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A Mathematical Model of Flavescence Dorée1
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Abstract7

Flavescence dorée (FD) is a disease of grapevine transmitted by an insect vec-

tor, Scaphoideus titanus Ball. At present, no prophylaxis exists, so mandatory

control procedures (e.g. removal of infected plants, and insecticidal sprays to

avoid transmission) are in place in Italy and other European countries. We

propose a model of the epidemiology of FD by taking into account the di�er-

ent aspects involved into the transmission process (acquisition of the disease,

latency and expression of symptoms, recovery rate, removal and replacement of

infected plants, insecticidal treatments, and the e�ect of hotbeds). The model

was constructed as a system of �rst order nonlinear ODEs in four compartment

variables. A bifurcation analysis shows that, in the absence of hotbeds, the state

of healthy vineyard is stable, if removal and replacement of infected plants is

implemented. In the presence of hotbeds, depending on the grapevine density,

we �nd either a single family of equilibria in which the health of the vineyard

gradually deteriorates for progressively more severe hotbeds, or multiple equi-

libria that give rise to sudden transitions from a nearly healthy vineyard to a

highly deteriorated one when the severity of the hotbeds crosses a critical value.

These results show the long-term risks in planting new vineyards in environ-

mental situations where strong hotbeds of FD are present or may arise in the

surroundings.
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1. Introduction8

Flavescence dorée (hereafter FD) is a serious disease of grapevine, wide-9

spread in many European countries, caused by phytoplasmas belonging to 16SrV-10

C and 16SrV-D ribosomal groups (Malembic-Maher et al., 2009). Symptoms of11

FD include leaf yellowing or redness, lack of ligni�cation of canes, lack of blos-12

som. The infected plants generally stop producing grapes, and often die after a13

few years, although sometimes a full recovery is observed. Symptoms of FD are14

usually shown after a latency period of 1-3 years from infection; young plants are15

more likely to show symptoms just one year after infection (Osler et al., 2002;16

Morone et al., 2007). Other grapevine diseases caused by phytoplasmas, such17

as Bois noir, may show similar symptoms: discrimination is based on speci�c18

molecular analyses (Galetto et al., 2005).19

FD is transmitted vine-to-vine by an insect vector, Scaphoideus titanus Ball20

(Hemiptera: Cicadellidae), native to North America and introduced into Europe21

in the late 1950s (Bon�ls and Schvester, 1960; Chuche and Thiéry, 2014). S.22

titanus feeds and reproduces only on grapevine (Vitis spp.), has a single gener-23

ation per year, and overwinters in the egg stage, laid under the bark of grapes24

(Vidano, 1964; Bagnoli and Gargani, 2011; Chuche and Thiéry, 2014). Eggs25

start to hatch during spring, and the insect over-goes through �ve nymphal in-26

stars before becoming adult during summer (Vidano, 1964; Chuche and Thiéry,27

2014). Nymphs (mainly from the 3rd and later instars) acquire phytoplasmas28

when feeding on infected plants, and after a latency period lasting 4-5 weeks29

(meanwhile becoming adults) they are able to inoculate phytoplasmas to healthy30

plants (Bressan et al., 2005; Chuche and Thiéry, 2014). Once infective, insects31

retain vector capability through their lifetime; on the other hand, no transo-32

varial transmission of 16 SrV phytoplasmas has been proved for S. titanus at33

present, therefore newly born insects have to feed on infected plants in order34

to acquire phytoplasmas (Alma et al., 1997; Chuche and Thiéry, 2014). Other35

insects are acknowledged to be occasional vectors (Filippin et al., 2009), how-36

ever their role in the spread of Flavescence dorée to date is not considered to37
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be important.38

Infected plants may be subject to recovery, with symptoms disappearing39

within a few years after the infection. Recovery rates depend on cultivar (Bel-40

lomo et al., 2007; Bosco and Marzachì, 2011; Pavan et al., 2012b) and age of41

plants, the youngest being the less able to recover (Schvester, 1970). Observed42

recovery rates are highly variable and range from 1% to 70% of the infected43

plants, but show a strong inverse dependence on the abundance of the vector44

insect, with the highest recovery rates observed in vineyards subject to aggres-45

sive insecticide treatments, and the lowest in vineyards subject to no treatments46

(Morone et al., 2007; Zorloni et al., 2008). This supports the notion that re-47

covered plants are not immune from reinfection. However, recovered plants are48

not a source of phytoplasmas for insects (Galetto et al., 2014). There are some49

known instances in which plants develop some degree of resistance to further50

reinfection after recovering from phytoplasmosis (Osler et al., 2014). However,51

lacking any direct evidence of the development of a resistance to FD in grapes,52

we shall assume that recovered plants are just as susceptible as those that have53

never been infected.54

In Italy FD is subject to mandatory control procedures, including sprays of55

insecticide against the vector and removal of the infected plants, which, however,56

may have higher cost than insecticide treatment. In many vine-growing areas57

abandoned vineyards and woods containing wild grapevine act as hotbeds of58

both phytoplasmas and S. titanus (Lessio et al., 2007; Pavan et al., 2012a; Lessio59

et al., 2014). Adults of S. titanus are able to move within and among vineyards.60

Outside a vineyard their density decays exponentially with the distance from61

the vineyard, and cannot be neglected in the �rst 300 m (Lessio et al., 2014).62

In this paper we formulate a model of the time evolution of a FD infection63

in a single vineyard, by considering the di�erent aspects involved into (or in�u-64

encing the) transmission process. Given the knowledge of some parameters, the65

model may be used for forecasting the long-term outcome of an infection. More66

importantly, it highlights the key ecological factors involved in the infection67

process, and explains their mutual interactions and relative importance, thus68
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o�ering guidance for planning an adequate response. In particular it suggests69

that, with weak or no nearby hotbeds, removal and replacement of infected70

plants should be a su�cient response for maintaining the overall health of the71

vineyard, even without or with very mild insecticide treatments. It also suggest72

that high-density vineyards would be subject to sudden increases of the infected73

plants, and that in these cases insecticide treatments should help.74

From a mathematical point of view, the model is a system of nonlinear, �rst-75

order, ordinary di�erential equations with four compartments that quantify the76

abundance of healthy full-grown (S), latent (L), infected (I), and young (G)77

plants.78

The rest of the paper is structured as follows. In Section 2 we formulate the79

model and present the main mathematical results. In Section 3 we discuss the80

ecological signi�cance of those results. Conclusions are given in Section 4. The81

