27.04{\pm}6.05^{aA}$	224.23 ± 5.97^{aB}	310.12±9.11 ^{abD}	267.21±3.68 ^{dC}	***
D	7	38.51±9.66 ^{bA}	336.39±21.52 ^{cC}	311.27±23.85 ^{abC}	$98.54{\pm}19.98^{abB}$	***
\sum Alcohols	14	$21.78{\pm}5.56^{aA}$	365.00±8.29 ^{cD}	287.43 ± 25.08^{aC}	$87.73 {\pm} 6.64^{aB}$	***
	21	49.05 ± 4.35^{bcA}	346.83±9.32 ^{cC}	413.31±18.42 ^{cD}	127.19±15.58 ^{cB}	***
	Significance	***	***	***	***	
	0	71.01±7.53ªA	231.68±18.40 ^{aB}	284.10±29.23 ^{bC}	210.70±0.78 ^{aB}	***
	1	72.24±13.01 ^{aA}	219.25±20.83 ^{aC}	173.78 ± 14.20^{aB}	177.86±8.45 ^{aB}	***
	7	115.16±3.05 ^{bA}	288.38±15.67 ^{bC}	210.47 ± 14.20^{aB}	276.20±41.93 ^{bC}	***
\sum Acids	14	144.20±8.09cA	298.44±42.52 ^{bB}	179.12±9.39ªA	351.33±9.24 ^{cC}	***
	21	134.60±26.78 ^{bcA}	287.25±2.29 ^{bC}	201.87 ± 31.62^{aB}	277.07 ± 8.54^{bC}	***
	Significance	***	**	***	***	
	0	0.75±0.12 ^{cB}	13.58±0.82 ^{bD}	10.09±0.20 ^C	0.56±0.03 ^{bA}	***
	1	0.22 ± 0.01^{abA}	11.36±0.15 ^{aC}	10.41±0.26 ^B	$0.48 \pm^{abA}$	***
_	7	$0.18{\pm}0.01^{abA}$	17.62 ± 0.92^{dC}	11.06±0.08 ^B	0.45±0.09 ^{aA}	***
Esters	14	0.13±0.01 ^{aA}	21.52±1.03 ^{eC}	10.33±0.98 ^B	0.48±0.03 ^{abA}	***
	21	0.29 ± 0.02^{bA}	15.62±0.72 ^{cC}	12.32±2.53 ^B	0.56 ± 0.02^{bA}	***
	Significance	***	***	ns	*	
	0	1.17±0.03 ^A	2.93±0.17 ^{bcB}	4.09±0.67 ^C	1.24±0.08 ^{aA}	***
	1	1.18 ± 0.10^{A}	2.54±0.35 ^{abB}	3.52±0.19 ^C	$1.09{\pm}0.07^{aA}$	***
	7	1.09±0.15 ^A	3.34±0.27 ^{cBC}	3.86±0.13 ^C	2.42 ± 0.93^{bB}	***
∑ Lactones	14	1.21±0.29 ^A	3.81±0.27 ^{dD}	3.16±0.13 ^C	2.23±0.10 ^{bB}	***
	21	1.13±0.20 ^A	$2.35{\pm}0.05^{aB}$	4.00±1.06 ^C	1.02±0.03 ^{aA}	***
	Significance	ns	***	ns	**	
	0	12.08±0.76 ^{cA}	98.88±10.06 ^{abC}	85.82±3.84 ^{bB}	112.45±5.18 ^D	***
Furan derivatives	1	4.34±0.08 ^{aA}	89.77±6.05 ^{aBC}	97.77±7.25 ^{cC}	84.25 ± 5.36^{B}	***
	7	4.22±0.07 ^{aA}	110.08±9.68 ^{bC}	85.91±6.21 ^{bB}	96.61±13.26 ^{BC}	***

	14	$3.78{\pm}0.19^{aA}$	124.11±2.28 ^{cD}	79.16 ± 4.10^{bB}	94.80±0.28 ^C	***
	21	5.07±0.33 ^{bA}	$87.65{\pm}5.55^{aC}$	$62.67{\pm}4.80^{aB}$	$100.05 \pm 15.02^{\circ}$	***
	Significance	***	***	***	ns	
	0	32.02±2.55 ^A	49.79 ± 2.22^{aB}	66.85±6.71 ^{cC}	31.03±3.06 ^A	***
	1	32.87±3.33 ^A	$46.46{\pm}3.46^{aB}$	33.75±2.32 ^{bA}	$33.24{\pm}2.09^{\text{A}}$	***
Σ Termonoide	7	30.69±2.82 ^A	$51.73{\pm}3.06^{aB}$	$27.35{\pm}1.42^{abA}$	44.89±13.31 ^B	**
<u>></u> respendeds	14	25.42±4.06 ^A	$58.48{\pm}2.48^{bC}$	24.40±2.21ªA	$31.43{\pm}1.61^{B}$	***
	21	28.98±0.64 ^A	$64.91{\pm}2.98^{cB}$	31.10±0.62 ^{bA}	$28.97{\pm}1.68^{\rm A}$	***
	Significance	ns	***	***	ns	

733	The results are reported as µg/kg and represented as means ± standard deviation						
734	a-cValues in each column having different lowercase letters are significantly different at P < 0.05 within storage time. Values in each row						
735	having different capitals letters are significantly different at $P < 0.05$ within yogurt type.						
736	* P< 0.05; ** P< 0.01; *** P<0.001; ns not significant						
737	nd: not detected; where not specified, standard deviation are less than 0.01						
738							
739							
740							
741							
742							
743							
744							
745							
746							
747							
748							
749							
750							
751							
752							
753							
754							

Additional data – Volatile compounds (mean ±standard deviation; $\mu g/kg)$ of control and fortified yogurts during storage

			Dave		
Control	0	1	7	14	21
Ketones	0	1	1	14	21
2-Pentanone	25 22+0 56	27 73+2 90	39 84+3 19	31 77+7 71	41 57+6 19
2 3-Pentanedione	133 14+1 79	85 14+2 04	138 75+0 22	129 01+12 70	145 45+12 81
2.9 Tentanone	277 04+34 15	323 24+15 32	304 49+22 48	253 44+25 54	416 85+75 73
Acetoin	489 06+5 14	447 60+22 27	423 50+17 39	379 04+29 96	425 44+27 13
6-Methyl-5-hepten-2-one	nd	0.08+0.01	nd	nd	+25.++27.15
3-Hydroxy-2-pentanone	42 19+2 02	47.08+2.39	48 49+2 39	42 02+3 75	54 44+5 66
2-Nonanone	56.68 ± 1.94	56 39+2 02	5431+194	50.84 ± 3.67	$62\ 27+5\ 78$
6-Methyl-3 5-hentadien-2-one	nd	nd	nd	nd	02.27_0.70
2-Undecanone	6 43+0 16	7 08+0 10	6 93+0 23	6 51+1 09	6 46+0 26
2-Tridecanone	0.45 ± 0.10 0.76+0.01	0.85+0.03	0.93 ± 0.23	0.31 ± 1.09 0.79+0.13	0.40±0.20
Σ Ketones	103051+3698	995 20+38 40	$1017\ 23+43\ 42$	893 43+75 08	$1153\ 28+109\ 31$
