
15 October 2023

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A Genetic Algorithm for a class of Critical Node Problems

Published version:

DOI:10.1016/j.endm.2016.03.047

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1562070 since 2016-11-14T18:16:17Z

This is an author version of the contribution published on:

R. Aringhieri, A. Grosso, and P. Hosteins.

A Genetic Algorithm for a class of Critical Node Problems.

Electronic Notes in Discrete Mathematics, 52: 359–366, 2016. Available
online 20 May 2016.

DOI: 10.1016/j.endm.2016.03.047

The definitive version is available at:

http://www.sciencedirect.com/science/article/pii/S157106531630052X

http://www.sciencedirect.com/science/article/pii/S157106531630052X

A Genetic Algorithm for a class of Critical
Node Problems

Roberto Aringhieri, Andrea Grosso, Pierre Hosteins 1,2

Dipartimento di Informatica
Università degli Studi di Torino

Turin, Italy

Abstract

In this paper, we deal with two different variants of the Critical Node Problem,
designing a flexible genetic algorithm for tackling them both. The results are com-
pared with the best known results available in the literature.

Keywords: Critical Node Problem, Cardinality-Constrained, graph fragmentation,
genetic algorithm

1 Introduction

In this paper we consider two versions of the Critical Node Problem (CNP).
The most canonical on is formulated as follows: given an undirected graph
G(V,E) and an integer K, determine a subset of K nodes S ⊆ V , such that
the number of node pairs still connected in the induced subgraph G[V \ S]

f(S) = |{i, j ∈ V \ S : i and j are connected by a path in G[V \ S]}| (1)

1 Work supported by a Google Focused Grant on Mathematical Programming, project
“Exact and Heuristic Algorithms for Detecting Critical Nodes in Graphs”.
2 Email: roberto.aringhieri@unito.it, grosso@di.unito.it, hosteins@di.unito.it

is as small as possible.

To the authors’ knowledge, the problem can be traced back to the so-called
network interdiction problems studied by Wollmer [15] and later Wood [16].
Although these seminal papers focused on arc deletion, more recently the
attention is more on node deletion. The CNP has many applications, such
as the robustness of communication networks [7,8], detection of so-called
“key players” in a relational network [6] or contagion control via vaccina-
tion [4,13]. Different optimization methods were proposed for solving the CNP:
heuristics [6,4,9,1], Local Search and other metaheuristics [4,13,3], approxima-
tion [14] and exact [12] algorithms. The CNP is known to be NP-complete [4]
in the general case. For a broad CNP literature review, the reader can refer
to [10,11].
Other versions of the problem were studied, such as the Cardinality-Constrained
CNP (CC-CNP) [5], which can be described as follows: determine the mini-
mal subset of nodes S ⊆ V , such that the largest connected component in the
induced subgraph G(V \ S) is smaller than a given parameter L. While the
objective function now becomes trivial to compute, the cardinality constraint
itself is not trivial to satisfy, contrary to the Canonical CNP discussed above.
This makes moves in the solution space much more delicate, e.g., for a VNS
or ILS algorithm such as those proposed in [2] for the Canonical CNP and it
calls for more generally applicable algorithms. [10] and [11] also discuss other
CNP formulations where one minimizes the size of the largest component or
maximizes the number of connected components by deleting K nodes.
In this paper, we propose a genetic algorithm that is more easily adaptable
to the different possible connectivity measures of the CNP, exploiting use-
ful greedy rules for reducing and extending the set S and already described
in [4,1]: basically a node n is chosen in S according to n = argmin{f(S \
{n})− f(S)} or in V \ S as n = argmax{f(S)− f(S ∪ {n})}, optimising the
impact on the function f(S) (these rules are adaptable to the CC-CNP, as
we will develop in Section 2.2). The paper is organized as follows. Section 2
depicts the details of the proposed genetic algorithm for solving the CNP and
CC-CNP. Section 3 reports the preliminary computational results of our algo-
rithm, comparing with those reported in [2] and discuss the current extension
of the present work.