Appendix 5 contains proofs and other mathematical details that, for brevity82

and clarity, were omitted in the main text.83

2. The model84

2.1. Formulation85

Previous modeling e�orts have focused on the short-term spread of the infec-86

tion, on the economic viability of control strategies, or on the life-cycle of the S.87

titanus (Bressan et al., 2006; Morone et al., 2007; Pavan et al., 2012b; Maggi et88

al., 2013; Falzoi et al., 2014; Rigamonti et al., 2014). Although of undeniable in-89

terest, these models, some of which have a large number of free parameters, are90

not particularly suitable for understanding the long-term evolution of a vineyard91

subject to FD. Moreover, none of them explicitly takes into account the e�ect92

of hotbeds of infection. We have thus developed a simple model that describes93

the epidemiology of the infection on time scales longer than a year and up to a94

few decades.95

Two facts lay the conceptual foundation of our model. The �rst is that96

the year-to-year population density of S. titanus in a vine growing area, in97

spite of the complicated life cycle, remains roughly constant, or at least of the98
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Figure 1: Graphical representation of the model. The grapevine population in a vineyard
is split into four compartments, representing healthy, full-grown plants (S), healthy, young
plants (G), latent plants (L) and infected plants (I). The solid black arrows represent the
processes that increase (inward arrow) or decrease (outward arrow) the population of each
compartment. The dashed gray arrows represent the e�ect of infection hotbeds close to the
vineyard, triggering the infection �uxes in initially healthy vineyards.

same order of magnitude, if all known relevant factors (e.g. timing, number and99

e�ectiveness of insecticidal sprays, the presence of nearby hotbeds of infestation)100

are kept constant. (Lessio et al., 2011a,b; Maggi et al., 2013). The second is101

that there appears to be no transovarial transmission (Alma et al., 1997) of the102

phytoplasma: individuals of S. titanus become vectors of the phytoplasma by103

feeding on infected plants at the nymph stage, when the insect lacks the ability104

to move extensively from plant to plant and tend to cluster together on the same105

plant (Chuche and Thiéry, 2014). After the emergence, the much more mobile,106

�ying adults spread across the vineyard. Those that have fed on infected plants107

at the nymph stage may then infect healthy plants. Therefore, at least as a �rst108

approximation, it seems safe to assume that the abundance of phytoplasma-car-109

rying adults, at the scale of a vineyard, is fairly homogeneous and proportional110

to the number of infected plants. This upholds the modelling choice of omitting111

an explicit description of the population dynamics of S. titanus, which is simply112

considered as a coupling factor between the infected and the healthy plants.113

The processes that are explicitly modelled are shown in Figure 1.114

A second choice is that of formulating a continuous-time model. We feel that115
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it is easier to describe the process of infection in a continuous-time setting, even116

if it has a strong seasonality. In addition, incubation, recovery and aging are117

processes that do not have an obvious discrete-time nature. On the other hand,118

replacement and extirpation are almost instantaneous events that occur once a119

year. The values of the model's variable, must thus be intended as representa-120

tive of year-round averages. In Section 5 we propose a discrete-time version of121

the model, which takes into account the same processes of the continuous-time122

model, and has qualitatively the same equilibria and bifurcation diagram. We123

are thus con�dent that the conclusions deduced from the model do not depend124

on its continuous-time or discrete-time nature, but only on the physiological125

and ecological processes that are modelled.126

Our model splits the grapevine population of a vineyard in four compart-127

ments (or stages), as shown in Figure 1. The variable S represents the density of128

healthy, full-grown plants (number of vines per unit area), and I represents the129

density of infected plants. The infection rate of the healthy plants is modeled130

by a term of the form131

Infection rate = f(I)S (1)

where f is an unknown function quantifying the e�ciency of phytoplasma-car-132

rying adults at infecting healthy plants. Obviously, f must be a growing function133

of the density of infected plants, with f(0) = 0. Laboratory experiments show134

that a non-negligible fraction of plants remains healthy, even after being exposed135

in insect-proof cages to a large number of infected individuals of S. titanus136

(Schvester et al., 1969; Mori et al., 2002). This suggests that many probes from137

infected adults are required for a plant to eventually contract FD. Therefore,138

a small number of infected plants in a vineyard cannot be very e�ective at139

spreading the disease, because the few phytoplasma-carrying insects originating140

from those plants would spread around and feed on many di�erent healthy plants141

during their adult lifespan, and only rarely return on the same plant enough142

times to infect it, even in the presence of a moderate correlation between the143

movements of adults grown on the same plant. In mathematical terms, this144
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means that not only f , but also its derivative vanishes for I → 0. Of course,145

if the density of infected plants is large, the probability of recurrent feeding146

on the same healthy plant of phytoplasma-carrying insects must be large as147

well. Thus, we argue that f should grow faster than linearly with I, at least at148

moderately low values of I. The simplest mathematical expression that captures149

these assumptions is150

Infection rate = qSI2 (2)

where q is a constant whose value depends on the susceptibility to the infection151

of the particular cultivar which is being considered, on the local abundance of S.152

titanus, and on its acquisition e�ciency, which is also cultivar-dependent, with153

the most susceptible cultivars being also the most e�cient at transmitting the154

phytoplasmas to the insects (Bressan et al., 2005). The value of this constant155

is subject to large uncertainties. We estimate q ≈ 10−6 ha2 plants−2 Y−1 , but156

reasonable values range from 10−7 to 10−5 ha2 plants−2 Y−1 (see Appendix 5.1157

for details). Because direct laboratory measurements of f are presently lacking,158

we have resisted the temptation of using more complicated functional forms. At159

the end of Section 3 we discuss the e�ect of choosing f proportional to I.160

In the presence of hotbeds of infection nearby the modeled vineyard (such as161

infected wild grapes or an abandoned infected vineyard), the density of infected162

plants that enters in the infection rate terms should not be I, but rather (I+ε),163

where the parameter ε quanti�es the phytoplasma-carrying insects coming from164

the hotbeds, which appears to decay exponentially with the distance of the165

hotbed (Lessio et al., 2014).166

Insecticidal sprays against S. titanus are applied generally twice a year,167

the �rst against nymphs and the second against adults (Bosco and Mori, 2013).168

However, the second treatment is generally made within the end of July with less169

persistent active ingredients, and is therefore largely ine�ective against adults170

incoming from surrounding hotbeds (Bosco and Mori, 2013; Mori et al., 2013).171

Thus, the e�ect of the insecticides is that of decreasing the coupling between172

the healthy and the infected plants of the vineyard, but it cannot appreciably173
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Table 1: Value (or range of likely values) for the parameters appearing in the model (4).

Process Parameter Value Reference

Farmer's intervention time τ 1Y

In Italy immediate eradication of in-
fected plants is mandatory by law (DM
32442/2000). Similar measures are in place
in France.

Vineyard's design density D 2000 to 11000 plants/ha
Coupling infected-healthy q 10−6 (10−7 to 10−5) ha2plants−2 Y−1

Recovery from infection k1 0.4Y−1 (Zorloni et al., 2008; Pavan et al., 2012b)

Latency before symptoms k2
1

3
Y−1 (Osler et al., 2002; Morone et al., 2007)

Mortality of infected plants k3

{

τ−1 (managed vineyards)

0.15 to 0.05Y−1 (unmanaged vin.)

