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Abstract  

Caffeine photosensitized degradation has been studied in the presence of bio-based materials derived from urban biowaste 

after aerobic ageing. A peculiar fraction (namely BBSs), soluble in all the pH range, has been used as photosensitizing 

agent. Several caffeine photodegradation tests have been performed and positive results have been obtained in the 

presence of BBSs and H2O2, without and with additional Fe(II) (photo-Fenton-like process). Moreover hybrids magnetite-

BBSs nanoparticles have been synthesized and characterized, in order to improve the sensitizer recovery and re-use after 

the caffeine degradation. In the presence of such nanoparticles and H2O2 and Fe(II), the complete caffeine degradation 

has been attained in very short time. Both homogeneous and heterogeneous processes were run at pH = 5, milder condition 

compared to the classic photo-Fenton process. 
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Introduction. 

In recent years the organic fraction of urban waste (urban bio-waste, UBW) has attracted the attention of scientists as well 

as Institutions and policy makers, driven by the need of reducing society climate footprint and other environmental 

burdens, of achieving a more secure supply of resources and of boosting the bio economy (O’Callaghan 2016 and 

references therein). UBW can indeed be considered not only as a possible source of energy and/or fuel, rather as feedstock 

for the production of chemicals, inside the so-called biorefinery, a facility that integrates physical, chemical, biochemical 

and thermochemical processes to efficiently convert biomass feedstock. In this respect, biorefinery allows the valorization 

of bio-waste beyond energy applications.(Satchatippavarn et al. 2016; Gonzalez-García et al. 2016; Girotto et al. 2015). 

The feasibility of bio-waste upgrading has been investigated through several European projects (Biochemenergy, Biocore-

europe, biowaste4sp, eurobioref). Among different approaches, in the present work we focused on waste-derived bio-

based substances isolated from UBW, anaerobically and/or aerobically treated, following the findings of Montoneri et al. 

(Montoneri et al. 2011; Montoneri et al. 2013). They isolated several bio-based substances (hereinafter BBS) and 

characterized them under structural and physico-chemical point of view, evidencing the  similarity between BBS and soil 

humic substances (Montoneri et al. 2011). Basically, BBS have been described as supramolecular aggregates with a 

complex lignin-derived structure containing several functionalities (namely, acid and basic functional groups bonded to 

aromatic and aliphatic chains); moreover the presence of both hydrophilic and hydrophobic moieties confers to BBS 

amphiphilic properties. Figure 1 is a schematic representation of the BBS isolation process and of the state of the art 

concerning their applications.  
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Among the wide range of BBS applications, the “waste for cleaning waste” approach has deserved great attention (Avetta 

et al. 2013). It consists in the use of BBS as chemical auxiliaries to drive photochemical degradation of pollutants. Actually 

it has been already demonstrated the capability of BBS to sensitize the photodegradation of phenols, azo-dyes and 

emerging pollutants through different mechanisms: i) direct sensitization, upon UV-VIS irradiation, by means of reactive 

oxygenated species production or excited triplet state formation; ii) auxiliaries in mild photo-Fenton like processes 

(Canonica et al. 1995; Wenk et al. 2011; Bianco Prevot et al. 2011; Gomis et al. 2015; Carlos et al. 2012). 

Recently, attention has been paid to the heterogeneization of the BBS, by synthesizing hybrid magnetite-BBS 

nanoparticles (Magnacca et al. 2014). Magnetite (Fe3O4) nanoparticles represent promising candidates as catalysts for 

advanced oxidation processes (AOP) due to their benign nature and low-cost; furthermore, their properties can be tailored 

according to their purpose. Finally, the nanoparticles surface can be functionalized with a wide variety of non-toxic 

materials containing (photo)active groups that act both as stabilizers against the magnetite oxidation and also as catalysts 

(Nadejde et al. 2015; Nadejde et al. 2015a). In addition magnetite-organic hybrid materials are easy to be recovered from 

the solutions after their purification treatment (Munoz et al. 2015).  

