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Abstract 

The inhibition of human DNA Methyl Transferases (DNMT) is a novel promising approach to address the 

epigenetic dysregulation of gene expression in different diseases. Inspired by the validated virtual screening 

hit NSC137546, a series of N-benzoyl amino acid analogues was synthesized and obtained compounds were 

assessed for their ability to inhibit DNMT-dependent DNA methylation in vitro. The biological screening 

allowed the definition of a set of preliminary structure-activity relationships and the identification of 

compounds promising for further development. Among the synthesized compounds, L-glutamic acid 

mailto:davide.garella@unito.it


2 
 

derivatives 22, 23, and 24 showed the highest ability to prevent DNA methylation in a total cell lysate. 

Compound 22 inhibited DNMT1 and DNMT3A activity in a concentration-dependent manner in the 

micromolar range. In addition, compound 22 proved to be stable in human serum and it was thus selected as 

a starting point for further biological studies. 

 

Introduction 

Epigenetic modifications play an essential role in the establishment and regulation of cellular differentiation 

and gene expression.1,2 DNA methylation is the most stable epigenetic mark in humans.3 The DNA 

methylation occurs at the C5 position of the cytosine ring, particularly in a CpG dinucleotide context, 

through the action of three active DNA methyltransferases (DNMTs): DNMT1, DNMT3A and DNMT3B. 

These enzymes catalyze the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to the C5-

cytosine.4 DNMT1 is responsible for DNA methylation maintenance during cell replication by methylation 

of newly synthesized DNA strands; however, it was hypothesized that this enzyme can also participate in the 

de novo methylation process.5 DNMT3A and DNMT3B are responsible for de novo DNA methylation being 

able to methylate both unmethylated and hemimethylated DNA strands.6,7 Another protein, lacking 

enzymatic activity, namely DNMT3L, is capable of interacting with DNMT3A and DNMT3B with the 

consequence of stimulating their catalytic activity.8 

In human genome CpG dinucleotides are typically clustered in regions called CpG islands, which are located 

in the proximal promoter of more than half of all human genes.9 When promoter CpG islands are methylated, 

the corresponding gene is repressed because of poor recognition by transcription factors and by other methyl-

binding proteins (MBDs) involved in chromatin remodeling and reorganization.10 

Aberrant DNA methylation, or the failure to maintain the appropriate DNA methylation status, results in the 

expression of non-optimal level of gene-associated proteins, which could trigger or exacerbate different 

pathological responses. For instance, in cancer cells,11 DNA hypermethylation of CpG islands, joined to a 

global hypomethylation, give rise to genomic instability and inactivation of cancer-suppressor genes.12,13 

Altered DNA methylation has also been found to regulate synaptic plasticity in post-mitotic neurons14 and 

DNMT1, DNMT3A have been recently proposed as new targets for antipsychotic therapy.15 Moreover, 

hypermethylation of DNA sequences has been linked to the onset of cardiac fibrosis.16 
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On these bases, the potential therapeutic application of DNMT inhibitors is nowadays actively studied.17-19 A 

number of DNMT inhibitors has been developed. They can be classified into two general subsets: nucleoside 

and non-nucleoside DNMT inhibitors (Figure 1). 

The first subset comprises 5-azacytidine (5-AZA) and 5-aza-2′-deoxycytidine (decitabine), which are drugs 

currently employed in the treatment of myelodysplastic syndromes (MDS), chronic myelomonocytic 

leukemia (CMML), and acute myeloid leukemia (AML). 5-AZA and decitabine are imported into the cell, 

phosphorylated, and actively integrated in the DNA structure where they act through covalent inhibition of 

DNMTs. This complex set of events results in an easy onset of resistance and poor reproducibility of action 

with more than 1000-fold variability in cancer cell lines as demonstrated with decitabine.20 A second 

generation of nucleoside analogues is currently under study, among them: 5-fluoro-2′-deoxycytidine, 5,6-

dihydro-5-azacytidine (DHAC) and zebularine. The main drawback of these nucleoside DNMT inhibitors is 

expected to lie in their mechanism of action, similar to that of first generation drugs. 

Non-nucleoside DNMT inhibitors are represented by a heterogeneous subset of compounds which can 

directly inhibit the enzyme. Different compounds have been identified either from natural sources, from 

screening campaigns, or thanks to synthetic efforts.17 

Natural products, such as parthenolide, curcumin, nanaomycin A, are proposed to act by covalent binding to 

the catalytic cysteine residue in the enzyme pocket.21-23 A main disadvantage of these compounds could be 

associated with their lack of selectivity that may reflect in promiscuous binding to other cellular targets. 

Hydralazine, procaine, procainamide, isoxazoline derivatives, and the natural compound (-)-

epigallocatechin-3-gallate are non-covalent inhibitors. They bind into the enzyme pocket through a complex 

network of hydrogen bonds in a 2′-deoxycytidine-like binding mode.24,25 Moreover, thanks to the use of 

computational techniques and ad hoc medicinal chemistry design, an increasing number of small molecules 

DNMT inhibitors is now emerging.26 

A few lead structures have been identified and their rational modulation has been pursued. Most studied 

model compounds comprise RG108, SGI-1027, NSC14778, NSC319745, and their analogues, which act by 

competing with SAM or with DNA-strand for binding into the respective enzymatic site.27-32 Furthermore, 

compounds such as NSC14778 are being used as starting point of computer-assisted drug repurposing of 

novel hypomethylating agents.33 

Insert Figure 1 
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Figure 1. Structure of representative DNMT inhibitors. 

