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ABSTRACT: In each sample run, comprehensive two-dimensional gas chromatography with dual secondary columns and detec-
tors (GCx2GC) provides complementary information in two chromatograms generated by its two detectors.  For example, a flame 
ionization detector (FID) produces data that is especially effective for quantification and a mass spectrometer (MS) produces data 
that is especially useful for chemical-structure elucidation and compound identification. The greater information capacity of two 
detectors is most useful for difficult analyses, such as metabolomics, but using the joint information offered by the two complex 
two-dimensional chromatograms requires data fusion.  In the case that the second columns are equivalent but flow conditions vary 
(e.g., related to the operative pressure of their different detectors), data fusion can be accomplished by aligning the chromatographic 
data and/or chromatographic features such as peaks and retention-time windows.  Chromatographic alignment requires a mapping 
from the retention times of one chromatogram to the retention times of the other chromatogram.  This paper considers general is-
sues and experimental performance for global two-dimensional mapping functions to align pairs of GCx2GC chromatograms.  Ex-
perimental results for GCx2GC with FID and MS for metabolomic analyses of human urine samples suggest that low-degree poly-
nomial mapping functions out-perform affine transformation (as measured by root-mean-square residuals for matched peaks) and 
achieve performance near a lower-bound benchmark of inherent variability.  Third-degree polynomials slightly out-performed se-
cond-degree polynomials in these results, but second-degree polynomials performed nearly as well and may be preferred for para-
metric and computational simplicity as well as robustness.

This	work	demonstrates	global	transformation	functions	
to	align	the	retention	times	of	chromatograms	acquired	by	
comprehensive	two‐dimensional	gas	chromatography	with	
one	 primary	 column	and	 two	parallel	 secondary	 columns	
(GCx2GC),	 with	 a	 flame	 ionization	 detector	 (FID)	 for	 one	
secondary	 column	 and	 a	mass	 spectrometer	 (MS)	 for	 the	
other,	 i.e.,	 GCx2GC‐FID/MS.	 	 GCx2GC	 increases	 separation	
efficiency	 and	 information	 capacity	 (1,2,3,4),	 but	 the	 two	
resulting	 chromatograms	may	 exhibit	 different	 retention‐
time	 patterns.	 	 Then,	 a	 retention‐times	 transformation	
function	 is	 required	 to	 map	 between	 the	 data‐points	
and/or	features	such	as	peaks	in	the	two	chromatograms.	
Seeley	 et	 al.	 proposed	 a	 GCx2GC	 system	with	 two	 sec‐

ondary	 columns	 with	 different	 selectivity	 characteristics,	
each	connected	with	a	separate	FID,	to	“increase	the	reso‐
lution	and	qualitative	information	supplied	by	comprehen‐
sive	two‐dimensional	gas	chromatographic	analysis.”	(1)p.	

450	 	 They	 demonstrated	 results	 for	 mixtures	 of	 volatile	
organic	compounds	(VOCs)	and	complex	gaseous	samples,	
including	exhaled	breath	(2).	 	Peroni	et	al.	(5,6)	used	mul‐
tiple	identical	second	columns	to	achieve	optimum	carrier	
gas	 velocity,	 but	 employed	 only	 a	 single	 FID.	 	 Nicolotti,	
Bressanello,	 and	 Cordero	 similarly	 used	 identical	 second	
columns	for	improved	gas	linear	velocities	in	both	chroma‐
tographic	dimensions,	but	connected	one	column	to	a	FID	
and	the	other	column	to	a	MS	with	auxiliary	flow/pressure	
controller.	(3)		In	a	study	of	metabolic	profiling	and	finger‐
printing	 with	 mice	 urine	 samples,	 they	 concluded	 that	
“working	 in	 close‐to‐optimal	 2D	 linear	 velocities	 and	 a	
doubled	secondary	column	loading	capacity,	showed	posi‐
tive	 effects	 on	 overall	 system	 orthogonality,	 resolution,	
and	fingerprinting	accuracy.”	(4)p.	276		The	benefits	of	us‐
ing	both	FID	and	MS	in	a	single	run	include	complementary	
data,	with	 improved	quantification	compared	to	MS	alone	



 

and	 improved	 compound	 identification	 compared	 to	 FID	
alone,	and	the	ability	to	cross‐validate	results.	
GCx2GC‐FID/MS	 systems	 produce	 two	 complementary	

chromatograms	 for	 each	 sample	 run.	 	 The	 greater	 infor‐
mation	 capacity	 of	 two	 detectors	 is	 especially	 useful	 for	
difficult	analyses,	such	as	metabolomics,	but	using	the	joint	
information	 offered	 by	 the	 two	 chromatograms	 requires	
data	fusion.		In	the	case	that	the	second	columns	are	equiv‐
alent	 but	 flow	 conditions	 vary	 (e.g.,	 related	 to	 the	 detec‐
tors’	different	operative	pressures),	data	fusion	can	be	ac‐
complished	 by	 aligning	 the	 chromatographic	 data	 and/or	
chromatographic	 features	 such	 as	 peaks	 and	 retention‐
time	windows.		In	a	GCx2GC‐FID/MS	system	without	auxil‐
iary	 flow/pressure	 control	 at	 the	 outlet	 of	 the	 secondary	
column	for	the	MS,	there	are	differences	between	the	two‐
dimensional	 (2D)	 retention‐times	 patterns	 of	 the	 two	de‐
tectors.	(3)	 	Outlet	pressure	control	adds	carrier	volumet‐
ric	 flow	 to	 reduce	 these	 differences,	 but	 alignment	 still	 is	
required.	 	 The	 coherence	 of	 2D	 patterns	 produced	 by	
FID/MS	parallel	detection	was	handled	by	affine	transfor‐
mation	implemented	in	template	matching	(4)	for	analysis	
of	mice	 urine	metabolome,	 but	with	manual	 intervention	
to	 cross‐align	FID	and	MS	 template	patterns.	 	More	effec‐
tive	 alignment	 could	 reduce	 or	 eliminate	 the	 need	 for	
manual	intervention.	
A	 fundamental	 distinction	 amongst	 alignment	methods	

is	 whether	 the	 underlying	 model	 is	 global	 or	 local,	 i.e.,	
whether	 the	 geometric	 differences	 between	 chromato‐
grams	are	characterized	by	a	single	function	for	the	entire	
chromatogram	or	by	a	combination	of	many	functions	 for	
different	 regions	 of	 the	 chromatogram.	 	A	brief	 review	of	
local	methods	used	to	align	GCxGC	data	 is	 included	 in	 the	
Supporting	 Information	 (7‐15).	 	 Global	 functions	 may	 be	
able	to	capture	systemic	properties	and	structure	that	un‐
derlie	retention‐time	differences.		On	the	other	hand,	local	
functions	may	be	able	to	capture	retention‐time	variations	
that	 are	not	 related	 to	 systemic	properties	 and	 structure.		
Local	 functions	 typically	 offer	 greater	 representational	
power	than	simple	global	functions,	which	allows	them	to	
capture	small‐scale	variations,	but	also	are	more	suscepti‐
ble	 to	 overfitting	 of	 confounding	 input	 differences	 (e.g.,	
compositional	differences,	artifacts,	and	noise)	and	so	may	
be	less	robust	than	global	functions.		Global	functions	with	
many	 parameters	 have	 unlimited	 representational	 power	
but	also	have	greater	susceptibility	to	overfitting.	 	Finally,	
global	functions	with	few	parameters	are	computationally	
simple.	 	 For	 these	 reasons,	 the	 ideal	 solution	 is	 an	 align‐
ment	method	based	on	a	simple	global	model	with	few	pa‐
rameters	that	is	able	to	effectively	capture	chromatograph‐
ic	 differences.	 	 Of	 course,	 if	 the	 chromatographic	 differ‐
ences	 are	 too	 complex,	 a	 simple	 global	 function	with	 few	
parameters	may	prove	 ineffective	 for	modeling	 those	dif‐
ferences.	 	 In	 such	 circumstances,	 local	 functions	 may	 be	
required.	
In	an	early	study	of	global	 functions	 for	modeling	chro‐

matographic	differences	in	GCxGC	data,	Ni	et	al.	(16)	found	
that	 four‐parameter	 separable	 shift‐and‐scale	 and	 six‐
parameter	 bivariate	 affine	 (shift,	 scale,	 and	 shear)	 func‐
tions	 were	 effective	 for	 modeling	 retention‐time	 differ‐
ences	related	to	oven	temperature	ramp	rate	and	inlet	gas	
pressure.	 	 They	 noted	 that	 these	 functions,	 optimized	 for	
least‐squares	 fit,	 would	 be	 effective	 for	 pattern	matching	

