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ABSTRACT 

Flavonoids are a class of bioactive compounds extremely important in food and wine industry. 

The development of rapid methods for their quantification in grape berries is one of the modern 

challenges in viticulture and enology research. Total flavonoid (TF) amount changes during grape 

ripening and also berry physical-mechanical properties, as evaluated by instrumental texture 

analysis, change in the same period. In this work, TF and berry physical-mechanical parameters 

were linked together through predictive models. Models were developed for each of four red 

wine grape cultivars: Brancellao, Cabernet Franc, Mencía and Merenzao, and another one 

considered all cultivars together. These models reached high accuracy and allowed to predict TF 

in grape berries with a low error (RMSE from 0.15±0.07 mg g-1 to 0.35±0.10 mg g-1 in prediction, 

as evaluated by cross-validation).  

Berry weight (BW) was the parameter having the largest influence on TF predictions, and also 
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was the only variable having part in all models. BW and chewiness had a similar behavior and 

when berry weight was excluded, chewiness was able to substitute its role in all models.  

The other physical-mechanical characteristics displayed a different behavior across cultivars.  

In conclusion, this work shows that it is possible to predict TF from physical-mechanical 

predictors in grape berries and that cultivar specific models reach higher accuracy for this 

purpose than the multi-cultivar model. 

 

Keywords: Multivariate Adaptive Regression Splines (MARS); total flavonoids; berry weight; 

mechanical properties; red wine grape cultivars 

 

ABBREVIATIONS 

BW Berry Weight 

Co Cohesiveness 

Ch Chewiness 

Esk Skin Young's modulus 

Fsk Skin break force 

GCV General Cross Validation 

R Resilience 

Spsk Skin thickness 

Wsk Skin break energy 

TA Texture Analysis 

TF Total Flavonoids Index 

 

1. INTRODUCTION 

Flavonoids are a class of bioactive compounds having nutraceutical properties. Recently, they 

have received a great attention because of their beneficial effects on human health. In particular, 
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their antioxidant (Lourenço et al., 2008) and hypocholesterolemic (Gonzalez et al., 2014) 

properties make these compounds  the most known “French paradox” contributors (Sun et al., 

2002). Flavonoids greatly affect the sensory and nutritional quality of fruits and vegetables 

(Harnly et al., 2006) and their derived products like wine (Ristic et al., 2010). Red wine contains 

more flavonoids than white one due to the quantity originally present in grapes (González-Neves 

et al., 2004), but in particular to differences in wine-making practices. The biosynthesis and 

concentration of grape flavonoids greatly depend on cultivar, vineyard practices, soil and climate 

(Koundouras et al., 2006). Quantitative and qualitative modifications of flavonoids and their 

easiness to be released during maceration occur during the ripening period (Zouid et al., 2010; 

Kuhn et al., 2013), and therefore the harvest date is an important parameter to determine the 

potential amount of flavonoids in wine. In this context, modern grape-growing practices are 

focused on the optimization of flavonoid content in grapes. 

 

Accurate determination of flavonoids originally present in grape and of their potential 

extractability is therefore of extreme importance in the wine industry. There are several analytical 

procedures to determine flavonoids in fruits, which are based on the use of spectrophotometry, 

chromatography and mass spectrometry (Ignat et al., 2011 for a generic review and Lorrain et al., 

2013 for the case of grape and wine). While these methods have proven to be accurate, they are 

time consuming or require great initial and/or utilization costs. Therefore, in the last ten years, 

researchers have tried to develop rapid and cheap methods to obtain a faster screening of 

flavonoids in grapes. The greatest advances in this field have been made with the use of Near 

InfraRed (NIR) spectroscopy (Ferrer-Gallego et al., 2011; Rolle et al., 2012; Cozzolino, 2015 

among others). In this work, we the potentialities of another different approach based on 

instrumental Texture Analysis (TA). This analytical technique was already successfully applied 
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to assess the flavonoid content in grape seed acoustic parameters of seeds highly correlated with 

extractable flavonoid (Torchio et al., 2012). However, at our knowledge, no study was performed 

in order to evaluate the relationship among flavonoid concentration in grape skin. Berries 

accumulate flavonoids in the skin during the ripening phase (Kuhn et al., 2013), and at the same 

time change their physical-mechanical properties (Le Moigne et al., 2008; Río Segade et al., 

2011a ). Therefore, it interesting to try to link these two phenomena. Berry becomes softer and 

more cohesive, whereas the berry skin is more elastic as ripening progresses (Le Moigne et al., 

2008; Río Segade et al., 2011a). Although these physical modifications can be evaluated by 

sensory panels to support harvesting decisions, TA generally permits to reduce the variability 

associated with the subjectivity of sensory analysis through quantitative and objective measures. 