Aldheydes	1050.51250.50	<i>))3</i> .20 <u>-</u> 30.10	1017.25215.12	075.15275.00	1155.202107.51
Nonanal	1 12+0 26	0.35 ± 0.08	1 18+0 09	252+040	1 91+0 59
Benzaldehyde	5.84 ± 0.67	2.70 ± 0.00	2.99 ± 0.09	2.52 ± 0.40 2.63+0.10	2.90 ± 0.33
A-Methyl-benzaldebyde	2.61 ± 0.07	2.70 ± 0.10 2.27+0.12	1.64 ± 0.25	2.05 ± 0.10 2.46+1.06	2.90 ± 0.33 3 39+0 75
Dodecanal	0.29 ± 0.06	0.28 ± 0.12	0.09 ± 0.08	0.10 ± 0.01	0.09 ± 0.01
Σ Aldhevdes	9.87±0.66	5.60 ± 0.17	5.01 ± 0.00	7.70 ± 1.50	8.28 ± 1.02
	9.07±0.00	5.00±0.27	5.91±0.51	7.70±1.50	0.20±1.02
Isobutanol	0 10+0 06	0 53+0 57	nd	0.03+0.10	nd
1-Pentanol	7.90 ± 0.00	1.63 ± 0.57	2.01 ± 0.33	1.53 ± 0.10	1.67+0.06
3 Methyl 1 butanol	27 10+0.62	16 40+5 88	26 60+8 23	12.04 ± 4.83	30.31 ± 4.12
1-Heyanol	12.22 ± 0.02	5.36 ± 0.16	5 17+0 33	12.04 ± 4.03	59.31 ± 4.12 5 40+0 14
2 Heven 1 ol	12.22±0.10	5.50±0.10	5.17±0.55	4.51±0.40	5.40±0.14
1-Octen-3-ol	1 54+0.06	0.73+0.13	0.82 ± 0.09	0.81 ± 0.02	nd
1 Octanol	1.34 ± 0.00	0.73 ± 0.13	0.82 ± 0.09	0.31 ± 0.02	0.20+0.03
1-Nonanol	0.44 ± 0.01 0.34+0.01	0.24 ± 0.03 0.33+0.07	0.28 ± 0.01 0.42+0.06	0.32 ± 0.01 0.37±0.05	0.29 ± 0.03
Benzyl alcohol	0.34 ± 0.01	0.33 ± 0.07 0.18+0.03	0.42 ± 0.00 0.29+0.03	0.37 ± 0.03	0.35 ± 0.03
Phenylethyl alcohol	0.75 ± 0.15	0.13 ± 0.03	0.29 ± 0.03	0.13 ± 0.01	0.25 ± 0.04
1 4 Butanediol	4.30 ± 0.04 0.18±0.03	0.01 ± 0.04	0.00 ± 0.14 0.18±0.02	0.31 ± 0.04 0.14±0.02	0.95 ± 0.15 0.18±0.03
1,4-Dutaneuroi	0.18 ± 0.03	0.13 ± 0.04 0.78±0.24	0.18 ± 0.02	0.14 ± 0.02 0.97±0.28	0.13 ± 0.03
Σ Alcohols	0.30 ± 0.10 55 52+1 00	0.78 ± 0.34 27.04±6.05	2.00±0.00	0.87 ± 0.28 21.78+5.56	0.02 ± 0.12
	JJ.J2±1.00	27.04±0.03	36.31±9.00	21.76±3.30	49.05±4.55
Actus Acetia acid	16 56+2 40	10 62+2 10	40.21+4.12	42 84+0 17	54.77 ± 14.02
Joobuturia agid	10.30 ± 2.49 0.42±0.02	19.03 ± 3.19 0.52±0.12	40.21 ± 4.12 0 50±0 02	$+3.04\pm9.17$	0.20 ± 0.04
Butanoic acid	19.32 ± 0.02	20.86+3.99	28.68 ± 1.04	34.47 ± 4.68	33.61+5.19
Methacrylic acid	19.52±1.05	0.42 ± 0.08	28.08 ± 1.04 0.18±0.07	2.00 ± 0.47	0.18 ± 0.17
Deptencia acid	2 28+0 21	0.42 ± 0.08	0.10 ± 0.07	1.22 ± 0.47	0.13 ± 0.17 0.74±0.10
Hexanoic acid	2.28 ± 0.31 2433 ± 79	2.07 ± 0.50 21 34+3 93	31.05 ± 0.01	1.33 ± 0.31 50 70+7 49	33.63+5.30
2 Ethyl beyanoic acid	$24.55\pm.79$ 3.65±1.18	21.34 ± 3.93 2.76±0.12	3 13+0 04	1.20 ± 0.48	0.80±0.16
Hentanoic acid	1.87±0.60	1.00 ± 0.12	3.13 ± 0.94 2.13±0.33	1.29 ± 0.43 1.63 ± 0.17	1.14 ± 0.12
Octanoic acid	1.87±0.00	1.99±0.03	2.15±0.55	1.05±0.17	1.14±0.12
Nonanoic acid	1 66+0 31	1 11+0 45	2 20+0 69	4 00+0 11	2 77+0 71
Renzenecerboxylic acid	0.01 ± 0.05	1.11 ± 0.43 1.53 ± 0.11	2.20 ± 0.07 3.22 ± 0.00	4.00 ± 0.11	2.77±0.71
Σ Acids	71.01+7.53	7224+1301	$115\ 16+3\ 05$	1/1/20+8.09	134.60+26.78
	/1.01±7.55	72.24±13.01	115.10±5.05	144.20±0.09	134.00±20.70
B Dhanylathyl acatata	0.75 ± 0.12	0.22 ± 0.01	0 18+0 01	0.13 ± 0.01	0.20 ± 0.02
	0.75±0.12	0.22±0.01	0.10±0.01	0.15±0.01	0.27±0.02
Laciones v Caprolaciona	0 10+0 01	0.18 ± 0.02	0.22 ± 0.01	0.16+0.01	0.22+0.02
δ Decalactone	0.19 ± 0.01	1.00 ± 0.11	0.22 ± 0.01	1.05 ± 0.01	0.22 ± 0.03
Σ Lactones	1.17 ± 0.03	1.00 ± 0.11 1.18±0.10	1.00 ± 0.15	1.03 ± 0.29 1.21±0.29	1.13 ± 0.20
	1.17±0.05	1.10±0.10	1.09±0.15	1.21±0.29	1.13±0.20
2 Deptyl furon	nd	0.81+0.04	0.82 0.04	0.72 0.07	0.00 0.00
∠-1 cittyi-iutaii Furfural	nu 10 24±0 92	0.01 ± 0.04 1 51±0.04	0.85±0.04	0.75 ± 0.07 1.15±0.02	0.09±0.08
2 Europmothen of	10.24 ± 0.62	1.31 ± 0.04	1.30 ± 0.03	1.13 ± 0.02	1.00 ± 0.01
Σ Euron derivatives	1.04±0.07 12.08±0.74	2.02±0.07	2.03 ± 0.13	1.91 ± 0.22 3.78 ± 0.10	2.32±0.32
	12.06±0.70	4.34±0.08	4.22±0.07	5.76±0.19	5.07±0.55
<i>i erpenes</i>	21 (7.0 52	22 22 2 45	20.22.2.02	24.02.2.04	20 (2.0.70
	31.0/±2.53	32.23±3.45	29.32±3.03	24.92±3.94	28.62±0.78
<i>cis</i> -Linalooi oxide	nd	nd		nd	nd
Linalool a Temineel	0.24 ± 0.03	0.19 ± 0.01	0.16 ± 0.01	0.13 ± 0.01	0.15 ± 0.01
x Tempenes	0.11±0.01	0.40±0.10	1.21 ± 0.21	0.30±0.15	0.21 ± 0.15
	32.02±2.33	32.0/±3.33	30.09±2.82	23.42±4.06	20.98±0.04

761	

Mosesto			Days		
Moscato	0	1	7	14	21
Ketones					
2-Pentanone	24.61±1.74	24.50±1.27	22.13±4.23	22.30±1.60	90.23±3.96