and	normalizing	retention	times	to	retention	indices.	 	Van	
Mispelaar	 (17)	 parameterized	 a	 global	 bivariate	 second‐
degree	 polynomial	 function	 (with	 12	 parameters)	 using	
the	locations	of	six	peaks	(supplying	the	minimum	number	
of	 constraints	 for	 the	 second‐degree	 polynomial),	 then	
used	bilinear	interpolation	to	resample	the	data	values.	
The	goal	of	this	research	is	to	evaluate	the	performance	

of	simple	global	alignment	models	for	GCx2GC	in	order	to	
determine	 their	 representational	 effectiveness.	 	 As	 de‐
scribed	in	the	Experimental	Section,	performance	is	quan‐
tified	by	the	root‐mean‐square	error	(RMSE)	for	retention	
times	 of	matched	 peaks	 in	 paired	 FID	 and	MS	 chromato‐
grams	 from	 a	 single	 GCx2GC	 run.	 	 The	 performance	
benchmark	 is	 the	 RMSE	 between	 matched	 peaks	 for	 the	
same	detector	(i.e.,	FID	with	FID	and	MS	with	MS)	in	con‐
secutive	replicate	runs,	with	the	expectation	that	consecu‐
tive	 replicate	 runs	 exhibit	 negligible	 sample	 and	 chroma‐
tographic	differences.	 	Then,	small	misalignments	for	con‐
secutive	 replicate	 runs	 can	 be	 deemed	 noise,	 thereby	
providing	 a	 performance	 benchmark.	 	 If	 the	 performance	
of	a	 simple	global	method	to	align	FID	and	MS	chromato‐
grams	from	GCx2GC	can	approach	the	benchmark,	then	the	
residual	differences	can	be	attributed	to	noise	rather	than	
chromatographic	 misalignment.	 	 The	 experiments	 em‐
ployed	cross‐validation	to	evaluate	three	simple	global	2D	
alignment	methods:		affine,	second‐degree	polynomial,	and	
third‐degree	polynomial	transformations.	

■ EXPERIMENTAL SECTION 

Samples.	 	 The	 urine	 samples	 were	 gathered	 for	 the	
Italian	 Diabetes	 Exercise	 Study	 2	 (IDES_2),	 which	 is	 as‐
sessing	 the	effect	of	a	behavioral	 intervention	strategy	on	
the	 promotion	 and	 maintenance	 of	 physical	 activity	 in	
adults	with	type	2	diabetes.	 	IDES_2	is	a	randomized	clini‐
cal	 trial	 that	 monitors	 objective	 measurable	 changes	 in	
sedentary	 time	and	physical	 activity	over	a	3‐year	period	
after	behavioral	intervention	as	compared	with	usual	care.	
The	study	also	monitors	physical	fitness,	modifiable	cardi‐
ovascular	 risk	 factors	 (HbA1c,	 lipids,	 blood	 pressure,	 C‐
reactive	 protein),	 and	 health	 related	 quality	 of	 life.	 	 The	
samples	 analyzed	 by	 GCx2GC	 are	 for	 the	 first	 and	 fourth	
quartile	of	physical	 activity	objectively	measured	at	base‐
line.	 	 Sample	 preparation	 followed	 a	 standard	 derivatiza‐
tion	 protocol	 of	 oximation/silylation.	 (18)	 	 Derivatization	
reagents:	 O‐methylhydroxylamine	 hydrochloride	 (MOX)	
and	 N‐methyl‐N‐(trimethylsilyl)trifluoroacetamide	
(MSTFA),	and	HPLC‐grade	solvents:	methanol,	pyridine,	n‐
hexane,	 and	 dichloromethane,	 were	 supplied	 by	 Sigma‐
Aldrich	(Milan,	Italy).	
Calibration	standards	of	pyruvic	acid,	lactic	acid,	malonic	

acid,	succinic	acid,	malic	acid,	2‐ketoglutaric	acid,	hippuric	
acid,	 L‐alanine,	 L‐valine,	 glycine,	 L‐threonine,	 L‐tyrosine,	
creatinine,	phenylalanine,	xylitol,	ribitol,	glycerol,	fructose,	
galactose,	glucose,	mannitol,	and	myo‐inositol;	and	the	in‐
ternal	 standard	 (ISTD)	 4‐fluorophenylalanine	 were	 from	
Sigma‐Aldrich	 (Milan,	 Italy).	 	 Calibration	 solutions	 for	
quantitative	determination	of	 relevant	analytes	were	pre‐
pared	as	in	a	previous	protocol	(4)	at	2	mg/L,	10	mg/L,	50	
mg/L,	and	100	mg/L.		The	ISTD	for	data	normalization	and	
quality	control,	4‐Fluorophenylalanine,	was	at	10	mg/L.	



 

Instrumentation.	 	 Separations	 were	 performed	 with	
an	Agilent	6890‐5975C	GC‐MS	 fast	quadrupole.	 	The	 first‐
dimension	(1D)	column	was	SE52	(30m	x	0.25	mm	internal	
diameter	 (ID)	 x	 0.25	μm	 film	 thickness	 (df))	 and	 the	 two	
parallel	second‐dimension	(2D)	columns	were	OV1701	(1.4	
m	x	0.10	mm	ID	x	0.10	μm	df).	 	Columns	were	from	Mega	
(Legnano,	Milan,	 Italy).	 	 The	 carrier	 gas	was	 helium	with	
initial	head	pressure	296	kPa	(constant	flow).	 	The	modu‐
lation	period	was	5	 sec	with	pulse	 time	0.350	msec.	 	The	
FID	 acquisition	 frequency	 was	 100	 Hz	 and	 the	 MS	 per‐
formed	 full	 scans	 (50–350	m/z)	at	24	Hz.	 	The	oven	pro‐
gramming	 was	 50°C	 (1	 min)	 to	 300°C	 (10	 min)	 at	
4.0°C/min.	 	 A	microfluidic	 3‐port	 splitter	 (Sil‐flow™‐	 SGE	
Ringwood,	 Victoria,	 Australia)	 split	 the	 flow	 from	 the	 1D	
column	 into	 the	 two	 parallel	 2D	 columns	 where	 the	 first	
0.60	m	 were	 wrapped	 together	 in	 the	 loop‐type	 thermal	
modulator	 (Zoex	Corporation,	Houston,	TX).	 	 A	deactivat‐
ed,	restrictor	capillary	(0.17	m	x	0.1	mm	ID)	was	connect‐
ed	to	the	outlet	of	the	2D	column	for	the	MS.		
Data Preprocessing.	 	 Preprocessing	 was	 performed	

with	GC	 Image	GCxGC	Edition	Software	 (R2.6	pre‐release,	
GC	Image,	LLC,	Lincoln	NE,	USA).		The	preprocessing	oper‐
ations	were	start‐time	adjustment,	modulation‐phase	rota‐
tion,	baseline	correction,	and	peak	detection	(19).		For	any	
two	chromatograms,	corresponding	peaks	were	paired	by	
preliminary	bi‐directional	template	matching	and	then	in‐
teractive	 selection	 using	 a	 new	 graphical	 user	 interface	
(GUI)	 for	 interactive	 template	 matching	 and	 transfor‐
mation.	 (20)	 	 For	 the	 calibration	 samples,	 25	 peaks	were	
paired.		For	the	urine	samples,	156	peaks	were	paired.		For	
each	 set	 of	 Np	 paired	 peaks,	 the	 retention	 times	 of	 the	
peaks	 in	 the	 target	 chromatogram	 are	 denoted	 (xi,yi)	 and	
the	 peaks	 in	 the	 reference	 chromatogram	 are	 denoted	
(x’i,y’i)	where	i	is	the	peak	index	from	1	to	Np.	
Evaluation Metric.	 	The	difference	of	retention	times	

for	paired	peaks	in	two	chromatograms	is	two	dimension‐
al,	 with	 a	 difference	 in	 each	 chromatographic	 dimension.		
The	RMSE	is	computed	as	the	square	roots	of	the	means	of	
the	squared	relative	retention‐times	differences:	
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The	 retention‐time	 differences	 in	 each	 dimension	 also	
are	expressed	relative	to	the	average	detected	peak‐width	
in	that	dimension	(wx,wy),	based	on	the	logic	that	the	peak	
widths	 are	 fundamental	 to	 chromatographic	 resolution.			
The	relative	RMSE	is:		
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Transformation Models.	 	Experiments	evaluated	ini‐
tial	misalignment	(i.e.,	no	transformation)	and	 the	perfor‐
mance	 of	 three	 transformation	models,	 each	 generalizing	
the	previous	model	with	additional	parameters.	 	For	each	
model,	 if	 the	 number	 of	 peak‐pairs	 over‐constrains	 the	
model,	the	model	parameters	are	determined	to	minimize	
the	RMSE	for	the	peak‐pairs	set	(21).	
For	 notational	 completeness,	 the	 identity	 transfor‐

mation,	which	gives	the	initial	misalignment,	is	defined	as:	