By law (DM 32442/2000)
(Pavan et al., 2012b)

Aging of new plants k4
1

5
Y−1 (Pavan et al., 2012b)
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decrease the coupling between the healthy plants and the external hotbeds. In174

the model we shall use the following expression for the infection rate:175

Infection rate = qS (pI + ε)
2 (3)

where the parameter p ranges between zero and one, with p = 1 corresponding176

to no insecticide treatments and p = 0 to a complete elimination of the insects,177

except for those coming from the hotbeds.178

In time, some infected plants have a chance to recover from the disease,179

and to return symptom-free. Furthermore, they may be re-infected, thus recov-180

ered plants do not require a separate compartment. The process of recovery is181

modeled by a �ux from the I to the S compartments quanti�ed as k1I. Exper-182

imental data, taken in vineyards where insecticide treatments had brought to a183

negligible amount the presence of S. titanus, show that the constant k−1
1 ranges184

between 2 and 3 years for the popular Barbera, Chardonnay, Merlot and Sauvi-185

gnon cultivars (Zorloni et al., 2008; Pavan et al., 2012b). For other cultivars186

these �gures should be taken as representative of the order of magnitude, and187

not as accurate estimates of the recovery rate.188

In full-grown plants, the symptoms of FD do not usually appear immediately189

after the inoculation. Inoculated individuals may remain in a latent, symptom-190

less state for up to a few years. In our model the density of latent plants is191

quanti�ed by the compartment L. The amount of latent plants that develops192

symptoms is quanti�ed by the �ux k2L from the L to the I compartments.193

The time scale k−1
2 of the process is estimated to be approximately 3 years194

(Caudwell, 1990; Osler et al., 2002).195

We assume that the farmer extirpates actively the infected plants, on a time196

scale k−1
3 = τ . This causes a mortality of the infected plants quanti�ed as −k3I.197

On the same time scale, the manager attempts to maintain a constant density198

D of plants in the vineyard, by planting healthy, young plants, whose density is199

quanti�ed by the variable G. This process continues as long as the actual density200

of the vineyard (which is S + L + I + G) doesn't match the design density D.201

The constant τ quanti�es the reaction time of the farmer. While τ can't be202
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smaller than one year (infected grapes are roughed at the end of summer, and203

nursery grapes are usually planted in the next spring in order to be productive204

in autumn) it may occasionally be larger, when economic constraints force a205

delay of the extirpation and replacement procedures. Young plants are subject206

to infection just in the same way as full-grown ones, with the only di�erence207

that they do not have a phase of latency, but develop the symptoms rapidly208

after having being infected (Osler et al., 1993). Thus, the process of infection209

produces a �ux from G to I (rather than to L). The infection rate of young210

plants is quanti�ed as qG(I+ε)2, analogously to (2). In principle we could model211

a di�erent susceptibility to the infection for the young and the full-grown plants212

by using di�erent values of the constant q for the two compartments. However,213

lacking a direct empirical evidence of a clear disparity in susceptibility between214

young and full-grown plants, for simplicity, we prefer to use the same value215

of q for both. Young plants that do not become infected eventually turn into216

full-grown plants by aging. This process is modeled as a �ux from the G to the217

S compartment quanti�ed as k4G. For most cultivars the aging time is about218

k−1
4 ≈ 5 years (Pavan et al., 2012b).219

The model as described by the above considerations is embodied by the220

following system of �rst-order ordinary di�erential equations:221























































S′ = −qS (pI + ε)
2
+ k1I + k4G

L′ = qS (pI + ε)
2
− k2L

I ′ = qG (pI + ε)
2
+ k2L− k1I − k3I

G′ = −qG (pI + ε)
2
− k4G+

τ−1 (D − S − L− I −G)

(4)

where the prime denotes di�erentiation with respect to time.222

In Table 1 we summarize the estimates of the values (or value range) of the223

parameters that appear in equations (4), as deduced from evidence given in the224

accompanying references. From now on, we shall take p = 1, except than in225

Section 3.2, where we discuss the e�ect of insecticides.226
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The system (4) may be brought to non-dimensional form by using τ as the227

scale of time and (qτ)−1/2 as the scale of grapevine density. De�ning the non-228

dimensional quantities229

(S̃, L̃, Ĩ, G̃) = (qτ)1/2(S,L, I,G),

the system in non-dimensional form reads:230























































˙̃S = −S̃
(

Ĩ + ǫ
)2

+ c1Ĩ + c4G̃

˙̃L = S̃
(

Ĩ + ǫ
)2

− c2L̃

˙̃I = G̃
(

Ĩ + ǫ
)2

+ c2L̃− c1Ĩ − c3Ĩ

˙̃G = −G̃
(

Ĩ + ǫ
)2

− c4G̃+

D −
(

S̃ + L̃+ Ĩ + G̃
)

(5)

where the dot denotes derivation with respect to the non-dimensional time, and231

the (positive) constants are c1 = k1τ , c2 = k2τ , c3 = k3τ , c4 = k4τ , D =232

(qτ)1/2D, ǫ = (qτ)1/2ε. For typographical clarity from now on we shall omit233

the tildes, and all quantities will be in non-dimensional form, unless otherwise234

speci�ed.235

2.2. Equilibria and their bifurcations236

The model is meaningful for initial data such that S,L, I,G ≥ 0 and S +237

L + I + G ≤ D. In this case the densities of the four compartments remain238

non-negative and bounded by the vineyard's design density D at all later times239

(see Appendix 5.2). If the initial condition is such that S + L + I + G > D,240

then unacceptable solutions with negative values may develop. However, the241

only occurrence in which the density of the vineyard could be higher than the242

design density D is when a farmer decides to thin out the vineyard in order to243

attain a lower density. Modeling exceptional events of this sort is, of course,244

well beyond the aim of equations (5).245

For ǫ = 0 the system (5) has the obvious equilibrium246

S = D, L = I = G = 0 (6)
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Figure 2: Equilibria of the vineyard model (5) as a function of the hotbed strength ǫ, show-
ing the three di�erent possibilities that may occur for di�erent vineyard densities D. Panels
(A), (B), (C), (D) represent, respectively, the density of healty, full-grown plants (the S com-
partment); healthy, young plants (the G compartment); latent plants (the L compartment);
infected plants (the I compartment). Dark/light color shades represent, respectively, sta-
ble and unstable equilibria. The dashed lines are the approximate expressions (15) of the
equilibria close to the state (6) of healthy vineyard.
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corresponding to an uninfected vineyard. As the parameter ǫ varies, an analyti-247

cal and numerical investigation (see Kuznetsov, 1995, Chapter 10, and appendix248

