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Abstract

Symmetry can dramatically reduce the computational cost (running time and memory allocation) of Self-

Consistent-Field ab initio calculations for crystalline systems. Crucial for running time is use of symmetry

in the evaluation of one- and two-electron integrals, diagonalization of the Fock matrix at selected points in

reciprocal space, reconstruction of the density matrix. As regards memory allocation, full square matrices

(overlap, Fock and density) in the Atomic Orbital (AO) basis are avoided and a direct transformation

from the packed AO to the SACO (Symmetry Adapted Crystalline Orbital) basis is performed, so that the

largest matrix to be handled has the size of the largest sub-block in the latter basis. We here illustrate

the effectiveness of this scheme, following recent advancements in the CRYSTAL code, concerning memory

allocation and direct basis set transformation. Quantitative examples are given for large unit cell systems,

such as zeolites (all-silica faujasite and silicalite MFI) and garnets (pyrope). It is shown that the full SCF

of 3D systems containing up to 576 atoms and 11136 Atomic Orbitals in the cell can be run with a hybrid

functional on a single core PC with 500 MB RAM in about 8 hours.

Keywords: point symmetry, Symmetry Adapted Crystalline Orbitals, Fock matrix, density matrix, CPU time,

memory allocation, quantum-mechanical calculations, CRYSTAL code
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I. INTRODUCTION

When performing electronic structure calculations on crystalline compounds, it is mandatory to

exploit translational symmetry by means of a variational basis of Bloch Functions (BFs), so that a

block-diagonal structure is obtained for the (infinite) Hamiltonian matrix, each block corresponding

to a k point in the First Brillouin Zone (BZ) (first basis transformation in Figure 1). Actually,

all periodic codes are based on the use of BFs. On the other hand, point symmetry is totally or

partially neglected in many periodic codes. Whereas most molecular systems containing a large

number of atoms have usually low symmetry, a wide range of solids of scientific and/or technological

interest have crystalline structures characterized by a relatively large number (usually 6 to 48) of

symmetry operators, which makes it odd the non-exploitation of symmetry in periodic codes.

In the present paper we discuss how symmetry permits a drastic reduction in running time and

memory allocation in Self-Consistent Field (SCF) calculations of the electronic structure for both

solids and molecules. This formal scheme as a whole is implemented in the 2014 release of the

CRYSTAL code1,2.

Symmetry can reduce running time at various steps of the SCF process:

1. Calculation of a subset of one- and two-electron integrals;3

2. Numerical integration of the exchange-correlation density functional in an asymmetric subset

of grid points;3

3. Selection of a subset of k points of the BZ, namely the Irreducible Brillouin Zone (IBZ), at

which the Fock matrix is diagonalized;3

4. Diagonalization of the Fock matrix by using Symmetry Adapted Crystalline Orbitals

(SACOs);4,5

5. Reconstruction of the density matrix in the SACO basis.

In order to take full advantage from the description of the wavefunction in the SACO basis, a set

of back and forth transformations are required from the Atomic Orbitals (AO) basis. Moreover,

representation of the Fock, overlap and density matrices as full square matrices in the AO basis

needs always to be avoided. These expedients have been fully implemented for the present study.

In the following, performance in terms of both computational time and memory requirements,

resulting from full symmetry exploitation, will be illustrated in the case of high symmetry, large
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unit cell three-dimensional compounds: pyrope, all-silica faujasite and silicalite MFI. The maximum

number of symmetry operators in crystalline solids is 48; another paper has just been submitted,

aiming to document the effectiveness of the scheme when the number of operators is larger, as in

fullerene molecules and infinite mono-dimensional nanotubes6.

The structure of the paper is as follows; in Section II the computational scheme is shown, and

the use of symmetry for reducing both the CPU cost and the memory allocation discussed. Section

III provides details of the computational setup adopted for the test calculations. The effectiveness

of the scheme is documented in Section IV. The main conclusions are drawn in Section V.