଴݂ሺݔ, ሻݕ ൌ ሺݔ, 	.ሻݕ 	 	 	 	 					(3)	

The	affine	transformation	 is	 linear	scaling	and	shearing	
plus	translation:	

ଵ݂ሺݔ, ሻݕ ൌ ൫ݐ୶ ൅ ݔ୶ݏ	 ൅ ݄୶ݕ, ୷ݐ	 ൅ ݄୷ݔ ൅ 	൯ݕ୷ݏ 	 					(4)	

where	(sx,sy)	are	the	scale	parameters,	(hx,hy)	are	the	shear	
parameters,	and	(tx,ty)	are	the	translation	parameters.		The	
affine	transform	preserves	parallel	lines	and	distance	rati‐
os.	 	 A	 minimum	 of	 three	 non‐collinear	 two‐dimensional	
peak‐pairs	 (one	 peak	 of	 each	 pair	 from	 each	 chromato‐
gram)	 are	 required	 to	 parameterize	 the	 affine	 transfor‐
mation.	
The	 second‐degree	 polynomial	 adds	 three	 additional	

terms	in	each	dimension:	

ଶ݂ሺݔ, ሻݕ ൌ ሺݐ୶ ൅ ݔ୶ݏ ൅ ݄୶ݕ ൅ ܽ୶ݕݔ ൅ ܾ୶ݔଶ ൅ ܿ୶ݕଶ, ୷ݐ ൅
݄୷ݔ ൅ ݕ୷ݏ ൅ ܽ୷ݕݔ ൅ ܾ୷ݔଶ ൅ ܿ୷ݕଶሻ.	 	 	 					(5)	

A	minimum	of	six	peak‐pairs	are	required	to	parameterize	
the	second‐degree	polynomial	transformation.	
The	third‐degree	polynomial	adds	four	additional	terms	

in	each	dimension:	

ଷ݂ሺݔ, ሻݕ ൌ ሺݐ୶ ൅ ݔ୶ݏ ൅ ݄୶ݕ ൅ ܽ୶ݕݔ ൅ ܾ୶ݔଶ ൅ ܿ୶ݕଶ ൅
ݕଶݔ୶ߙ ൅ ଶݕݔ୶ߚ ൅ ଷݔ୶ߛ ൅ ,ଷݕ୶ߜ ୷ݐ ൅ ݄୷ݔ ൅ ݕ୷ݏ ൅ ܽ୷ݕݔ ൅
ܾ୷ݔଶ ൅ ܿ୷ݕଶ ൅ ݕଶݔ୷ߙ ൅ ଶݕݔ୷ߚ ൅ ଷݔ୷ߛ ൅ 	.ଷሻݕ୷ߜ 					(6)	

A	minimum	of	ten	peak‐pairs	are	required	to	parameterize	
the	third‐degree	polynomial	transformation.	
For	 GCx2GC	 data,	 these	 models	 could	 be	 simplified	 by	

presuming	 that	 the	 first‐column	retention‐times	are	 iden‐
tical	 and	 so	 transforming	 only	 the	 second‐column	 reten‐
tion	 times.	 	However,	 for	 completeness,	 the	 experimental	
results	shown	here	use	the	general	two‐dimensional	mod‐
els.	
Because	 each	 successive	 transformation	 model	 sub‐

sumes	 the	 representational	 power	 of	 the	 lower‐order	
models,	 performance	 is	 monotonically	 non‐decreasing	
with	 order;	 i.e.,	 higher‐order	 polynomials	 always	 do	 at	
least	as	well	as	lower‐order	polynomials	for	a	given	set	of	
peak‐pairs.	 	With	no	 limit	on	the	polynomial	degree,	arbi‐
trarily	 large	 peak‐pairs	 sets	 can	 be	 transformed	 with	 no	
residual	error.	 	However,	if	a	lower‐order	polynomial	suc‐
cessfully	 models	 the	 actual	 chromatographic	 transfor‐
mation,	 then	additional	parameters	merely	 increase	over‐
fitting	 and	 incur	 additional	 computation.	 	 So,	 for	 robust‐
ness	 and	 computational	 efficiency,	 lower‐degree	 polyno‐
mials	are	preferred	if	they	are	representationally	effective		
Evaluation  Methodology.	 	 Given	 two	 chromato‐

grams,	a	set	of	corresponding	peak‐pairs	 is	used	to	deter‐
mine	 the	 optimal	 transformation,	 so	 the	 RMSE	 of	 those	
points	after	the	transformation	is	a	biased	indicator	of	per‐
formance	 for	 other	 points.	 	 In	 particular,	 the	 transfor‐
mation	 is	 the	best	 fit	 for	 the	specific	peak‐pairs,	 including	
noise	 inherent	 in	 their	peak	 locations.	 	That	 the	 transfor‐
mation	 fits	 the	 noise	 as	 well	 as	 the	 relevant	 chromato‐
graphic	differences	 is	 called	 overfitting.	 	 Constraining	 the	
transform	with	many	points	tends	to	attenuate	overfitting,	
but	it	is	important	to	assess	the	level	of	overfitting,	particu‐
larly	for	small	peak‐pairs	sets.	
Cross‐validation	can	be	used	to	provide	an	unbiased	es‐

timate	 of	 the	 transformation	 performance.	 	 In	 cross‐
validation,	 a	 peak‐pairs	 set	 is	 partitioned	 into	 a	 training	
set,	which	is	used	to	determine	the	transform,	and	a	testing	
set,	which	is	used	to	independently	evaluate	performance.		
To	account	 for	variability,	 results	over	multiple	 rounds	of	
cross‐validation,	each	performed	using	randomly	generat‐
ed	partitions	of	the	peak‐pairs	set,	are	averaged.		Gros	et	al.	



 

(13)	used	leave‐one‐out	cross‐validation	(i.e.,	training	sets	
with	all	but	one	peak‐pair),	but	the	size	of	the	training	set	
can	be	varied	to	assess	performance	relative	to	the	number	
of	 peak‐pairs	 used	 to	 determine	 the	 transformation.	 Per‐
formance	measures	 for	 both	 the	 training	 and	 testing	 sets	
are	reported.	
Each	cross‐validation	result	is	computed	across	random	

partitions,	 for	 each	 transformation	method	 (including	 no	
transformation),	 for	 both	 the	 training	 set	 and	 the	 testing	
set,	 at	 each	 training	 set	 size	 from	3	peak‐pairs	 (the	mini‐
mum	size	 for	 the	affine	 transformation)	 to	 the	 total	num‐
ber	of	peak‐pairs	(which	does	not	allow	for	a	testing	set),	
for	 both	 directions	 of	 transformation	 (i.e.,	 switching	 the	
target	and	reference	chromatograms).		The	RMSE	for	each	
cross‐validation	result	is	computed	as:	