In the present work, a peculiar BBS fraction (namely BBSs) has been studied as photosensitizing agent; BBSs is soluble 

in all the pH range, whereas BBS typically precipitate at pH lower than about 3; under the solubility point of view BBSs 

can be considered more similar to the fulvic fraction of the natural organic matter, while BBS are similar to the humic 

one. Data previously obtained about the BBSs fraction indicated that BBSs aggregates have lower hydrodynamic radius 

than BBS ones, reduced aromaticity and higher concentration of carboxylic groups, thus yielding to higher hydrophilicity 

(Avetta et al. 2015).  

The attention has been focused on the application of BBSs to the photodegradation of caffeine, chosen as representative 

compound among the so-called emerging pollutants present in aqueous solution. Caffeine is a psychoactive substance, 

widely consumed either for beverages or for pharmaceuticals and personal care products; it has been detected in natural 

water streams (Metcalfe et al. 2003) over many different countries, being not fully degraded in biological water treatment 

plants. Moreover caffeine has been considered as a chemical marker for surface water pollution (Buerge et al. 2003). 

Caffeine degradation studies are already reported in literature using TiO2 and photo-Fenton approaches under solar 

conditions (Bernabeu et al. 2011; Klamerth et al. 2010; Klamerth et al. 2009; Klamerth et al. 2010a), and the caffeine 

photolysis was also studied in the presence of added fulvic acid (Jacobs et al. 2012). 

BBSs performances have been studied following two different approaches: i) homogeneous degradation process, using 

BBSs aqueous solution; ii) heterogeneous process, using unique hybrid BBSs-magnetite nanoparticles, (hereinafter BBSs-

NPs). This work includes therefore the synthesis and characterization of BBSs-NPs.  

 

Materials and methods 

Reagents 

Caffeine, CH3OH, NaOH, NH4OH and FeCl3 where purchased from Aldrich; CH3CN and HCl were purchased from 

Merck; H2O2, HClO4 and FeSO4x7H2O were purchased from Panreac. All reagents were used without further purification.   

For the preparation of BBSs solution, the starting material called BBS-GC, isolated from urban biowastes sampled from 

the process lines of ACEA Pinerolese Industriale S.p.A. waste treatment plant in Pinerolo (Italy), has been chosen. The 

urban biowaste was obtained in the compost production section, from urban public park trimming and home gardening 

residues aged for more than 180 days (green compost, GC). The process is an advanced system that comprises specific 

technological facilities, developed by ACEA Pinerolese Industriale S.p.A, and under European validation. Isolation of 
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BBS-GC was performed following a previously reported procedure (Nisticò et al. 2015). The BBSs fraction has been 

isolated in solution, after precipitation of the insoluble fraction at pH =1.5 with HCl.  

Hybrid BBSs-NPs have been synthesized following a procedure reported in the literature (Magnacca et al. 2014, Cesano 

et al. 2015). In details, 3.7 g of FeCl3 and 4.17 g of FeSO4x7H2O (molar ratio Fe(III)/Fe(II) = 1.5) were dissolved in 100 

mL of deionized water and heated up to 90°C. Once the temperature was reached, two solutions were added in sequence: 

a) 10 mL of 25 vol.% ammonium hydroxide, and b) 50 mL of a previously prepared BBSs aqueous solution. The mixture 

was mechanically stirred at 90°C for 30 min and then cooled down to room temperature. In this way a dispersion of BBSs-

NPs has been directly obtained in a one-step process by co-precipitation method. Such dark-brown materials were washed 

twice with deionized water, deposited onto glass Petri dishes, and oven-dried at 80°C overnight.  

Instrumental aspects 

Fourier transform infrared (FTIR) spectra were recorded in transmission mode using the sample dispersed in KBr (1:20 

weight ratio) by means of a Bruker Vector 22 spectrophotometer equipped with Globar source, DTGS detector, and 

working with 128 scans at 4 cm-1 resolution in the 4000-400 cm-1 range.  