 

So far, the therapeutic development of non-nucleoside DNMT inhibitors was hampered by the relatively poor 

inhibitory activity, the lack of isoform selectivity, and a significant cytotoxicity. Therefore, new potent and 

selective DNMT inhibitors are urgently needed. 

Recently, virtual screening of the National Cancer Institute (NCI) compounds library allowed the 

identification of a glutamic acid derivative, namely NSC137546 (Figure 1), as a potential DNMT1 inhibitor. 

Of note, in the previous study, the stereochemistry of tested NSC137546 was not defined. This virtual 

screening hit showed a moderate selective inhibition of DNMT1 vs DNMT3B at 100 µM concentration. 

Since the virtual screening was conducted at the substrate binding site of DNMT1 it was hypothesized that 

the active compound binds into this pocket, although this was not experimentally checked.32 Indeed, 

currently there is not reported a crystallographic structure of NSC137546 bound to DNMT that provide 

evidence for the actual binding site. Actually, for most of the small molecule DNMT inhibitors described to 

date, the experimental binding site remains unknown. However, molecular docking has been helpful to 

propose binding models that require, of course, experimental validation. Inspired by the chemical structure of 

NSC137546 we decided to explore the chemistry of the N-benzoyl amino acidic scaffold with the aim of 

improving DNMT1 activity and of investigating the selectivity against DNMT3A and DNMT3B. Since the 

predicted docking pose of the (S)- and (R)-forms are largely similar, in this work we selected the (S) 

stereochemistry to make use of natural amino acids. Therefore, the structure of 1(S)-2-(2,6-

dichlorobenzamido) pentanedioic acid (1), used as the model template, was modulated according to three 

different approaches (A-C, Figure 2). 

Insert Figure 2 

 

Figure 2. Structure of model compound 1 and chemical modulation strategies applied. 

 

Synthesis of derivatives bearing natural aminoacids as the terminal acidic portion (A moiety in Figure 2) was 

initially considered, in order to compare a series of sterically homogenous analogues. A first series of 27 

compounds was designed (Schemes 1-3). Derivatives 1-8 were prepared to explore the structure-activity 

relationships (SAR) of the A moiety (Figure 2). Compound 9, the amino analogue of 1, was synthesized to 

verify the role of the amide bond (B moiety) in the activity of this class of compounds. Finally, modulation 
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of the aromatic substructure (C moiety), as in derivatives 10-27 (Scheme 3), was performed to gain 

preliminary SAR information concerning the stereo electronic properties of the aromatic ring. 

The synthesis, the ability of the synthesized compounds to inhibit DNA methylation in vitro, and their 

preliminary SAR are described. The ability of selected compounds to inhibit DNA methylation in cell lysate 

over expressing DNMT1, DNMT3A and DNMT3B isoforms is reported. The action of selected compounds 

on isolated DNMT1 and DNMT3A enzymes is also reported. Finally, the characterization of the putative 

binding mode of derivative 22 in the substrate binding site of DNMT1 and DNMT3A is proposed. 

 

Methods and Materials 

Commercially available reagents and solvents were used without further purification, unless otherwise noted. 

Reaction progress, was monitored by TLC on pre-coated silica plates (Merk 60 F254, 250 m thickness) and 

spots were stained by ceric ammonium molibdate, KMnO4 (0.5 g in 100 mL 0.1 N NaOH) and UV light. 

Reactions under MW irradiation were carried out in the SynthwaveTM oven (Milestone). Melting points were 

measured with a capillary apparatus (Büchi 540). All the compounds were routinely checked by 1H and 13C 

NMR (Bruker Avance 300) at 300 and 75 MHz respectively. Chemical shifts () are given in ppm relative to 

internal standard TMS (0.00 ppm) or residual solvent peaks (CDCl3 = 7.26 ppm, MeOD = 3.31 ppm, DMSO-

d6 = 2.50 ppm and D2O = 4.79 ppm). 1H NMR coupling constants (J) are reported in Herz (Hz) and 

multiplicity in indicated as follow: s, singlet; bs, broad singlet; d, doublet; dd, doublet of doublet; t, triplet; 

m, multiplet; Im, imidazole ring; Ph, phenyl ring. Low resolutions mass spectra were recorded on Finnigan-

Mat TSQ-700 in chemical ionization (CI) using isobutane. ESI-MS spectra were recorded on a Micromass 

Quattro microTM API (Waters, Milford, MA). The purification was performed by flash-chromatography 

(CombiFlash Rf® Teledyne ISCO) on appropriate columns (silica gel). Anhydrous sodium sulfate was used 

as drying agent for the organic phases. Organic solvents were removed under vacuum at 30 °C. Purity of 

compounds was checked by UHPLC (PerkinElmer) Flexar 15, equipped with UV-Vis diode array detector 

using an Acquity UPLC CSH Phenyl-Hexyl 1.7 µm 2.1×50 mm column (Waters) and H2O/CH3CN 

containing 0.1 % CF3COOH and H2O/CH3OH containing 0.1 % CF3COOH solvent systems. Detection was 

performed at λ = 200, 215, 254 nm. The analytical data confirmed that the purity of the products was  95%. 
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Detailed synthetic procedures are fully described in Supporting Information. Characterization data of 10-14, 

16, 22, 24,35 15,36 18,37 19,38 21,39 are in keeping with those reported. 