TA has already shown to be effective for an accurate evaluation of physical-mechanical 

characteristics in grapes (Letaief et al., 2008a, Battista et al., 2015) and has been suggested for 

the evaluation of extractable anthocyanins (Río Segade et al., 2011b,c). 

 

This work aims to extend the use of TA to the prediction of total flavonoids in grape skin. 

Furthermore, a deeper knowledge of the relationships between the physical-mechanical properties 

and chemical composition of grapes will also address new approaches in vineyard management to 

improve those properties related to high quality berries. In this article, predictive models for the 

evaluation of total flavonoids in four red wine grape cultivars developed over a dataset composed 

of 480 berries. The contribution of each physical-mechanical predictor to the performance of the 

model described and differences among cultivars underlined. 

 

2. MATERIALS AND METHODS 

2.1 Grape sampling 
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Grape samples of Vitis vinifera L. cv Mencía, Brancellao and Merenzao were harvested in 

various vineyards located in different sub-zones of the Ribeira Sacra Denomination of Origin 

(Galicia, Northwest Spain). The samples of Cabernet Franc were collected from different 

vineyards in the Loire Valley (France). For each cultivar, approximately 1000 grape berries were 

randomly picked with attached short pedicels. The berries were visually inspected, and those with 

damaged skins were discarded. For each cultivar, a set of 120 berries was randomly selected 

(with a total of 480 berries) to determine physical-mechanical properties and total flavonoid 

content. Before the analysis the weight of each berry was determined using a technical balance 

(Gibertini E1700, Modena, Italy). 

 

2.2 Instrumental texture analysis 

Analyses were made with a Universal Testing Machine (UTM) TAxT2i texture analyzer (Stable 

Micro Systems, Godalming, Surrey, UK) equipped with a HDP/90 platform and a 5 kg load cell.  

All data were acquired at 400 Hz, and the mechanical properties were calculated using the 

Texture Expert Exceed software package (Stable Micro Systems). Each grape berry was 

singularly weighed with an analytical laboratory balance, Radwag 109 AS 220/X, Radwag, 

Radom, Poland, and a texture profile analysis (TPA) non-destructive mechanical test was then 

performed (Letaief et al., 2008a). Each whole berry was individually compressed in the 

equatorial position using a SMS P/35 flat cylindrical probe (Stable Micro Systems) under 25% 

deformation, with a waiting time between the two bites of 2 s and a test speed of 1 mm s-1. The 

following mechanical properties of whole berry were determined: hardness (N, as H), 

cohesiveness (adimensional, as Co), gumminess (N, as G), springiness (mm, as S), chewiness 

(mJ, as Ch) and resilience (adimensional, as R). A puncture test was then carried out on the same 

berries using a SMS P/2N needle probe (Stable Micro Systems), a test speed of 1 mm s
-1

 and a 
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penetration depth of 3 mm (Letaief et al., 2008b). Each berry was individually punctured in the 

lateral face, and the following three skin mechanical parameters were measured: skin break force 

(N, as Fsk), skin break energy (mJ, as Wsk) and skin resistance to the axial deformation (N mm
-1

, 

as Esk). The use of a needle probe minimizes the possible interference from the pulp firmness. 

Finally, skin thickness (µm, as Spsk) was individually measured in each berry by a compression 

test after the skin was manually removed from the pulp using a laboratory spatula (Río Segade et 

al., 2011c). This test was carried out using a SMS P/2 flat cylindrical probe and a test speed of 

0.2 mm s
-1

. 