X-ray diffraction (XRD) patterns were obtained by using an X’Pert PRO MPD diffractometer from PANalytical, in Bragg-

Brentano geometry in a flat sample-holder, equipped with Cu anode, working at 40 kV and 30 mA. The acquisition was 

performed in a 0.002° interval steps, with 45 s step-1 in order to improve the signal to noise ratio. The magnetite particles 

size was also estimated by means of the Scherrer equation (Equation 1): 

τ=Kλ/(βcosθ)   (1) 

 

where τ is the mean size of the crystalline domains (expressed in nm), K is a shape factor (typical value adopted for 

symmetrical shaped particles is 0.9), λ is the X-ray wavelength (0.154 nm), β is the line broadening at half the maximum 

intensity (FWHM) of the selected Bragg angle (expressed in radians), and θ is the Bragg angle (expressed in radians). For 

the magnetite NPs size quantification, the Bragg angle selected is the magnetite reflection (311) at ca. 2θ = 35.6°.  

Thermo-gravimetric analyses (TGA) were carried out by means of TGA Q600 (TA Instruments). The powders (ca. 30 

mg) were placed in an open alumina pan and heated from 40 to 800°C at the rate of 10°C min-1 under either nitrogen or 

air atmosphere. In order to calculate the organic fraction in the BBSs-NPs, the following equation was applied to the TGA 

results carried out in oxygen: 

wt.% om = [wt.%(T) 150°C] – [wt.%(T) 500°C]    (2) 

 

Where: wt.%om is the percent mass content of organic matter, wt.%(T150°C) is the initial percent dried mass content of the 

sample, and wt.%(T500°C) is the percent mass content before any Fe-involved transition. 

Magnetization measurements were carried out with a LakeShore 7404 vibrating sample magnetometer. The hysteresis 

loop of the samples was registered at RT as the magnetic field was cycled between -20000 and 20000 Gauss.  

Total organic carbon (TOC) content was determined by means of a ShimadzuTOC-VCSH analyzer. Measurements of pH 

were performed using a Methohm 713 pH-meter equipment with a combined glass electrode. ICP-OES, Perkin Elmer, 

Optima 5300 DV with cross-flow nebulizer was used for iron determination, with the following set-up: Argon C-45 

(99.995% purity). 1300 W, gas plasma =15 L/min, auxiliary gas = 0.2 L/min, nebulizing gas = 0.8 L/min, sampling flow 

rate = 1.1 mL/min. 

Caffeine was determined with a UHPLC Flexar FX-10, equipped with a S200 KIT-1022 PLUS autosampler, two Flexar 

FX 10 UHP PUMP MASTER pumps, FL degaser and a UV/VIS KIT-UHPLC detector. A Brownlee Analytical DB C18 

column (30 mm length, i.d. 2.1 mm, particle diameter 1.9 μm) was used. CH3CN (ACN) and water were used as eluent 
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A and B respectively, upon the following elution conditions: t = 0.0 min, A: 10%; t = 2.5 min, A:70%; t = 4.0 min, A: 

3%. Eluent flow = 0.3 mL/min; detection wavelength = 205 nm. 

Irradiation devices 

Two different irradiation devices have been used throughout the work:  

i) open solar simulator ORIEL INSTRUMENTS 81160 equipped with a Xenon lamp (300 W), whose emission spectrum 

closely matched the solar one; a cut off Pyrex filter was employed to filter the small fraction of photons emitted below 

300 nm. Experiments were performed on 250 mL of solution, kept under magnetic stirring. Water was eventually added 

to compensate for the evaporation loss. 

ii) Cylindrical Pyrex reactor equipped with a Xenon UV-TXE150 PESCHL ADVANCED lamp (150 Watt). Experiments 

were performed on 250 mL of solution under continuous oxygen bubbling (1 L/min flow rate). 

The first set-up was used in the BBSs mediated photo-Fenton, while the second one was employed when nanoparticles 

were involved in order to allow air bubbling into the sample to keep the particles in suspension. 

 

Results and discussion 

Preliminarily TOC measurements have been performed on a BBSs solution isolated from an initial aqueous solution of  

500 mgL-1 of BBS-GC. The obtained TOC average value was 45.1 ±0.4 mgL-1, corresponding to 9.3 wt.% of the 

original BBS-GC. From this solution, aliquots have been properly diluted with water, in order to obtain the desired 

BBSs concentration, expressed as mgL-1 of organic C. For the experiments performed with BBSs, the TOC has indeed 

been taken as reference parameter in order to compare experiments run in different conditions. 