2,3-Pentanedione	196.44±1.76	202.76±13.26	187.05±35.09	177.53±8.34	85.89±2.24
2-Heptanone	219.40±13.81	222.21±5.47	202.44±21.59	223.79±5.03	666.91±49.77
Acetoin	391.72±1.84	427.77±17.67	351.74±34.14	369.94±2.42	371.33±5.11
6-Methyl-5-hepten-2-one	5.73±0.78	4.05±0.25	7.34±0.65	8.14±0.56	10.00±1.28
3-Hydroxy-2-pentanone	26.49±0.52	28.40 ± 1.05	26.83±2.62	31.55±1.65	44.61±1.24
2-Nonanone	52.43±3.57	49.81±1.68	48.43±2.61	51.60±0.52	87.51±7.00
6-Methyl-3,5-heptadien-2-one	1.85 ± 0.21	1.50 ± 0.10	2.69±0.18	2.99±0.16	2.87±0.16
2-Undecanone	8.13+0.63	7.40 ± 0.15	8.40+0.19	9.35 ± 0.48	7.58 ± 0.24
2-Tridecanone	0.68 ± 0.06	0.65 ± 0.02	0.79±0.14	0.83±0.03	0.66 ± 0.07
Σ Ketones	927.48+20.49	969.05+14.49	857.83+100.24	898.02+12.06	1367.59+49.81
Aldhevdes	/_///	,			
Nonanal	4 32+0 46	378+013	2 99+0 16	2 47+0 25	1 56+0 51
Benzaldehvde	11 74+1 36	10.59 ± 0.13	1456 ± 157	15.89 ± 0.71	9 36+0 60
4-Methyl_benzaldehyde	2.00 ± 0.29	2.45 ± 0.15	2.45 ± 0.41	3.16 ± 1.17	5.03±0.00
Dodecanal	0.37 ± 0.05	0.68 ± 0.14	2.45 ± 0.41 0.75±0.12	0.00 ± 0.25	1.00 ± 0.32
Σ Aldhavdas	18.43 ± 2.15	17.51 ± 0.51	0.75 ± 0.12 20.75±2.02	0.99 ± 0.23	16.05±1.05
	10.45±2.15	17.31±0.31	20.75±2.02	22.31±0.47	10.95±1.05
Acontors	2 11 0 25	1 42 0.04	162-152	2 02 0 11	7.00 + 0.22
1 Dontanol	5.11±0.35	1.43 ± 0.04	4.02±1.33	5.02 ± 0.11	7.09±0.32
I-Pentanol	13.03±2.50	9.61±0.75	13.28±1.8/	16.08±1.64	21.58±0.42
3-Methyl-1-butanol	43.60±9.38	42.54±11.55	69.12±15.89	51.66 ± 7.45	50.6/±1.35
I-Hexanol	58.43±10.89	48.64±5./4	/6.13±8.09	89.04±2.98	11/.92±3.91
2-Hexen-1-ol	7.12±0.87	5.79±0.33	8.84±0.85	9.39±0.70	11.27±0.72
1-Octen-3-ol	18.08 ± 4.00	11.55 ± 1.18	22.02±1.46	26.95±1.98	37.21±0.50
1-Octanol	1.47 ± 0.16	1.13 ± 0.04	1.98 ± 0.04	2.51±0.02	2.44 ± 0.10
1-Nonanol	0.77 ± 0.10	0.72 ± 0.05	1.38 ± 0.11	1.94 ± 0.04	1.55 ± 0.08
Benzyl alcohol	4.50 ± 0.32	3.96 ± 0.39	5.20±0.34	6.37±0.70	3.72 ± 0.13
Phenylethyl alcohol	113.09±6.61	97.91±13.19	133.31±10.66	157.69±7.37	92.19±2.40
1,4-Butanediol	0.41 ± 0.07	0.31 ± 0.03	0.20 ± 0.05	0.31 ± 0.06	0.52 ± 0.07
1-Dodecanol	0.24 ± 0.07	0.64 ± 0.22	0.31±0.06	0.04 ± 0.04	0.67 ± 0.03
\sum Alcohols	263.87±34.02	224.23±5.97	336.39±21.52	365.00±8.29	346.83±9.32
Acids					
Acetic acid	76.20±1.72	73.24±7.23	95.60±2.72	101.64±11.31	115.33±3.56
Isobutyric acid	3.75±0.71	4.12±0.29	4.23±0.30	4.12 ± 1.00	4.73±0.17
Butanoic acid	34.83±3.36	35.62±1.44	41.77±1.79	41.04±7.38	39.45±2.20
Methacrylic acid	nd	nd	0.69 ± 0.05	0.28 ± 0.06	0.20 ± 0.07
Pentanoic acid	4.47±0.10	5.33±0.12	4.90 ± 0.84	4.17±0.73	6.49±0.13
Hexanoic acid	74.86±9.96	65.88±6.90	91.36±2.64	93.67±17.25	70.42±1.92
2-Ethyl-hexanoic acid	14.52±0.98	15.56±1.56	13.33±4.91	11.50±0.54	20.64±0.35
Heptanoic acid	10.47±0.76	10.35±2.49	10.83±3.16	8.68±0.35	11.94±0.92
Octanoic acid	nd	nd	nd	0.03±0.03	0.02±0.01
Nonanoic acid	9.00 ± 4.04	5.76±1.70	17.72 ± 1.00	19.73±2.11	11.26±0.33
Benzenecarboxylic acid	2 50 0 51				
Σ Acids	3.58 ± 0.51	3.38±1.51	7.94±1.68	13.59±3.00	6.79±1.13
	3.58±0.51 231.68±18.40	3.38±1.51 219.25±20.83	7.94±1.68 288.38±15.67	13.59±3.00 298.44±42.52	6.79±1.13 287.25±2.29
Esters	3.58±0.51 231.68±18.40	3.38±1.51 219.25±20.83	7.94±1.68 288.38±15.67	13.59±3.00 298.44±42.52	6.79±1.13 287.25±2.29
<i>Esters</i> β-Phenylethyl acetate	3.58±0.51 231.68±18.40 13.58±0.82	3.38±1.51 219.25±20.83 11.36±0.15	7.94±1.68 288.38±15.67 17.62±0.92	13.59±3.00 298.44±42.52 21.52±1.03	6.79±1.13 287.25±2.29 15.62±0.72
Esters β-Phenylethyl acetate	3.58±0.51 231.68±18.40 13.58±0.82	3.38±1.51 219.25±20.83 11.36±0.15	7.94±1.68 288.38±15.67 17.62±0.92	13.59±3.00 298.44±42.52 21.52±1.03	6.79±1.13 287.25±2.29 15.62±0.72
Esters β-Phenylethyl acetate Lactones γ-Caprolactone	3.58±0.51 231.68±18.40 13.58±0.82 2.02+0.08	3.38±1.51 219.25±20.83 11.36±0.15 1.73+0.15	7.94±1.68 288.38±15.67 17.62±0.92 2.14+0.16	13.59±3.00 298.44±42.52 21.52±1.03 2.52+0.12	6.79±1.13 287.25±2.29 15.62±0.72
Esters β-Phenylethyl acetate Lactones γ-Caprolactone δ-Decalactone	3.58±0.51 231.68±18.40 13.58±0.82 2.02±0.08 0.91±0.12	3.38 ± 1.51 219.25 ± 20.83 11.36 ± 0.15 1.73 ± 0.15 0.81 ± 0.20	7.94±1.68 288.38±15.67 17.62±0.92 2.14±0.16 1.21±0.13	13.59±3.00 298.44±42.52 21.52±1.03 2.52±0.12 1.29±0.16	6.79 ± 1.13 287.25 ± 2.29 15.62 ± 0.72 1.74 ± 0.05 0.61 ± 0.04