 

2.3 Chemical analysis 

Once finalized the skin thickness test, each berry skin was individually immersed into 5 mL of a 

hydroalcoholic buffer solution of pH 3.2 containing 5 g L-1 tartaric acid, 2 g L-1 sodium 

metabisulphite and 12% v/v ethanol (Di Stefano and Cravero, 1991). Each skin was then 

homogenized at 8000 rpm for 1 min using a Ultraturrax T25 high-speed homogenizer (IKA 

Labortechnik, Staufen, Germany), and centrifuged in a PK 131 centrifuge (ALC International, 

MI, Italy) for 15 min at 3000×g at 20 °C. The supernatant was used for analysis after dilution 

with an ethanolic solution of HCl (70:30:1, ethanol:water:HCl, v/v) (Di Stefano and Cravero, 

1991). Total flavonoid index (TF) was determined by a spectrophotometric method using a UV-

1601PC spectrophotometer (Shimadzu Scientific Instruments Inc., Columbia, MD, USA) and 

expressed as mg g-1 of (+)-catechin (Di Stefano and Cravero, 1991; Torchio et al., 2012).  

 

2.4 Chemometrics 

Before starting the statistical analysis for the 480 berries, 160 unique samples were obtained by 

averaging three berries at a time, randomly selected without replacement inside the same cultivar. 
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For each cultivar, a model was then fitted in order to predict TF as a function of TA predictors. 

For model fitting purposes, the Multivariate Adaptive Regression Splines (MARS) algorithm 

(Friedman, 1991; Hastie et al., 2009) was used. This technique builds a linear first-order spline 

for each predictor, which then added to a linear regression model instead of the original predictor. 

The algorithm isolates portions of data where the relationship between the response and a 

predictor is constant and can be approximated by a linear function. These linear relationships are 

then joined at knotpoints that are defined as values of the predictor where the relationship with 

the outcome varies.  

Mathematically, MARS defines a series of piecewise linear basis functions of the form (x - c)+ 

and (c - x)+. The symbol ‘‘+’’ means positive part, so:  

(x�c )
+
= {c�x , x<c

0, x⩾c          (1) 

(c�x )
+
= {x�c , x>c

0, x⩽c          (2) 

where c is the value of the parameter at the knotpoint. The spline function is then added to the 

model in a linear form, so:  

y = β
0
+ β

1
(x�c)

+
+ β

2
(c�x)

+
+ ε

       (3) 

where y is the outcome, x is the predictor, c is the knotpoint value, β0 is the intercept, β1 and β2 

are the coefficients, ε is the error and the symbol ‘‘+’’ means positive part. The procedure is 

iterative; for all predictors, every data point is evaluated as a possible knotpoint, and the linear 

relationship and the related error are calculated. The data point that allows the lowest error, once 

used as knotpoint, is retained in the final model. The utility of simple linear terms (i.e. no spline) 
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is also evaluated. Once the full set of splines has been created, the algorithm sequentially 

removes terms and functions that do not contribute significantly to the root mean square error 

(RMSE) reduction. To determine the contribution of each term and function, MARS uses the 

general cross validation (GCV) statistic. This procedure also estimates how much the error rate is 

decreased by including a predictor in the model, allowing the classification of predictors in order 

of importance. The algorithm does not add terms if these do not further reduce the GCV error. 

The MARS model allows the use of interactions between predictors, and also, in this case, splines 

are created. In addition to the internal GCV statistic, which is in general optimistic, we tuned the 

MARS model for the number of terms and the degree of interaction using 25 repeats of 10-fold 

cross-validation; the RMSE was used as a metric. The same resampling technique was used to 

train the model and to estimate its performance on new data. The MARS model is sensible to 

correlated predictors. Therefore, before fitting the model, all available predictors were filtered in 

order to maintain the maximum correlation between predictors lower than 0.7. 

 Statistical analysis, data preparation and management were performed with the R GNU statistical 

software environment (R v3.1.2 R Core Team 2012), using the earth package (Milborrow, 2014) 

to fit the MARS models. 

 

3. RESULTS 

3.1 Grape composition variability 

As described in the previous section 2.4, available predictors were filtered for collinearity before 

continuing the analysis. This led to select berry weight (BW), Wsk, Esk, Spsk, Co, Ch and R as 

predictors of TF. In the whole dataset, some of them were correlated (Ch with BW and Esk). 