Moreover, since BBS-GC powder presents 0.77±0.04 weight % of iron (Nisticò et al. 2015), this element was 

determined  in the BBSs solution obtained  from the BBS-GC initial solution, giving a value of 1.23±0.05 mgL-1. 

 

BBSs-NPs characterization 

In order to better understand the chemical composition of BBSs-NPs, a wide physico-chemical characterization has been 

realized and data summarized in Figure 2. 

Infrared spectroscopy was used to investigate the presence of BBSs in BBSs-NPs and the spectra are reported in Figure 

2A. In particular, the presence of magnetite phase is highlighted by signals at 575 and 620 cm-1 due to Fe-O stretching 

vibrations, the presence of BBSs is confirmed by the BBSs-carboxylate stretching mode at ca. 1600 cm-1 (Magnacca et 

al. 2014), the signal at 1120 cm-1 is due to C-O stretching mode of organic matter adsorbed onto the iron oxide surface 

(i.e. polysaccharides and other BBS-derived substances) (Ou et al. 2009) and the very sharp band at 1400 cm-1 witnessed 

the interaction between BBSs-carboxylate functionalities and the iron oxide surface (Ou et al. 2009). No evidence of 

iron/iron oxide present as impurities in BBS-GC (used to prepared the BBSs) is observed in the spectrum since the organic 

matter modes hidden all the possible present signals. 

Thermogravimetric analyses have been performed in order to assess the BBSs-NPs stability as well as the organic matter 

content. Figure 2B reports the profiles obtained working under air (oxidant) or nitrogen (inert/reducing) atmosphere. The 

thermal profile of BBSs-NPs treated in air (black curves in Figure 2B) shows three weight losses, as clearly evidenced by 

the DTG curve: the first one, in the range 30-150°C, corresponding to water evaporation; the second one, complex, in the 

range 150-500°C, corresponding to BBSs oxidation to CO2 and the third one, at temperatures higher than 600°C, that can 

be assigned to the magnetite to hematite transition. In spite of the Curie temperature reported for this transition (i.e. 

580°C), a peak is observed at T > 600°C, suggesting a protection role of the organic matter towards magnetite oxidation, 

since the phase transformation occurs only after the complete removal of the organic matter. Vice versa, when TGA was 
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run under N2 atmosphere (red curves in Figure 2B), the main difference concerned the transformation of the BBSs, which 

is a three steps process. As evidenced by the DTG profile, the three maxima at ca. 230, 310 and 430°C correspond to the 

degradation of the ammonium-containing salts (at ca. 230°C), and the pyrolysis of the BBSs carbohydrate fraction (at ca. 

310°C, according to FTIR results) and the BBSs lignin-like fraction (at ca. 430°C), thus yielding to the formation of a 

carbonaceous residue (Ou et al. 2009, Franzoso et al. in preparation). Additionally, the transition magnetite to wustite, 

which is a diamagnetic iron oxide (FeO), at ca. 720°C is also registered. Since at the end of TGA analysis the material is 

still magnetic, it can be hypothesized that wustite disproportionate giving magnetite and zero valent iron (both magnet-

sensitive iron-containing phases) (Cesano et al. 2015). 

Basing on TGA experiments performed on BBSs-NPs in oxygen flux, the amount of BBSs present in the hybrid BBSs-

NPs can be estimated by means of weight loss in the range 150-500°C, following the Equation 2. The calculated amount 

corresponded to 14.2 wt.% of organic matter. 

The presence of magnetite forming the BBSs-NPs was identified through XRD (see Figure 2C). All the crystalline 

reflections in the figure at 2θ = 30.1° (220), 35.4° (311), 43.0° (400), 53.9° (422) 57.2° (511), and 62.6° (440) are 

consistent with the neat magnetite phase. No relevant reflections are expected from BBSs since its XRD pattern presents 

only one broad amorphous contribution centered at ca. 2θ = 25° and few negligible signals (Franzoso et al. in preparation). 

Extra peaks (the main relevant one at ca. 2θ = 32.5°) are due to by-products (mainly ammonium-containing salts) of the 

coprecipitation reaction for the magnetite synthesis. Scherrer formula applied to the (311) magnetite signal was used to 

estimate the average BBSs-NPs size. The calculated value corresponded to ca. 16.7 nm. 