2 A genetic algorithm for the CNP

2.1 Canonical CNP

As stressed in the introduction, there already exist several heuristic methods
for solving the CNP with different kinds of connectivity measure. Those that
seem to give the best results at the moment, for the formulation based on
Eq. (1) (that we call “Canonical CNP”), are based on efficient local searches
that evaluates the impact of 2-nodes exchanges between the set S of deleted
nodes and V \ S [2].
However the diversification phase is actually crucial to the CNP: even though
articulation points may (and do) appear during the local search, with a size-
able impact on the objective function, sometimes a certain amount of nodes
must be deleted together in order to disconnect the graph further. Such “co-
articulation points” are usually very hard to spot.

Since Genetic Algorithms (GA) are known for their ability to diversify the
search, we propose to devise such a GA specifically for the CNP. It should
be noted that a GA has already been explored in the context of the CNP [5],
more specifically in the context of the Cardinality Constrained CNP, which
connectivity measure differs from the one presented in (1). However, its de-
sign was quite different from our approach and with no particular use of the
problem structure or other existing algorithms. The general pseudo-code of
our GA is given in Algorithm 1.

Algorithm 1 A Genetic Algorithm for the CNP

CNP-GA (S∗, P, tmax, N)
1 t←− 0;
2 Initialise(N ,P , S∗, γ, π);
repeat
3 P ′ :=New Generation(N ,P , γ);
4 Mutate(P ′, π);
5 P :=Ordering(P ,P ′, γ, S∗);
6 Update(γ, π);
7 t←− cpuTime();
until t ≥ tmax;
8 S∗ :=Local search(S∗);
return S∗

The notation must be understood as follows: P and P ′ are populations
of N individual solutions to the CNP. Individual solutions are represented by
the set S of deleted nodes, thus P (′) = {S(′)

i , i ∈ {1, ...,N}}. A parameter γ
is used in the fitness function used to evaluate the solutions and a parameter
π is used for the probability of mutation of each newly created solution. The
initial solutions of P are made of K nodes chosen at random in the graph.
In order to evaluate the solutions we introduce a fitness function:

F (S, γ, S∗) = γf(S) + (1− γ)Σ(S, S∗).

The function Σ(S, S∗) computes the number of nodes in S that are also
present in the best known solution S∗. Using F (S, γ, S∗) instead of con-
nectivity function f(S) (1) allows to maintain a certain diversity among so-
lutions by boosting those that differ from the best one while maintaining a
competitive disconnectivity. Parameter γ is modified at each generation as:
γ = 1.4 ∗ 〈Σ(S, S∗)〉P/(〈Σ(S, S∗)〉P + f(S∗)), with 〈Σ(S, S∗)〉P the average of
the function Σ(S, S∗) over the population P . π is then initialised at π = 5.

The reproduction phase is comprised in the New Generation procedure.
N children solutions S ′

i are created from the union of two parents Si1 and Si2

from P : |S ′
i| = |Si1 ∪ Si2 | ≥ K; the solution is then made feasible using the

greedy procedure proposed in [4] and explicited in line 4 of the pseudo-code 2,
the only difference with [4] being that we break ties at random between the
best nodes at each step until |S ′

i| = K. This focusses the search towards good
quality solutions more quickly.

Algorithm 2 Reproduction phase

New Generation (N ,P , γ)
1 P ′ := {};
for i = 1...N
2 i1 := IntRand({0, ...,N}); i2 := IntRand({0, ...,N} \ {i1});
3 S ′

i := Si1 ∪ Si2;
while |S ′

i| > K
4 n = argmin{f(S \ {n})− f(S)}; S := S \ {n};
5 P ′ := P ′ ∪ {S ′

i};
return P ′

The mutation phase is implemented so as to diversify the search for good

solutions. For each child solution S ′
i, if a flipped coin is less than the mutation

parameter π, a number ng ∈ {1...K} of nodes, determined from a probability
distribution function p(k) ∝ 1/k, are deleted from S ′

i (thus favouring smaller
values for ng that do not disturb too much the solution). Using a greedy rule
similar to the one used in the reproduction phase, we add back nodes to S ′

i

until |S ′
i| = K (at each step, here again we break ties at random between the

best possible nodes). The details can be seen in pseudo-code 3.