When cultivars were considered independently , these predictors were correlated in just half of 

the groups (in Merenzao and Brancellao). All of these three predictors (Esk, Ch and BW) were 
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therefore retained for the following exploratory analysis, and their contemporary use was justified 

when developing models for cultivars where they were not correlated (Cabernet Franc and 

Mencía). In the current work, we also tried to discriminate between the role of BW against that of 

TA predictors. Indeed, while the role of BW on grape flavonoid content is well known 

(Barbagallo, et al 2011 ) other physical-mechanical predictors have been introduced just recently 

(Letaief, et al. 2008) and their effect under active study (Zsófi, Zs. et al. 2014). Therefore in the 

following section (section 3.2), models fitted with and without BW. For those cultivars where Ch 

was correlated with BW and Esk, Ch was excluded to allow the determination of the role of BW. 

The exclusion of Ch solved the problem of correlations among predictors for Brancellao and 

Merenzao grape varieties. 

 

Figure 1 shows descriptive statistics for the whole dataset. The mean BW for all data together 

was 1.92 g. Merenzao was the cultivar with the heaviest berries in average (2.32 g), followed by 

Mencía (2.26 g), then Brancellao (1.74 g) and finally Cabernet Franc with the lightest berries 

(1.35 g). The average Wsk was higher for Cabernet Franc (0.56 mJ) than for Mencía (0.41 mJ), 

Merenzao (0.35 mJ) and Brancellao (0.26 mJ), while the mean Wsk for all cultivars was 0.39 mJ. 

Regarding Spsk, Cabernet Franc and Mencía showed the highest average values (287 and 285µm), 

followed by Merenzao (250 µm) and Brancellao (234 µm). The Spanish cultivars had a very 

similar average Esk (approx. 0.29 N mm-1), but value was higher than that of Cabernet Franc 

(0.23 N mm-1).. A similar trend was observed for Ch, for which Cabernet Franc showed the 

lowest average values (2.82 mJ), while Merenzao had the highest (6.55 mJ). However, the 

average Ch of Merenzao berries was quite different from that of Brancellao (5.29 mJ), but not 

from that of Mencía (6.12 mJ). The mean Ch for all data together was 5.2 mJ. Lower variability 

was observed between cultivars for Co and R, and this last variable showed limited range of 
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variation even inside the same cultivar. The mean Co for the whole dataset was 0.72 with a 

variance of 0.001, while the mean R was 0.37 with a variance of 0.001. Conversely, TF greatly 

varied across cultivars and allowed to well differentiate them. Cabernet Franc was the cultivar 

with the highest average TF (4.30 mg g-1), followed by Mencía (3.59 mg g-1), Brancellao 

(2.60 mg g-1) and Merenzao (1.88 mg g-1).  

 

In the whole dataset, BW and Ch were the parameters better related to TF, having respectively a 

r-value of -0.63 (BW) and -0.65 (Ch). This significant and negative correlation between BW and 

TF was observed in all cultivars, and r was -0.61 for Mencía, -0.64 for Merenzao, -0.76 for 

Brancellao, while the highest value of -0.89 was recorded for Cabernet Franc. It appears that if 

the correlation is significant in the whole dataset, it is generally more scattered than when 

cultivars are considered independently, as shown in figure 2. This figure plots BW versus TF for 

all data; the color is mapped to the cultivar, and the size of the points to Ch. Figure 2 also shows 

the negative correlation between Ch and TF in all cultivars. In opposition to what seen for BW, 

the relationship of Ch with TF was higher when the whole dataset was considered than when it 

was splitted by cultivar, with the exception of Cabernet Franc (r= -0.66). In detail, the last 

relationship was not significant for Mencía, while r was -0.52 for Merenzao and -0.48 for 

Brancellao. 

 

From the exploratory analysis, it appears that there are strong differences in the behavior and the 

variability of the TA predictors in all cultivars. Therefore, in the following section, a different 

model was developed for each cultivar to predict TF, and another one for all cultivars together. 

