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Abstract 12	
  

The new frontiers of microbial ecology are concerned pertain to what microbes are do in a complex 13	
  

ecosystem, such as food, and how the environmental conditions (e.g changes in the process 14	
  

parameters, storage temperature, the addition of a starter culture and changes in ingredients) can 15	
  

affect the development and functioning of microbiota. A multi-omics approach can help researchers 16	
  

to obtain an unprecedented insight into the mechanisms that can affect the final characteristics of 17	
  

products, in term of organoleptic proprieties, as well as safety. 18	
  

 19	
  

Highlights 20	
  

• Bioinformatics tools have been developed to provide information on microbe diversity 21	
  

• Shotgun metagenomics is a promising approach to discover the functions of microbiota 22	
  

• Data generated through a multi-omics approach can improve the knowledge on  what 23	
  

happens in food 24	
  

 25	
  

 26	
  



Introduction 27	
  

Next-generation sequencing and metagenomics were first used in microbial ecology in the second 28	
  

decade of the 2000s. At present, a search on the ISI Web of Knowledge on the topics 29	
  

“metagenomics” and “food” shows the presence of 660 research papers, with less than 90 per year 30	
  

before 2013, a peak of 132 in 2015 and 109 in the first 10 months of 2016. This exponential 31	
  

increase in studies is due to the greater availability of sequencing centers with competitive prices, 32	
  

along with a growing population of scientists with a good background in bioinformatics and 33	
  

biostatistics, as well as the development of online platforms that allow  a huge amount of data  to be 34	
  

analyzed, even by inexperienced researchers. The term metagenomics is a miscellaneous term that 35	
  

is often misused by many researchers. Metagenomics is the appropriate term for a shotgun approach 36	
  

in which all the genome contents from the matrix are sequenced (host, gene fragments of taxonomic 37	
  

interest, as well as functional genes); instead, if a taxonomic region is massively sequenced (16S, 38	
  

ITS or 26S), the term that should  be used is amplicon based sequencing. The first decision that a 39	
  

researcher has to make is whether to adopt global or live high throughput sequencing (HTS).  This 40	
  

is the crucial issue that has to be resolved before starting an experiment, since the use of DNA or 41	
  

rRNA as targets can lead to both advantages and disadvantages. DNA is more stable and easier to 42	
  

extract and manipulate, but a DNA experiment  displays the global microbial population, including 43	
  

DNA from dead and damaged cells, as well as from live cells, with the consequence that a 44	
  

researcher will not be able to discern whether the microbiota  is still alive and active or dead at a 45	
  

specific sampling point. The decision to use RNA as a target eliminates this bias, because RNA, 46	
  

after cell lysis, is less stable than DNA, and allows the analysis to be focused only on live and 47	
  

active microbiota [1]. On the other hand, the disadvantage of using rRNA as a target is the 48	
  

amplification of ribosomal genes, due to the operon copy number, which varies widely across the 49	
  

taxa, and can even distort the  quantitative diversity estimates [2]. Another possible way of 50	
  

detecting live populations is through the use of the  DNA of ethidium monoazide (EMA) and 51	
  

propidium monoazide (PMA), which can prevent  the amplification of DNA from dead cells. 52	
  



Increased data analysis skills can allow the study of microbial composition (amplicon target 53	
  

sequencing), gene content (meta-genomics), gene function (meta-transcriptomics), functional 54	
  

activity (meta-proteomics) and metabolites (meta-metabolomics) to be joined together. The huge 55	
  

amount of data generated through a multi-omics approach can improve the knowledge on what 56	
  

really happens in a complex process, such as in the  food fermentation process, or in general during 57	
  

a process that involves microbes.  58	
  

 59	
  

High-throughput amplicon target sequencing. 60	
  

The first and most frequently applied HTS technique is the application of amplicon target 61	
  

sequencing to the microbial composition of a food matrix in order to study the microbiota (targeting 62	
  

the 16S gene) or the mycobiome (targeting the ITS or the 26S gene) of the food. The flurry of 63	
  

research has been witnessed over the past couple of years aimed at estimating the microbial 64	
  

diversity in different dairy ecosystems using 16S DNA as the target. Several studies on food have 65	
  

clearly shown the presence of several contaminant taxa, probably originating from the environment, 66	
  