II. THE COMPUTATIONAL SCHEME

The following scheme has been implemented in the new CRYSTAL14 code.1,2 All the presented

features are in the current public version, except for the formulation of density matrix in terms of

SACOs (point G. below), that is implemented in a second release of the code to be distributed in

2014. A brief outline was presented about two years ago, when the scheme was still at the project

stage.7

CRYSTAL was designed so as to take advantage of the chemical nature and connectivity of the

system. Thus, interactions are computed in real space and selected on the basis of AO overlap

criteria. However, as recalled above, the SCF problem for periodic systems must be solved in

the reciprocal space by representing matrices in the BF basis. For these reasons, all three types of

matrices used in the SCF cycle, namely overlap (S), Fock (F) and density (P), must be represented

both in the AO and the BF basis along the calculation. Moreover, they all can be stored either in

their symmetry irreducible form or in the symmetry full form. In real space, every matrix M (M

= S, F, P) is expressed in the AO basis and stored in packed arrays as a result of the application

of effective integral selection (screening) criteria, that drastically reduce the number of matrix

elements to be computed and stored (see point C. below). Hence their size scales linearly with

the size of the system, instead of quadratically. In the following, such matrices are labeled with

Latin characters: upper-case for full matrices (Mg) and lower-case for matrix irreducible blocks

(mg), with g denoting a real space lattice basis vector. Mg is obtained from mg by application

of the symmetry operators R of the point group. In highly symmetric cases, mg is much smaller

than Mg: Table I shows that the size of Fg and fg for all-silica faujasite (primitive cell, labelled

FAUp), with accurate basis set and computational conditions (see Section III), is 736056 and 16747,

respectively. Their ratio (R1 in the Table) is 44, close to the number of symmetry operators, i.e.
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48.

In reciprocal space, F and S must both be in square form (this is a capital difference with

respect to the direct space representation) to be diagonalized at each k point in the IBZ and yield

the one-electron eigenvalues and eigenvectors. The eigenvectors are also to be stored to memory

as they are needed in the reconstruction of the density matrix. They are arranged in a matrix, A,

with the same size and symmetry properties related to F. In the following, matrices in reciprocal

space (including A) are denoted as Mk when the BFs are constructed in the basis of AOs, whereas

blackboard characters (Mk) are used when the BFs are in the basis of SACOs so that the overlap,

Fock and eigenvectors matrices take a block-diagonal form, each block being labeled by an index

of irreducible representation, IR (Mk,IR).

The reader can appreciate the advantage of using the SACO basis by taking, again, faujasite as

an example (Table I): the size of Fk is 2784×2784 whereas that of the largest Fk,IR is only 187×187

at the Γ point, that is, the size of the largest IR matrix to diagonalize and store to memory is

about 225 times smaller than Mk (see (R2)
2 in the Table); other k points have inevitably smaller

symmetry, so that the largest IR matrix is 464× 464, with a saving factor still as large as 36.

Here follows a list of the steps where CRYSTAL widely benefits from deep use of the system

symmetry:

A. Symmetry is used to identify relationships between atoms, shells, atom pairs, so that linear

transformations along the SCF process can be performed efficiently through mapping tables.

It is also used to find the IRs and the character table, as well as the transformation matrices

Wk from the AO to the SACO basis, which are stored in a compressed form.

B. One- and two-electron integrals are evaluated with reference to the symmetry irreducible set

of atoms and shell-shell pairs.

C. Every element of the direct space irreducible Fock matrix wedge fg is formed by combination

of one- and two-electron integrals with the density matrix Pg′
:

fgµν =
∑
λ,ρ,g′

Pg′

λρ

∑
h

[
(µ0νg|λhρh+g′

)− 1

2
(µ0λh|νgρh+g′

)

]
+Hg

µν (1)

where square brackets contain the Coulomb and exchange integrals and Hg
µν is the one-electron

contribution to the Fock matrix. Summations in Eq. 1 are truncated by screening techniques

based on overlap criteria between gaussian functions or charge distributions for multipolar

expansions and on an estimate of the density matrix range in real space (see Refs. 1,2,8). In
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the same way, the number of matrix elements to be computed is restricted to those atoms related

by some degree of vicinity so that matrices in real space take a very compact structure scaling

linearly with the system size, as anticipated above. In addition to this, only the irreducible

wedges of the Fock (fg) and density (pg) matrices are formed and stored to memory. Shell-shell

blocks of Pg in Eq. 1 are obtained by rotation from pg when needed and this can be done

with a “low-memory” approach illustrated in Refs. 9,10. For example, in the case of faujasite

(Table I), only 16747 elements of fg were computed and stored to memory instead of 736056

in the full matrix Fg, that is, 44 times less elements (R1 in the Table).