Esters β-Phenylethyl acetate Lactones γ-Caprolactone δ-Decalactone Σ Lactones	3.58±0.51 231.68±18.40 13.58±0.82 2.02±0.08 0.91±0.12 2.93±0.17	3.38±1.51 219.25±20.83 11.36±0.15 1.73±0.15 0.81±0.20 2.54±0.35	7.94±1.68 288.38±15.67 17.62±0.92 2.14±0.16 1.21±0.13 3 34±0.27	13.59±3.00 298.44±42.52 21.52±1.03 2.52±0.12 1.29±0.16 3.81±0.27	6.79 ± 1.13 287.25 ± 2.29 15.62 ± 0.72 1.74 ± 0.05 0.61 ± 0.04 2.35 ± 0.05
Esters β-Phenylethyl acetate Lactones γ-Caprolactone δ-Decalactone ∑ Lactones	3.58±0.51 231.68±18.40 13.58±0.82 2.02±0.08 0.91±0.12 2.93±0.17	3.38 ± 1.51 219.25±20.83 11.36±0.15 1.73±0.15 0.81±0.20 2.54±0.35	$7.94{\pm}1.68$ $288.38{\pm}15.67$ $17.62{\pm}0.92$ $2.14{\pm}0.16$ $1.21{\pm}0.13$ $3.34{\pm}0.27$	$\begin{array}{c} 13.59{\pm}3.00\\ \underline{298.44{\pm}42.52}\\ \hline \\ 21.52{\pm}1.03\\ \hline \\ 2.52{\pm}0.12\\ 1.29{\pm}0.16\\ \hline \\ 3.81{\pm}0.27 \end{array}$	6.79±1.13 287.25±2.29 15.62±0.72 1.74±0.05 0.61±0.04 2.35±0.05
Esters β-Phenylethyl acetate Lactones γ-Caprolactone δ-Decalactone Σ Lactones Furan derivatives 2-Penylyl furan 2	3.58±0.51 231.68±18.40 13.58±0.82 2.02±0.08 0.91±0.12 2.93±0.17 26 58±1.04	3.38±1.51 219.25±20.83 11.36±0.15 1.73±0.15 0.81±0.20 2.54±0.35 31.95±1.25	7.94±1.68 288.38±15.67 17.62±0.92 2.14±0.16 1.21±0.13 3.34±0.27 31.30±0.37	13.59±3.00 298.44±42.52 21.52±1.03 2.52±0.12 1.29±0.16 3.81±0.27 35 59±1.03	6.79±1.13 287.25±2.29 15.62±0.72 1.74±0.05 0.61±0.04 2.35±0.05
Esters β-Phenylethyl acetate Lactones γ-Caprolactone δ-Decalactone ∑ Lactones Furan derivatives 2-Pentyl-furan Furfured	3.58±0.51 231.68±18.40 13.58±0.82 2.02±0.08 0.91±0.12 2.93±0.17 26.58±1.04 68.78±0.12	3.38 ± 1.51 219.25 ± 20.83 11.36 ± 0.15 1.73 ± 0.15 0.81 ± 0.20 2.54 ± 0.35 31.95 ± 1.25 54.96 ± 6.25	7.94 ± 1.68 288.38 ± 15.67 17.62 ± 0.92 2.14 ± 0.16 1.21 ± 0.13 3.34 ± 0.27 31.30 ± 0.37 75.36 ± 0.63	$13.59\pm3.00298.44\pm42.5221.52\pm1.032.52\pm0.121.29\pm0.163.81\pm0.2735.59\pm1.0384.71\pm2.64$	6.79±1.13 287.25±2.29 15.62±0.72 1.74±0.05 0.61±0.04 2.35±0.05 40.36±4.05
Esters β-Phenylethyl acetate Lactones γ-Caprolactone δ-Decalactone 2 Lactones Furan derivatives 2-Pentyl-furan Furfural 2 Furgamethanel	3.58 ± 0.51 231.68±18.40 13.58±0.82 2.02±0.08 0.91±0.12 2.93±0.17 26.58±1.04 68.78±9.12 3.52±0.12	3.38 ± 1.51 219.25 ± 20.83 11.36 ± 0.15 1.73 ± 0.15 0.81 ± 0.20 2.54 ± 0.35 31.95 ± 1.25 54.96 ± 6.25 2.86 ± 0.09	7.94 ± 1.68 288.38 ± 15.67 17.62 ± 0.92 2.14 ± 0.16 1.21 ± 0.13 3.34 ± 0.27 31.30 ± 0.37 75.36 ± 9.63 3.42 ± 0.27	$\begin{array}{c} 13.59{\pm}3.00\\ 298.44{\pm}42.52\\ \hline 21.52{\pm}1.03\\ 2.52{\pm}0.12\\ 1.29{\pm}0.16\\ 3.81{\pm}0.27\\ \hline 35.59{\pm}1.03\\ 84.71{\pm}2.64\\ 3.80{\pm}0.21\\ \end{array}$	6.79±1.13 287.25±2.29 15.62±0.72 1.74±0.05 0.61±0.04 2.35±0.05 40.36±4.05 41.68±1.37 5.61±0.22
Esters β-Phenylethyl acetate Lactones γ-Caprolactone δ-Decalactone ∑ Lactones Furan derivatives 2-Pentyl-furan Furanmethanol Σ Euran derivatives	3.58 ± 0.51 231.68±18.40 13.58±0.82 2.02±0.08 0.91±0.12 2.93±0.17 26.58±1.04 68.78±9.12 3.52±0.13	3.38 ± 1.51 219.25 ± 20.83 11.36 ± 0.15 1.73 ± 0.15 0.81 ± 0.20 2.54 ± 0.35 31.95 ± 1.25 54.96 ± 6.25 2.86 ± 0.08 90.77 ± 0.05	7.94 ± 1.68 288.38 ± 15.67 17.62 ± 0.92 2.14 ± 0.16 1.21 ± 0.13 3.34 ± 0.27 31.30 ± 0.37 75.36 ± 9.63 3.42 ± 0.27 110.09 ± 0.63	$\begin{array}{c} 13.59{\pm}3.00\\ 298.44{\pm}42.52\\ \hline 21.52{\pm}1.03\\ 2.52{\pm}0.12\\ 1.29{\pm}0.16\\ 3.81{\pm}0.27\\ \hline 35.59{\pm}1.03\\ 84.71{\pm}2.64\\ 3.80{\pm}0.21\\ \hline 124.11{\pm}2.22\\ \hline \end{array}$	$\begin{array}{c} 6.79 \pm 1.13 \\ \hline 287.25 \pm 2.29 \\ \hline 15.62 \pm 0.72 \\ \hline 1.74 \pm 0.05 \\ 0.61 \pm 0.04 \\ \hline 2.35 \pm 0.05 \\ \hline 40.36 \pm 4.05 \\ 41.68 \pm 1.37 \\ 5.61 \pm 0.37 \\ \hline 5.61 \pm 0.57 \\ \hline 87.55 \pm 5.55 \end{array}$