which can play a role in the decay of food quality.  However, the main objective of all of these 67	
  

studies has been to assess the microbial structure of the analyzed product in order to find a 68	
  

correlation between the external perturbations (e.g. changes in the process, ingredients and 69	
  

sampling point) and the evolution of the microbial composition. Table 1 reports an extensive, 70	
  

although not complete, list of these studies.  71	
  

In the targeted amplicon technique, the most common approach adopted to study the mycobiome  is 72	
  

that of  amplifying the fungal “internal transcribed spacer” (ITS) regions. Since these ITS regions 73	
  

are not part of the conserved transcribed regions of the structural ribosomal RNAs, they are highly 74	
  

divergent between fungi, and are often sufficiently different to allow the fungi to be classified at 75	
  

species level. The locus in fungi is generally duplicated 100–200 times, thus caution must be used 76	
  

when trying to derive quantitative comparisons between various species in mixed populations 77	
  

through this approach. First, unlike bacterial 16S amplicons, fungal ITS sequences from different 78	
  



species can differ to a great extent in size and sequence content [28]. ITS fragments generally vary 79	
  

in length from between 100 and 550 base pairs, and it is not yet clear how the variable lengths 80	
  

affect the recovery of sequences through the various steps of sequencing on high-throughput 81	
  

platforms. In addition, there is no well-established database of ITS sequences. The publicly 82	
  

available repositories of fungal sequences are replete with redundant sequences containing 83	
  

incomplete and/or incorrect taxonomic assignments [29]. Most fungi show high interspecific 84	
  

variability in the variable D1/D2 domain of large subunit (26S) ribosomal DNA [30], and 85	
  

sequencing appears most robust because strain comparisons can easily be made. Recent studies 86	
  

[11,29-32] have indicated that the use of the D1/D2 region of the 26S rRNA gene, using NL1 87	
  

primers to investigate the fungal distribution in the samples, appears to be the most robust approach. 88	
  

However, more work still needs to be done to implement and make a database, such as Greengenes, 89	
  

available for 16S. 90	
  

Only a few papers have been aimed at understanding what the microbiota really does in a food 91	
  

matrix by coupling HTS with other techniques, thus representing complete and comprehensive 92	
  

studies. Interesting results have been obtained from these studies, and they clearly show that only a 93	
  

few taxa  really play  important roles during the food process, and that it is only by coupling 94	
  

different techniques that it is  possible to study  complex food ecosystems. In addition, one of the 95	
  

important questions that need to be addressed, once the microbiota composition has been evaluated, 96	
  

is how this microbiota (in most cases a few taxa) can affect the final characteristics of the products. 97	
  

One possible approach is to couple the HTS-amplicon based approach with metabolomics (both 98	
  

targeted and untargeted) to create a tool that can be used to identify the potential candidate 99	
  

metabolites (biomarkers) related to specific taxa [33]. 100	
  

 101	
  

Bioinformatic tools to translate sequences into data for interpretation purposes 102	
  

Recently, several tools have been developed to use the data from amplicon base sequencing as input 103	
  

and to analyze these data  so as to provide information on the diversity of the  microbes. Network 104	
  



analysis [34!!] has emerged as an important tool that can be used to easily observe the structure and 105	
  

dynamics of microbes, from an interactive point of view of the microbiota distribution, which can 106	
  

also be used for food process development. Gephi or Cytoscape software can help scientists to 107	
  

visualize data and to easily extract information about the development or the interaction of the 108	
  

microbiota in the samples. Foodmicrobionet (http://www.foodmicrobionet.org/fmbn1_0_3web/) is a 109	
  

recently developed application that collects data from multiple food-based studies with the aim of 110	
  

allowing an easy and visual-effective comparison of one’s own samples with several others from 111	
  

the same food environment [34!!]. 112	
  

Amplicon-based sequencing is a key tool for studies on microbial communities, but does not 113	
  

provide direct evidence on a community’s functional capabilities. An easy way of getting an idea of 114	
  

the potential function of the microbial community is to use a computational approach to predict the 115	
  

functional composition of a metagenome, using marker gene data and a database of reference 116	
  

genomes. PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved 117	
  

states) shows that the phylogenetic information contained in 16S marker gene sequences is 118	
  

sufficiently well correlated to the genomic content to provide an accurate prediction of the gene 119	
  

repertoires, associated with their microbiota [35]. The main application of this tool is to 120	
  

environmental samples, however, in food associated studies, the tool has been found to be  able to 121	
  

find correlations among taxa and metabolic functions associated with spoilage [5,7]. 122	
  