Chemistry 

General procedure for the synthesis of compounds 1-6, 10-27 

Carboxylic acid (2.6 mmol, 1 eq) was solubilized in SOCl2 (22 mmol, 8.5 eq) and irradiated under pressure 

in a microwave oven (5 bar, N2) at 120 °C for 1.5 h. The solvent was removed under reduced pressure, and 

the residual oil was solubilized in 1,4-dioxane (5 mL) and added dropwise to a stirring solution of 

appropriate aminoacid (2.6 mmol) and Na2CO3 (6.5 mmol) in water (5 mL). The mixture was stirred 

overnight at room temperature, poured in 1N HCl (40 mL) and extracted with EtOAc (3 x 20 mL). The 

combined organic layers were washed with brine, dried with anhydrous Na2SO4 and concentrated under 

reduced pressure. The residue was triturated with CH2Cl2 (about 30 mL) and the obtained precipitate was 

filtered. The product was purified (when required) by flash chromatography (CombiFlash, gradient 

CH2Cl2/MeOH 0.1%CF3COOH). 

General procedure for the synthesis of compounds 7 and 8 

To the compound 3 (500 mg, 1.6 mmol) solubilized in THF (5 mL) was added DCC (453 mg, 2.2 mmol). 

The mixture was stirred overnight at room temperature. The mixture was filtered, and the filtrate was 

partially concentrated under reduced pressure. The appropriate amine (isopropyl amine or benzylamine, 1.6 

mmol) was added to the residue and the mixture was stirred neat (overnight) at room temperature. The 

solution was poured in water and extracted with Et2O (1 x 20 mL). The pH was adjusted to 1-2 with 1N HCl, 

and the aqueous phase was extracted with EtOAc (3 x 20 mL). The organic phases were washed with brine, 

dried, filtered and concentrated under reduced pressure to obtain the desired compound without any further 

purification. 

General procedure for the synthesis of (S)-Sodium-2-((2,6-dichlorobenzyl)amino)pentanedioate (9) 

L-glutamic acid (600 mg, 4.0 mmol) and NaOH (320 mg, 8.0 mmol) were solubilized in H2O/MeOH 1:1 (20 

mL). 2,6-Dichlorobenzaldehyde (700 mg, 4.0 mmol) was added and the mixture was stirred at room 

temperature for 2 h. NaBH4 (227 mg, 6.0 mmol) was added portionwise and the mixture was stirred 
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overnight at room temperature. The pH of the mixture was adjusted to 5-6 adding acetic acid. After stirring 

for further 45 min, the solvent was completely removed and the sticky mass was treated with EtOH (30 mL) 

to obtain the precipitation of a white solid which was filtered and dried to afford the final compound 9 as a 

white solid. 

Biology  

Total DNMT activity assay 

All compounds were screened for total DNMT activity using a DNA methyltransferase (DNMT) 

activity/inhibitor assay kit (Epigentek) according to manufacturer instruction. To measure the effects of the 

compounds on DNMT activity, 35 µg of total HaCaT cellular extract freshly prepared in RIPA buffer (Tris 

HCl pH 7.4 10 mM, NaCl 150 mM, NP-40 1%, sodium deoxycholate (DOC) 1%, SDS 0.1%, glycerol 0,1%, 

Protease Inhibitors Cocktail) were incubated with 50 µM and 100 μM of the different compounds in DMSO 

(1% final conc.) or vehicle alone (1% DMSO) at 37 °C for 2h. As negative control the lysate was denatured 

at 100 °C for 30 min. Total lysate was used in order to avoid the loss of possible coenzyme and complex 

formation. The amount of methylated DNA, which is proportional to enzyme activity, was colorimetrically 

detected by a plate reader at 450 nm (EnSpire® Multimode Plate Reader – Perkin Elmer).  

 

Inhibition of DNA methylation in DNMT1, DNMT3A and DNMT3B overexpressing cell lysates. 

Compounds 22, 24 were tested to evaluate their selectivity on the different DNMT isoforms. In order to work 

selectively on DNMT1, DNMT3A and DNMT3B, HEK293T cells were transfected with the plasmids 

containing the three different DNMTs' sequences and mock control. Cells were transfected with 2.5 μg of 

expression plasmid using Lipofectamine 3000 reagent (Invitrogen) according the manufactures instruction. 

Plasmids pcDNA3/Myc-DNMT1 (Addgene plasmid # 36939), pcDNA3/Myc-DNMT3A (Addgene plasmid 

# 35521) and pcDNA3/Myc-DNMT3B1 (Addgene plasmid # 35522) were a gift from Arthur Riggs.40,41 The 

presence of exogenous DNMTs was checked by western blot (not shown) and afterwards the transfected 

cells were freshly lysed in RIPA buffer as above. 35 µg of cellular extract were incubated with selected 

compounds at different concentration in the 1 µM - 150 µM range (1% DMSO final conc.) or with vehicle 

alone (1% DMSO) at 37 °C for 2 h. RG108 (Cayman) was used as positive controls, while as negative 
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control, lysates were denatured at 100 °C for 30 min. DNMT activity was detected by DNMT 

activity/inhibitor assay kit (Epigentek). Data are presented as means ± SD; each compound was tested at 

least three times. 

 

Inhibition of DNMT1 and DNMT3A activity on isolated enzyme. 