തതതതതതതതܧܵܯܴ ൌ 	 ൬ට
ଵ

௄ே೛
∑ ∑ ሺݔ௜ െ	ݔ௜

ᇱሻଶ
ே೛
ଵ

௄
ଵ , ට

ଵ

௄ே೛
∑ ∑ ሺݕ௜ െ ௜ݕ	

ᇱሻଶ
ே೛
ଵ

௄
ଵ ൰

	 (7)	

where	K	 is	 the	number	of	 iterations	of	 random	partition‐
ing.	 	 For	 the	 graphs	 shown	 in	 Results	 and	 Discussion,	
K=100	 and	 the	 	തതതതതതതതܧܵܯܴ values	 for	 the	 transformations	 in	
both	 directions	 of	 the	 same	 cross‐validation	partition	 are	
averaged.	 	 Additional	 statistics	 related	 to	worst‐case	 per‐
formance	 (maximum	RMSE)	 are	 included	 in	 the	 Support‐
ing	Information.	
Performance Benchmarks.	 	 The	 goal	 is	 a	 transfor‐

mation	 between	 FID	 and	 MS	 chromatograms	 from	 the	
same	 GCx2GC	 run.	 	 The	 performance	 of	 each	 transfor‐
mation	 model	 for	 this	 task	 is	 compared	 to	 a	 benchmark	
computed	 as	 the	 RMSE	 between	 matched	 peaks	 for	 the	
same	detector	(i.e.,	FID	with	FID	and	MS	with	MS)	in	con‐
secutive	 replicate	 runs.	 	 Consecutive	 replicate	 runs	 have	
negligible	 sample	 and	 chromatographic	 differences	
(regarded	as	noise),	so	any	transformation	model	for	them	
should	provide	only	negligible	reductions	 in	RMSE.	 	 If	 the	
performance	 of	 a	 transformation	model	 to	 align	 FID	 and	
MS	 chromatogram	 pairs	 can	 approach	 the	 benchmark	 of	
consecutive	 replicate	 runs,	 then	 the	 residual	 differences	
can	 be	 attributed	 to	 noise	 rather	 than	 chromatographic	
misalignment.	
Aligning  Chromatographic  Features  and  Data.		

Transformation	 models	 are	 sufficient	 to	 map	 retention‐
times	of	peaks,	windows,	or	other	features	from	one	chro‐
matogram	to	align	with	another	chromatogram.		However,	
mapping	 data	 values	 in	 one	 chromatogram	 (or	 an	 entire	

chromatogram)	 to	 align	 with	 another	 chromatogram	 re‐
quires	additional	steps	of	resampling	(and	interpolation	or	
approximation).	 	The	additional	steps	 to	align	data	values	
are	 not	 discussed	 here,	 but	 the	 alignment	 RMSE	 of	 data	
points	left	out	during	cross‐validation	is	an	indicator	of	re‐
tention‐time	mapping	quality	for	data	points	which	are	not	
in	the	training	set.	
The	 computation	 required	 for	 low‐degree	 polynomial	

mapping	is	small.		For	example,	on	a	computer	with	an	In‐
tel	i7‐4770	CPU	with	4	cores	at	3.4GHz	and	16GB	RAM	and	
Microsoft	Windows	10	64‐bit	OS,	 Java	bytecode	execution	
required	about	0.018	msec	for	optimal	fitting	of	a	second‐
degree	polynomial	 to	156	matched	peak‐pairs	(which	is	a	
fairly	 large	 number	 of	 alignment	 peaks)	 and	 about	 0.067	
msec	to	apply	the	second‐degree	polynomial	to	remap	the	
retention	times	of	156	peaks.	 	Presumably,	compiled	code	
would	be	faster.	

■ RESULTS AND DISCUSSION 

Results for Calibration Chromatograms.  The	first	
experiments	 presented	 here	 evaluated	 calibration	 runs	
with	 a	 set	 of	 informative	 target	metabolites	 to	be	quanti‐
fied	in	the	human	urine	samples.		Figure	1	shows	images	of	
the	FID	and	MS	chromatograms	from	one	of	the	calibration	
runs	 (with	 concentration	 100	mg/L).	 	 Open	 green	 circles	
indicate	the	analyte	peaks	used	for	alignment	experiments.		
Red	 lines	 connect	 each	 analyte	 peak	 to	 the	 ISTD	 peak,	
which	is	indicated	with	a	black	circle.	 	Peak	identities	and	
retention	times	are	provided	as	Supporting	Information.	
The	 average	 peak	 widths,	 computed	 as	 the	 second‐

central	 moments	 (i.e.,	 standard	 deviations),	 were	 deter‐
mined	from	these	peaks	in	six	FID	and	MS	chromatograms	
of	 three	consecutive	 replicate	 calibration	runs.	 	The	aver‐
age	peak	 standard‐deviation	widths	were	 about	 1σ=0.060	
min	and	2σ=	0.085	sec.		In	1D,	the	standard‐deviation	peak	
width	 was	 slightly	 less	 than	 the	 modulation	 cycle,	
PM=0.083	 min,	 which	 has	 implications	 for	 the	 alignment	
benchmark.	 	The	standard	deviation	for	randomly	distrib‐
uted	 positions	 over	 a	 single	 modulation	 interval	 is	 12‐
½×PM,	which	is	about	0.024	min	(or	0.4×1σ)	for	these	data.		
This	 is	 the	 RMS	 noise	 level	 from	 the	 sampling	 effect	 of	
modulation.	 	 In	 2D,	 the	 average	 peak	 width	 is	 about	 8.5	
times	 the	 sampling	 rate	 for	 the	 FID	 data	 and	 twice	 the	
sampling	rate	 for	 the	MS	data.	 	The	RMS	noise	 level	 from	

        



 

detector	 sampling	 is	 about	0.003	 sec	 (or	0.03×2σ)	 for	 the	
FID	data	and	0.012	sec	(or	0.14×2σ)	for	the	MS	data.	
The	benchmarks	for	the	calibration	runs	were	evaluated	

for	consecutive	replicate	runs	with	respect	to	the	same	de‐
tector.		As	can	be	seen	in	Figure	2,	for	consecutive	replicate	
runs,	there	was	a	small	misalignment	of	peak‐pairs	(shown	
by	 the	solid	black	 lines	 labeled	 “None	(f0)”):	 for	 1D,	about	
0.035	min	or	0.6×1σ;	and,	for	2D,	about	0.045	sec	or	0.5×2σ.		
In	 1D,	 the	misalignment	 is	only	a	 little	more	 than	 the	 sto‐
chastic	modulation‐sampling	noise	level	(0.024	min).		With	
the	 results	 in	 the	 Supporting	 Information,	 the	 2D	 misa‐
lignment	 averaged	 slightly	 more	 for	 MS	 than	 FID	 (0.045	
sec	versus	0.039	sec),	which	is	in	line	with	the	difference	in	
detector	sampling	noise	(a	difference	of	0.009	sec).		When	
aligning	 FID	 and	MS	 chromatograms	 from	 the	 same	 run,	
we	would	 like	 to	approach	these	benchmarks:	 	0.035	min	
in	1D	and	0.045	sec	in	2D.	
The	 expectation	 that	 the	 misalignment	 in	 chromato‐

grams	 from	 the	 same	 detector	 for	 consecutive	 replicate	
runs	 is	due	 to	noise	 is	 supported	by	 the	observation	 that	

the	global	 transformations	produced	no	 improvements	 in	
alignment	of	the	testing‐set	peaks.		Figure	2	illustrates	the	
performance	of	the	alignment	methods	for	both	the	train‐
ing	 and	 testing	 sets	 (shown	 as	 colored,	 dashed	 lines).		
When	 the	 models	 are	 not	 over‐constrained	 (peak‐pairs	
sets	of	size	3,	6,	and	10,	respectively,	for	f1,	f2,	and	f3),	they	
are	able	to	perfectly	align	the	peak‐pairs	in	the	training	set.		
Those	 models	 are	 computed	 to	 fit	 the	 retention‐times	
noise	 in	 the	 training‐set	 peaks	 as	well	 as	 any	 underlying	
transformation,	so	this	perfect	performance	is	misleading,	
as	evidenced	by	the	performance	for	the	testing‐set	peaks.		
As	more	peak‐pairs	are	included	in	the	training	set	(which	
reduces	 overfitting	 to	 noise),	 the	 performance	 for	 the	
training	 set	 worsens,	 but	 the	 more	 meaningful	 perfor‐
mance	 for	 the	 testing‐set	 peaks	 improves.	 	 However,	 the	
performance	gains	from	using	additional	peak‐pairs	to	op‐
timize	the	model	diminish	as	the	model	is	more	and	more	
constrained;	and,	even	with	all	but	one	of	the	peaks	in	the	
training	 set,	 none	 of	 the	 models	 improves	 alignment	 for	
the	testing	set	for	consecutive	replicate	runs.	

Figure 2: Cross-validation RMSE results as a function of the training set size for alignment of consecutive, replicate calibration chroma-
tograms from the same detector.  Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the
training set, and for 2D with the testing set.  The top row is for the FID chromatograms of calibration runs #1 and #2 and the bottom row
is for the MS chromatograms of calibration runs #1 and #2. 