5.3 for details) �nds only three possible outcomes, regardless of the actual values249

of the constants c1, . . . , c4. For low densities D there exists only one �xed point,250

which is stable, and corresponds to a situation in which the vineyard's health251

progressively decreases as the strength ǫ of the hotbeds increases. For higher252

non-dimensional densities there are multiple equilibria in an interval of values253

of ǫ. In particular, there are two stable equilibria, corresponding to a nearly-254

healthy and to a severely deteriorated vineyard, and there is an intermediate255

unstable equilibrium. For even higher values of D multiple equilibria occur even256

in the absence of hotbeds. An example for c1 = 0.4, c2 = 1/3, c3 = 1, c4 = 1/5257

is shown in Figure 2. In this example the transition to multiple equilibria occurs258

for D ≈ 3.9.259

The bifurcation diagram shows that very weak (or very far) hotbeds have260

almost no e�ect, and the corresponding equilibrium has just a minimal amount261

of latent, infected and young plants. This notion is made precise by means of262

a perturbative analysis: if ǫ ≪ 1, then there exists an equilibrium which di�ers263

only by O(ǫ2) from the healthy vineyard. Explicit, approximate expressions of264

this equilibrium are given by eq. (15) in Appendix 5.4.265

When there are multiple equilibria, the equilibrium corresponding to a nearly-266

healthy vineyard may suddenly disappear if the strength of the hotbeds is in-267

creased beyond a critical value. This occurs at the fold that joins the branch of268

unstable equilibria to the branch of nearly-healthy equilibria. An approximate269

expression, accurate for large D, for both the strength of the hotbeds and the270

density of infected plants at the fold is given by:271

ǫfold ≈ Ifold ≈
c1 + c3
4D

. (7)

Figure 3 shows a comparison between the critical values determined numerically272

and the approximation (7). Appendix 5.5 gives further details. Note that the273

values Sfold, Lfold, Gfold of, respectively, the healthy, latent and young plant274

densities at the fold can be computed by using (7) in (13).275
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Figure 3: Panels (A) and (B): values of ǫ and of I at the fold bifurcation between the healthy
vineyard branch and the unstable branch of equilibria for several values of D. Panel (C): value
of I of the unstable equilibrium at ǫ = 0. The red dots are values computed numerically, the
blue lines are the approximations discussed in the Appendix 5.5.
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2.3. The case of an abandoned vineyard276

Sometimes, for economic reasons, vineyards are left unmanaged. In the277

absence of insecticide treatments and of active replacement of infected plants,278

unmanaged vineyards may become hotbeds of infection. A similar role is played279

by wild grapevines living in woodlands and shrublands. Equations (5) may be280

used to model these cases, simply by omitting the G compartment of the young281

plants. The equations then read282























Ṡ = −SI2 + c1I

L̇ = SI2 − c2L

İ = − (c1 + c3) I + c2L

(8)

The values of the constants c1 and c2 may be taken the same as before, with the283

convention that the time unit used for de�ning the non-dimensional quantities284

is τ = 1 year. The mortality rate of the infected plants c3 is, instead, much285

smaller, because plants showing symptoms are not eradicated once a year by a286

farmer, but rather die as a consequence of the infection. The mortality time287

scale depends on the cultivar. Some (e.g. Merlot) appear to be very robust,288

and others (e.g. Perera) die more easily (Pavan et al., 2012b). An intermediate,289

order-of-magnitude estimate is about 10 years (Table 1). In this very simpli�ed290

approach we have omitted to introduce terms modeling the reproduction and the291

natural mortality of healthy grapevines. Owing to the long lifespan of grapevine292

plants, these processes occurs on time scales which are much longer than those293

involving the spread of FD, and should therefore be negligible in the present294

context. For simplicity, we have also omitted any coupling term with other295

nearby hotbeds: we assume that the abandoned vineyard is already infected,296

and we are interested in the time evolution of the most virulent phase of the297

infection, during which the abundance of infected individuals of S. titanus is298

determined by the local density of infected plants, and any in�ow from external299

sources becomes negligible.300

Starting from an initially small (but not negligible) amount of infect plants,301

typical solutions of the system of equations (8) look like that shown in Figure 4.302
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given in Table (1).
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In the �rst few years there is a sharp drop in the density of the healthy plants,303

and a corresponding sudden rise of the latent and infect plants. A peak occurs in304

about ten years, after which the healthy plants slowly increase in number, while305

latent and infect decrease. In the absence of external perturbations, and, in306

particular, assuming no hotbeds, this gradual recovery would continue for several307

decades, and �nally reach a new healthy state, at a density much lower than308

that of the initial condition. Changes in the numerical values of the constants309

c1, c2, c3, within ecologically reasonable intervals, do not change this general310

qualitative behavior.311

During the initial, rapid phase, as the number of infected plants increases, so312

does the number of plants that recover and become healthy again. Those that313

do not recover die, decreasing the overall grape density. The epidemic peaks314

when the recovered plants become a substantial fraction of the healthy plants.315

This is in qualitative agreement with the results of the experiments of Morone et316

al. (Morone et al., 2007). After the peak, the continuing recovery of a fraction317

of the many infected plants causes the slow increase in the number of healthy318

plants. The sole recovery process would not avoid the death of all the grapes,319

because recovered grapes can be reinfected. When mortality reduces enough the320

density of infected grapes, then the arguments that lead to the expression (2)321

suggest that further transmission of FD would be hampered. This justi�es the322

ultimate disappearance of the infected plants and the survival of a few healthy323

ones. In Appendix 5.6 we o�er a mathematical justi�cation of these statements.324

Although equations ((8)) should represent fairly well the initial evolution of325

an hotbed of infection, we do not expect the very long-term behavior of the326

solutions to be realistic: on time scales of decades the land of an abandoned327

vineyard would be re-allocated, and an appropriate modeling of wild grapes328

should take into account other factors (e.g. reproduction, competition with329

other species, etc.). However, we feel that the long-term healing shown by the330

model ((8)) should provide a good illustration of the properties of the interaction331

term 2) and, in particular, that self-propagation of FD is particularly ine�ective332

when the density of infected plants is very low.333
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Figure 5: Time evolution of of a vineyard with design density D = 3 (A), D = 4.5 (B), and
D = 6 (C) exposed to hotbeds with a time-varying strength ǫ. Note that, for clarity, the value
of ǫ (represented by the dotted black line) is multiplied by ten.