Another promising NGS data analysis method relies on the use of oligotyping, a novel supervised 123	
  

computational method that can elucidate concealed diversity from within the final operational units 124	
  

of classification or clustering approaches. Unlike clustering methods, which compare all the 125	
  

positions in sequence reads to assess similarity, oligotyping utilizes the nucleotide positions that 126	
  

have been identified as the most information-rich, and allows resolution at a species level or even 127	
  

below [36]. Till now, only human-based and environmental studies have used this tool to identify  128	
  

sub-OTU level differences across samples [37], or to track changes in specific populations across 129	
  

seasons and geography [38]. However, this tool can also be easily applied to food based studies in 130	
  



order to ascertain an association between an oligotype and a process, or to have a better idea of the 131	
  

distribution of a specific taxon  in a food-based system.  132	
  

 133	
  

Who is there and what are they doing? 134	
  

The shotgun metagenomic approach (DNA-seq or RNA-seq) is a valuable approach that is applied 135	
  

extensively to environmental microbiology, but which is also of increasing interest in food 136	
  

microbiology. The main purpose of this technique is to obtain, at the same time, information about 137	
  

the microbe composition and the gene content without any PCR bias. Interest in the shotgun RNA-138	
  

seq approach, applied to food matrix, is growing, due to its ability to discover the functions of 139	
  

microbes during a food process. This technique has recently been applied to cheese matrices in 140	
  

order to find differences in gene expression associated with a particular ripening time [39], to select 141	
  

biological markers in order to improve cheese quality assessment [40], or just to assess the 142	
  

microbial physiology during cheese manufacturing [41,42]. The main problem of using RNA-seq 143	
  

alone is the lack of availability of genome sequences to map the reads, and the need to couple them 144	
  

to DNA-seq data and to the amplicon-based HTS data, which results in an increase in the cost of 145	
  

sequencing. The use of the shotgun DNA-seq approach is interesting, because it provides higher-146	
  

resolution taxonomic information than 16S rRNA sequencing and can profile hundreds of 147	
  

uncharacterized species, especially those present in low abundances, and at the same time obtain 148	
  

information about the gene content from a global point of view. The main application in food 149	
  

concerns the possibility of detecting foodborne pathogens in a food matrix [43,44], or of 150	
  

understanding the change in the gene content during a process [45-48]. A possible application of 151	
  

DNA-seq concerns the possibility of performing a de novo extraction of strains from metagenomes. 152	
  

Pangenome [49] is used extensively in epidemiology studies with the aim of analyzing strain-153	
  

specific gene sets, and of providing a comprehensive view of the functional and pathogenic 154	
  

potential of the organisms. When reference genomes are included in the analysis, it is also possible 155	
  

to compare different strains or to identify new ones. This tool is promising  for food ecologists, and 156	
  



can easily be applied to  food systems in a variety of ways, such as the selection of species/strains 157	
  

for starter cultures, or the discovery of possible associations between a specific strain and a process 158	
  

point. The increase in scientists’ bioinformatic skills, the availability of online tools to analyze data 159	
  

(e.g. MG-RAST, Galaxy) and the increase in the  number of pipeline applications, such as 160	
  

PanPhlAn [50] or Anvio’s [51],  all allow the huge amount of data produced with/through the 161	
  

shotgun metagenomic approach to be analyzed. 162	
  

 163	
  

Multi-Omics Approach 164	
  

Most of the studies based on NGS just give a partial representation of the food-based ecosystem, 165	
  

because only one of the techniques is applied, and a final remark, such as “…needs further study 166	
  