To assess the specific interaction of DNMT inhibitors with DNMT1 or DNMT3A, the activity assay was 

performed on the immunoprecipitated enzymes after their overexpression. After DNMT transfection, 

HEK293T cells were freshly lysed in RIPA buffer as described above (supplemented with Protease 

Inhibitors Cocktail), and DNMT1 and DNMT3A were immunoprecipitated using Paramagnetic beads 

(Ademtech’s Bioadembeads) as previously described.42 Briefly, 600 μg of transfected cell extract were 

incubated at 4 °C for 2 h with DNMT antibodies: anti-DNMT1 (6 µg, mouse, monoclonal; Abcam), anti-

DNMT3A (6 µg, mouse, monoclonal; Abcam). Normal mouse IgG (Santa Cruz Biotechnology, Inc.) was 

used as immunoprecipitation control. Then, the immunocomplexes were incubated at 4 °C for 2 h with 60 μl 

of paramagnetic beads. All the immunoprecipitation steps have been performed on ice in order to preserve 

the enzymatic activity. After elution, the enriched enzymes were incubated with compounds 1 or 22 at 100 

µM (1% DMSO final conc.) or vehicle alone (1% DMSO) at 37 °C for 2 h. RG108 (Cayman) was used as 

reference, while as negative control, lysates were denatured at 100 °C for 30 min. DNMT activity was 

detected by DNMT activity/inhibitor assay kit (Epigentek). Data are presented as means ± SD; each 

compound was tested at least three times. Western blotting analysis was performed, according to standard 

procedure, to check the immunoprecipitation. 

 

Stability of compound 22 in pH 7.4 phosphate-buffered solution  

A stirred solution of compound 22 in pH 7.4 phosphate-buffered solution (final concentration 2 mg/mL) was 

maintained at 37 ± 0.5 °C for 48 h. At different time intervals 100 µL of this solution were withdrawn, 

diluted to 1 mL with methanol containing 1% CF3COOH and 5 µL of the resulting solution were analyzed by 

RP-UHPLC using a Flexar UHPLC (Perkin Elmer) equipped with a Flexar Solvent Manager 3-CH-Degasser, 

a Flexar-FX UHPLC autosampler, a Flexar-FX PDA UHPLC Detector, a Flexar-LC Column Oven, and a 
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Flexar-FX-15 UHPLC Pump. The analytical column was an Acquity CSHTM (2.1 x 100 mm, 1.7 μm particle 

size) (Waters) column. The samples were analyzed using an isocratic method employing a mobile phase 

consisting of methanol/water (90/10) containing 0.1% trifluoroacetic acid (flow rate 0.6 mL/min). The 

column effluent was monitored at  = 220 nm referenced against a  = 360 nm wavelength. Quantitation was 

done using calibration curves of compound 22 chromatographed under the same conditions. The linearity of 

the calibration curves was determined in a concentration range of 1-3 mg/mL (r2> 0.98). Data analysis was 

performed using Chromera Manager (Perkin Elmer). All experiments were run in triplicate.  

 

Stability of compound 22 in human serum  

A solution of compound 22 (20 mg/mL) in methanol was added to human serum (sterile-filtered from human 

male AB plasma, Sigma-Aldrich) preheated at 37 °C to obtain a final concentration of 2 mg/mL. The 

resulting solution was incubated at 37 ± 0.5 °C; at appropriate time intervals, 100 μL of the reaction mixture 

were withdrawn and added to 900 μL of methanol containing 0.1% trifluoroacetic acid in order to 

deproteinize the serum. The sample was vortexed, and then centrifuged for 5 min at 1500 g. The clear 

supernatant was filtered by Captiva PES 0.2 µm filters (Agilent) and analyzed by RP-UHPLC.  

HPLC analyses was performed with a Flexar UHPLC (Perkin Elmer) equipped with a Flexar Solvent 

Manager 3-CH-Degasser, a Flexar-FX UHPLC autosampler, a Flexar-FX PDA UHPLC Detector, a Flexar-

LC Column Oven, and a Flexar-FX-15 UHPLC Pump. Data analysis was done using a Chromera Manager 

(Perkin Elmer). The analytical column was an Acquity CSHTM (2.1 x 100 mm, 1.7 μm particle size) (Waters) 

column. The samples (1 μL, injection volume) were analyzed using an isocratic method employing a mobile 

phase consisting of methanol/water (80/20) containing 0.1% trifluoroacetic acid at a flow rate of 0.2 mL/min. 

The column effluent was monitored at a  = 220 nm referenced against a  = 360 nm wavelength. 

Quantitation was done as indicated above. All experiments were run in triplicate.  

 

Molecular docking 

All flexible ligand docking and scoring calculations were performed with ICM-Pro, version 3.8-4. ICM is 

based on Monte Carlo optimization of the ligand internal coordinates in the space of pocket grid potential 

maps. The crystallographic structures of DNMT1 (PDB ID: 3PTA) and DNMT3A (PDB ID: 2QRV) were 
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employed. Before docking, the structures of the proteins were prepared using ICM using default settings. To 

ensure the convergence of the Monte Carlo algorithms three different cycles was perform for each docked 

ligand. For the best ten poses a manually clustering was performed and the docked poses were checked 

visually. Visualizations and analysis of the protein-ligand complexes were conducted with ICM. The 2D 

interaction diagram was generated with the Molecular Operating Environment (MOE) software, version 

2014.09.43 

Statistics 

Data were collected and analysed blind by an observer. Results were expressed as mean ± SD of at least 

three experiments done in triplicate. Statistical significance was evaluated by ANOVA and Bonferroni post-

hoc test (Prism 5, GraphPad Software, La Jolla, CA, USA). Differences were judged statistically significant 

when P < 0.1. 

 

Results and Discussion 

Chemistry 

Compound 1, and the analogues 2-6, modified in the acidic moiety, were synthesized according to the 

procedure reported in Scheme 1. 2,6-Dichlorobenzoic acid was converted into the corresponding acyl 

chloride irradiating under pressure (5 bar, N2) in a microwave oven at 120 °C using SOCl2 for 1.5 h. This 

procedure allowed the use of a parallel chemistry approach generating five acyl chloride derivatives in a 

single run in almost quantitative yields. After SOCl2 evaporation, the crude product was added dropwise to a 

stirring solution of the appropriate (S)-aminoacid in water using Na2CO3 as the base. The mixture was stirred 

at room temperature to afford compounds 1-6 in 40-72% non-optimized yields (Scheme 1). The use of water, 

as the preferred solvent allowed for amino acids dissolution, but surely affected the reaction yield. 