3. Discussion334

3.1. Practical implications of the structure of the bifurcation diagram335

The bifurcation diagram of Figure 2 shows that the two most important336

parameters determining the epidemiology of a vineyard subject to FD are the337

strength of the external hotbeds, and the non-dimensional density of the grapes.338

Changes in the other parameters do not a�ect the general structure of the339

diagram, although they quantitatively change some details (e.g. the position of340

the fold bifurcations, see eq. (7) and appendix 5.4).341

In order to give an example of how the structure of the bifurcation diagram342

shapes the time evolution of a FD epidemics in a vineyard exposed to a nearby343

hotbed, we have coupled the model (5) for a managed vineyard, with the model344

(8) for an abandoned vineyard, playing the role of a hotbed in which the infection345

builds-up, peaks and then slowly wanes as the plants die o�. In the equations (5)346

we have set ǫ = coIa, where Ia is the density of infected plants that occurs in the347

hotbed, according to the equations (8). With co = 0.1, keeping the parameters348

of the managed vineyard as in Figure 2, and those of the hotbed as in Figure 4,349

we obtain the numerical solutions shown in Figure 5.350

In the �rst few years, while the number of infected plants builds up in the351

hotbed, the amount of infected and latent plants in the managed vineyard is352

minimal. The system remains in the state of nearly-healthy vineyard, while353
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the parameter ǫ moves rightward in the diagrams of Figure 2. After this initial354

phase, the subsequent time evolution is determined by the non-dimensional355

density of the vineyard. At low densities (Figure 5A) the system never undergoes356

a bifurcation: the health of the vineyard deteriorates while the intensity of357

the hotbed peaks and then wanes, and, after a lag determined by the latency,358

the managed vineyard returns to a healthy state. About two-thirds of the359

plants remain healthy and productive (the exact amount may change with the360

parameters c1,...,4). The remaining third is composed mostly by young and361

latent plants. The extirpation and replacement procedures are able to maintain362

the presence of infected plants at very low levels.363

At intermediate and high densities (Figure 5B,C) after the initial build-up364

phase, the system crosses the fold bifurcation that marks the end of the nearly-365

healthy state. A further gradual deterioration of the vineyard cannot occur.366

Instead, the system moves toward the only other stable state, corresponding to367

a severely infected vineyard, dominated by latent and infected plants. In this368

state extirpation and replacement simply fuels the infection, as the young plants369

are unlikely to remain healthy for long.370

From an abstract point of view, the situation at intermediate densities is371

di�erent than at higher densities. In the former case when the intensity of the372

hotbed decreases enough, the system crosses the second fold bifurcation present373

in the green curves of Figure 2 and (slowly) returns to the healthy state in374

a classical hysteresis cycle. At higher densities the second bifurcation is not375

present, and the system remains stuck in the severely degraded state even when376

the in�uence of the hotbed disappears. In practice, for most of the reasonable377

values of the parameters, the hysteresis cycle occurs on time scales that are too378

long for being of any practical value: the useful life-span of a vineyard is about379

thirty years. Thus, the di�erence between intermediate and high densities might380

be irrelevant in practice.381
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Figure 6: Density of healthy plants as a function of time in a vineyard with a cultivar highly
susceptible to FD infection (q = 3 · 10−6). The upper panels shows the case in which the
infected plants are not replaced with young ones; in the lower panels the replacement occurs
on a yearly basis. The left, middle and right panels corresponds to hotbeds having an e�ective
density of infected plants of, respectively, 25, 75, 225 plants/ha. The blue, green, red and
dashed black curves correspond, respectively, to p = 1, 1/4, 1/16, 0.
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Figure 7: As Figure 6, but with a moderately susceptible cultivar (q = 10−6).
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Figure 8: As Figure 6, but with a robust cultivar (q = 0.3 · 10−6).

3.2. The e�ect of the insecticides382

Insecticide treatments reduce the coupling between the infected and the383

healthy plants of a vineyard. In the absence of hotbeds, this translates to a384

decrease of the value of the parameter q which appears in the infection rate (2).385

In non-dimensional units, this is equivalent to a reduction of the vineyard design386

density, since we have D = (qτ)
1/2

D. Even if the insecticide does not hamper387

the coupling between the healthy plants and the hotbeds, this suggests (as we388

have veri�ed numerically) that insecticide treatments tend to remove the fold389

bifurcations, and produce curves of equilibria qualitatively similar to those that390

occur without treatments at low densities, such as the blue curve in Figure (2).391

Because the process of extirpation and replacement of infected plants is392

expensive, farmers are sometimes tempted to omit it (or perform it in a less393

timely fashion) and attempt to manage a FD infection with insecticides alone.394

Therefore it is interesting to assess the model results with insecticides, and395

both with and without replacement. We thus simulate three vineyards (Figures396

6, 7, 8) planted with cultivars that are, respectively, highly susceptible (q =397

3 · 10−6), moderately susceptible (q = 10−6), and robust (q = 0.3 · 10−6) to398

FD infection. All three vineyards have a design density D = 6000 plants/ha,399

and initially contain 200 plants/ha of both infected and latent plants, and no400
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young plants. We show the time evolution of the density of healthy plants401

without replacement (upper three panels) and with replacement (lower three402

panels). The left, central and right panels, named �Weak Hotbeds�, �Medium403

Hotbeds�, and �Strong Hotbeds� correspond to an equivalent hotbed density404

of ε = 25, 75, 225 plants/ha. Each panel has four curves, corresponding to405

p = 1 (no insecticide), p = 1/4 (weak insecticide treatment), p = 1/16 (strong406

insecticide treatment) and p = 0 (the ideal case in which the insecticide kills all407

the vectors present in the vineyard at the moment of treatment). All simulations408

continue for thirty years, which is the typical lifespan of a vineyard.409

The simulations show that insecticide treatments with no replacement lead410

to satisfactory results in the case of weak hotbeds. As the strength of the411

hotbeds increases, the sensitivity of the cultivars becomes an important factor,412

and only for the robust one an infection of FD appears to be manageable with413

insecticides alone. Conversely, if replacements of infected plants is performed,414

even moderately e�ective insecticide treatments are able to control the infection,415

except for strong hotbeds and highly susceptible cultivars. In this case the416

vineyard appears to be not salvageable.417

Our results suggest that extremely aggressive insecticide treatments are es-418

sentially useless: the simulations corresponding to p = 0 always give results very419

similar to those with p = 1/16, and, often, even to those with p = 1/4. In the420

presence of strong hotbeds, this is understandable by observing that once the421

insecticides have reduced the amount of insect vectors originating within the422

vineyard below that of those coming from external sources, then any further423

use of insecticides should yield no appreciable di�erences. For weaker hotbeds,424

and in the presence of replacement, the results shows that even a moderate425

decoupling between healthy and infected plants is su�cient to move away the426

fold bifurcation, and maintain the vineyard in a nearly-healthy state.427

Finally, we observe that, for su�ciently weak hotbeds and su�ciently robust428

cultivars, the replacement procedure alone appears to be su�cient to control the429

infection (although, in practice, the feasibility of this strategy may be hampered430

by the di�culty and inherent costs of early detection and replacement of all431
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symptomatic plants in a vineyard). In the extreme case of weak hotbeds and432

robust cultivar (upper left panel of Figure 8) the vineyard self-recovers, with433

no insecticides and no replacement. This is because the density of the infected434

plants is too low to further spread the disease, as discussed in Section 2.3.435

3.3. The functional form of the infection rate436

What is known about the physiology and ecology of S. titanus strongly437

suggests that the infection rate should depend quadratically on the density of438

infected plants (see eq. 2), at least for small and moderate densities of the439

infected plants. However, this hypothesis has never been tested directly. It is440

therefore interesting to investigate which would be the properties of the model441

if the infection rate depended linearly on I, substituting (2) with the following442

expression443

Infection rate = q̂SI (9)

where q̂ is expressed as ha plants−1Y−1 and the scale of grapevine density is444

(q̂τ)−1.445

As a function of the strength of the hotbeds, the resulting equations admit446

two families of equilibria, of which one is stable and the other is unstable. They447

are, respectively, the analogous of the states of nearly healthy vineyard and of448

severely deteriorated vineyard of the model (5). These families are not subject449

to bifurcations for changing strength of the hotbeds. Their stability depends on450

the following simple criterion: the nearly healthy equilibrium is stable if451

D < c1 + c3. (10)