The magnetic properties of both BBSs-NPs and neat magnetite are reported in Figure 2D. In general, both samples reveal 

superparamagnetic behaviors, with negligible remanence and very low coercitivity (< 10 G). The values of saturation 

magnetization of BBSs-NPs was 47 emu g-1, slightly lower than neat magnetite (64 emu g-1). This behavior suggests a 

different amount of magnetite per gram of sample due to the presence of the BBSs covering shell (Cesano et al. 2015; 

Franzoso et al. in preparation). 

 

Caffeine photodegradation. 

BBSs 

A previous study reported in the literature showed a negligible caffeine photodegradation (5% of caffeine abatement after 

8 hours irradiation) due only to light irradiation, when using the same experimental set-up (Gomis 2014).  

In the present research 5 mg L-1 of caffeine have been firstly irradiated for three hours in the presence of BBSs at a 

concentration corresponding to 5 mg L-1 of organic C (about 54 mg L-1 BBSs), at pH= 5.0. As can been observed in Fig.3 

the abatement of caffeine was negligible after 2 hours of irradiation.  

Further experiments have been performed in the same experimental conditions but adding H2O2 7.5x 10-4 M. This is the 

stoichiometric amount of hydrogen peroxide required to mineralize the caffeine present in the sample; under these 

conditions, 85% of caffeine abatement was attained after two hours of irradiation.  

As it clearly appears in the Figure 3, the irradiation of caffeine solution in the presence of the H2O2 alone, in the absence 

of BBSs, yields to a worst degradation efficiency, underlying a synergistic effect of H2O2 and BBSs on the process. It 

could be hypothesized that BBSs sensitizes the •OH radicals generation from H2O2 and/or a photo-Fenton-like process 

occurs in the BBSs solution, due to presence of iron even if at very low concentration. 

Based on these results and on previously reported evidences of the capability of bio-based substances to complex iron 

ions yielding to experimental conditions similar to the ones applied in photo-Fenton process (Pignatello 2006, Ou, 2007, 

Sulzberger 2015), further experiments have been performed adding iron salts. It is worth to be noticed that all the 
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experiments have been run at pH=5.0, whereas lower pH values are usually required as optimum conditions, due to the 

low solubility of Fe(III) at mild pH. This pH has been chosen because in previous papers it was determined as the highest 

value where photo-Fenton can be run in the presence of BBS with an acceptable loss of efficiency, as pH closer to 

neutrality resulted to be inconvenient (Gomis et al., 2015). 

Figure 4 shows the results obtained by irradiating the caffeine aqueous solution in the presence of BBSs, 7.5 x 10-4 M of 

H2O2 and 5.0 mg L-1 of Fe(II), at pH = 5. For the sake of comparison, the results obtained by operating in the dark, 

adopting the same experimental conditions are also reported. 

It clearly appears that the addition of Fe(II) induces both Fenton and  photo-Fenton-like degradation processes, yielding 

to the 40% and to the 80% of caffeine disappearance, respectively, after 15 minutes of reaction. It is interesting to note 

that the initial reaction rate is similar in both cases (Fenton process) but after 2 minutes, the Fenton process results clearly 

slower than photo-Fenton. The pH modification was negligible along the experiments, as final values were systematically 

above 4.5. 

The effect of iron concentration has been explored for the photo-Fenton-like process; experiments results are shown in 

Figure 5. Only in the presence of Fe(II) at 4 and 5 mg L-1, after 5 min of irradiation a dark precipitate has been observed, 

probably due to iron oxides precipitation. Compared to the caffeine degradation performed in the presence of H2O2 alone, 

the addition of Fe(II) starts to affect the degradation rate at concentration higher than 2 mg L-1. Under the applicative 

point of view, the gain in terms of degradation rate upon addition of iron salt, cheap and non-toxic substance, compensates 

the cost increase. However, further addition of this metal is not always convenient, as it is limited by legislation.  