D. The exchange-correlation functional of the electron density in the unit cell is integrated numer-

ically on a set of points belonging to the asymmetric part of the integration grid.

E. Transformation of the overlap and Fock matrices from real to reciprocal space (mg → Mk)

requires in principle the following intermediate transformations:

mg a−→Mg b−→Mk c−→Mk (2)

corresponding to:

a) Generation of the full overlap and Fock matrices in real space by applying the set of symmetry

operators R of the point group to the corresponding irreducible matrices:

Mg′
=
∑
R

R†mgR (3)

b) Fourier transform of Mg to reciprocal space, that is, from the AO to the BF basis (first

transformation in Figure 1):

Mk =
∑
g

eik·gMg (4)

c) Transformation of Mk into the SACO block-diagonal form (second transformation in Figure

1):

Mk = Wk †MkWk (5)

W matrices take a different form for the various k points, depending on their multiplicity.

In CRYSTAL09 the three steps in Eq. 2 implied the calculation of the four full matrices at every

k point along subsequent steps. However, since steps a, b and c are mere linear transformations,

by an appropriate mapping we can obtain every block of Mk (Mk,IR) in a single step from mg,
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so reducing dramatically the amount of data to keep in memory with respect to storage of

the full square matrices in the AO basis (Mk). The required size is equal to the size of the

largest matrix Mk,IR (MIR in Table I). This latter procedure is followed in CRYSTAL14. As

already mentioned, in the case of faujasite this amounts to M2
IR = 215296 elements, instead of

N2
AO = 7750656 in the AO basis, the ratio between the two allocations, (R2)

2, being about 36.

F. Every block of the overlap or Fock matrix in the SACO basis (Mk,IR) is diagonalized and the

eigenvectors Ak,IR are obtained. As anticipated, the corresponding saving factor in computing

time can be huge.

G. Formation of the irreducible density matrix in real space (pg) was achieved through the fol-

lowing steps in CRYSTAL09:

AkIBZ
d−→ AkIBZ

e−→ AkBZ
f−→ PkBZ

g−→ pg (6)

where:

d) The eigenvectors of the Fock matrix in the BF basis for every k point in the asymmetric

part of the first Brillouin zone (IBZ) were obtained from those in the SACO basis. They

formed large square matrices with the same size as Fk;

e) The eigenvectors at every k point in the first Brillouin zone (BZ) were obtained from those

in the IBZ by application of all symmetry operators R, because back-Fourier transform to real

space requires integration over the entire first Brillouin zone, i.e. a sum over all k points in

the BZ;

f) Formation of the full square density matrix in reciprocal space;8

g) Fourier transform of PkBZ to real space.

Here pg is in compact form because it takes advantage of both symmetry and interaction

screening. In the second release of CRYSTAL14 (to be distributed in 2014), this matrix is

generated straightforwardly from the eigenvectors in the SACO basis, Ak, by means of the same

mapping that was used for transforming the overlap and Fock matrices from real to reciprocal

space (point E. above). Such an improvement has a strong impact both on computational

time and memory usage, because full square matrices, such as Ak and Pk, are no longer to be

allocated (their size would be 2784× 2784 in the case of faujasite in Table I).

The new scheme implies the following steps:

AkIBZ
h−→ PkIBZ

i−→ PkBZ
l−→ pg (7)
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namely:

h) Construction of the density matrix in the SACO basis at reciprocal space points in the IBZ.

Unlike step f above, eigenvectors have the size of the corresponding row of the IR they belong

to, instead of the full number of the AOs in the unit cell;

i) Generation of the density matrix at all reciprocal space points in the first Brillouin zone from

those in the IBZ by application of all symmetry operators (again, arrays are much shorter than

in the AO basis adopted in step e above);

l) Fourier transform and basis change from SACOs to AOs. Since such a transformation implies

matrix double products, it scales with the third power of the number of basis functions, this

being, however, the number of SACOs, which can be much smaller than for the AOs (also in

this case the longest Pk,IR in faujasite contains MIR = 464 components to be compared with

NAO = 2784).