Results of all models and the role of the predictors across cultivars will then be compared. 
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3.2 Model fitting 

First linear regression were used to fit a function relating TF to BW alone, without texture 

parameters. On the train set, the linear regression for Brancellao had a R² value of 0.57 and a 

RMSE of 0.17 mg g-1, for Cabernet a R² of 0.78 and a RMSE of 0.36 mg g-1, for Mencia a R² of 

0.36 and a RMSE of 0.33 mg g-1, for Merenzao a R² of 0.39 and a RMSE of 0.17 mg g-1. 

To improve these results, the MARS technique was used for model fitting, and texture analysis 

parameter were included as predictors. This technique was chosen because, in the exploratory 

analysis, several predictors (BW is a noticeable example) were found to be well related to the 

outcome in an approximately linear way. Linear regression could be used in these cases, but 

MARS has been preferred because not all predictors showed linear relationships. MARS is 

advantageous in these situations, being able to model non-linear relationships. With respect to 

linear regression, MARS also allows to test predictors and the presence of interactions in an 

extensive fashion, because of the built-in backward feature selection routine. This avoids the use 

of predictors and terms that do not significantly reduce the error in the prediction of unseen data 

as evaluated by cross-validation (GCV more specifically).  

 

A MARS model was therefore fitted for each cultivar in the dataset. All models were tuned for 

the number of terms and degree of interaction, and performances on future data were evaluated 

using 25 repetitions of ten-fold cross validation. Once tuned, the number of terms and degree of 

interaction varied across all optimized models. The number of terms was 5 for Brancellao, 3 for 

Cabernet Franc, 7 for Mencía and 4 for Merenzao. Except for Mencía where the degree of 

interaction was 1, which indicates absence of interactions, models for the other cultivars used up 

to 2 degrees of interaction among predictors for Merenzao and Brancellao, and up to 3 for 

Cabernet Franc. The model built on the comprehensive dataset, containing all data from all 
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cultivars, was composed of 7 terms and 2 degrees of interaction. 

 

3.2.1 Models including BW 

Figure 3 shows the results for all cultivars on the train set. These results are improved with 

respect to the use of linear regression with BW alone as predictor, except for Cabernet. In this 

cultivar results are comparable because even the MARS approach uses BW alone as predictor 

and does not include texture analysis parameters in the model. In the cross-validation procedure, 

which simulates performances on future and unseen data, the best R²-values were obtained for 

Cabernet Franc (R² = 0.83±0.17, Fig.3), probably because this cultivar had the highest variance in 

TF (0.58 mg g
-1

). R²-values were 0.73±0.25 for the model developed for Brancellao, followed by 

0.65±0.31 for Merenzao and finally 0.56±0.33 for Mencía. The RMSE values were lower for 

those cultivars where the variance of TF was also lower. The lowest RMSE corresponded to 

Brancellao (RMSE = 0.15±0.06) and Merenzao (RMSE = 0.15±0.10), followed by Mencía 

(RMSE = 0.32±0.12) and Cabernet Franc (RMSE = 0.35±0.10). Because the TF values for these 

cultivars were not on the same scale, the comparison of RMSE does not make sense. Therefore, 

normalization is required dividing RMSE by the mean of the outcome for all cultivars to calculate 

the RMSE coefficient of variation (CoV). This parameter estimates performances as percentage 

of error over the mean. The lowest CoV computed for prediction RMSE, as evaluated by cross-

validation, were obtained for Brancellao (0.058±0.028%), Merenzao (0.080±0.053%), Cabernet 

Franc (0.081±0.023%) and Mencía (0.089±0.033%)  

The tuned model built for the whole dataset had a R²-value of 0.70±0.14 in cross-validation and 

RMSE of 0.57±0.11, which corresponded to CoV(RMSE) of 0.184±0.035%.  

Because MARS models are fairly simple, being just additive linear splines, they could be directly 
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applied to infer TF in grape berries. However, the validity of these models is limited to the same 

cultivar and TA data in the ranges observed here. The formulas for all models will be given 

hereafter (terms are rounded to 2 digits, unrounded coefficients are available from the 

corresponding author). Model formulas will also allow an easier description of terms different 

from BW, which will be reported in the following section 3.3. 