In the presence of 5 mg L-1 of added Fe(II) the effect of pH has also been checked by performing several  experiments in 

the pH range from 2.8 to 5.0 and the best performances have been obtained at pH=3.9 that is probably the best compromise 

between reactive species production and Fe(III) stabilization by BBSs (Figure 1S in the supplementary material). Shift of 

the optimum pH towards slightly acidic values was already reported (Gomis et al. 2015) and variation of the key species 

driving the photodegradation process was hypothesized. While Fe(OH)2+ is considered the specie responsible when the 

optimum results are obtained at pH = 2.8, a relevant role was attributed to photoactive Fe(III)-BBS complexes when the 

best results were obtained at pH about 4. Moreover, when ethylenediamine-N,N-disuccinic acid was used as iron 

complexing agent (Huang et al., 2013), the best results were reached at neutral or even slightly basic medium and it was 

proposed a completely different mechanism, in which superoxide played a key role. 

However, the complexity of the system makes difficult to find clear evidence for this mechanistic issue. 

The BBSs concentration was then  decreased down to 0.9 mg L-1 as organic C; in the absence of added iron some 

degradation of caffeine was observed. This could be attributed to two different reasons: a) the photosensitizing effect of 

BBSs that is able to catalyze decomposition of hydrogen peroxide into •OH radicals and b) the small amount of iron 

originally present in BBSs solution that could drive at certain extent a photo-Fenton process (Gomis et al., 2013). 

However, caffeine degradation efficiency increased upon  iron addition (Figure 6); this evidence allows to hypothesize 

that, in the presence of added iron, the main effect of BBSs is due to its capability to stabilize iron ions in solution at mild 

pH, allowing the Fenton-like process to take place. In this case the minimum amount of added BBSs able to stabilize iron 

ions in solution is enough, and reduces the competition for light harvesting; on the opposite side, in the absence of added 

iron, if the photosensitization is mainly related to reactive species production assisted by irradiated BBSs, an increase in 

BBSs concentration favors the process. Furthermore, BBS also plays a competitive role for H2O2 which could be expected 

to be more significant in the case of photo-Fenton process, which is more efficient than BBSs sensitization. 

Regarding to the environmental problems associated to the addition of BBS to the effluent, previous results showed that 

the toxicity of these substances at the concentration employed in this work (few mg L-1) is negligible, according to 
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different bioassays (Gomis et al, 2015b). Hence, although it could be a concern if the treated water is designated to human 

consumption, this should not be a problem when discharged in ecosystems, because of BBSs biocompatibility and 

similarity between BBSs and humic substances that constitute the major fraction of natural organic matter.  

 

BBSs-NPs 

Caffeine photodegradation in the presence of BBSs-NPs has been studied in a Pyrex reactor under continuous air 

bubbling, to guarantee the suspension stirring; the obtained results are reported in Figure 7. Preliminarily, the absence of 

caffeine direct photolysis has been verified; then caffeine degradation experiments have been performed under light 

irradiation, in the presence of  200 mg L-1 of BBSs-NPs. Based on TGA results, a corresponding BBSs content of about 

30 mgL-1can be roughly estimated, that is in the same order of magnitude than the BBSs concentration employed in 

homogeneous tests; analogously to what observed in the homogeneous system, caffeine degradation was negligible (data 

not reported). On the opposite, when adding H2O2 alone (blue squares in Fig.7) about 70% of caffeine abatement was 

attained after 30 min of irradiation; the generation of •OH radicals through H2O2 photolysis could be invoked, as in the 

case of tests performed in the open reactor, previously discussed. The different degradation kinetics observed in the two 

reaction devices could be reasonably ascribed to reactor geometry and dissolved oxygen content (L. Santos-Juanes et al., 

2011).  

The highest caffeine degradation efficiency has been reached in the presence of BBSs-NPs, H2O2 and Fe(II), both in the 

dark and under light irradiation; the total substrate disappearance occurred in both cases after 7 min of contact time. This 

result is apparently in contrast to what observed working with BBSs in homogeneous system, where the process was 

rather faster under light irradiation. An explanation could be found in the role played by i) the magnetite present in the 

BBSs-NPs structure, and ii) the high oxygen concentration. Indeed it has been demonstrated (Nadejde et al., 2015) that 

magnetite nanoparticles mediate the production of radicals from H2O2 decomposition and that the phenomenon is not 

hindered by coating the iron oxide core with organics. On the other hand, magnetite could activate molecular oxygen via 

single-electron reduction pathway to produce reactive oxygen species. Both mechanisms are effective also in the dark 

and this should explain why no significant caffeine degradation improvement has been observed under light irradiation. 