Note that some of the calculations performed for this paper made use of the parallelized version

of CRYSTAL, which builds up on the MPI protocol (www.mpi-forum.org). Two schemes for paral-

lel processing are currently implemented in the code: a replicated data algorithm (PCRYSTAL)9,

wherein each matrix block as a whole is assigned to a given core, and a distributed data algo-

rithm for massive parallelism (MPPCRYSTAL)10, in which large matrix blocks are partitioned

and distributed among the cores. The PCRYSTAL version was adopted in this study, which is

more suitable for high-symmetry compounds, and for which a new task distribution strategy for

the diagonalization step, based on IRs rather than on k points, has been implemented in the

CRYSTAL14 release.

III. COMPUTATIONAL CONDITIONS

Simulations were performed with the B3LYP hybrid functional.11–13 All atoms were described

using a triple zeta basis set with one set of d polarization functions. The level of accuracy in evalu-

ating the two-electron Coulomb and Hartree-Fock exchange series is controlled by five parameters

Ti (i = 1, ...5).1 T1 and T2 refer to the Coulomb integrals, T3, T4 and T5 to exchange. In this

study accurate values such as 7, 7, 7, 8, 18 were chosen. The DFT exchange-correlation contri-

bution is evaluated by numerical integration over the unit cell volume. In CRYSTAL, radial and

angular points of the grid are generated through Gauss-Legendre radial quadrature and Lebedev

two-dimensional angular point distributions. A (75,974)p grid was used, corresponding to a pruned

grid with 75 radial and 974 angular points (XLGRID keyword in the CRYSTAL14 manual).1 The
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reciprocal space was sampled along the lattice vectors according to a sublattice with shrinking

factor1 set to 2, corresponding to 3, 3, 4 and 8 independent k vectors in the irreducible part of the

Brillouin zone for pyrope, all-silica faujasite with a primitive or a crystallographic cell and silicalite

MFI, respectively. Such a choice ensures convergence of the total energy to 10−7 Ha/atom. All

calculations were run on a cluster with 8 Intel Xeon E5620 cores working at 2.40 GHz, and 2 GB

RAM per core.

IV. PERFORMANCE DATA

We chose three test compounds to document the effectiveness of the presented scheme for SCF

calculations: pyrope (PYR), all-silica faujasite (FAUp) and silicalite MFI (MFI). Unit cells are

represented in Figure 2; relevant data are shown in Table I. The first two are good examples of

solids with highest point group symmetry (48 operators) and large unit cells (80 and 144 atoms,

respectively, described here by 1488 and 2784 atomic orbitals). MFI has lower symmetry (8 oper-

ators) but twice as many atoms as FAUp (288), as well as 5568 atomic functions in the basis set

used. In order to investigate a case with even a larger number of atoms, we performed a second set

of calculations on all-silica faujasite using the crystallographic cell as a reference (FAUc), featuring

four times the atoms of the primitive cell (576 atoms, with as many as 11136 atomic functions)

and still a quite large number of symmetry operators, namely 24.

Upon application of screening techniques to reduce the number of interactions to be considered,

the size of the Fock matrix in real space (SFg in Table I) spans between 725000 and 2944224 for the

four systems, corresponding to 6 and 22 MB memory occupancy (double precision real numbers).

When reduced by symmetry, the size of this matrix (Sfg in Table I) drops into the range 16634 to

215483, i.e. 130 KB to 2 MB. The corresponding saving factor R1 is nearly equal to the number of

symmetry operators in all cases: 44 for PYR and FAUp, 8 for MFI, 23 for FAUc. Beside accounting

for the reduced memory storage with respect to a calculation without symmetry, R1 is also a good

estimate of the saving factor in the calculation of one- and two-electron integrals.