Nevertheless, it avoided the use of polar aprotic solvents (e.g. DMF) which could complicate isolation and 

purification of the final compounds. Compounds 7 and 8 were synthesized by coupling of 1 with 2-

propylamine or benzylamine using dicyclohexyl carbodiimide (DCC) in THF in 50% and 55% yield 

respectively (Scheme 1). The structural identity of compounds 7 and 8 was supported by 2D-NMR spectra. 

For both compounds, the 2D-COSY experiments allowed to discriminate the proton in position 2 from the 

chiral proton in position 4. The 2D-HMBC experiments showed the correlation of the chiral proton with both 
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the amide carbon atoms, confirming that the new amide bond was formed at the alpha acid (see Supporting 

Information). 

Scheme 1. Synthesis of 2,6-dichlorobenzoyl aminoacid derivatives 1-8. 

Insert scheme 1 

Reagents and conditions. a) (i) SOCl2, MW irradiation 120 °C, N2 (5 bar), 1.5 h; (ii) L-amino acid, Na2CO3, 

H2O, RT, 12 h. b) (i) DCC, THF, RT, 12 h; (ii) R-NH2, RT, 12 h. 

 

The amino derivative 9 was obtained in 70% yield via reductive amination of 2,6-dichlorobenzaldehyde with 

L-glutamic acid and NaBH4 (Scheme 2). 

 

Scheme 2. Synthesis of compound 9. 

Insert Scheme 2 

Reagents and conditions. a) (i) L-glutamic acid, NaOH, H2O/MeOH 1/1, RT, 2 h; (ii) NaBH4, RT, 12 h. 

 

Derivatives 10-27 (Scheme 3) were synthesized by reaction of L-glutamic acid or 4-aminobutanoic acid with 

the appropriately substituted benzoyl chloride using the expeditious protocol previously developed for the 

synthesis of compounds 1-6.  

 

Scheme 3. Synthesis of compounds 10-27. 

Insert scheme 3 

Reagents and conditions. a) (i) SOCl2, MW irradiation 120 °C, N2 (5 bar), 1.5 h; (ii) L-glutamic acid, 

Na2CO3, H2O, RT, 12 h. b) (i) SOCl2, MW irradiation 120 °C, N2 (5 bar), 1.5 h; (ii) 4-aminobutanoic acid, 

Na2CO3, H2O, RT, 12 h. 

 

Biological activity  

Inhibition of total DNA methylation 

The ability of the newly synthesized compounds to inhibit DNA methylation was evaluated on HaCaT total 

cell lysate in order to avoid the loss of possible coenzyme(s) and complex formation. Compounds were 

incubated at either 100 µM or 50 µM for 2 h at 37 °C in a freshly obtained cell lysate. The use of two 
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different concentrations of test compounds was chosen to overcome cellular variability and to afford reliable 

results, thus avoiding the identification of false positive hits.  

The amount of methylated DNA was quantified using the EpiQuik DNA methyl transferases 

activity/inhibition assay in comparison with vehicle treated (DMSO 1%) cell lysate. Results, expressed as the 

percentage of the residual DNA methylation, are reported in Table 1. Vehicle alone had no effect on DNA 

methylation in our test system. We would like to point out that many studies highlighted that, depending on 

the experimental conditions of the enzymatic assay, the inhibitory potency can vary greatly for the same 

compound; critical factors are the DNA methyltransferase employed, the method of detection, the 

concentration of the cofactor and the nature of the DNA duplex used as the substrate.34 

 

Table 1. Ability of compounds 1-27 to inhibit total DNA methylation expressed as residual relative DNA 

methylation. 

Compound Residual DNA methylation (%)a 

 (mean ± SDb) 
Compound Residual DNA methylation (%)a 

 (mean ± SDb) 

 100 µM 50 µM  100 µM 50 µM 

1 61 12c 96  6 15 72 7 82 6 

2  60 2c 87 15 16 75  2 89 5 

3 99 11 122 26 17 69 3 97 2 

4 126  29c 96 2 18 58 3c 92 4 

5 90  1 98 22 19 64 11 93 6 

6 58 7c 104  15 20 81  2 85 5 

7 82  16 118  1c 21 60 5d 86  18 

8 94 39 90  17 22 45  1c 63  16d 

9 63  1d 111  2 23 51 9c 68 3d 

10 116 9 108 36 24 68 21d 65  1d 

11 85 20 122  16 25 74 4 95 10 

12 72 23 100  1 26 107 10 103 11 

13 57 4c 106 13 27 99 14 93 5 

14 706 c 100  16    
a Determined in fresh HaCaT cell lysate using Epiquik DNA methyltransferase activity/inhibition assay. 
b Data are expressed as percentage of residual methylated DNA relative to vehicle (DMSO 1%) treated cell 

lysate. Results are the mean of at least three independent experiments run in triplicate. c P< 0.05 vs vehicle; d 

P< 0.1 vs vehicle; ANOVA and Bonferroni post-hoc test. 

 

The ability of synthesized compounds to inhibit total DNA methylation, although initially studied only at 

two fixed concentrations (100 and 50 µM), was helpful to draw preliminary SAR indications and to address 

future chemical modulation of this class of compounds. 