If the inequality is reversed, then the the stable equilibrium is that of severely452

deteriorated vineyard.453

At low densities (or for robust cultivars) both the model with the linear454

and that with the quadratic dependence uphold the same qualitative scenario:455

a gradual degradation of the vineyard for progressively stronger hotbeds. At456

higher densities (or for more susceptible cultivars) there is a stark di�erence457
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between the two models: that using (9) predicts that the vineyard would pre-458

cipitate into a severely deteriorated state no matter how small are the hotbeds.459

In principle, even a single infected insect would be su�cient to disrupt the460

healthy state. In contrast, using (2) we obtain a model where the healthy state461

is insensitive to truly small perturbations, and requires the presence of hotbeds462

(non necessarily in large amount, if the vineyard is densely planted or has a463

highly susceptible cultivar) for triggering the fall to the severely deteriorated464

state.465

Unfortunately, there is not a large body of studies attempting to assess the466

long-term importance of hotbeds for the epidemiology of FD. The few that focus467

on the role of the hotbeds (Lessio et al., 2007; Pavan et al., 2012a; Lessio et al.,468

2014) always agree that external sources of S. titanus play an important role,469

although no one has ever looked for threshold e�ects, such as those predicted470

by the model (4) in the presence of a fold bifurcation.471

There are in the literature reports of very rapid deterioration of FD infec-472

tions. For example in Serbia, several vineyards of cultivar �Plovdina�, very473

susceptible to FD, developed up to 100% symptomatic grapes in three years474

starting from less than 5% of infected plants (Kuzmanovi¢ et al., 2008). The475

observations are consistent both with the infection rate (9) (the healthy state476

would be unstable and the vineyard would precipitate to the deteriorate state at477

the �rst occurrence of infected insects) and with the infection rate (2) (a small478

and unnoticed buildup of hotbeds, after some time, destabilizes the healthy vine-479

yards and precipitates them into the deteriorated state). Taking into account480

that occurrences of FD had already been reported in the region (and motivated481

the three-years long survey), we tentatively assume the second case as more482

�tting.483

4. Conclusions484

We have developed a model for the time evolution of a FD epidemics in a485

vineyard. The presence of the vector of the disease (the leafhopper Scaphoideus486

titanus Ball) is not explicitly modeled, but is parameterized as an interaction487
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term between the infected and the healthy grapevine plants. The presence of488

infection hotbeds near the vineyard appears as a parameter in this interaction489

term. In addition to infection, the model takes also into account incubation,490

recovery and aging processes, and management actions operated by the farmer,491

namely extirpation and replacement of infected plants and insecticide treat-492

ments.493

The model shows that, in the presence of abundant populations of S. titanus,494

or, equivalently, for vineyards with moderate and high plant density or cultivars495

susceptible to FD, two stable equilibria are possible. One of these corresponds496

to a situation with just a few infected plants, where the infection is kept un-497

der control by the extirpation and replacement process. The other equilibrium498

corresponds to a vineyard dominated by infected plants, where extirpation and499

replacement is ine�ective. When the strength of the hotbeds crosses a criti-500

cal threshold, only the latter equilibrium survives, and the former disappears.501

Therefore, vineyards infected with FD may undergo an irreversible transition502

from a near-healthy state to a severely compromised one.503

If the initial stages of the infection go unnoticed, or if the hotbeds are too504

strong, then extirpation and replacement alone is insu�cient to maintain a505

nearly-healthy vineyard state. In these cases our results show that insecticide506

treatments are determinant for recovering the infected vineyard. Although there507

are cases in which FD infections have been solved just by insecticide treatments508

(e.g. for the Prosecco cultivar in the Conegliano-Valdobbiadene grape-growing509

area (Osler et al., 2002)) our model shows that the best results would be ob-510

tained by combining both insecticides and replacement of infected plants. This,511

too, was observed in the Soave area (Sancassani et al., 1997). Furthermore, it512

shows that when replacement is performed timely and accurately, insecticide513

treatments of mild intensity should yield results just as satisfactory as very514

intense treatments.515

The model predicts two important and novel features.516

One is the role of the vineyard density. The non-dimensional density in517

the model is de�ned as a combination of the physical density of the vineyard518
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(number of plants per unit of surface) and of a parameter that quanti�es the519

ease of transmission of FD from infected to healthy plants. The latter, in turn,520

depends on the cultivar and on the abundance of insect vectors, and can be521

lowered by insecticides. Thus, lowering the physical density of the vineyard522

would be equivalent, according to the model, to using a less susceptible cultivar,523

or to having a lower level of insect vectors.524

The second is the role of hotbeds. Their intensity is the most important525

control parameter determining the health of a vineyard. In particular, the526

model shows the possibility of threshold e�ects: as long as hotbeds remain527

below a threshold, FD infections would be easily manageable. When they cross528

the threshold, a rapid deterioration of the vineyard health should be expected, if529

the intensity of insecticide treatments is kept constant. Planting new vineyards530

in areas with the presence of strong hotbeds is therefore not suggested, especially531

in the case of highly susceptible cultivars.532

Because both features were somewhat unanticipated, there are no available533

data to directly con�rm or disprove them. However, the model's results are534

able to reproduce the observed phenomenology. The scenarios of Figures 6,535

7, 8 re�ect the variety of outcomes of FD epidemics observed in the �eld. For536

example, in the presence of strong hotbeds, losses of about 20% within ten years,537

even if insecticide treatments are performed, agree with the authors' personal538

observations of vineyards with moderately susceptible cultivars in many wine539

growing areas of Piedmont (see the right panels of Figure 7), but much more540

rapid, catastrophic deterioration have been observed (e.g. in Serbia, see Section541

3.3) for very susceptible cultivars, just as suggested by the model.542

Unfortunately, a quantitative assessment of the presence of hotbeds is not543

routinely carried out. Most of the available data in the literature do not quote544

this important parameter, or do so just in vague terms. Thus, a quantitative545

comparison between the available data and the model outputs, if the strength546

of the hotbeds is not precisely constrained by the observations, is more an547

exercise in data �tting (as in Figure 9) than a validation of the model. However,548

there are already mounting concerns suggesting that hotbeds are more than549
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Figure 9: Comparison between observed data (dots) and the model (lines) for di�erent values
of the parameter q. In panels (A), (C) the dots represent the observed density of infected
plants in an experimental vineyard, the lines are the I compartment. In panels (B), (D) the
dots represent the observed density of symptomless plants, the lines are the sum of the S
and L compartments. In panels (A), (B) the numerical solution starts in 2009, and uses the
q