Esters β-Phenylethyl acetate Lactones γ-Caprolactone δ-Decalactone ∑ Lactones Furan derivatives 2-Pentyl-furan Furfural 2-Furanmethanol ∑ Furan derivatives	3.58 ± 0.51 231.68±18.40 13.58±0.82 2.02±0.08 0.91±0.12 2.93±0.17 26.58±1.04 68.78±9.12 3.52±0.13 98.88±10.06	$\begin{array}{c} 3.38{\pm}1.51\\ \underline{219.25{\pm}20.83}\\ \hline 11.36{\pm}0.15\\ \hline 0.81{\pm}0.20\\ \underline{2.54{\pm}0.35}\\ \hline 31.95{\pm}1.25\\ 54.96{\pm}6.25\\ \underline{2.86{\pm}0.08}\\ \underline{89.77{\pm}6.05} \end{array}$	7.94 ± 1.68 288.38 ± 15.67 17.62 ± 0.92 2.14 ± 0.16 1.21 ± 0.13 3.34 ± 0.27 31.30 ± 0.37 75.36 ± 9.63 3.42 ± 0.27 110.08 ± 9.68	$\begin{array}{c} 13.59{\pm}3.00\\ \underline{298.44{\pm}42.52}\\ \hline \\ 21.52{\pm}1.03\\ \hline \\ 2.52{\pm}0.12\\ 1.29{\pm}0.16\\ \hline \\ 3.81{\pm}0.27\\ \hline \\ 35.59{\pm}1.03\\ 84.71{\pm}2.64\\ \hline \\ 3.80{\pm}0.21\\ 124.11{\pm}2.28\\ \end{array}$	$\begin{array}{r} 6.79 \pm 1.13 \\ \hline 287.25 \pm 2.29 \\ \hline 15.62 \pm 0.72 \\ \hline 1.74 \pm 0.05 \\ 0.61 \pm 0.04 \\ \hline 2.35 \pm 0.05 \\ \hline 40.36 \pm 4.05 \\ 41.68 \pm 1.37 \\ 5.61 \pm 0.37 \\ \hline 87.65 \pm 5.55 \end{array}$
Esters β-Phenylethyl acetate Lactones γ-Caprolactone δ-Decalactone ∑ Lactones Furan derivatives 2-Pentyl-furan Furfural 2-Furanmethanol ∑ Furan derivatives	3.58 ± 0.51 231.68±18.40 13.58±0.82 2.02±0.08 0.91±0.12 2.93±0.17 26.58±1.04 68.78±9.12 3.52±0.13 98.88±10.06	$\begin{array}{c} 3.38 \pm 1.51 \\ \underline{219.25 \pm 20.83} \\ 11.36 \pm 0.15 \\ 1.73 \pm 0.15 \\ 0.81 \pm 0.20 \\ 2.54 \pm 0.35 \\ 31.95 \pm 1.25 \\ 54.96 \pm 6.25 \\ 2.86 \pm 0.08 \\ 89.77 \pm 6.05 \\ \end{array}$	7.94 ± 1.68 288.38 ± 15.67 17.62 ± 0.92 2.14 ± 0.16 1.21 ± 0.13 3.34 ± 0.27 31.30 ± 0.37 75.36 ± 9.63 3.42 ± 0.27 110.08 ± 9.68	$13.59\pm3.00298.44\pm42.5221.52\pm1.032.52\pm0.121.29\pm0.163.81\pm0.2735.59\pm1.0384.71\pm2.643.80\pm0.21124.11\pm2.2829.41 - 0.67$	6.79±1.13 287.25±2.29 15.62±0.72 1.74±0.05 0.61±0.04 2.35±0.05 40.36±4.05 41.68±1.37 5.61±0.37 87.65±5.55
Esters β-Phenylethyl acetate Lactones γ-Caprolactone δ-Decalactone ∑ ∑ Lactones Furan derivatives 2-Pentyl-furan Furfural 2-Furan methanol ∑ ∑ Furan derivatives Terpenes Limonene Limonene	3.58 ± 0.51 231.68 ± 18.40 13.58 ± 0.82 2.02 ± 0.08 0.91 ± 0.12 2.93 ± 0.17 26.58 ± 1.04 68.78 ± 9.12 3.52 ± 0.13 98.88 ± 10.06 31.01 ± 0.82	$\begin{array}{c} 3.38 \pm 1.51 \\ \underline{219.25 \pm 20.83} \\ \hline 11.36 \pm 0.15 \\ \hline 1.73 \pm 0.15 \\ 0.81 \pm 0.20 \\ \underline{2.54 \pm 0.35} \\ \hline 31.95 \pm 1.25 \\ 54.96 \pm 6.25 \\ \underline{2.86 \pm 0.08} \\ \underline{89.77 \pm 6.05} \\ \hline 30.80 \pm 2.68 \\ \underline{4.25 \pm 0.55} \end{array}$	7.94 ± 1.68 288.38 ± 15.67 17.62 ± 0.92 2.14 ± 0.16 1.21 ± 0.13 3.34 ± 0.27 31.30 ± 0.37 75.36 ± 9.63 3.42 ± 0.27 110.08 ± 9.68 28.24 ± 1.85 28.24 ± 1.85	$13.59\pm3.00298.44\pm42.5221.52\pm1.032.52\pm0.121.29\pm0.163.81\pm0.2735.59\pm1.0384.71\pm2.643.80\pm0.21124.11\pm2.2828.41\pm0.672.52 - 0.51$	$\begin{array}{r} 6.79 \pm 1.13 \\ \hline 287.25 \pm 2.29 \\ \hline 15.62 \pm 0.72 \\ \hline 1.74 \pm 0.05 \\ 0.61 \pm 0.04 \\ \hline 2.35 \pm 0.05 \\ \hline 40.36 \pm 4.05 \\ 41.68 \pm 1.37 \\ 5.61 \pm 0.37 \\ \hline 87.65 \pm 5.55 \\ \hline 36.67 \pm 1.64 \\ \hline 9.27 = 0.27 \end{array}$
Esters β-Phenylethyl acetate Lactones γ-Caprolactone δ-Decalactone ∑ Δ Lactones Furan derivatives 2-Pentyl-furan Furfural 2-Furanmethanol ∑ Furan derivatives Terpenes Limonene cis-Linalool oxide	3.58 ± 0.51 231.68±18.40 13.58±0.82 2.02±0.08 0.91±0.12 2.93±0.17 26.58±1.04 68.78±9.12 3.52±0.13 98.88±10.06 31.01±0.82 5.77±0.48	$\begin{array}{c} 3.38 \pm 1.51 \\ \underline{219.25 \pm 20.83} \\ \hline 11.36 \pm 0.15 \\ \hline 1.73 \pm 0.15 \\ 0.81 \pm 0.20 \\ \underline{2.54 \pm 0.35} \\ \hline 31.95 \pm 1.25 \\ 54.96 \pm 6.25 \\ \underline{2.86 \pm 0.08} \\ 89.77 \pm 6.05 \\ \hline 30.80 \pm 2.68 \\ \underline{4.36 \pm 0.6} \\ \hline 2.54 \pm 0.5 \\ \hline \end{array}$	$\begin{array}{c} 7.94{\pm}1.68\\ 288.38{\pm}15.67\\ \hline 17.62{\pm}0.92\\ \hline 2.14{\pm}0.16\\ 1.21{\pm}0.13\\ 3.34{\pm}0.27\\ \hline 31.30{\pm}0.37\\ 75.36{\pm}9.63\\ 3.42{\pm}0.27\\ 110.08{\pm}9.68\\ \hline 28.24{\pm}1.85\\ 6.88{\pm}0.47\\ \hline 14.020$	$\begin{array}{c} 13.59{\pm}3.00\\ \underline{298.44{\pm}42.52}\\ \hline \\ 21.52{\pm}1.03\\ \hline \\ 2.52{\pm}0.12\\ 1.29{\pm}0.16\\ \hline \\ 3.81{\pm}0.27\\ \hline \\ 35.59{\pm}1.03\\ 84.71{\pm}2.64\\ \hline \\ 3.80{\pm}0.21\\ 124.11{\pm}2.28\\ \hline \\ 28.41{\pm}0.67\\ 9.50{\pm}0.7\\ \hline \\ \end{array}$	$\begin{array}{c} 6.79 \pm 1.13 \\ \hline 287.25 \pm 2.29 \\ \hline 15.62 \pm 0.72 \\ \hline 1.74 \pm 0.05 \\ 0.61 \pm 0.04 \\ \hline 2.35 \pm 0.05 \\ \hline 40.36 \pm 4.05 \\ 41.68 \pm 1.37 \\ 5.61 \pm 0.37 \\ \hline 87.65 \pm 5.55 \\ \hline 36.67 \pm 1.64 \\ 8.87 \pm 0.77 \\ \hline 1126 + 0$