…”, is often added. In the authors’ opinion, this is probably due to the cost of the experiment or the 167	
  

need for different specialties, which are generally lacking in a single research unit. Only a few 168	
  

examples that combine different omics approaches have been found for food. Dugat-Bony et al. 169	
  

have recently shown an example in which data from metagenomic, metatranscriptomic and 170	
  

biochemical analyses have been combined to obtain  a complete view of what really happens during 171	
  

the process [42!!].  De Filippis et al. [39!!] have also clearly shown that coupling 172	
  

metatranscriptomic and metabolome data is effective in discovering the functional diversity of 173	
  

cheese microbiota  affected by different ripening conditions. Coupling the genetic potential and 174	
  

final phenotype to, for example, metabolomics and metaproteomics, which is also called 175	
  

proteogenomics [52], can offer the possibility of resolving the main functional components that 176	
  

drive the function of the microbial ecosystem [53]. Proteogenomics can in particular offer the 177	
  

possibility of exploring the microbial function, although metagenomics analysis can detect the 178	
  

presence of different bacterial species and genes, metaproteomics can/is able to provide information 179	
  

on the most representative metabolic pathways that are active during the food process [54].  180	
  

 181	
  

 182	
  



Conclusion 183	
  

At the moment, several tools are available to help one really understand what happens in a  food-184	
  

based system. Unfortunately, only a few examples of multi-omics approaches are available in the 185	
  

literature and these approaches need to be implemented to obtain a better understanding of  food 186	
  

microbial ecosystems.  However, this approach also suffers from certain limitations,  due to its  187	
  

relatively high cost and the need for specific bioinformatics and biostatistics skills for the data 188	
  

analysis. 189	
  

  190	
  



Table 1 Amplicon target sequencing studies on different food matrices 191	
  
 192	
  

Target  Short description Food matrix Reference 

16S DNA 
Bacterial diversity of Salame Piacentino 
PDO during ripening Meat [3] 

16S RNA (cDNA) Piedmontese fermented meat during ripening Meat [4] 

16S RNA (cDNA) 
Beef burger (controls or with added 
preservatives, nisin +EDTA) vacuum packed Meat [5] 

16S DNA Vacuum-packaged, cooked sausage Meat [6] 
16S DNA Fresh beef and pork cuts Meat [7] 
16S DNA Fresh and spoiled meat and seafood samples Meat/fish [8] 

16S DNA 
Chicha, a maize-based fermented beverage 
from Argentina Fermented beverages [9] 

16S DNA French organic sourdoughs Doughs [10] 
16S RNA (cDNA)/16S 
DNA 

Olive surfaces and brine during spontaneous 
and inoculated fermentation  Vegetables [11!] 

16S RNA (cDNA) 
Wheat flour grown under organic and 
conventional farming conditions Doughs [12!] 

16S DNA/26S DNA 
Milk kefir grains collected in different 
Italian regions Fermented beverages [13] 

16S DNA/ITS DNA 
Samples from spontaneous ‘Vino Santo 
Trentino’ fermentation Fermented beverages [14] 

16S DNA 
Microbiota of Belgian white pudding after 
refrigerate storage Meat [15] 

16S DNA 
Rind and core microbiota of Caciotta and 
Caciocavallo cheese Dairy and fermented milks [16] 

16S DNA 

Mozzarella cheese made from cow's milk 
and produced with different acidification 
methods Dairy and fermented milks [17] 

16S DNA/18S DNA 
Naturally fermented cow’s milk collected 
from Mongol-ethnic families Dairy and fermented milks [18] 

16S DNA Pico cheese made from raw cow milk Dairy and fermented milks [19] 
16S DNA Spoiled hard cheeses during ripening Dairy and fermented milks [20] 
16S DNA Brine-salted continental-type cheese  Dairy and fermented milks [21] 

16S DNA 
Poro cheeses manufactured with different 
milk  Dairy and fermented milks [22] 

16S DNA 
Herve cheeses from both raw and 
pasteurized milk Dairy and fermented milks [23] 

16S RNA (cDNA) 
Piedmont hard cheese made from raw milk: 
milk, curd and cheese throughout ripening Dairy and fermented milks [24] 

16S RNA (cDNA) 
Milk, curd and Caciocavallo cheese during 
ripening Dairy and fermented milks [25!] 

16S RNA (cDNA) 

Milk (from different lactation stages), curd 
and Fontina cheese from three different 
dairies Dairy and fermented milks [26] 

16S DNA/18S DNA Fermentation of Pu-erh tea  Fermented beverages [27!!] 



  193	
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