Algorithm 3 Mutation phase

Mutate (P ′, π)
for i = 1...N

if IntRand({1, ..., 100}) ≤ π
1 ng := IntRand({0, ..., K}, p);

for j = 1...ng

2 n := S ′
i(IntRand({1...|S ′

i|})); S ′
i := S ′

i \ {n};
while |S ′

i| < K
3 n = argmax{f(S)− f(S ∪ {n})}; S := S ∪ {n};

Populations P and P ′ are then merged together and ordered according
to the fitness function F (S, γ, S∗), the best individual being updated when a
better solution is found. The best N solutions are selected and then returned
to replace those in P .
We finally update the value of γ according to the previously specified rule. As
for π, if a new best solution has been found, it is set to π := 5, otherwise it
is increased at π :=Min(π + 5, 50); this allows to diversify the solutions more
whenever no improvement of the best solution has been found.

As a last step, a local search is applied on S∗, applying 2-nodes swap
between S∗ and V \ S∗ until no more improving move is found.

2.2 Cardinality-Constrained CNP

Let us now see how one can adapt the GA to alternative connectivity mea-
sures over the graph, such as with the CC-CNP. In [5], the NP-hardness of
CC-CNP is proved and two heuristics are proposed to find solutions, among
which a greedy approach very similar to the one of [4]. The greedy procedure
is again quite simple: it starts from a set S ⊆ V and moves nodes back from
S to V \ S until no node can be removed from S without obtaining a con-

nected component of cardinality greater than L. However, we noticed that
the criterium for adding back nodes from S to V \ S does not discriminate
enough between good and bad solutions and thus does not provide very good
solutions for difficult graphs. Therefore we propose to select the node which
will be integrated in the smallest possible connected component of the graph.

Using this new greedy rule we can adapt the reproduction and mutation
procedures of our GA to the CC-CNP without too much trouble, as well as set
up a competing greedy algorithm that repeatedly starts from a vertex cover
S of G and diminishes |S| until feasibility can no longer be maintained.

3 Preliminary computational analysis and conclusions

In this section we report the preliminary computational analysis of the Ge-
netic Algorithm 1. It was programmed in standard C++ and compiled with
gcc 4.1.2. All tests were performed on an HP ProLiant DL585 G6 server
with two 2.1 GHz AMD Opteron 8425HE processors and 16 GB of RAM.
We use the graphs presented in [13] as benchmark instances and compare
our results with the best known results (coming from [2]) for the Canonical
CNP, provided in our tables in the column “BK”. Each graph has a specific
topology based on Erdos-Renyi, Barbasi-Albert, Watts-Strogatz and Forest
Fire models (see [13] for more details). In the column “graph” we indicate
the type of graph by two letters (e.g., BA stands for Barabasi-Albert, etc...),
followed by its number of nodes. New best known results are displayed in
bold font. We use the parameter values tmax = |V |+ |E| seconds (given that
many steps of the algorithm have O(|V |+ |E|) complexity) and N = 300, as
a larger population would make the resolution too slow for the largest graphs.
As no benchmark results for the CC-CNP are provided in the litterature for
these graphs, we compare with results of a multistarting greedy as described
in section 2.2: we launch it N times for each instance.

The results in Tab. 1 are promising as they are very close to the best known
results for almost all graphs. In fact, compared to competing algorithms in [2]
it has the best average gap to the best solutions, i.e. 4% while all other
solutions have at least 6% average gap: although the set of instances does
not allow to statistically confirm this as significant from a Wilcoxon test, this
comes as a hint of good robustness for the GA. As a next step, variants of the
algorithm will be explored and applied to larger real graphs, as well as other
variants of the CNP (e.g., maximising the number of connected components).