Esters β-Phenylethyl acetate Lactones γ -Caprolactone δ -Decalactone Σ Σ Lactones Furan derivatives 2-Pentyl-furan Furfural 2-Furan derivatives Furan derivatives Z-Furan derivatives Terpenes Limonene cis-Linalool oxide Linalool Image: State of the	3.58 ± 0.51 231.68 ± 18.40 13.58 ± 0.82 2.02 ± 0.08 0.91 ± 0.12 2.93 ± 0.17 26.58 ± 1.04 68.78 ± 9.12 3.52 ± 0.13 98.88 ± 10.06 31.01 ± 0.82 5.77 ± 0.48 8.61 ± 0.82	$\begin{array}{c} 3.38 \pm 1.51 \\ \underline{219.25 \pm 20.83} \\ \hline 11.36 \pm 0.15 \\ \hline 1.73 \pm 0.15 \\ 0.81 \pm 0.20 \\ \underline{2.54 \pm 0.35} \\ \hline 31.95 \pm 1.25 \\ 54.96 \pm 6.25 \\ \underline{2.86 \pm 0.08} \\ 89.77 \pm 6.05 \\ \hline 30.80 \pm 2.68 \\ 4.36 \pm 0.69 \\ 7.62 \pm 0.29 \\ \hline \end{array}$	$\begin{array}{r} 7.94{\pm}1.68\\ 288.38{\pm}15.67\\ \hline 17.62{\pm}0.92\\ 2.14{\pm}0.16\\ 1.21{\pm}0.13\\ 3.34{\pm}0.27\\ \hline 31.30{\pm}0.37\\ 75.36{\pm}9.63\\ 3.42{\pm}0.27\\ 110.08{\pm}9.68\\ \hline 28.24{\pm}1.85\\ 6.88{\pm}0.47\\ 11.03{\pm}0.42\\ \end{array}$	$\begin{array}{c} 13.59{\pm}3.00\\ \underline{298.44{\pm}42.52}\\ \hline\\ 21.52{\pm}1.03\\ \hline\\ 2.52{\pm}0.12\\ 1.29{\pm}0.16\\ \hline\\ 3.81{\pm}0.27\\ \hline\\ 35.59{\pm}1.03\\ 84.71{\pm}2.64\\ \hline\\ 3.80{\pm}0.21\\ \underline{124.11{\pm}2.28}\\ \hline\\ 28.41{\pm}0.67\\ 9.50{\pm}0.74\\ 13.61{\pm}0.46\\ \hline\end{array}$	$\begin{array}{c} 6.79 \pm 1.13\\ \underline{287.25 \pm 2.29}\\ 15.62 \pm 0.72\\ 1.74 \pm 0.05\\ 0.61 \pm 0.04\\ \underline{2.35 \pm 0.05}\\ 40.36 \pm 4.05\\ 41.68 \pm 1.37\\ 5.61 \pm 0.37\\ \underline{87.65 \pm 5.55}\\ 36.67 \pm 1.64\\ \underline{8.87 \pm 0.77}\\ 14.26 \pm 0.66\\ \end{array}$
Esters β-Phenylethyl acetate Lactones γ-Caprolactone δ-Decalactone ∑ Lactones Furan derivatives 2-Pentyl-furan Furfural 2-Furanmethanol ∑ Furan derivatives Terpenes Limonene cis-Linalool oxide Linalool α-Terpineol	3.58 ± 0.51 231.68±18.40 13.58±0.82 2.02±0.08 0.91±0.12 2.93±0.17 26.58±1.04 68.78±9.12 3.52±0.13 98.88±10.06 31.01±0.82 5.77±0.48 8.61±0.82 4.40±0.11	$\begin{array}{c} 3.38 \pm 1.51 \\ \underline{219.25 \pm 20.83} \\ \hline 11.36 \pm 0.15 \\ \hline 0.81 \pm 0.20 \\ \underline{2.54 \pm 0.35} \\ \hline 31.95 \pm 1.25 \\ 54.96 \pm 6.25 \\ \underline{2.86 \pm 0.08} \\ \underline{89.77 \pm 6.05} \\ \hline 30.80 \pm 2.68 \\ \underline{4.36 \pm 0.69} \\ 7.62 \pm 0.29 \\ \underline{3.68 \pm 0.20} \\ \hline \end{array}$	$\begin{array}{r} 7.94{\pm}1.68\\ 288.38{\pm}15.67\\ \hline 17.62{\pm}0.92\\ 2.14{\pm}0.16\\ 1.21{\pm}0.13\\ 3.34{\pm}0.27\\ \hline 31.30{\pm}0.37\\ 75.36{\pm}9.63\\ 3.42{\pm}0.27\\ 110.08{\pm}9.68\\ \hline 28.24{\pm}1.85\\ 6.88{\pm}0.47\\ 11.03{\pm}0.42\\ 5.58{\pm}0.72\\ \hline \end{array}$	$\begin{array}{c} 13.59{\pm}3.00\\ \underline{298.44{\pm}42.52}\\ \hline\\ 21.52{\pm}1.03\\ \hline\\ 2.52{\pm}0.12\\ 1.29{\pm}0.16\\ \hline\\ 3.81{\pm}0.27\\ \hline\\ 35.59{\pm}1.03\\ 84.71{\pm}2.64\\ \hline\\ 3.80{\pm}0.21\\ \underline{124.11{\pm}2.28}\\ \hline\\ 28.41{\pm}0.67\\ 9.50{\pm}0.74\\ 13.61{\pm}0.46\\ \hline\\ 6.96{\pm}0.71\\ \hline\end{array}$	$\begin{array}{c} 6.79{\pm}1.13\\ \underline{287.25{\pm}2.29}\\ 15.62{\pm}0.72\\ 1.74{\pm}0.05\\ 0.61{\pm}0.04\\ \underline{2.35{\pm}0.05}\\ 40.36{\pm}4.05\\ 41.68{\pm}1.37\\ 5.61{\pm}0.37\\ \underline{87.65{\pm}5.55}\\ 36.67{\pm}1.64\\ \underline{8.87{\pm}0.77}\\ 14.26{\pm}0.66\\ \underline{5.11{\pm}0.05}\\ \end{array}$

			Deve		
Chardonnay	0	1	Days 7	14	21
Vatorias	0	1	1	14	21
2 Pentanone	21.0 ± 1.11	22 37+1 85	26 80+2 2	22 77+2 68	67 02+3 28
2 3-Pentanedione	$174\ 17+15\ 86$	17645+445	20.07 ± 2.2 204 49+23 85	162 18+17 65	137 78+6 87
2,5 Tentanone	200 9+4 25	242 35+16 84	204.49 ± 23.03 229.92+11.28	203 64+24 36	678 19+28 18
Acetoin	433 38+23 28	361 8+22 37	35635+1959	289 78+10 99	391.27 ± 10.47
6-Methyl-5-hepten-2-one	2.98+0.28	2.63+0.16	2.29+0.43	2.52+0.16	2,49+0.07