Square-shaped matrices can be avoided in almost all steps of the calculation, with the only

exception of diagonalization. In this respect, symmetry has dramatic effects, since it permits to

perform this step in the basis of SACOs rather than AOs so as to achieve block-decomposition

of each Mk matrix into NIR independent blocks,Mk,IR , as schematically represented in Figure

1. Key quantities are the maximum IR sub-block size MIR and the ratio R2 = NAO/MIR, both

shown in Table I for the Γ point and for the remaining k points. There are, thus, several relevant
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advantages in such a basis transformation:

i) Memory requirement is dramatically reduced since M2
IR is the maximum number of matrix

elements to be kept in memory, instead of N2
AO, if all matrix diagonal blocks are stored to

disc and retrieved one by one on need. Saving in memory usage is in the order of (R2)
2;

ii) Diagonalization of many small matrices is to be preferred to that of a larger matrix as the

algorithms employed scale with the third power of the matrix size. Here the saving factor is

in the order of (R2)
3/NIR;

iii) Only one block of each IR needs to be diagonalized because of degeneracy; eigenvectors for

all other rows of an IR are obtained by rotation.

Of course, it must be taken into account that different k points possess different multiplicity and

symmetry properties, such as for example NIR. The Γ point reflects the full symmetry of the

system and exhibits the largest value of NIR. On the other hand, the overall performance of

the calculation steps involving IRs is inevitably biased by the lowest symmetry k points, whose

IRs have larger size. At the Γ point, the largest block in the SACO basis, MIR, is about 1/16

of the number of atomic functions NAO for PYR and FAUp, and 1/8 for MFI and FAUc. As a

consequence, the memory requirement is 68 KB, instead of 17 MB, in the case of PYR; on the other

side, it is 16 MB instead of 950 MB for FAUc. As the algorithm for diagonalization has roughly a

third-power scaling, at Γ the speed-up estimated as (R2)
3/NIR is about 400 for PYR and 64 for

MFI. As already mentioned above, k points other than Γ have always lower symmetry, thus larger

IR blocks. Table I shows that value for R2 out of Γ is 4 for PYR and FAUc (to be compared with

16 and 8 at Γ), 6 for FAUp and 2 for MFI (compare the two latter with 15 and 8, respectively). In

the worst case (among the ones presented here) of MFI, R2 is 2, which corresponds to a reduction

in memory allocation from 240 to 60 MB, and an expected speed-up factor of 8. The real, average

speed-up factor over all k points for a given system will be in between the two extreme situations

discussed here, namely Γ with high symmetry and a point with low symmetry and large IRs.

Let us now analyze performance and memory requirements into more details. We will consider

the steps of an SCF-plus-energy gradient calculation and refer to absolute wall-clock running time

instead of purely relative data about scalability, to show data substantiating the performance of

the presented scheme when applied to large unit cell compounds under accurate computational

conditions, even with low-level hardware. Calculations were run both in serial (single core) and in
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parallel (8 cores), so as to show the advantage of the new parallelization strategy of CRYSTAL14

compared to CRYSTAL09: from the IBZ k points to a finer task farming over the IRs.

Data are reported along Tables II-VI. The various steps of a SCF+gradient calculation were

illustrated in Section II. In particular, initialize includes steps preliminary to the SCF proce-

dure, among which the construction of tables for screening and symmetry analysis. orthog is also

preliminary to the SCF procedure and refers to the orthogonalization of the AO basis set. In a

direct-SCF strategy every SCF cycle is made up of the evaluation of the integrals (integrals), nu-

merical integration of the exchange-correlation density functional (dft), transformation from fg to

Fk in block-diagonal form (Fock), diagonalization of every Fk,IR block (diag), construction of the

density matrix and its transformation to pg (densmat). TOTcyc refers to a complete SCF cycle.

The four systems considered in the present study converged to an accuracy of 10−8 Ha in the total

energy in about 20 SCF cycles. The total time required to complete a SCF calculation is labeled

as TOTSCF in the Tables. Data about the calculation of the total energy gradient with respect to

nuclear positions are also reported (grad) as being an important step in structure optimizations

and calculation of several other properties such as phonons, elastic tensors etc.