Brancellao: 

TF = 2.7 �0 .20 (BW– 0 .33)
+
+ 0 . 27 (0.33 –BW )

+
� 0 .15 (0 .20–E sk)+ +

+ 0 .09(W sk
�0 . 50)

+
(E sk

�0 .20)
+   (4) 

Cabernet Franc: 

TF = 3 .90 �0 .54 (BW– 0. 43 )
+
+ 0 .80 (0 .43 –BW )

+      (5) 

Mencía: 

TF = 4 .46 �0 .37 (BW– 0. 43 )
+
� 0 . 45(0.28 –Esk )+ �0 . 35(Spsk

�0 .37)
+

�

�0.49 (0 . 55�Sp
sk)+ �0 .22(0 .16�Co )

+
+0.79 (�0 .53�Ch )

+

  (6) 

Merenzao: 

TF = 1. 85 + 0 .38 (�0 .67 –BW )
+
+ 0 .69(BW–0 .67)

+
(Co– 0 .63)

+
�

�0 .10(BW– 0 .67)
+
(R– 0 .15)

+    (7) 

where TF is the amount of total flavonoids (mg g
-1

), BW is berry weight (g), Wsk is skin break 

energy (mJ), Esk is skin resistance to the axial deformation (N mm
-1

), Spsk is skin thickness (µm), 

Co is berry cohesiveness (adimensional), Ch is berry chewiness (mJ) and R is berry resilience 

(adimensional). 
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3.2.2 Models without BW 

BW was excluded from the global physical-mechanical predictors to test the effect of TA 

predictors alone. Models were refitted and re-tuned on the same set of re-samples previously used 

to build the model including BW. This will permit to compare the two versions of the model. 

Once tuned as described in the section 2.4, the best model for Brancellao and Merenzao used 3 

terms and no interactions, that for Cabernet Franc used 2 terms and 2 degrees of interaction, and 

that for Mencía used 7 terms and no interactions. All cultivars together were better modeled by 

using 7 terms and 3 degrees of interaction. In the cross-validation procedure, Brancellao had 

CV(RMSE) = 0.195±0.069mg/kg and R² = 0.56±0.33, Cabernet Franc had CV(RMSE) = 

0.615±0.204mg/kg and R² = 0.50±0.34, Mencía had CV(RMSE) = 0.349±0.116mg/kg and R² = 

0.51±0.34, and Merenzao had CV(RMSE) = 0.146±0.092mg/kg and R² = 0.68±0.29. For models 

without BW, performances changed and generally decreased when compared with those of 

models including BW. The greatest reduction was observed for Cabernet Franc, while no 

reduction was observed at all for Merenzao.  

 

3.3 Model description 

In order to evaluate the weight of each predictor in each model, we computed the variable 

importance by taking advantage of the implicit backward feature selection of MARS models. 

Variable importance is computed on the basis of the reduction in the GCV statistics 

corresponding to the addition of each term for each predictor in the model. The total reduction, 

once the final number of basic functions is determined, is used as variable importance metric. 

When a predictor is never used, its influence in the model is obviously equal to 0 whereas 

predictors with the highest influence have a value of 100. Data are shown in Table 1 for best-

performance models, thus including BW. Other ways of computing the variable importance in a 
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MARS model are available, specifically other metrics can be used instead of the GCV used here, 

such as the reduction in the Residual Sum of Square. This last metric was also tested, but the 

results were not different. The topological order of all predictors did not change at all, and the 

scaled value changed very slightly (1 or 2 digits). 

 

Table 1 shows that BW is the predictor allowing the strongest reduction in the GCV error for all 

cultivars taken both singularly and all together. Therefore, BW is the predictor with the largest 

influence in all models, however this can also be a spurious effect due to the expression of TF by 

weight. In Cabernet Franc, where the linear relation between TF and BW is the strongest (see 

section 3.1), the other terms do not improve the relation and do not contribute to further reduce 

the error. For this cultivar, BW is the only predictor used in the model and is the only variable 

that has some influence in all models. With the exception of Cabernet Franc, all TA predictors 

contribute at least in one model. All predictors enter the model for the multicultivar dataset, 

except Ch that was previously excluded from this global dataset because of its correlation with 

BW. Generally, the stronger influence of BW involves better model performances (see also figure 

3 and section 3.2). Other predictors can substitute the role of BW in the models and, when the 

relation between BW and TF is more scattered, the overall performances of the model decrease. 