3-Hydroxy-2-pentanone	25.81+1.23	29.92 ± 1.99	31.48 ± 1.42	25.83+1.08	45.06+1.76
2-Nonanone	46.92+2.54	53.83+3.58	51.46+3.26	46.38+1.95	91.68+1.86
6-Methyl-3.5-heptadien-2-one	0.55 ± 0.01	0.59 ± 0.04	0.6±0.03	$0.59\pm.01$	0.67±0.06
2-Undecanone	6.99±0.23	8.29±0.36	8.38±0.19	7.59±0.2	9.29±0.52
2-Tridecanone	0.73±0.08	0.8±0.04	0.96 ± 0.08	0.67±0.05	0.96±0.12
Σ Ketones	914.32±11.02	899.04 ± 50.88	912.81±61.76	761.96±56.57	1425.31±25.26
Aldhevdes					
Nonanal	6.72±2.18	5.73±0.48	7.27±0.1	2.35±0.13	3.08±0.74
Benzaldehyde	14.2 ± 0.74	15.16±0.81	13.15±0.7	14.73±1.79	8.78±0.15
4-Methyl-benzaldehyde	2.4±0.27	2.2±0.06	2.88±0.19	2.66±0.24	3.38±0.13
Dodecanal	0.36±0.01	0.19 ± 0.05	nd	0.1±0.02	0.34±0.18
\sum Aldheydes	23.69±2.61	23.28±1.34	23.3±0.57	19.84±1.91	15.59±0.54
Alcohols					
Isobutanol	3.27±0.51	2.54 ± 0.39	4.17±0.62	3.25±0.16	5.89±1
1-Pentanol	9.75±0.17	10.53±1.14	7.72±1.72	8.47±1.04	10.6±0.56
3-Methyl-1-butanol	66.71±9.65	52.71 ± 0.82	58.66 ± 9.58	61.48 ± 20.3	129.6±7.99
1-Hexanol	134.19±2.73	136.63±8.06	$121.44{\pm}14.43$	112.36±7.81	135.28±2.19
2-Hexen-1-ol	11.42 ± 1.11	12.92 ± 1.18	13.11±0.82	10.6 ± 0.98	12.55±0.21
1-Octen-3-ol	7.35±1.3	$5.63 \pm .37$	4.93±0.22	6.85 ± 1.2	6.31±0.1
1-Octanol	1.58 ± 0.12	1.64 ± 0.1	1.55 ± 0.1	1.62 ± 0.13	1.72±0.16
1-Nonanol	0.72±0.17	0.78 ± 0.04	1.14 ± 0.06	1.23±0.06	1.55±0.2
Benzyl alcohol	9.02±2.11	6.69 ± 0.28	7.35±0.41	7.39±0.81	8.51±2.1
Phenylethyl alcohol	88.16±7.5	79.21±2.42	90.31±3.09	73.44±8.3	100.12 ± 27.56
1,4-Butanediol	0.37 ± 0.06	0.2 ± 0.02	0.19 ± 0.01	0.12 ± 0.02	0.14 ± 0.14
1-Dodecanol	nd	0.65 ± 0.09	0.69 ± 0.17	0.62 ± 0.19	1.02 ± 0.3
\sum Alcohols	332.55±22.25	310.12±9.11	311.27±23.85	287.43±25.08	413.31±18.42
Acids					
Acetic acid	94.59±4.88	68.71±10.31	77.67±3.88	76.04 ± 5.84	100.91 ± 10.02
Isobutyric acid	4.26±0.13	3.81±0.34	4.01±0.05	2.91±0.47	4.21±0.31
Butanoic acid	42.45±7.99	31.54±2.04	31.69±2.63	29.2±3.31	34.05±2.33
Methacrylic acid	nd	nd	1.7 ± 0.02	nd	1.23±1.95
Pentanoic acid	5.23±0.9	2.68±0.14	4.58±1.15	1.89±0.34	2.51±0.65
Hexanoic acid	95.05±8.77	54.47±1.59	73.47±8.51	58.5±0.9	44.86±15.24
2-Ethyl-hexanoic acid	13.56±2.3	1.36±0.22	1.09±0.03	$0.9/\pm0.08$	2.93±1.56
Heptanoic acid	11.3 ± 0.73	2.66±0.27	2.75±0.34	1.81 ± 0.16	2.06±0.26
Octanoic acid	nd	nd	nd	nd	nd
Nonanoic acid	12.43±4	4.04±0.35	8.88±0.97	2.39±0.2	2.4±0.16
Benzenecarboxylic acid $\sum A = \frac{1}{2}$	5.23 ± 0.78	4.51 ± 0.25	4.64 ± 1.61	5.39±2.65	6./3±4.93
	204.1±29.23	1/3./ð±14.2	210.4/±14.2	179.12±9.39	201.07±31.02
Esters	10.00 + 0.2	10 41 10 26	11.06 0.00	10.22 0.09	10 20 10 52
	10.09±0.2	10.41±0.20	11.00±0.08	10.33±0.98	12.32±2.33
Lactones	2 01 10 44	2 29 10 12	2 52 0 12	2 17 0 12	2 87 10 70
γ-Capiolacione δ Decalacione	2.91±0.44	2.28 ± 0.12 1 24 ± 0.09	2.32 ± 0.12	$2.1/\pm0.13$	2.0/±0./9 1.12±0.27
S Leatones	1.10 ± 0.24	1.24 ± 0.06 2.52±0.10	1.34 ± 0.09 2.86±0.12	0.99 ± 0.00	1.13±0.27
	4.09±0.07	5.52±0.19	3.00±0.13	3.10±0.13	4±1.00
r uran aerivatives	14 36+2 05	20 46+1 94	16 72+1 26	16 64+0 67	0.04+7.12
2-1 cittyi-iutaii Furfural	14.30±3.93	20.40±1.04	10.75 ± 1.30	10.04 ± 0.07 50.65±2.52	7.04±7.13 40.00±0.5
Further al	$0/.05\pm0.02$	74.03±3.3	03.94±4.98	2 87 10 00	49.09±0.5
Σ Furan derivatives	5.01±0.20	3.28±0.13	3.24±0.13	2.0/±0.09	4.34±1.95 62.67±4.9
	03.04±3.04	71.11±1.23	0J.91±0.21	/ 7.10±4.1	02.07±4.0
<i>L</i> imonene	62 61+6 11	30 37+2 14	24 14+1 45	21.07+2.40	27 17+1 14
cis-Linalool ovide	02.01±0.41	$0.3/\pm 2.14$	24.14±1.45 0.87±0.01	21.07 ± 2.49 0.86±0.01	$\frac{2}{11} \pm 1.14$
	0.90 ± 0.08 2.32±0.41	0.91 ± 0.08 1.86±0.07	$0.0/\pm0.01$	0.00 ± 0.01 1 71±0 21	1.11 ± 0.13 2.07±0.29
a-Ternineol	2.32±0.41 0.96+0.03	0.6+0.07	0 50+0 1	0.76 ± 0.11	2.07±0.28 0.76+0.32
Σ Terpenes	66.85 ± 6.71	33 75+7 37	27 35+1 12	24 4+2 21	31 1+0.62
	00.05 ± 0.71	JJ.1J_4.JZ	21.33±1.42	∠ -,.+ ⊥∠.∠1	J1.1±0.02

D' / '			Days		
Pinot noir	0	1	7	14	21
Ketones					
2-Pentanone	28.84±2.17	22.64±1.63	37.55±2.93	30.58±0.67	46.38±3.79
2,3-Pentanedione	213.37±13.23	174.54 ± 3.09	220.45 ± 36.44	228.16±5.74	169.34±19.14
2-Heptanone	231.10±6.59	233.45±23.16	234.25±13.66	235.49±3.54	435.23±18.55
Acetoin	335.59 ± 5.60	357.84±21.54	392.83±27.99	368.68±5.72	332.46±19.45
