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Abstract

We discuss how to develop efficient heuristics for the distance based critical node
problem, that is the problem of deleting a subset of nodes from a graph G in such
a way that the distance between each pair of nodes is as large as possible.

Keywords: Critical Node Problem, Graph Fragmentation, Shortest Paths.

1 Introduction

The Critical Node Problem (CNP) has been defined as a type of Interdiction
Network Problem which aims at maximally fragmenting an undirected and

1 Email: roberto.aringhieri@unito.it, grosso@di.unito.it, hosteins@di.unito.it
2 Email: rosario.scatamacchia@polito.it



unweighted graph G = (V,E) by deleting a subset of its nodes S ⊂ V (|S| =
K) according to a specific connectivity measure. This particular problem has
raised a certain interest in the recent literature due its potential applicability
to a vast number of real situations (see, e.g., [4]). Currently, the state of the
art algorithms for solving the CNP are those presented in [1,2,3].

In the classic CNP, the connectivity is related to a pair-wise connectivity
concept, that is either a path exists between a pair of nodes, or it does not.
In [8], the authors introduces a more refined connectivity concept based on the
shortest distance between each pair of nodes: the more distant the nodes, the
lower their connectivity value. Therefore, the DB-CNP consists in minimizing
the following objective function:

F (S) =
∑

i,j∈V \S : i 6=j

1

dspt(i, j)
(1)

where dspt is the value of the shortest path between the node i and the node
j belonging to the weighted graph G.

Constructive and Local Search based heuristics usually build an incumbent
solution step-by-step, that is, for instance, adding or deleting elements, or
swapping a pair of elements respectively belonging and not belonging to a
starting solution. As for the classic CNP, the development of efficient heuristic
algorithms for the DB-CNP suffers from the non trivial evaluation of the
incumbent new solution since we need to update the shortest path between
each pair of nodes. In this paper we discuss how to develop efficient heuristics
for the DB-CNP.

2 Shortest paths re-computation

The operations traditionally used to obtain an incumbent solution of the CNP
consist in adding a node to S (i.e., deleting it from the graph), removing a
node from S or swapping a node from S with a node from V \ S. As moving
nodes from or to S can affect the length of shortest paths (SP), we are required
to recompute all the SP values in the graph, which is known to have a com-
putational cost of O(|V ||E|+ |V |2 log |V |) [6]. As such a complexity is usually
prohibitive when thousands of incumbent solutions should be evaluated, we
need to implement more efficient evaluations of the SP modifications.

It has been noted in computational works regarding all-SP re-computation
that usually, if a very small number of edges’ weights are modified, the time
necessary to recompute only the shortest paths that are affected is actually



much less than the theoretical worst case complexity. Since for the CNP we
only modify the edges belonging to the backward and the forward start of
one node at a time, such empirical results are encouraging for implementing
efficient heuristics.

Moreover, some particular cases of interest to us can be demonstrated to
require a lower worst case complexity than the general all-SP re-computation.
For example, reintroducing a node u ∈ S inside the graph amounts to consider
that each SP can now go through u if it is profitable enough. Using the SP
properties, we can show that computing the SP starting and ending at u can
be done in O(D(G)(|V | − |S|)) where D(G) is the largest number of edges
incident on any node in G. Then using those new SP lengths we can update
all shortest paths in a maximum number of operations equal to O(|V |2), which
is inferior to the general case of edge weights modification [6].

Some dominance rules should also be devised, the simplest example being a
node v ∈ V \S which does not belong to any shortest path in graph G[V \S]:
evidently such a node can never be an appropriate candidate for deletion
since such a move would not lower the objective function. Similarly, the
impact of removing a node belonging to a certain connected component would
not change if our moves in the solution space only modifies other connected
components.

3 Extension to directed graphs and weighted pair-wise
connectivity

Since the SP definition is not limited to undirected graphs, the DB-CNP can
be also applied to directed graphs, which opens the perspective of applying
the critical node analysis to such situations that can be modelled by directed
graphs only, contrary to the versions of the CNP previously considered in the
literature [4].

We also note that the CNP based on weighted pair-wise connectivity is
much more difficult to tackle with the existing heuristic algorithms since they
tend to rely on the fact that not weighted pair-wise connectivity can be com-
puted solely using the connected components cardinality, a fact which is no
longer true when weights are introduced between pairs of nodes. However,
the heuristic framework developed for a DB-CNP, which tracks the SP values,
allows us to evaluate solution moves for weighted pair-wise connectivity as a
non infinite length means that the nodes are connected. Thus we see that
algorithmic efforts in order to solve the DB-CNP can be beneficial for other
formulations of the CNP as well.



4 Betweenness centrality

Betweenness centrality [7] can play also a fundamental role to devise efficient
heuristics. Centrality would evaluate how important is a node for the con-
nection of every pair of nodes. Betweenness centrality of the node j is the
number of shortest paths from all vertices to all others that pass through the
node j, and it can be computed using the Brandes’ algorithm [5]. The basic
idea is therefore to rank the nodes with respect to their betweenness value,
and to consider first those having highest value in our heuristics. Note that
heuristics for the classic CNP benefit of using such a rank as reported in [1,3].
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