 

Considering variables different from BW, Co contributes to the GCV error reduction for Mencía 

and Merenzao, Esk for Brancellao and Mencía, while all other predictors have some importance 

just for one single cultivar model. In the whole dataset, all used predictors (Ch was previously 

excluded) enter the model and therefore contribute to the reduction in the GCV error. Co enters 

the model for Merenzao (eq. 7) (and also that for the whole dataset, data not-shown) in 

interaction with BW; this predictor singularly contributes to the model only for Mencía (eq. 6). In 
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this last model, interactions are not present at all. Ch has been excluded from three of the five 

models because it was correlated with BW. Ch is present in the models for Mencía and Cabernet 

Franc but it contributes only in the first, while as already shown it is useless for Cabernet Franc 

(Table 1). Esk enters the models individually for Brancellao and Mencía (eqs. 4 and 6, 

respectively) and also in interaction with Wsk in this first model (Brancellao, eq. 4), while it is 

used exclusively in interaction with BW in the model for all cultivars together. Wsk is used 

without interactions in the global model. In the model for Merenzao, R is used in interaction with 

BW and contributes equally to the model for all cultivars. Spsk is the second variable in order of 

importance for Mencía (Table 1) and is used in interaction with R in the global model. 

 

When BW is excluded as predictor (data not shown) and Ch is included in all models (see section 

3.2.2), Ch becomes the predictor with the highest influence for all cultivars except for Mencía, 

where it is Co. The predictor influence generally increases in relative, except when interactions 

with BW are present, but the order of predictor importance across all models does not change. In 

some models, where specific predictors are used exclusively in interactionwith BW, they are no 

longer used once BW is excluded. Specifically, Wsk is no longer needed in the model for 

Brancellao as well as Co in the model for Merenzao, while  the role of R in this lasts  model stays 

important but its weight is reduced. 

 

DISCUSSION 

Texture analysis was already used to develop rapid methods for the evaluation of total phenolic 

content and phenol extractability in grape seeds with a good accuracy (Rolle et al., 2012), and of  

anthocyanin extractability in grape skins (Rolle et al., 2008; Río Segade et al., 2011b,c). The 

present work shows that the mechanical properties can also be successfully used as predictors in 
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models for the estimation of TF in skin grape berries.  

 

Two kinds of models were developed; the first was single-cultivar based, while the second was a 

model built with all data available from all cultivars together. Single-cultivar models 

outperformed here the multi-cultivar model because, with some exceptions, physical-mechanical 

predictors are related to TF amount in a cultivar-specific way. Variables appearing well related to 

TF for a given cultivar were useless for models developed for other cultivars (Table 1). It is 

difficult to explain with certitude why this happens. It can be hypothesized a different genetic 

control of berry physical modifications with ripening and/or differences among cultivars in the 

non-linear accumulation of TF during ripening (Braidot et al., 2008). Predictors able to influence 

TF in the same way for all cultivars considered in the model are rare, as occurred in this study 

with BW and Ch. However, it is possible that other TA variables, well related to BW or Ch and 

therefore eliminated here from the predictor set because of collinearity problems, could be good 

candidate as multi-cultivar predictors (berry springiness is an example). 

 

Single-cultivar models were very effective and achieved good results with other techniques used 

for the development of rapid methods to determine TF in grapes berries, skins, seeds and grape 

homogenates. Examples can be found in Near InfraRed (NIR) spectroscopy. Several studies 

(Cozzolino et al., 2008; Ferrer-Gallego et al., 2011; Torchio et al., 2013 among others) have 

reached very high performances with models for single cultivars, while models where different 

cultivars have been analyzed together are not very frequent in the literature.  

 

In this work, we also highlight that BW is the most important physical-mechanical predictor of 

TF, at least for berries close to maturity as those considered here. In this case, TF is generally 
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determined to help assess the optimal harvest date because strongly related to wine phenolic 

composition (Cagnasso et al., 2008). . The relationship between BW and TF has already been 

studied in the literature and is well known in viticulture (Barbagallo et al., 2011 is an example). 