Compound 1 (100 µM) significantly decreased DNA-methylation by 39 ± 12% (P<0.05). Removal of the α-

carboxylic group (2) afforded an inhibition of DNA-methylation (40 ± 2%; P< 0.05) comparable to that 
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showed by 1. Both 1 and 2 were un-effective when tested at 50 µM (Table 1). Conversion of α-COOH into a 

substituted amide gave compounds 7 and 8, showing no significant ability to prevent DNA methylation 

under our assay conditions. The obtained results indicated that substitution of α-carboxylic group in 

compound 1 with uncharged and bulky groups (compounds 7 and 8) is not a promising strategy to improve 

DNMT inhibition in this series of L-glutamic acid derivatives, while the role of free α-COOH needs further 

studies to be fully elucidated. 

The modulation of the γ-carboxylic functionality was then considered. The replacement of this carboxylic 

group with a carboxyamido group (3), or its removal (4), resulted in a complete loss of activity (Table 1). 

The replacement of the γ-COOH with basic groups furnished compounds 5 and 6 bearing a guanidine and 

imidazole ring in γ-position, respectively. Results showed that the imidazole derivative 6 could conserve the 

inhibitory activity (42 ± 7% inhibition; P< 0.05) while the strongly basic 5 reflected in a complete loss of 

activity. This result was not unexpected taking into account that γ-COOH in 1 is negatively charged at pH 

7.4, while 5 is positively charged. The imidazole ring in 6 (calculated pKa 7.08) is also present in a positively 

charged form for about 32% at pH 7.4. Consequently, its residual ability to decrease DNA methylation could 

be attributed to other properties of this moiety (e.g., metal complexing ability or 1,3-prototropic 

tautomerism). Unfortunately, similarly to derivatives 1 and 2, compound 6 did not exert any detectable 

inhibitory effect at lower concentration (50 µM; Table 1). These preliminary SARs suggest that a putative 

electrostatic interaction, rather than just hydrogen bonding, could be involved in the binding of the γ-COOH 

group of 1 with its target (vide infra).  

Interestingly, when the amide bond of 1 was reduced to afford the amino derivative 9 (B moiety in Figure 2) 

a behavior similar to that of the parent compound was found, with inhibition of methylation at 100 µM (37 ± 

1%; P<0.1) and no significant inhibition at 50 µM. 

Based on the preliminary SAR data discussed above with the modification of the acidic and amide moieties 

(A and B, respectively in Figure 2), we decided to explore the influence of benzene ring substitution (C 

moiety) keeping the L-glutamic acid side chain present in 1 as the preferred moiety A and the amide group. 

Moving one chlorine atom from ortho to para position of benzene ring, to obtain the 2,4-dichloro-substituted 

compound 10, afforded an inactive compound. Derivatives 24, 16, and 14, bearing one chlorine atom in 

ortho, meta and para position, proved able to slightly reduce DNA methylation at 100 µM showing a 

residual methylation of 68 ± 21 %, 75 ± 2% , and 70 ± 6% respectively. Interestingly, the o-chloro 
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substituted compound 24 maintained an inhibitory activity (35 ± 1% inhibition) at the lower concentration, 

demonstrating an improvement with respect to the reference 1. 

These preliminary SAR data, at two compound concentrations, suggest that substitution of benzene ring with 

an halogen atom in ortho position could afford derivatives with improved efficacy as compared to double 

halogen-substitution. 

Use of an electron-donating substituent (i.e. a methoxy group) in either position of benzene ring (compounds 

15, 17, 20) did not show an increase in the activity when compared to o-Cl substituted 24, when compounds 

where tested at 50 µM concentration. 

In order to obtain more hints about the benzene ring substitution preference, and to verify whether we could 

further improve the activity of 24, we synthesized and evaluated a series of compounds (11-13, 18, 19, 21-

23, and 26) bearing substituents endowed with different steric and electronic properties. Among the 

synthesized compounds 13 (p-F substituted), 22 (o-Br substituted), and 23 (o-F-substituted) showed the most 

attractive activity, being able to inhibit DNA methylation by 43 ± 4% (P<0.05), 55 ± 1% (P<0.05), and 49 ± 

9%, (P< 0.05), respectively at 100 M. Compounds 22 and 23 were also able to prevent DNA methylation 

up to a significant extent when tested at 50 µM (37 ± 16% and 32 ± 3% inhibition). Unsubstituted compound 

25 as well as p-phenyl-substituted derivative 19 retained a modest activity only at 100 µM. 

Finally, to explore the role of α-COOH group, we combined o-chloro substitution (as in 24) with α-COOH 

group removal (as in 2). The obtained derivative 27 proved inactive in our assay, indicating that α-COOH 

group can play a relevant role in the activity of the o-chloro substituted compound 24. 

 

Inhibition of DNA methylation in cell lysates selectively over expressing DNMT1, DNMT3A and DNMT3B 