 

Figure	3	illustrates	the	performance	for	aligning	the	two	
chromatograms	 from	 a	 GCx2GC‐FID/MS	 calibration	 run.		
As	 can	 be	 seen	 in	 the	 second	 of	 the	 four	 graphs,	 for	 1D,	
none	of	the	models	yields	any	improvement	in	the	testing	
set,	 but	 this	 is	 expected	 because	 both	 the	 FID	 and	 MS	
chromatograms	 were	 generated	 for	 the	 same	 1D	 separa‐
tion.	 	Note	also	that	the	1D	misalignment	is	approximately	
equal	 to	 the	 stochastic	 modulation	 sampling	 noise	 level	

(0.024	min).		For	2D,	as	seen	in	the	right‐most	graph,	all	of	
the	 transformation	 models	 significantly	 improved	 align‐
ment	 from	 about	 0.14	 sec	 (or	 1.6×2σ)	 before	 transfor‐
mation	 to	 about	 0.06	 sec	 (or	0.7×2σ)	 or	 less,	with	 the	 se‐
cond‐degree	 polynomial	 approaching	 the	 benchmark	 of	
0.045	sec.		The	performance	of	the	third‐degree	polynomi‐
al	 is	 slightly	 worse	 than	 the	 benchmark;	 however,	 the	
peak‐pairs	 set	 for	 the	 calibration	 data	 may	 not	 be	 large	
enough	to	provide	robust	constraints	and	is	somewhat	lim‐
ited	 in	 covering	 the	 retention‐times	 space,	 so	 more	 in‐

depth	analyses	are	presented	next	 in	 the	results	 for	urine	
samples,	 for	which	 a	 larger	peak‐pairs	 set	with	wider	 re‐
tention‐times	ranges	is	used.	
Results  for Urine Sample Chromatograms.  Fig‐

ure	 4	 shows	 images	 of	 the	 FID	 and	 MS	 chromatograms	
from	a	GCx2GC	analysis	of	a	urine	sample.		Open	green	cir‐
cles	 indicate	 the	analyte	peaks	used	for	 the	alignment	ex‐
periments.		This	peak‐pairs	set	is	more	than	six	times	larg‐

er	than	the	calibration	peak‐pairs	set,	with	a	wider	reten‐
tion‐times	distribution.	
Figure	 5	 shows	 the	 alignment	 results	 for	 consecutive	

replicate	runs	of	one	of	the	urine	samples,	which	are	used	
to	establish	benchmarks.	 	For	 1D,	 the	benchmark	 is	about	
0.03	min	 (or	about	0.5×1σ);	and,	 for	 2D,	 the	benchmark	 is	
about	0.03	sec	(or	about	0.35×2σ)	for	the	MS	(which	has	a	
lower	sampling	frequency	than	the	FID).		These	values	are	
slightly	less	than	the	benchmarks	for	the	calibration	peaks	
(but	 still	 above	 the	 level	 of	 stochastic	 noise	 from	 sam‐

 
Figure 3: Cross-validation RMSE results as a function of the training set size for alignment of GCx2GC calibration chromatograms (from
different detectors).  Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the training set, and
for 2D with the testing set.  The rightmost graph demonstrates the effectiveness of the transformations. 

 

Figure 5:  Cross-validation RMSE results as a function of the training set size for alignment of consecutive, replicate urine sample chro-
matograms from the same detector.  Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the
training set, and for 2D with the testing set.  The top row is for the FID chromatograms of sample 41, runs #1 and #2, and the bottom row
is for the MS chromatograms of sample 41, runs #1 and #2. 

 

       
Figure 4:   Two chromatograms from GCx2GC analysis of a urine sample, (A) FID on the left and (B) MS on the right.  Peaks in the 156 
peak-pairs set are indicated with open circles. 



 

pling),	 a	
difference	
that	 seems	
related	 to	
the	 larger,	
more	 in‐
tense	
peaks	 in	
the	 cali‐
bration	
sample.		As	
seen	 in	 the	
results	 for	
the	 cali‐
bration	
samples,	none	of	the	transformation	models	produced	any	
improvement	in	alignment	of	consecutive	replicate	runs.	
Figure	6	 shows	 the	alignment	performance	 for	 the	 two	

chromatograms	 from	 a	 GCx2GC‐FID/MS	 run	 of	 a	 urine	
sample.		For	1D,	the	misalignment	of	the	FID	and	MS	chro‐
matograms	is	at	the	benchmark	(about	0.03	min	or	0.5×1σ)	
without	transformation	and,	as	expected,	none	of	the	mod‐
els	reduces	misalignment.		For	2D,	the	misalignment	before	
transformation	 is	 large,	 about	 0.25	 sec	 or	 2.9×2σ,	 about	
eight	times	the	benchmark.		All	of	the	transformation	mod‐
els	significantly	improve	alignment.	
As	seen	in	the	right‐most	graph	in	Figure	6,	affine	trans‐

formation	 reduces	 misalignment	 by	 about	 two‐thirds,	 to	
0.08	sec	(or	0.9×2σ),	but	does	not	achieve	the	benchmark.		
Both	 polynomial	 transformations	 reduce	misalignment	 to	
about	 0.03	 sec	 (or	 0.35×2σ),	 which	 is	 the	 benchmark	 for	
consecutive	 replicate	 sample	 runs.	 	 	 The	 second‐degree	
polynomial	does	not	approach	 its	peak	performance	until	
there	 are	 nearly	 30	 points	 in	 the	 training	 set,	 although	 it	
outperforms	affine	 transformation	with	as	 few	as	9	or	10	
points.	 	 The	 third‐degree	 polynomial	 requires	 nearly	 20	
points	 in	 the	 training	 set	 to	 outperform	 affine	 transfor‐
mation	 and	 requires	 nearly	 50	 points	 to	 outperform	 the	
second‐degree	 polynomial.	 	 Even	 when	 the	 third‐degree	

polynomial	 overtakes	 the	 second‐degree	 polynomial,	 the	
performance	 gain	 is	 small.	 	 Therefore,	 the	 second‐degree	
polynomial	may	be	preferred	for	robustness	with	a	smaller	
training	 set	 and	 simpler	 computation,	 with	 little	 loss	 in	
performance.	
Figure	7	shows	the	misalignment	vectors	between	peak‐

pairs	 in	 the	 GCx2GC	 chromatograms	 before	 and	 after	
alignment.	 	 The	 displacements	 before	 alignment	 increase	
both	from	bottom	to	top	and	from	left	to	right.	 	The	affine	
transformation	 improves	 alignment	 for	 many	 peaks,	 but	
has	errors	visible	 in	 the	upper	 left	 and	 lower	right.	 	Both	
the	polynomial	transformations	improve	alignment	across	
the	retention‐times	space.	
Figure	8	shows	the	transformation	functions	applied	to	a	

uniform	rectangular	grid.	 	With	 the	affine	 transformation,	
the	 parallel	 lines	 for	 constant	 2D	 retention	 times	 remain	
parallel	 after	 the	 transformation,	 so	 the	non‐linear	differ‐
ences	 cannot	 be	 corrected.	 	 The	 polynomial	 transfor‐
mations	 can	 track	 the	 nonlinear	 systemic	 differences	 and	
so	outperform	affine	transformation.	
Conclusions and Future Work.  This	 research	 indi‐

cates	 that	 global,	 low‐order	 polynomial	 transformations	
are	 effective	 for	 aligning	 chromatograms	 from	 GCx2GC	
with	 duplicate	 secondary	 columns	 and	 that	 they	 improve	

 

Figure 7: Misalignment vectors (from FID to MS) for 156 peak pairs in chromatograms from GCx2GC analysis of a urine sample. Col-
umns from left to right are 

 

Figure 8: Transformation of grid lines using the models derived for Figure 7 (FID to MS mapping for GCx2GC analysis of a urine sam-
ple).  Columns from left to right are for the four alignment transformations:  none (f0), affine (f1), second-degree polynomial (f2), and
third-degree polynomial (f3). 

 

 
Figure 6:  Cross-validation RMSE results as a function of the training set size for alignment of GCx2GC urine sample chromatograms
(from different detectors).  Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the training
set, and for 2D with the testing set.  The rightmost graph demonstrates the effectiveness of the transformations. 