Table II shows running times on a single core for the various steps of the SCF+gradient calcu-

lation. In all cases the most time-consuming portion is the calculation of integrals, accounting for

60÷80% of the time required for a single SCF cycle. Integration of the exchange-correlation func-

tional (step dft) is either the second (PYR, FAUp) or third (MFI, FAUc) most expensive step. MFI

and FAUc have larger number of atoms (thus of atomic orbitals) and lower symmetry compared to

PYR and FAUp. Beside that, diagonalization grows with the third power of the sizes of matrices

to diagonalize. As a consequence this step accounts for about 1% the cycle time for PYR and

FAUp, whereas it grows to 25% for MFI and FAUc. Notably, transformation from AO to SACO

basis set (step Fock) takes a negligible amount of time in all cases; reconstruction of the density

matrix (densmat step) accounts for no more than 3%. Preliminary steps to the SCF calculation,

namely classifications and symmetry analysis (initialize) and basis set orthogonalization (orthog),

require more time for the two systems having larger size, MFI and FAUc. However, considering

that they need to be performed only once per simulation, in all cases their cost turns out to be

negligible with respect to the whole SCF procedure.

In order to explicitly show how beneficial the use of symmetry is in the SCF scheme, in Table

III we present the running times obtained when symmetry is not considered. Values in parentheses

are the ratios with respect to the corresponding data in Table II discussed above. As expected, in

the case of the calculation of the integrals, this ratio is very close to R1 (Table I): 48, 52, 9 and 26
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are to be compared with 44, 44 and 8 and 23. The initialization step scales with about the same

ratio. Timings corresponding to transformation from AO to SACO basis must tend to zero when

symmetry is not exploited; as a consequence, the corresponding ratios are not significant. The

diagonalization step is worth being discussed into some detail. The corresponding saving ratios

are about 170, 200, 13 and 110 for PYR, FAUp, MFI and FAUc. However, as anticipated at the

beginning of this Section, these global values sort out as an average among all the k points. Let us

then discuss a specific case, namely that of the Γ point, whose timings are singled out in row diagΓ

in Tables II and III. The corresponding saving ratios are 330, 290, 26 and 170, obviously larger

than the global ones, as Γ shows the highest symmetry in the reciprocal space. These four values

are of the same order of magnitude than the ones obtained using the approximated scaling rule

(R2)
3/NIR: 410, 330, 60 and 92. Finally, considering the overall SCF time, we notice its saving

ratio is as large as 42, 43, 10 and 44 for PYR, FAUp, MFI and FAUc, being essentially related to

the integrals and diag steps. The former dominates the cycle time of PYR and FAUp, whereas

both are relevant in the case of MFI and FAUc. For all systems a smaller influence is also due to

the dft step.

Assessing the scaling of the algorithm for three-dimensional compounds is not easy, as a series of

compounds with homogeneously increasing size is not available. The best analysis we can perform

is considering unit cells of different size for the same compound, even if point symmetry can change,

thus partially biasing comparison. Here we compare the primitive and conventional cells of all-silica

faujasite (see Table II), which differ by a factor of 4 in the number of atoms and by 1/2 in the

number of symmetry operators. The total time required for a SCF calculation grows from 2500

to 28000 seconds, i.e. about 11 times, to be compared with an ideal factor of 8 for linear scaling,

as there are four times as many atoms and half the symmetry operators in FAUc with respect to

FAUp. In particular, the integrals, dft, Fock and initialize steps scale by a factor of about 10,

densmat of 20, whereas orthog and diag show a by far larger increase, around 100, as the time

required for the diagonalization step scales roughly with M3
IR, and MIR increases by a factor 6.

Table IV shows running times in the case of parallel calculations exploiting 8 cores. Total SCF

time reduces by a factor around 7 for PYR and FAUp, and 5 for MFI and FAUc, with efficiencies

of about 90 and 60%, respectively. This good performance is driven by the nearly ideal scaling

of the calculation of integrals and integration of the exchange-correlation functional. As regards

MFI and FAUc, the main step affecting efficiency is diagonalization; the reason is essentially task

unbalancing among the various cores, due to the very different sizes of the various Fk,IR, so that

diagonalization of matrices with size MIR becomes dominant. Step densmat scales in a similar

11



way for the same reason.