Based on the results of the inhibition of DNA methylation discussed in the previous section, we selected two 

of the newly designed molecules, 22 and 24, to further investigate their DNMT inhibition properties. The 

choice of o-Cl-substituted compound 24, which is slightly less active than o-F-substituted 23 (at 100 µM) 

was done to directly compare 24 vs 1 over a larger range of concentrations, in order to test the hypothesis 

that mono-halo-substituted benzoyl amino acids could be better DNMT inhibitors than disubstituted 

analogues. The new compounds, along with model compound 1, and RG108 were studied at seven different 

concentrations (range 1 - 150 µM) for their ability to prevent DNA methylation in a HEK293T cell lysate 

selectively over expressing DNMT1, DNMT3A, and DNMT3B. All the tested compounds were able to 
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inhibit DNMT1- and DNMT3A-dependent DNA methylation in a concentration dependent manner with a 

residual methylation in the 28-49 % range in cell lysate over expressing DNMT1 (Figure 3), and 39-41% in 

cell lysate over expressing DNMT3A (Figure 4) at the maximal concentration tested. Interestingly, in this 

test model, compound 22 proved as active as the reference DNMT inhibitor RG108 maintaining a significant 

and encouraging inhibition of DNA methylation up to 25 µM (22 = 41 ± 18 % vs RG108 =47 ± 10 % 

inhibition in DNMT1 expressing lysate; 22 = 38 ± 6 % vs RG108 = 32 ± 17 % inhibition in DNMT3A 

expressing lysate). Compounds 1 and 24 proved somewhat less active on both DNMT1 and DNMT3A. All 

the compounds showed poor or non-significant inhibitory activity in DNMT3B over expressing cell lysate up 

to 100 µM (Table S1 in the Supporting Information). 

The obtained data suggest that these compounds are non-selective DNMT1/DNMT3A inhibitors. 

Insert Figure 3 

Figure 3. Concentration-response experiments for compounds 1, 22, 24 and reference RG108 showing 

inhibition of DNA methylation in cell lysate selectively overexpressing DNMT1. 

HEK293T cells were transfected with plasmids containing DNMT1 sequence and mock control. Fresh 

cellular extracts were incubated either in the presence of test compounds or with vehicle (1 % DMSO) alone 

for 2 h. The amount of methylated DNA was determined using Epiquik DNA methyltransferase 

activity/inhibition assay. Data are expressed as percentage of residual methylated DNA ± SD relative to 

vehicle (DMSO 1%) treated cell lysate. Results are the mean of at least three independent experiments run in 

triplicate. * P < 0.05,  P < 0.01, and # P < 0.001 vs. vehicle treated lysates; ANOVA and Bonferroni post-

hoc test. 

 

Insert Figure 4 

Figure 4. Concentration-response experiments for compounds 1, 22, 24 and reference RG108 showing 

inhibition of DNA methylation in cell lysate selectively over expressing DNMT3A. HEK293T cells were 

transfected with plasmids containing DNMT3A sequence and mock control. Fresh cellular extracts were 

incubated either in the presence of test compounds or with vehicle (1 % DMSO) alone for 2 h. The amount 

of methylated DNA was determined using Epiquik DNA methyltransferase activity/inhibition assay. Data are 

expressed as percentage of residual methylated DNA ± SD relative to vehicle (DMSO 1%) treated cell 

lysate. Results are the mean of at least three independent experiments run in triplicate. * P < 0.05,  P < 0.01, 

and # P < 0.001 vs. vehicle treated lysates; ANOVA and Bonferroni post-hoc test. 

 

 

Inhibition of DNMT1 and DNMT3A in enzymatic-based assays 

To further evaluate the ability of compounds 1, 22 and RG108 to act directly on DNMT1 and DNMT3A, the 

enzymes were overexpressed in HEK293T cells and enriched by immunoprecipitation using the specific 

antibodies. Enriched enzymes were treated with 100 µM of compounds 1, 22 and RG108; DNA methylation 

inhibition was measured as above. Results are reported in Table 2. All tested compounds are able to inhibit 



16 
 

DNMT1- and DNMT3A-mediated DNA methylation. Compound 22 inhibited both DNMT1 and DNMT3A 

activity by 42% and 49%, respectively. In this assay, the activity of 1 was very close to that previously 

reported for NSC137546 (stereochemistry not defined) on recombinant DNMT1.32 Collectively, these 

observations suggest that the chemistry of N-benzoyl-L-glutamic acid derivatives could be further explored 

to generate mixed DNMT1 / DNMT3A inhibitors. 

 

Table 2. Ability of compounds 1, 22, and reference compound RG108 to inhibit DNA methylation mediated 

by isolated DNMT1 and DNMT3A enzymes. 

Compound Residual relative enzymatic activity (%)a 

 DNMT1 (mean ± SDb) DNMT3A (mean  ± SDb) 

1 66 15 c 61 17 c 

22 5811 d 5113 c 

RG108 658 c 793  
a HEK293T cells were transfected with plasmids containing the different DNMTs' sequences and mock 

control. Cells were freshly lysed in RIPA buffer, DNMT1 and DNMT3A were immunoprecipitated using 

Paramagnetic beads and anti-DNMT1, anti-DNMT3A as antibodies. Normal mouse IgG was used as 

immunoprecipitation control. All the immunoprecipitation steps have been performed on ice in order to 

preserve the enzymatic activity. The immunoprecipitated enzymes were incubated with compounds 1 and 22 

at 100 µM (1% DMSO final conc.) or vehicle alone (1% DMSO) at 37 °C for 2 h. RG108 was used as 

reference at 100 µM. DNMT activity was detected by DNMT activity/inhibitor assay kit. b Data are 

expressed as percentage of residual enzymatic activity relative to vehicle (DMSO 1%) treated cell lysate ± 

SD. Results are represented as mean of, at least, three independent experiments run in triplicate. c P < 0.1, 

and d P < 0.05 vs vehicle; ANOVA and Bonferroni post-hoc test. 