 

on	 the	 performance	 of	 affine	 transformation.	 	 Second‐
degree	 polynomials	 performed	 nearly	 as	 well	 as	 third‐
degree	 polynomials	 and	 may	 be	 preferred	 for	 their	 sim‐
plicity,	 requirement	 of	 fewer	 landmark	 peak‐pairs,	 and	
greater	 robustness	 for	 small	 sets	of	 landmark	peak‐pairs.		
In	 the	 experiments	 here,	 although	 as	 few	 as	 6	 landmark	
peak‐pairs	 are	 mathematically	 sufficient	 for	 determining	
the	 optimal	 second‐degree	 polynomial,	 more	 than	 four	
times	as	many	may	be	required	for	near	peak‐performance	
for	 points	 not	 in	 the	 training	 set.	 	 We	 expect	 that	 these	
conclusions	 also	would	hold	 for	GCxGC	with	 dual	parallel	
detectors	(e.g.,	GCxGC‐FID/MS	or	other	detector	combina‐
tions)	for	which	the	2D	chromatograms	may	have	differing	
retention‐times	patterns	(e.g.,	due	to	differences	in	splitter	
performance,	 connecting	 capillaries,	 operative	 pressures,	
and/or	detetectors).	 	However,	 for	GCx2GC	with	different	
stationary	phases	in	the	secondary	columns,	simple	reten‐
tion‐time	 transformation	 models	 could	 be	 ill‐suited	 (be	
they	 local	 or	 global).	 	 This	 research	 also	makes	 contribu‐
tions	 in	 methodologies	 for	 evaluating	 alignment	 perfor‐
mance:	 demonstrating	 the	 use	 of	 consecutive	 replicate	
runs	 to	 establish	 alignment	 benchmarks	 related	 to	 inher‐
ent	 noise	 and	 using	 cross‐validation	 with	 variable‐sized	
training	 sets	 to	 assess	 performance	 as	 a	 function	 of	 the	
number	of	points	used	for	alignment.	
Although	it	 is	not	the	subject	of	 this	work,	alignment	of	

GCxGC	 chromatograms	 from	different	 runs	 also	 is	 an	 im‐
portant	problem.		For	example,	GCxGC	retention‐times	pat‐
terns	change	as	columns	age	and	differ	from	one	system	to	
another.		Global	low‐order	polynomial	transformations	can	
be	 applied	 to	 the	 problem	 of	 aligning	 different	 GCxGC	
chromatograms,	 (17)	 but	 their	 performance	 for	 different	
situations	has	not	been	 investigated	deeply.	 	We	have	be‐
gun	 experiments	 that	 use	 the	 assessment	 methods	 de‐
scribed	 here	 to	 evaluate	 the	 performance	 of	 global,	 low‐
order	 polynomials	 for	 aligning	 GCxGC	 chromatograms	 in	
varied	 situations,	 with	 comparisons	 to	 local	 alignment	
methods.	
The	next	version	of	GC	 Image	Software	will	 have	 facili‐

ties	 (a)	 to	 compute	 the	optimal	 parameters	 for	 a	 second‐
degree	polynomial	model	from	matched	points	determined	
by	template	matching,	(b)	to	update	a	template	based	on	a	
second‐degree	 polynomial	 function	 computed	 after	 tem‐
plate	matching,	 and	 (c)	 to	 transform	a	 chromatogram	ac‐
cording	to	a	set	of	matched	points	(e.g.,	 those	determined	
by	 template	 matching	 or	 any	 other	 method)	 using	 a	 se‐
cond‐degree	 polynomial	 function	 and	 a	 selected	
resampling	method.	
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ABSTRACT: This document provides supporting information for the paper “Alignment for Comprehensive Two-Dimensional Gas 
Chromatography with Dual Secondary Columns and Detectors (GCx2GC)”, for the journal Analytical Chemistry.  Due to space 
constraints and for brevity of presentation, the body of that paper presents results for only a few examples.  This supplement pro-
vides additional results.  This supplement also presents results for the maximum alignment error, which supplements the results for 
the average alignment error presented in the body of the paper.  For a description of the samples, instrumentation, system settings, 
data preprocessing, alignment algorithms, and evaluation methodology, as well as references, refer to the body of the paper.

Review of Local Alignment Methods for GCxGC.  
Many	 local	 alignment	 methods	 have	 been	 proposed	 for	
GCxGC	chromatographic	data.		One	of	the	earliest	methods	
used	 simple	 retention‐time	 shifting	 to	 realize	 minimum	
pseudorank,	 with	 interpolation	 of	 the	 data	 for	 subpixel	
shifts	(7).		Dynamic	Time	Warping	(DTW)	(8)	and	Correla‐
tion	Optimized	Warping	(COW)	(9)	were	originally	applied	
to	 one‐dimensional	 signals	 then	 adapted	 for	 GCxGC	
(10,11).		DTW	uses	dynamic	programming	to	define	a	non‐
linear	warping	path	to	align	two	signals.		For	GCxGC,	Vial	et	
al.	(10)	applied	DTW	to	the	more	variable	second‐column	
chromatograms.	 	 In	 developing	 COW,	 Nielsen	 (9)	 noted	
that	 the	 DTW	 distance	 measure	 relies	 on	 similar	 peak	
heights	in	the	two	chromatograms	to	give	a	reliable	align‐
ment	(or	on	extensive	pretreatment).	 	COW	segments	one	
of	the	signals	and	uses	correlation	to	assess	piecewise	lin‐
ear	warping	of	each	segment	to	align	with	the	other	signal.		
Dynamic	programming	 is	used	 to	 solve	 the	 combinatorial	
optimization	for	all	segments	to	have	consistent	start	and	
end	points	without	overlaps	or	gaps.		Zhang	et	al.	(11)	ap‐
plied	 COW	 separably	 in	 two	 dimensions,	 effecting	 piece‐
wise	 bilinear	 interpolation.	 	 Both	 of	 these	 local	 methods	
require	 time‐consuming	 computations.	 	 Wang	 et	 al.	 (12)	
developed	a	local	alignment	algorithm	based	on	landmark	
peaks	 using	 distance	 and	 spectrum	 correlation	 optimiza‐
tion	 (DISCO).	 	 Although	 DISCO	 was	 developed	 for	 peak	
matching,	it	defines	a	retention‐times	mapping	function	in	
which	 the	 retention‐times	 plane	 is	 segmented	 using	 the	
positions	 of	 landmark	 peaks,	 then	 piecewise	 linear	 inter‐
polation	is	used	to	interpolate	the	retention‐times	of	non‐
landmark	 peaks.	 	 Gros	 et	 al.	 (13)	 developed	 a	 landmark‐
based	 local	 alignment	 algorithm	 using	 Sibson	 natural‐
neighbor	 interpolation	 (14),	 based	 on	 a	 Voronoi	 diagram	
defined	by	landmark	peaks.		Recently,	Furbo	et	al.	(15)	de‐
veloped	a	local	alignment	method	in	which	the	correlation‐
optimized	shift	 for	each	second‐dimension	chromatogram	
is	computed	and	 then	 those	 shifts	are	 fit	 by	a	polynomial	
function.	 	These	local	methods	have	varying	 levels	of	rep‐
resentational	power,	but	all	are	more	computationally	ex‐

pensive	 than	 simple	 global	 methods	 and	 cannot	 simply	
capture	global	structure. 
Additional  Results  for  Calibration  Chromato‐

grams.  Figure	S1	shows	 the	 results	 for	alignment	of	an	
additional	 pair	 of	 consecutive	 replicate	 calibration	 runs	
(with	concentration	100	mg/L).		The	alignment	of	chroma‐
tograms	 from	 the	 same	 detector	 in	 consecutive	 replicate	
runs	provide	benchmarks	for	subsequent	alignment	of	the	
chromatograms	 from	 the	 flame	 ionization	 detector	 (FID)	
and	 mass	 spectrometer	 (MS)	 from	 a	 single	 GCx2GC‐
FID/MS	 run.	 	 For	 consecutive	 replicate	 calibration	 runs	2	
and	3,	the	1D	misalignment	is	about	0.041	min	(or	0.7×1σ);	
and,	the	2D	misalignment	is	about	0.043	sec	(or	0.5×2σ)	for	
the	 MS	 (which	 has	 a	 lower	 sampling	 frequency	 than	 the	
FID).		These	benchmarks	are	in	line	with	those	in	the	paper	
(although	slightly	higher	for	1D).	
Figure	 S2	 illustrates	 the	 performance	 for	 aligning	 FID	