6-Methyl-5-hepten-2-one	2.38±0.13	1.51±0.17	1.61±0.19	1.81 ± 0.07	2.62±0.33
3-Hydroxy-2-pentanone	20.93±0.79	29.45±1.84	30.66±1.30	30.75±1.22	35.06±0.05
2-Nonanone	48.23±0.05	52.73±3.10	52.09±0.22	53.83±1.15	63.75±3.25
6-Methyl-3.5-heptadien-2-one	0.34 ± 0.01	0.57±0.02	0.29±0.05	0.38±0.03	0.36±0.04
2-Undecanone	6.38+0.06	8.18+0.32	7.47+1.11	8.60+0.37	6.78 ± 0.14
2-Tridecanone	0.64 ± 0.01	0.80+0.02	0.89+0.22	0.95 ± 0.08	0.66+0.02
Σ Ketones	887.81+28.12	881.72+54.39	978.09+17.87	959.24+5.74	1092.65+14.77
Aldhevdes			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Nonanal	3 19+0 04	2 64+0 14	7 03+5 32	2 17+0 06	1 75+0 11
Benzaldehyde	8 94+0 39	14 88+0 66	9.09+1.60	8 90+0 08	8 24+1 24
4-Methyl-benzaldehyde	245+0.05	2 15+0 29	1.87 ± 0.23	3 67+0 80	2.78 ± 0.59
Dodecanal	0.34 ± 0.05	0.27 ± 0.19	0.33 ± 0.05	0.60 ± 0.02	0.46 ± 0.11
Σ Aldhevdes	14 92+0 53	19 94+0 31	18 31+6 74	1534+079	13 23+1 83
	11.72_0.55	19.9120.91	10.01±0.71	15.5120.77	15.25 11.05
Isobutanol	0.92+0.85	1.02+0.46	0.75+0.65	1.26+0.20	1.06+1.01
1-Pentanol	8 20+0 74	6 69+3 13	5 83+1 63	5 67+0 17	7 80+0 83
3-Methyl-1-butanol	41 26+5 75	18 84+3 23	31 38+2 60	22 10+4 27	44 87+7 13
1-Heyanol	38 60+3 11	134 15+6 07	20 23+3 86	22.10 ± 4.27 25 77 ± 0.12	46 80+5 66
2-Heven-1-ol	3 44+0 52	1275 ± 0.97	27.23 ± 3.00 2 54+0 24	2 63+0 06	3.73 ± 0.17
1 Octen 3 ol	5.44 ± 0.52 6 35±1 25	553 ± 0.34	2.34 ± 0.24 7.06±4.04	2.03 ± 0.00	5.75 ± 0.17 6.18±0.80
1 Octorol	0.35 ± 1.25	1.53 ± 0.04	0.07 ± 0.28	4.07 ± 0.37	0.18 ± 0.00
1 Nonanol	0.90 ± 0.07	0.46 ± 0.09	0.97 ± 0.38	0.80 ± 0.11	0.99 ± 0.03
Pangul alashol	0.41 ± 0.01 5 52±0 21	0.40 ± 0.01	0.00 ± 0.08	0.90 ± 0.08	0.93 ± 0.08 5 21±0.00
Denzyl alcohol Dhanylathyl alaohol	5.52 ± 0.21 0.58±0.74	0.39 ± 0.21	9.13 ± 4.19 10.51 ±2.78	9.01 ± 0.07 14.42 ± 1.05	5.51 ± 0.09
1 4 Dutonodial	9.36 ± 0.74	76.92 ± 2.33	10.31 ± 2.78	14.42 ± 1.03	0.01 ± 0.23
1,4-Dutalledioi	0.32 ± 0.08 0.24±0.23	0.19 ± 0.01	0.23 ± 0.09	0.18 ± 0.01 0.10±0.02	0.20 ± 0.03
Σ Alashala	0.24 ± 0.23	0.40 ± 0.12	0.22 ± 0.00	0.19 ± 0.03	0.33 ± 0.04
	113.79±3.42	207.21±3.08	90.J4±19.90	87.73±0.04	127.19±13.38
Actus A actia acid	94 07 6 56	69 10 10 20	112 22 10 99	161 22 9 06	117 58 2 00
	64.07 ± 0.30	2.74 ± 0.22	112.52±19.66	104.22±0.90	117.38±2.09
Isobutyric acid	1.70 ± 0.21	3.74 ± 0.32	1.33±0.09	$1.8/\pm0.08$	1.78 ± 0.04
Motheomilie eaid	52.14±0.98	50.10±5.45	32.11±2.44	43.00 ± 1.40	0.61 ± 0.12
Dentencia acid	1 25 1 0 61		10 0 28	0.79 ± 0.19	0.01 ± 0.12
	4.55 ± 0.01	2.87±0.27	3.19 ± 0.38	3.30 ± 0.14	4.11 ± 0.40
2 Ethel here a id	50.0/±4.54	55.87 ± 1.24	85.55±19.44	80.80±1.33	00.45 ± 2.91
2-Ethyl-nexanoic acid	15./5±1.0/	5.03 ± 7.01	15.12±0.20	10.82±4.08	25.59 ± 1.18
Heptanoic acid	8.12±0.69	7.01±1.29	11.41 ± 1.33	$11.2/\pm 2.22$	15.03±1.17
Octanoic acid	nd	nd	nd	nd	nd
Nonanoic acid	5.49 ± 0.07	4.82 ± 1.19	13.20 ± 7.16	15.81±1.31	10.41 ± 1.08
Benzenecarboxylic acid $\sum A = \frac{1}{2}$	2.42 ± 0.89	1.65±0.24	1.98±0.19	$10.73\pm.03$	3.11±0.19
<u>></u> Acids	210.70±0.78	1//.80±8.45	270.20±41.93	551.55±9.24	277.07±8.54
Esters	0.54.0.00	0.40.0.01	0.45.0.00	0.40.0.02	0.54.0.03
p-Phenylethyl acetate	0.56±0.03	0.48 ± 0.01	0.45±0.09	0.48±0.03	0.56±0.02
Lactones	0.57 0.02	0.40.0.01	1.1.6.0.62	0.01.0.00	0.54.0.01
γ-Caprolactone	0.57 ± 0.02	0.49 ± 0.01	1.16±0.62	0.81±0.09	0.56 ± 0.01
o-Decalactone	0.66±0.07	0.60±0.07	1.26±0.36	1.42 ± 0.02	0.45 ± 0.04
<u>></u> Lactones	1.24±0.08	1.09±0.07	2.42±0.93	2.23±0.10	1.02 ± 0.03
Furan derivatives		0.0-		0.40.40	
2-Pentyl-turan	11.01±1.94	8.06±1.65	11.29±0.99	9.10±1.06	14.33±2.11
Furfural	98.84±3.20	73.11±5.11	82.26±12.88	82.08±0.92	82.09±13.22
2-Furanmethanol	2.59±0.05	3.08±0.27	3.06±0.72	3.62±0.14	3.64±0.30
\sum Furan derivatives	112.45 ± 5.18	84.25±5.36	96.61±13.26	94.80±0.28	100.05 ± 15.02
Terpenes					
Limonene	28.60 ± 3.26	29.83±1.98	42.39 ± 12.67	28.39 ± 1.33	26.38±1.60
cis-Linalool oxide	1.04 ± 0.07	0.91 ± 0.08	0.89 ± 0.11	1.00 ± 0.07	1.11 ± 0.14
Linalool	0.45 ± 0.03	1.85 ± 0.06	0.60 ± 0.24	0.49 ± 0.04	0.46 ± 0.05
α-Terpineol	0.95±0.13	0.65 ± 0.06	1.01 ± 0.29	1.55 ± 0.17	1.02 ± 0.02
\sum Terpenes	31.03±3.06	33.24±2.09	44.89±13.31	31.43±1.61	28.97±1.68

771