(
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)

and ε
(
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)

values given in the inset of panel (A). In panels
(C), (D) the solution starts in 2008 and the q, ε values are given in the inset of panel (C).

just a transmission pathway of the infection, but rather that their presence550

and strength is a very important factor in shaping the time evolution of a FD551

epidemics. This motivated the recent start of accurate mapping campaigns of552

cultivated, wild and reverted to the wild grapes in selected wine-growing areas553

of Piedmont, �nanced by the regional administration. Therefore, it appears554

that in the near future it will be possible to quantitatively validate the model555

and, hopefully, use it as a practical tool in the management of FD infections.556
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5. Appendix563

5.1. An estimate of the value of q564

As part of an experiment conducted in the province of Cuneo (Italy), a565

small vineyard of 0.475 ha was monitored from 2009 to 2012. The vineyard566

had an initial density D = 3000 plants/ha and no infected plants. Flavescence567

Dorée was already well established in the surrounding territory. However we568

lack quantitative data allowing for the estimation of the appropriate value of569

ε. No insecticide treatments, nor extirpation of infected plants was performed.570

Every year, the number of infected and simptomless plants was assessed (the red571

dots in Figure 9 (A), (C) and (B),(D), respectively). The assessment would not572

distinguish between healthy and latent plants, both classi�ed as symptomless.573

In order to determine a reasonable range of values of q, we apply the model574

(4) by setting G = 0 and dropping the last equation (which models the replace-575

ment of infected plants with young ones). Figure (9) shows a comparison be-576

tween the model results and the observed data, for several choices of the param-577

eters q and ε. The other coe�cients are those of Table 1. The density of symp-578

tomless plants is compared with the sum of the S and L compartments. The ini-579

tial condition is S = D, L = I = 0. In Figures 9 (A), (B) the numerical solution580

starts in 2009, the last year without infected plants. In Figures 9 (C), (D) the581

solution starts in 2008. This allows for the hypothesis that for one year all the582

inoculated plants remained in the latent state, or with symptoms as weak as to583

evade detection. In the �rst case, q ≈ 10−6 ha2plants−2 Y−1 gives a reasonable584

�t of the data, while in the second a value as high as q ≈ 10−5 ha2plants−2 Y−1
585

yields a more convincing �t. Values as low as q ≈ 10−7 ha2plants−2 Y−1 also586

give an acceptable �t, if the initial condition refers to 2009, but should probably587

be ruled out, because they require unrealistically high values of ε.588

5.2. Boundedness and non-negativity of the solutions589

For non-negative initial conditions such that S+L+I+G ≤ D the solutions590

of the model equations (5) remain non-negative and bounded by D at all later591
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times. In fact, by adding together the four equations in (5), and de�ning the592

total vineyard density x = S + L+ I +G, we obtain593

ẋ = D − x− c3I. (11)

Considering I as a known function of time, we have that the solution of (11) is594

x(t) = D +

(

x(0)−D − c3

ˆ t

0

esI(s) ds

)

e−t. (12)

This shows that, if the initial vineyard density is x(0) ≤ D, then, as long as I595

remains non-negative, it will be x(t) ≤ D. If at any time t we have S,L, I,G ≥ 0596

and x(t) ≤ D, then from (5) we deduce S = 0 ⇒ Ṡ ≥ 0, L = 0 ⇒ L̇ ≥ 0,597

I = 0 ⇒ İ ≥ 0, and G = 0 ⇒ Ġ ≥ 0. Therefore, none of the four compartments598

can become negative. Thus we have that 0 ≤ x(t) ≤ D at all times, which599

implies 0 ≤ S,L, I,G ≤ D.600

5.3. Determination of the equilibria of the model601

Imposing the right-hand side of (5) to be zero, for I + ǫ 6= 0, the other602

equilibria of the model may be expressed as solutions of the following system of603

non-linear algebraic equations:604



















































S =
c1I

(I + ǫ)
2 +

c3c4I

(I + ǫ)
2
(

c4 + (I + ǫ)
2
)

L =
c1
c2

I +
c3c4I

c2

(

c4 + (I + ǫ)
2
)

G =
c3I

c4 + (I + ǫ)
2

I = c−1
3 (D − (S + L+ I +G))

. (13)

By substituting the �rst three expressions of (13) in the fourth, and then mul-605

tiplying by c2 (I + ǫ)
2
(

(I + ǫ)
2
+ c4

)

we obtain that the equilibrium densi-606

ties of infected plants are the non-negative roots of the �fth-order polynomial607
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P(I) =
∑5

n=0 qnI
n, whose coe�cients are608

q5 = c2 (c3 + 1) + c1

q4 = −c2D + 4q5ǫ

q3 = c2 (c3 + 1) c4 + (c1 + c3) (c2 + c4) + 4q4ǫ− 10q5ǫ
2

q2 = −c2c4D + 2q3ǫ− 2q4ǫ
2

q1 = c2 (c3 + c1) c4 + 2q2ǫ− 3q3ǫ
2 + 4q4ǫ

3 − 5q5ǫ
4

q0 = −c2c4Dǫ2 − c2Dǫ4

(14)

Recalling that c1, . . . , c4 > 0 and D > 0, from the last equation in (4) it follows609

that there are no equilibria with I ≥ D and S,L,G ≥ 0. Because from (13) it610

follows that to any non-negative root of P corresponds an equilibrium with non-611

negative values for all the four compartments, then we deduce that P cannot612

have real roots larger than D.613

Note that the coe�cients q5, . . . , q0 are polynomials in ǫ. We observe that,614

for any given D, there are su�ciently small values of ǫ so that the coe�cients of615

the odd powers are positive and those of the even powers are negative. Then,616

from Descartes' rule of signs, it follows that P has no negative roots. Hence,617

being an odd-degree polynomial, it must have at least one non-negative real618

root. In the special case ǫ = 0 then q0 = 0, and a real root is I = 0, which619

yields the equilibrium (6). We also observe that for any positive value of ǫ as620

small as to make q3, q1 > 0, 2q3 > q4ǫ, there exist su�ciently small values of D621

such that q4, q2 > 0. Then, from Descartes' rule of signs, it follows that P has622

one, and only one positive root.623

An extensive numerical exploration for reasonable values of the parameters624

has never yielded more than three positive real roots for P. Neither we found625

numerical evidence of limit cycles or deterministic chaos. We therefore are626

con�dent that the bifurcation diagrams shown in Figure 2 determine all the627

qualitative dynamics of the model equations (5).628
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5.4. Approximate explicit expressions for the equilibria near the state of healthy629