and	MS	GCx2GC	chromatograms	from	the	same	calibration	
run.		As	expected,	for	1D,	none	of	the	models	yields	any	im‐
provement	in	the	testing	set.		As	for	the	example	in	the	pa‐
per,	the	1D	misalignment	is	approximately	equal	to	the	sto‐
chastic	modulation	sampling	noise	 level	(0.024	min).	 	For	
2D,	all	of	the	transformation	models	significantly	improved	
alignment	 from	 about	 0.14	 sec	 (or	 1.6×2σ)	 before	 trans‐
formation	 to	 about	 0.05	 sec	 (or	 0.6×2σ)	 or	 less,	 with	 the	
second‐degree	polynomial	 approaching	 the	benchmark	of	
0.043	 sec.	 	 These	 results	 are	 consistent	 with	 those	 pre‐
sented	in	the	paper.	
Tables	 S1	and	S2	document	 the	 retention	 times	and	 1D	

linear	retention	indices	(LRIs)	of	calibration	compounds	in	
run	#1	before	and	after	alignment	for	all	methods. 
Additional Results  for Urine Sample Chromato‐

grams.  Figure	S3	shows	the	alignment	results	for	anoth‐
er	 pair	 of	 consecutive	 replicate	 runs	 of	 one	 of	 the	 urine	
samples,	which	are	used	to	establish	benchmarks.			For	1D,	
the	benchmark	is	about	0.026	min	(or	about	0.4×1σ);	and,	
for	2D,	the	benchmark	is	about	0.038	sec	(or	about	0.4×2σ)	
for	the	MS	(which	has	a	lower	sampling	frequency	than	the	
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FID).		These	results	are	in	line	with	those	in	the	paper	(alt‐
hough	slightly	higher	for	2D).	
Figure	 S4	 shows	 the	 alignment	 performance	 for	 two	

GCx2GC	runs	of	a	urine	sample.	 	For	1D,	the	misalignment	
of	 the	 FID	 and	 MS	 chromatograms	 is	 at	 the	 benchmark	
(about	0.03	min	or	0.5×1σ)	without	transformation	and,	as	
expected,	 none	of	 the	models	 reduces	misalignment.	 	 For	
2D,	the	misalignment	before	transformation	is	large,	about	
0.25	sec	or	2.9×2σ,	several	times	the	benchmark.		All	of	the	
transformation	 models	 significantly	 improve	 alignment.		
Affine	transformation	reduces	misalignment	by	about	two‐
thirds,	 to	 0.09	 sec	 (or	 1.0×2σ),	 but	 does	 not	 achieve	 the	
benchmark.		Both	polynomial	transformations	reduce	mis‐
alignment	 to	 about	 0.035	 sec	 (or	 0.4×2σ),	 which	 is	 the	
benchmark	 for	consecutive	replicate	sample	runs.	 	 	These	
results	are	consistent	with	those	presented	in	the	paper.	
Maximum Alignment  Error.  Results	 for	 the	 root‐

mean‐square	error	(RMSE)	indicate	average	performance.		
The	worst‐case	error	also	is	of	interest.		Figures	S5–S7	pre‐
sent	 the	maximum	absolute	alignment	error	 for	any	peak	
pair	 in	any	of	 the	cross‐validation	 runs	 for	GCx2GC	align‐
ment,	with	Figure	S5	for	the	calibration	runs,	Figure	S6	for	
sample	41	runs,	Figure	S7	for	sample	50	runs.	

In	all	of	these	graphs,	the	size	of	the	training	set	increas‐
es	from	left	to	right	and	the	size	of	the	testing	set	decreases	
from	 left	 to	 right,	 so	 there	 generally	 is	 an	 increase	 in	 the	
maximum	error	from	left	to	right	in	the	training	set	and	a	
decrease	 in	 the	maximum	error	 in	 the	 testing	 set.	 	 Those	
trends	 are	 not	 of	 interest.	 	 Instead,	 the	 graphs	 should	 be	
viewed	with	an	eye	 to	 the	relative	performance	 indicated	
by	the	four	lines.	
For	1D,	 in	all	of	the	examples,	 if	 the	training	set	is	 large	

enough,	 then	 the	maximum	absolute	 error	 for	 the	 testing	
set	is	about	the	same	for	all	functions.		For	2D,	if	the	train‐
ing	set	 is	 large	enough,	 then	the	maximum	absolute	error	
for	 the	testing	set	 is	reduced	by	the	affine	 transformation	
but	 is	 not	 as	 small	 as	 for	 the	 second‐degree	 and	 third‐
degree	polynomials,	which	perform	similarly.		As	expected,	
the	affine	transformation	requires	the	smallest	training	set	
and	the	third‐degree	polynomial	requires	the	largest	train‐
ing	 set.	 	 These	worst‐case	 results	 are	 consistent	with	 the	
results	 for	mean	 performance.	 	 Also,	 the	 standard	 devia‐
tion	 of	 the	maximum	 absolute	 error	 (computed	 over	 the	
iterations	 of	 leave‐one‐out	 cross‐validation)	was	 reduced	
by	 the	 affine	 transform	 but	 is	 not	 as	 small	 as	 for	 the	 se‐
cond‐degree	and	third‐degree	polynomials.	
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Figure S1: Cross-validation RMSE results as a function of the training set size for alignment of consecutive, replicate calibration chroma-
tograms from the same detector.  Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the 
training set, and for 2D with the testing set.  The top row is for the FID chromatograms of calibration runs #2 and #3 and the bottom row
is for the MS chromatograms of calibration runs #2 and #3. 

	

 

 
Figure S2: Cross-validation RMSE results as a function of the training set size for alignment of GCx2GC calibration chromatograms
(from different detectors).  Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the training
set, and for 2D with the testing set.  The top row is for the FID and MS chromatograms of calibration run #1 and the bottom row is for the
FID and MS chromatograms of calibration run #3. 



 

 

4

		
	 	

Figure S3:  Cross-validation RMSE results as a function of the training set size for alignment of consecutive, replicate urine sample chro-
matograms from the same detector.  Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the 
training set, and for 2D with the testing set.  The top row is for the FID chromatograms of sample 50, runs #1 and #2, and the bottom row
is for the MS chromatograms of sample 50, runs #1 and #2. 

 

 

 
Figure S4:  Cross-validation RMSE results as a function of the training set size for alignment of GCx2GC urine sample chromatograms
(from different detectors).  Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the training 
set, and for 2D with the testing set.  Rows from top to bottom are for the FID and MS chromatograms of sample 41, run #1; for the FID
and MS chromatograms of sample 50, run #1; and for the FID and MS chromatograms of sample 50, run #2. 
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A. Calibration	#1.	

 

 
B. Calibration	#2.	

 

 
C. Calibration	#3.	

 

 
Figure S5:  Maximum absolute error as a function of the training set size for alignment of GCx2GC calibration chromatograms (from dif-
ferent detectors).  Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the training set, and for 
2D with the testing set.  Sets of rows with maximum absolute error on the top row of each set and the standard deviation of maximum abso-
lute error on the bottom row of each set are for:  A. Calibration #1, B. Calibration #2, and C. Calibration #3. 
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A. Sample	41,	Run	#1.	

 

 
B. Sample	41,	Run	#2.	

 

Figure S6:  Maximum absolute error as a function of the training set size for alignment of GCx2GC urine sample #41 chromatograms 
(from different detectors).  Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the training 
set, and for 2D with the testing set.  Sets of rows with maximum absolute error on the top row of each set and the standard deviation of 
maximum absolute error on the bottom row of each set are for:  A. Sample 41, Run #1, and B. Sample 41, Run #2. 
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C. Sample	50,	Run	#1.	

 

 
D. Sample	50,	Run	#2.	

 

 
Figure S7:  Maximum absolute error as a function of the training set size for alignment of GCx2GC urine sample #50 chromatograms
(from different detectors).  Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the training 
set, and for 2D with the testing set.  Sets of rows with maximum absolute error on the top row of each set and the standard deviation of
maximum absolute error on the bottom row of each set are for:  A. Sample 50, Run #1, and B. Sample 50, Run #2. 
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Table S1 Transformations of the 25 target peaks in calibration #1 from the GCx2GC-MS chromatogram to align with corresponding peaks from the GCx2GC-FID chromatogram. 

