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LOWER AND UPPER BOUNDS

OF A SEMILINEAR BOUNDARY VALUE PROBLEM.

Domenico Delbosco, Gabriella Viola

Abstract. In the first part of this paper we indicate the best numerical
values of the constants entering in the a priori estimates for the solution to
nonlinear two point boundary value homogeneous Dirichlet problem. The nu-
merical values are depending only on the first positive zero of some equations
connected to the non linearity f . In the special case, where f is a function
power with exponent p > 1 the constants are depending on the esponent p.In
the second part we indicate the numerical values of the constants in connection
with a priori bound for a Dirichlet problem for a semilinear elliptic equation
with nonlinearity a function power with exponent p > 1.

AMS CLASSIFICATION :

1. Introduction.

D.G. Figueireido, P.L. Lions and R. Nussbaum proved the existence of an a
priori bound for a semilinear Dirichlet boundary value problem on a bounded
domain with smooth boundary. In such work no indication is given for the
value of the constant entering in the estimation. The goal of this paper is
to indicate in the cases where the dimension N ≥ 2 the numerical values of
the constants in connection with nonlinearity a function power with exponent
p > 1 a the domain is ball and in the case N = 1 with a more general
nonlinearity. In the first part of this paper we give numerical values for the
constants in wiew of the a priori estimates for the solution to nonlinear two
point boundary value Dirichlet problem. The numerical values are depending
only on the first positive zero of some equations connected to the non linearity
f . In the special case, where f is a function power with exponent p > 1
the constants are depending on the esponent p.In the second part we indicate
the numerical values for the constants in connection with a priori bound for a



Dirichlet problem for a semilinear elliptic equation con non linearity a function
power with exponent p > 1.

2.One dimensional case. Main results.

At first we consider the one dimensional case and we get a lower and an
upper bound for any solution with constants depending only on the exponent
p.

Theorem 1. Let p > 1. If u be a solution of the following nonlinear two
point problem

u′′ + up = 0

(1) u(x) > 0 x ∈ (−1, 1)

u(−1) = u(1) = 0

the u satisfies the following inequalities

[
1

2
(p + 1)]

1
p−1 < ‖u‖∞ < [2(p + 1)]

1
p−1

where ‖u‖∞ = supx∈[−1,1] |u(x)|.

Proof.

The uniqueness of the solution follows, for example, from a result of Ni and
Nussbaum [2].

Since u(x) > 0 in (−1, 1) , then u′′ = −up < 0 : hence u is a concave
mapping. Uniqueness of solution to problem (1) implies that u(−x) = u(x),
u′(0) = 0 and ‖u‖∞ = u(0).

Since u is concave, we have

u(0) < |u′(1)|.

Multiplying by u′ equation (1) and integrating on [−1, 0] we obtain∫ 0

−1
u′′u′dx +

∫ 0

−1
upu′dx = 0

and
1

2
[u′2]0−1 +

1

p + 1
[up+1]0−1 = 0.



Hence we get

(1.2) − 1

2
|u′(−1)|2 +

1

p + 1
up+1(0) = 0.

Taking into account (1.1) and (1.2) we deduce the lower bound

‖u‖∞ = u(0) > [
1

2
(p + 1)]

1
p+1 .

To obtain an upper bound for ‖u‖∞, we note that u′ is a positive concave
mapping on [-1, 0] and that u′ is a negative concave mapping on [0, 1]. At first
sinceu′(0) = 0 and u′′(x) < 0 for all x ∈ [−1, 0] then it follows that

u′(x) > 0 x ∈ [−1, 0].

Similarly sinceu′(0) = 0 and u′′(x) < 0 for all x ∈ [0, 1], it follows that

u′(x) < 0 x ∈ [0, 1].

Now we get

(u′)′′ = (u′′)′ = (−up)′ = −pup−1u′ > 0, x ∈ [0, 1].

More precisely we have
u′(x) < u′(1)x

for all x ∈ [0, 1].

Therefore we get

u(0) = −
∫ 1

0
u′(t)dt > −u′(1)

∫ 1

0
tdt = −1

2
u′(1)

i.e.

(1.3) u(0) >
1

2
|u′(1)|.

Now using (1.3) and (1.2) we obtain

u(0) >
1

2
(

2

p + 1
)
1
2u

p+1
2

hence

u(0)
p+1
2 < 2(

p + 1

2
)
1
2 = [2(p + 1)]

1
2



and finally

‖u‖∞ = u(0) < [2(p + 1)]
1

p+1 .

We want to generalize the previous result to a class of mapping including
the power function f(t) = tp , with p > 1.

Theorem 2. Let f : R → R be a differentiable function satisfying the
following hypothesis :

i) f(0) = 0; f(t) > 0 for t > 0

ii) tf ′(t) > f(t) > 0 for t > 0.

The unique positive solution of the following nonlinear two point problem

(1) u′′ + f(u) = 0

with Dirichlet boundary condition

u(−1) = u(1) = 0

satisfies the following inequalities

m < ‖u‖∞ < M

where m denotes the first positive solution of the equation t2−F (t) = 0, M is
the first positive solution of equation F (t)− 2t2 = 0, where F (t) =

∫ t
0 f(s)ds.

We recall that in [1] (Remarks 3.1, pag.30) there a proof of the existence of
an upper bound for the positive under the following more general hypothesis
that f is a continuous locally Lipschitzian mapping.

Moreover we remark that uniqueness of positive solution follows from a
result contained in [2].More precisely condition ii) assures uniqueness.

Proof of Theorem 2.

We remark that u′ is a positive concave mappimg on [-1, 0]. Indeed we
have

(u′)′′ = (u′′)′ = (−f(u))′ = −f ′u′ < 0.

On the same line of Theorem 1 we get

u(0) =
∫ 0

−1
u′(t)dt > u′(1)

∫ 0

−1
(−t)dt =

1

2
u′(1)



i.e.

(1.3) u(0) >
1

2
u′(1).

Multiplying by u′ equation (1) and integrating on [−1, 0] we obtain∫ 0

−1
u′′u′dx +

∫ 0

−1
f(u)u′dx = 0

and
1

2
[u′2]0−1 + [F (u)]0−1 = 0.

Thus one has

−1

2
|u′(−1)|2 + F (u(0)) = 0.

hence
(2.1) |u′(−1)| = [2F (u(0))]

1
2 .

Now taking into account of (1.3) and of (2.1) we have

2u(0)2 > F (u(0).

Setting t = u(0), we have to solve the following inequality

F (t)− 2t2 < 0.

LetM be the first positive zero of equation

F (t)− 2t2 = 0

Note that F (t)−2t2 < 0 when 0 < t < M . Finally we obtain the upper bound

‖u‖∞ = u(0) = t < M.

The lower bound for ‖u‖ can be obtained from

u(0) < |u′(−1)|

and
|u′(−1)| = [2F (u(0))]

1
2

Thus we have to solve the inequality

u(0)2 − 2F (u(0)) < 0



On the same line of the first part of this proof we set t = u(0) and we consider
the equation

t2 − 2F (t) = 0

Now we have that t2 − 2F (t) > 0 for t > 0 and near 0.
If we denote m the first positive solution of previous equation, then we get

that t2 − 2F (t) < 0 for t > m.

Therefore we have the lower bound

‖u‖∞ = u(0) = t > m.
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