However, with the exception of Cabernet Franc, which has the lighter berries, BW alone is not 

able to well explain the amount of TF in grape berries. Other predictors are very useful to reduce 

the overall error in predictions and to increase model accuracy. On the contrary to BW, the role 

of other physical-mechanical predictors in determining the amount of TF in grape berries has not 

been yet extensively studied. Esk has been found to be related to cellular maturity index (EA%) as 

predictor of anthocyanin extractability (Río Segade et al., 2011b), and also Spsk has been 

successfully used for the same purpose (Río Segade et al., 2011c). It is worthwhile to note that 

Spsk acts in a controversial way in the model for Mencía (eq. 6), where the relationship with TF 

has an approximate bell-shape. In this cultivar, an initial increase in Spsk corresponds to an 

increase in TF (ascendant), then at the knotpoint the relation becomes negative (descendant). 

Furthermore, other study showed that total extractable TF is significantly related to Esk, although 

the correlation was weak (Rolle et al., 2011). 

 

Ch is the most important predictor after BW, to which is also related in some of the cultivars 

studied (Brancellao and Merenzao). Berry cohesiveness is the product of berry hardness with 

berry cohesiveness and berry springiness, and is the measurement of the energy necessary to 

chew a solid food until it is ready for swallowing (Letaief et al., 2008a). The decrease in Ch has 

been observed with increased maturity of grapes (Río Segade et al., 2013; Zouid et al., 2010) and 

continues during post-harvest senescence due to the decrease in berry consistency (Deng et al., 

2005). 
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CONCLUSIONS 

This work shows that the influence of physical-mechanical predictors determining the amount of 

TF in grape berries varied across cultivars, even if some predictors such as Ch showed a stable 

behavior. This is probably due to a partial relation of this parameter with BW, which was the 

physical parameter better related to the TF amount. Therefore, a successful linkage between 

physical-mechanical predictors and TF amount in grape berries requires the development of a 

cultivar specific model as occurred in this work, where models for four different cultivars were 

developed. The error for the determination of TF by applying these models was low even on 

future data, as estimated by cross-validation, and allows  use to monitor the  TF through grape 

ripening in practice. These models are simple formulas that can be easily implemented and 

applied. Furthermore, the number of predictors needed was low, and their acquisition is fast, 

increasing the overall rapidity of this method. The developed models can be further improved by 

the use of a large number of data-points (more wine grape cultivars, growing zones and vintages), 

and also by extending the content range of TF used to build the models. This will increase the 

reliability and probably also the accuracy of the developed models. 
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Table 1. Variable importance for all predictors in the five MARS models, based on the reduction 

of the GCV statistics during the backward selection routine. Predictors that are not selected at all 

in the model get a value of 0, while predictors that most contribute to the error in prediction get a 

values of 100; intermediate predictors are scaled respect to the one with the highest influence. 

 

  Brancellao Cabernet Franc Mencia Merenzao Whole Dataset 

BW 100 100 100 100 100 

Co 0 0 59.12 44.31 22.26 

Ch  0 52.95   

Esk 29.26 0 52.95 0 12.16 

R 0 0 0 100 58.86 

Spsk 0 0 64.18 0 58.86 

Wsk 16.45 0 0 0 43.51 
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Figure 1. Boxplots showing descriptive statistics for the whole dataset. BW is berry weight (g), 

Wsk is skin break energy (mJ), Esk is skin Young's modulus (N mm
-1

), Spsk is skin thickness (µm), 

Co is berry cohesiveness (adimensional), Ch is berry chewiness (mJ), R is berry resilience 

(adimensional), TF is the amount of total flavonoids (mg g
-1

).  
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Figure 2. Raw relationships between berry weight (x axis) and total flavonoid amount (y axis) 

where color is mapped to the type of cultivar and size of point to berry chewiness. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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Figure 3. Scatterplot of the predicted versus observed total flavonoid amount for all cultivars in 

the dataset (train set). Data are on a straight line with intercept zero and slope one. Legend in 

figure reports model performances for all cultivars both on the train set and in the cross-

validation assessment procedure (25 repetitions of 10-folds cross-validation). 