 

Docking studies of 22 with DNMT1 and DNMT3A 

Molecular docking and other computational techniques have shown to be useful to elucidate the binding 

mode of experimentally known DNMT1 and DNMT3A inhibitors.26 In order to explore the putative protein-

ligand interactions of compound 22, we conducted flexible docking of its structure within the substrate 

binding site of the catalytic domain of human DNMT1 and DNMT3A, respectively. Crystallographic 

structures of DNMT1 (Protein Data Bank, PDB ID: 3PTA)44 and DNMT3A (PDB ID: 2QRV) were 

employed.45 Docking was conducted with the program Internal Coordinates Mechanics (ICM) software.46 

The docking protocol is presented in the Experimental part section. Figure 5 shows a three- and bi-

dimensional (3D and 2D) binding model of 22 in complex with DNMT1. According to this model, the -

carboxylate group of 22 makes two important hydrogen bonds with the side chains of Arg1312 and Arg 

1310. An additional hydrogen-arene bond is predicted between the phenyl moiety of 22 with Cys1226. The 
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overall position of the compound in the binding pocket and, in particular, the interactions with the catalytic 

Cys1226, suggests that 22 could inhibit DNMT1 by blocking the substrate binding site. 

 

Insert Figure 5 

Figure 5. Docking model of compound 22 with the catalytic domain of human DNMT1. The 3D and 2D-

interaction map show selected amino acid residues of the binding site. Non-polar hydrogen atoms are 

omitted for clarity. In the 2D-interaction map green and blue arrows indicate hydrogen bonding to side chain 

and backbone atoms, respectively. Blue ‘clouds’ on ligand atoms indicate the solvent exposed surface area of 

ligand atoms. Light-blue ‘halos’ around residues indicate the degree of interaction with ligand atoms. The 

dotted contour reflects steric room for methyl substitution. 

 

Figure 6 depicts the docking model of 22 with DNMT3A. Similar to Figure 5, a 3D model is shown along 

with a 2D-interaction diagram. In this docking model, the -carboxylate group makes a hydrogen bond with 

the side chains of Arg887 but it does not make interactions with the catalytic Cys662. Similar to the binding 

model with DNMT1, the docking results suggest that 22 could inhibit DNMT3A by blocking the substrate 

binding site. In both models, with DNMT1 and DNMT3A, the two carboxylate groups are involved in the 

formation of hydrogen bonds with residues in the binding site. This result is in overall agreement the SAR 

discussed above. 

 

Insert Figure 6 

Figure 6. Docking model of compound 22 with the catalytic domain of human DNMT3A. The 3D and 2D-

interaction map show selected amino acid residues of the binding site. Non-polar hydrogen atoms are 

omitted for clarity. In the 2D-interaction map the color coding and symbols are as in Figure 5. 

 

Stability of compound 22 under physiological conditions and in human serum 

In view of future in vivo studies, the chemical stability of 22 under physiological conditions and in human 

serum was checked. In separate experiments, compound 22 was incubated at 37 °C for 48 h in pH 7.4 

phosphate-buffered solution and in human serum (Figure S2 in the Supporting Information) at the 

concentration of 2 mg/mL. The stability was monitored for 48 h by measuring the compound concentration 

at different time intervals via RP-UHPLC. Compound 22 was completely stable in both the conditions 

tested. 

 

3. Conclusions 
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Inspired by the structure of the validated hit compound NSC137546, in this work we synthesized a series of 

N-benzoyl amino acids and explored their ability to inhibit DNMT-dependent total DNA methylation. The 

SAR derived from this study indicated that the N-benzoyl substituted L-glutamic acid scaffold is the 

minimal requirement for the activity of this class of benzamide derivatives. Ortho halogeno-substituted 

compounds 22, 23, and 24 emerged as the most interesting hits. In particular, compound 22 inhibited both 

DNMT1- and DNMT3A-mediated DNA-methylation in a concentration-dependent manner and proved 

active on both DNMT1 and DNMT3A isolated by immunoprecipitation. Docking studies suggest putative 

binding to the substrate site of both DNMT isoforms studied. Compound 22 proved to be stable under 

physiological conditions in human serum and it is currently being tested in different models of cardiac 

fibrosis. Results of these studies will be reported in due course. 

 

Acknowledgments 

This research was supported by funding from the University of Turin, Ricerca locale 2013 “quota B” to D. 

G., and Ricerca locale 2014 and 2015. C.G. and F.S. are partially supported by a grant from LOEWE Cell & 

Gene Therapy Center (LOEWE-CGT), Goethe University Frankfurt. F.S. is recipient of the LOEWE CGT 

grant # III L 5 - 518/17.004 (2013) and funded by the DFG (German Research Foundation), Excellence 

Cluster Cardio Pulmonary System (ECCPS).E.F.-deG. is grateful to CONACyT for the Ph.D. fellowship 

granted # 348291/240072. We also thank the National Autonomous University of Mexico (UNAM), grant 

PAPIIT IA204016 to JL.M-F and the program ‘Nuevas Alternativas de Tratamiento para Enfermedades 

Infecciosas’ (NUATEI-IIB-UNAM) for the acquisition of the software MOE. Authors wish to thank Prof. 

Giancarlo Cravotto, DSTF, University of Turin, Italy and Dr. Marco Lucio Lolli, DSTF, University of Turin, 

Italy for access to SynthwaveTMoven and UHPLC instrumentations. Authors wish to thank Prof. Loretta 

Lazzarato for mass spectra. 

 

Supplementary data 

Additional Supporting Information may be found in the online version of this article:  



19 
 

Full characterization of compounds (1H and 13C-NMR spectra of compounds 1-9, 17, 20, 23, 25-27. COSY 

and HMBC-NMR spectra of compounds 7 and 8), along with detailed experimental procedures, is given in 

supplementary file. 

Table S1: Ability of compounds 1, 22, 24, and reference compound RG108 to inhibit DNA methylation in 

cell lysate selectively overexpressing DNMT3B. 

Figure S2: Stability of compound 22 in human serum. 
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