In any case, due to its complexity, the BBSs-NPs working mechanism deserves further investigation. 

 

Conclusions 

The obtained results show the viability of photodegradation of caffeine assisted by waste derived bio-based materials 

(BBSs). In particular, both homogeneous and heterogeneous systems are promising approaches to drive photo-Fenton 

processes under mild pH, which results in an enhanced sustainability of the process. It can therefore be concluded that 

biowaste are worth to be considered as a green tool for the preparation of materials for water treatments.  
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Figure captions 

 

Figure 1. Schematic representation of BBS isolation and their tested applications. 

Figure 2 Physicochemical characterization of reference neat BBSs and BBSs-NPs. Panel A: Absorbance FTIR spectra in 
the 1800-400 cm-1 range relative to neat magnetite (A, black solid line), BBSs-NPs (B, red solid line), and neat BBS (C, 
red dotted line). The main relevant peaks are labeled. All spectra are collected in transmission mode through KBr pellets. 
Panel B: TG (solid line) and DTG (dotted lines) curves of BBSs-NPs heated either in air (black) or in nitrogen (red) 
atmosphere. Panel C: XRD patterns of the neat magnetite (black) and BBSs-NPs (red). The main reflections due to 
magnetite are highlighted and labeled. Panel D: Magnetization curves evaluation of neat magnetite (black) and BBSs-
NPs (red). 
 
Figure 3 Relative caffeine concentration vs. irradiation time. Experimental conditions: caffeine at time 0, 5 mg L-1, 
pH=5.0. Legends: Blue diamonds: BBSs 5 mg L-1 (as organic C). Black triangles: H2O2 7.5×10-4 M. Red squares: BBSs 
5 mg L-1 (as organic C), H2O2 7.5×10-4 M. 
 

Figure 4 Relative caffeine concentration vs. contact time. Experimental conditions: caffeine at time 0, 5 mg L-1, pH=5.0, 
BBSs 5 mg L-1 (as organic C), H2O2 7.5×10-4 M, Fe(II) 5 mg L-1. Legend: Blue triangles: Fenton experiments in the dark. 
Green triangles: photo-Fenton experiments under light irradiation. 
 

Figure 5 Caffeine relative concentration vs. irradiation time. Experimental conditions: caffeine at time 0, 5 mg L-1, 
pH=5.0, BBSs 5 mg L-1 (as organic C), H2O2 7.5×10-4 M. Effect of the Fe(II) concentration. Legend: Black squares: Fe(II) 
1 mg L-1. Red circles: Fe(II) 2 mg L-1. Blue up-triangles: Fe(II) 3 mg L-1. Dark cyan down-triangles: Fe(II) 4 mg L-1. 
Magenta squares: Fe(II) 5 mg L-1. 
 
Figure 6. Caffeine relative concentration vs. irradiation time. Experimental conditions: caffeine at time 0, 5 mg L-1, 
pH=5.0, H2O2 7.5×10-4 M. Red series: Solid squares, red solid line: BBSs 5 mg L-1 (as organic C); Open squares, dotted 
line: BBSs 0.9 mg L-1 (as organic C). Green series: Fe(II) 5 mg L-1; Solid triangles, solid line: BBSs 5 mg L-1 (as organic 
C); Open triangles, dotted line: BBSs 0.9 mg L-1 (as organic C). 

 

Figure 7. Caffeine relative concentration vs. contact time. Experimental conditions: caffeine at time 0, 5 mg L-1, pH=5.0. 
Blue diamonds: H2O2 7.5×10-4 M. Red squares: H2O2 7.5×10-4 M, BBSs-NPs 200 mg L-1. Green solid triangles: H2O2 
7.5×10-4 M, BBSs-NPs 200 mg L-1, Fe(II) 5 mg L-1, photo Fenton experiments under light irradiation; Green open 
triangles: H2O2 7.5×10-4 M, BBSs-NPs 200 mg L-1, Fe(II) 5 mg L-1, Fenton experiments in the dark. 
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