CNP CC-CNP

graph K BK GA L Greedy GA

BA500 50 195∗ 195 25 9 9

BA1000 75 558∗ 558 50 8 8

BA2500 100 3704∗ 3704 100 9 9

BA5000 150 10196∗ 10196 200 11 11

ER235 50 295∗ 300 30 37 34

ER466 80 1542 1551 50 69 65

ER941 140 5198 5451 100 129 118

ER2344 200 1012849 1171633 250 329 306

FF250 50 194∗ 194 25 20 20

FF500 110 257∗ 259 40 19 19

FF1000 150 1260∗ 1261 70 37 36

FF2000 200 4545∗ 4565 100 41 38

WS250 70 3241 3136 45 82 75

WS500 125 2130 2267 80 110 83

WS1000 200 139653 188317 110 336 267

WS1500 265 14138 15228 150 272 210

Table 1
Results of the GA over the Canonical CNP (BK stands for Best Known result

from previous works, while K is the number of nodes deleted from the graph) and
over the CC-CNP (L is the maximum cardinality of remaining connected
components). BK results with an asterisk are known to be exact optima.

References

[1] Addis, B., R. Aringhieri, A. Grosso and P. Hosteins, New greedy algorithms for
the critical node problem Submitted for publication.

[2] Aringhieri, R., A. Grosso, P. Hosteins and R. Scatamacchia, Local search
metaheuristics for the critical node problem Submitted to Networks.

[3] Aringhieri, R., A. Grosso, P. Hosteins and R. Scatamacchia, Vns solutions
for the critical node problem, in: 3rd International Conference on Variable
Neighborhood Search, Electronic Notes in Discrete Mathematics, 2014, to
appear.

[4] Arulselvan, A., C. W. Commander, L. Elefteriadou and P. M. Pardalos,
Detecting critical nodes in sparse graphs, Computers & Operations Research
36 (2009), pp. 2193–2200.

[5] Arulselvan A., S. O., Commander C.W. and P. P.M., Cardinality-constrained
critical node detection problem, in: N. Gülpnar, P. Harrison and B. Rüstem,
editors, Performance Models and Risk Management in Communications
Systems, Springer Optimization and Its Applications 46, Springer New York,
2011 pp. 79–91.

[6] Borgatti, S. P., Identifying sets of key players in a network, Computational and
Mathematical Organization Theory 12 (2006), pp. 21–34.

[7] Dinh, T. N. and M. T. Thai, Precise structural vulnerability assessment via
mathematical programming, in: MILCOM 2011, IEEE, 2011, pp. 1351–1356.

[8] Dinh T. N. et al, On new approaches of assessing network vulnerability:
Hardness and approximation on approximation of new optimization methods
for assessing network vulnerability, IEEE/ACM Transactions on Networking
20 (2012), pp. 609–619.

[9] Edalatmanesh, M., “Heuristics for the Critical Node Detection Problem in Large
Complex Networks,” Ph.D. thesis, Faculty of Mathematics and Science, Brock
University, St. Catharines, Ontario (2013).

[10] Shen, S. and J. Cole Smith, Polynomial-time algorithms for solving a class of
critical node problems on trees and series-parallel graphs, Networks 60 (2012),
pp. 103–119.

[11] Shen, S., J. C. Smith and R. Goli, Exact interdiction models and algorithms
for disconnecting networks via node deletions, Discrete Optimization 9 (2012),
pp. 172–88.

[12] Summa, M. D., A. Grosso and M. Locatelli, Branch and cut algorithms for
detecting critical nodes in undirected graphs, Computational Optimization and
Applications 53 (2012), pp. 649–680.

[13] Ventresca, M., Global search algorithms using a combinatorial unranking-based
problem representation for the critical node detection problem, Computers &
Operations Research 39 (2012), pp. 2763–2775.

[14] Ventresca, M. and D. Aleman, A derandomized approximation algorithm for the
critical node detection problem, Computers and Operations Research 43 (2014),
pp. 261–270.

[15] Wollmer, R., Removing arcs from a network, Operations Research 12 (1964),
pp. 934–940.

[16] Wood, R. K., Deterministic network interdiction, Mathematical and Computer
Modelling 17 (1993), pp. 1–18.