	 FID	(f0)	 MS→FID	Afϔine	(f1)	 MS→FID	Poly2	(f2)	 MS→FID	Poly3	(f3)	

Compound	Name	 1D	Rt	(min)	 2D	Rt	(sec) 1D	LRI	 1D	Rt	(min) 2D	Rt	(sec) 1D	LRI	 1D	Rt	(min)	 2D	Rt	(sec) 1D	LRI	 1D	Rt	(min) 2D	Rt	(sec) 1D	LRI	

Pyruvic	acid	 8.92	 3.50 1070 8.92 3.53 1070 8.91	 3.54 1070 8.92 3.52 1070

Lactic	acid	 9.25	 3.35 1081 9.25 3.35 1081 9.25	 3.33 1081 9.25 3.33 1081

Alanine	 10.58	 3.32 1122 10.59 3.33 1122 10.58	 3.31 1122 10.58 3.31 1122

Malonic	acid	 14.00	 4.40 1224 14.00 4.33 1224 13.99	 4.41 1223 14.01 4.41 1224

Valine	 14.33	 3.40 1233 14.34 3.38 1233 14.33	 3.38 1233 14.33 3.38 1233

Leucine	 16.33	 3.40 1290 16.33 3.41 1290 16.33	 3.42 1290 16.33 3.43 1290

Glycerol	 16.67	 2.89 1300 16.67 2.93 1300 16.68	 2.89 1300 16.67 2.91 1300

Proline	 16.92	 3.49 1307 16.92 3.47 1307 16.92	 3.49 1307 16.92 3.49 1307

Glycine	 17.33	 3.24 1320 17.33 3.26 1320 17.34	 3.26 1320 17.33 3.26 1320

Succinic	acid	 17.67	 4.25 1330 17.67 4.17 1330 17.67	 4.22 1330 17.66 4.23 1330

Threonine	 20.42	 3.18 1413 20.42 3.18 1413 20.42	 3.17 1413 20.41 3.18 1413

Malic	acid	 23.75	 3.58 1515 23.75 3.54 1515 23.75	 3.54 1515 23.76 3.54 1515

Creatinine	 25.33	 3.54 1564 25.33 3.55 1564 25.33	 3.54 1564 25.34 3.54 1564

2‐Ketoglutaric	acid 26.33	 3.73 1595 26.33 3.81 1595 26.34	 3.79 1595 26.32 3.79 1594

Phenylalanine	 27.50	 3.64 1629 27.50 3.62 1629 27.50	 3.60 1629 27.50 3.60 1629

Xylitol	 30.75	 2.31 1725 30.74 2.31 1725 30.75	 2.29 1725 30.76 2.28 1725

Ribitol	 31.25	 2.27 1740 31.24 2.27 1740 31.25	 2.26 1740 31.26 2.24 1740

ISTD	(F‐Phe)	 32.50	 3.44 1777 32.49 3.54 1777 32.50	 3.49 1777 32.50 3.49 1777

Hippuric	Acid	 33.67	 0.81 1813 * * * *	 * * * * *

Tyrosine	Ia	 35.08	 3.49 1859 35.08 3.50 1859 35.08	 3.44 1859 35.08 3.44 1859

Fructose	 35.83	 1.90 1884 35.82 1.90 1883 35.83	 1.91 1883 35.84 1.90 1884

Glucose	 36.58	 1.92 1909 36.57 1.92 1908 36.57	 1.93 1908 36.58 1.93 1909

Mannitol	 37.00	 1.91 1924 36.99 1.91 1924 36.99	 1.93 1924 36.99 1.93 1924

Tyrosine	IIb	 37.00	 2.55 1924 36.99 2.59 1924 36.97	 2.59 1923 36.99 2.58 1924

Galactose	 37.50	 1.81 1942 37.49 1.80 1942 37.49	 1.83 1942 37.49 1.83 1942

Myo	Inositol	 41.83	 1.91 2110 41.90 1.80 2113 41.87	 1.86 2112 41.84 1.89 2111
*	Wraparound	peak	not	included	in	transformation.	
a	Derivative	I:	trimethylsilyl	ester	of	O‐trimethylsilyl‐tyrosine	
b	Derivative	II:	trimethylsilyl	ester	of	N,O‐bis(trimethylsilyl)‐tyrosine	
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Table S2 Transformations of the 25target peaks in calibration #1 from the GCx2GC-FID chromatogram to align with corresponding peaks from the GCx2GC-MS chromatogram. 

	 MS	Full‐Scan	(f0)	 FID→MS	Afϐine	(f1)	 FID→MS	Poly2	(f2)	 FID→MS	Poly3	(f3)	

Compound	Name	 1D	Rt	(min)	 2D	Rt	(sec) 1D	LRI	 1D	Rt	(min) 2D	Rt	(sec) 1D	LRI	 1D	Rt	(min)	 2D	Rt	(sec) 1D	LRI	 1D	Rt	(min) 2D	Rt	(sec) 1D	LRI	

Pyruvic	acid	 8.92	 3.70 1070 8.92 3.66 1070 8.93	 3.65 1071 8.92 3.68 1070

Lactic	acid	 9.25	 3.48 1081 9.25 3.48 1081 9.26	 3.50 1081 9.26 3.51 1081

Alanine	 10.59	 3.48 1123 10.59 3.47 1122 10.59	 3.49 1123 10.59 3.49 1123

Malonic	acid	 14.00	 4.80 1224 14.00 4.89 1224 14.01	 4.78 1224 14.00 4.80 1224

Valine	 14.34	 3.61 1233 14.34 3.64 1233 14.34	 3.64 1233 14.34 3.63 1233

Leucine	 16.34	 3.70 1290 16.34 3.68 1290 16.34	 3.68 1291 16.34 3.67 1291

Glycerol	 16.67	 3.10 1300 16.67 3.04 1300 16.65	 3.11 1299 16.67 3.09 1300

Proline	 16.92	 3.78 1308 16.92 3.80 1307 16.92	 3.79 1308 16.92 3.79 1307

Glycine	 17.34	 3.53 1320 17.34 3.50 1320 17.33	 3.51 1320 17.34 3.49 1320

Succinic	acid	 17.67	 4.67 1330 17.67 4.77 1330 17.67	 4.71 1330 17.68 4.68 1330

Threonine	 20.42	 3.48 1413 20.42 3.48 1413 20.42	 3.50 1413 20.42 3.48 1413

Malic	acid	 23.75	 3.99 1515 23.76 4.05 1515 23.75	 4.05 1515 23.75 4.06 1515

Creatinine	 25.34	 4.04 1564 25.34 4.03 1564 25.34	 4.03 1564 25.33 4.05 1564

2‐Ketoglutaric	acid 26.34	 4.38 1595 26.34 4.29 1595 26.33	 4.30 1595 26.34 4.29 1595

Phenylalanine	 27.50	 4.16 1629 27.51 4.20 1629 27.50	 4.22 1629 27.50 4.22 1629

Xylitol	 30.75	 2.59 1725 30.76 2.59 1725 30.75	 2.61 1725 30.75 2.61 1725

Ribitol	 31.25	 2.55 1740 31.26 2.54 1740 31.25	 2.57 1740 31.25 2.57 1740

ISTD	(F‐Phe)	 32.50	 4.16 1778 32.51 4.04 1778 32.51	 4.08 1778 32.50 4.10 1777

Hippuric	Acid	 33.67	 0.81 1813 * * * *	 * * * * *

Tyrosine	Ia	 35.09	 4.16 1859 35.09 4.15 1860 35.09	 4.22 1860 35.09 4.20 1860

Fructose	 35.84	 2.17 1884 35.85 2.17 1884 35.84	 2.16 1884 35.83 2.18 1884

Glucose	 36.59	 2.21 1909 36.60 2.21 1910 36.60	 2.19 1909 36.59 2.20 1909

Mannitol	 37.00	 2.21 1924 37.02 2.20 1925 37.02	 2.18 1925 37.02 2.18 1925

Tyrosine		IIb	 37.00	 3.06 1924 37.02 3.01 1925 37.03	 3.01 1925 37.02 3.03 1925

Galactose	 37.50	 2.08 1942 37.52 2.09 1943 37.52	 2.06 1943 37.51 2.07 1943

Myo	Inositol	 41.92	 2.17 2114 41.85 2.30 2111 41.88	 2.24 2112 41.91 2.19 2114
*	Wraparound	peak	not	included	in	transformation.	
a	Derivative	I:	trimethylsilyl	ester	of	O‐trimethylsilyl‐tyrosine	
b	Derivative	II:	trimethylsilyl	ester	of	N,O‐bis(trimethylsilyl)‐tyrosine	
	