vineyard630

For ǫ ≪ 1, explicit, approximate expressions for the equilibria of the model631

(5) may be sought perturbatively, assuming an expansion of the form632

S(ǫ) = D + ǫS1 + ǫ2S2 + ǫ3S3 + · · ·

L(ǫ) = ǫL1 + ǫ2L2 + ǫ3L3 + · · ·

I(ǫ) = ǫI1 + ǫ2I2 + ǫ3I3 + · · ·

G(ǫ) = ǫG1 + ǫ2G2 + ǫ3G3 + · · ·

which represents a small correction upon the healthy vineyard equilibrium. The633

perturbative analysis reveals that S1 = L1 = I1 = G1 = 0. That is, weak634

hotbeds at �rst perturbative order have no e�ect on a healthy vineyard. The635

second and higher orders are non-zero, and the information that they carry is636

best conveyed by using Padé approximants. The (2,1) Padé approximation of637

the equilibrium computed with the perturbative expansion up to the third order638

is the following639

S(ǫ) = D −
(c2c3 + c4 (c1 + c2 + c3 (c2 + 1)))

c2c4 (c1 + c3 − 2ǫD)
ǫ2

L(ǫ) =
(c1 + c3)D

c2 (c1 + c3 − 2ǫD)
ǫ2

I(ǫ) =
D

(c1 + c3 − 2ǫD)
ǫ2

G(ǫ) =
c3D

c4 (c1 + c3 − 2ǫD)
ǫ2

(15)

5.5. Approximate position of the fold bifurcation640

If the vineyard's desired density D is su�ciently high, for ǫ = 0 there are641

three equilibria: the healthy vineyard stable node (6) (with no infected plants),642

a saddle (with an intermediate number of infected plants), and another stable643

node (with a high number of infected plants). As the parameter ǫ grows, the644

branch of stable nodes which passes through (6) and the branch of saddles move645

close to each other, and meet in a fold (also known as saddle-node) bifurcation at646

ǫfold (e.g. Figure 2(D) for D = 6). The value of ǫfold and of the corresponding647
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equilibrium value of infected plants Ifold may be approximated with explicit648

expressions, as shown in Figure 3.649

First we observe that for positive ǫ and su�ciently large D the polynomial650

P has one real positive root of size O(D). The other roots, as D → ∞, tend to651

the solutions of652

I4 + c4I
2 + c4ǫ

2 + ǫ4 = 0

(where we have used the expressions (14) divided by D). But this polynomial653

does not have real solutions. Therefore we conclude that for �xed ǫ > 0 and654

asymptotically large D, the polynomial P has only one real root, which is posi-655

tive.656

For ǫ = 0 the polynomial P has the root I = 0. The other equilibria are657

given by the solutions of658

q5
D
I4 − c2I

3 +
q3
D
I2 − c2c4I +

c2c4 (c1 + c3)

D
= 0 (16)

where q5, q3, q1 are given by (14) with ǫ = 0. For D → ∞ one of the solutions659

of (16) approaches zero. Therefore it may be approximated by neglecting the660

terms of order higher than the �rst, yielding661

I|ǫ=0 ≈
c1 + c3

D
. (17)

For 0 ≤ ǫ ≤ ǫfold, a smooth family of equilibria connects the equilibrium662

corresponding to (17) to the healthy vineyard equilibrium (6), changing stability663

at ǫfold. But for D → ∞ it must be ǫfold → 0 because for large D and positive ǫ,664

P has only one real solution. Thus, if the family of equilibria is a smooth curve,665

asymptotically for large D, it must be 0 < Ifold < I|ǫ=0 and ǫfold ∝ Ifold. We666

have veri�ed numerically for a large number of values of c1, c3 and D, that667

Ifold = ǫfold =
I|ǫ=0

4

is a very good approximation for the position of the fold bifurcation, except for668

the values of D so low that for ǫ = 0 , P has only the real root I = 0 (e.g. the669

case D = 4.5 in Figure 2(D)).670
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5.6. Time evolution of the abandoned vineyard model671

Equations (8) admit the in�nite set of equilibria H = {S = So, L = 0, I =672

0}, where So is an arbitrary positive constant. This is also the set of states673

without infection. By linearizing the equations around the equilibria we �nd that674

H is a normally hyperbolic manifold having two negative eigenvalues (namely,675

λ1 = −c1 − c3 and λ2 = −c2). It is also the center manifold of each equilibrium676

(Kuznetsov, 1995, Chapter 5). Therefore, initial conditions involving a very677

small number of infected and latent plants tend to fall back to an infection-free678

state in H without experiencing an appreciable growth of infected plants.679

If the initial density of infected plants in the initial conditions is not very680

small, a more complicated dynamics occurs, as illustrated in Figure (4). From681

(8) we have682

d

dt
(L+ I) = SI2 − (c1 + c3) I,

thus, if initially it is SI > c1 + c3, then the density of latent and infected plants683

will continue to grow as long as the latter inequality is satis�ed. This produces,684

in the span of a few years, a dramatic decrease of the density of healthy plants685

mirrored by a corresponding rise of infected and latent plants. This rise peaks686

when the density of healthy plants has dropped so much that SI < c1 + c3.687

5.7. A discrete-time version of the model688

As we have discussed in sec. 2.1, the processes depicted in Figure 1 could689

also be modelled by means of an iterated map. In non-dimensional form, the690

year-to-year change of the vine density in the four compartments is given by691































Sn+1 = (Sn + b4Gn) e
−(In+ǫ)2 + b1In

Ln+1 = Sn

(

1− e−(In+ǫ)2
)

+ (1− b2)Ln

In+1 = Gn

(

1− e−(In+ǫ)2
)

+ (1− b1 − b3)In + b2Ln

Gn+1 = Gne
−(In+ǫ)2 (1− b4) +D − Sn − Ln − In −Gn

. (18)

Here D and ǫ have the same meaning as in the continuous-time version. In the692

time interval from year n to year n + 1: b1 is the fraction of infected plants693

that recover, b2 is the fraction of latent plants that become infected, b3 is the694
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fraction of infected plants that die, b4e−(In+ǫ)2 is the fraction of young plants695

that become healthy adults. Obviously 0 < b1,··· ,4 < 1. In well-managed696

vineyards the mortality of infected plants is determined by the yearly extirpation697

process which would tend to eliminate all the plants that appear infected, thus698

it should be b1 + b3 ≈ 1.699

The infection process is modeled according to the principles discussed in sec700

2.1. In particular, if the density of infected plants and of hotbeds is small, both701

the number of healthy plants that becomes latent and the number of young702

plants that becomes infected is proportional to (In + ǫ)
2. The exponential func-703

tions insure that all the variables remain non-negative even at high densities of704

infected plants. Other functional forms could have been used, with no qualita-705

tive changes in the results.706

It can be shown that the model (18) has a bifurcation diagram with the same707
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