Peak memory usage is reported in Table V. The maximum amount of required memory along

all the calculation is about 100 (PYR), 110 (FAUp), 410 (MFI) and 520 (FAUc) MB. The most

memory consuming step is the reconstruction of the density matrix in all cases but MFI, where it

is overtaken by the Fock and diag steps. Table VI shows memory use when symmetry exploitation

is switched off. Maximum allocation along the entire SCF cycle increases by a factor of about 3,

5, 4 and 9 in PYR, FAUp, MFI and FAUc, respectively, reaching values of about 270, 530, 1500

and 4900 MB. Memory saving achieved with symmetry is satisfactory, but compared to the case

of computational time the corresponding saving factors are smaller. In fact, a relevant amount of

memory is employed to store information that is independent of the use of symmetry.

V. CONCLUSIONS

We have presented a scheme for the Self-Consistent-Field calculations of periodic systems

through full exploitation of both translational and point symmetry.

Symmetry can largely reduce running time and memory requirements during integrals calculation,

integration of exchange-correlation functional, sampling of the reciprocal space, diagonalization of

the Fock matrix, reconstruction of the density matrix. Specific expedients have been implemented

for this publication, namely direct transformation from AO to SACO basis and avoidance of allo-

cation of full square matrices.

The efficiency of the scheme has been documented in the case of large unit cell, highly symmetric

compounds, such as pyrope, all-silica faujasite and silicalite MFI. Computational time and memory

allocation have been discussed for the various steps of the SCF calculation. Calculation of integrals

and integration of the exchange-correlation functional are the most time-consuming steps; the cost

of diagonalizing the Fock matrix rapidly increases with the size of the system. Saving time with

respect to a brute force calculation with no symmetry is roughly in the order of the number of

symmetry operators. Scaling with system size, estimated comparing calculations on primitive and

conventional cells of the same compound, is closer to a linear rather than quadratic behaviour.

When performing parallel calculations, efficiency is around 60÷90 % using 8 computing cores; the

main bottle-neck is represented by the diagonalization step, due to the very different sizes of the

IR sub-blocks which reduces task balancing among cores.

As a synthetic figure, it turns out that a full SCF calculation on the conventional cell of faujasite,

with 576 atoms and 11136 atomic functions, takes as little as 8 hours on a machine with one core,

12



requiring only 500 MB of memory.
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FIG. 1: Block-factorization of the Fock matrix in periodic SCF calculations. Fg: basis of AOs

(Atomic Orbitals, non-packed form; borders are blurry to indicate that such matrix is infinite in

principle); Fk: basis of BFs (Bloch Functions); Fk: basis of SACOs (Symmetry Adapted

Crystalline Orbitals).
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FIG. 2: Graphical representation of the primitive unit cells of a) pyrope, b) all-silica faujasite,

and c) silicalite MFI. Some atoms have been added, that belong to neighboring cells, in order to

show complete coordination polyhedra.
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Nop N
asym
at N tot

at NAO Nk NIR Sfg SFg MIR R1 R2

Γ Oth. Γ Oth. Γ Oth.

PYR 48 4 80 1488 3 10 2;3 16634 725’000 93 374 44 16 4

FAUp 48 5 144 2784 3 10 4;6 16747 736’056 187 464 44 15 6

MFI 8 38 288 5568 8 8 1;2;4 215483 1’704’216 712 2784 8 8 2

FAUc 24 30 576 11136 4 5 5 127740 2’944’224 1440 2784 23 8 4

TABLE I: Effect of symmetry on SCF calculations for a series of high-symmetry solids: pyrope

(PYR), silicalite MFI (MFI), primitive (p) and conventional (c) cells of all-silica faujasite (FAU).

Nop is the number of symmetry operators; Nasym
at , N tot

at and NAO are the number of irreducible

atoms, the total number of atoms and the total number of AOs in the basis set, respectively; Nk

and NIR are the number of irreducible k points and of IRs, respectively. Sfg and SFg are the size

of the irreducible and reducible (both packed) Fock matrices in direct space; MIR is the

maximum IR sub-block size. R1 and R2 are the ratios SF /Sf and NAO/MIR, respectively.

Values for NIR, MIR and R2 are given separately for Γ and other k points. Regarding NIR for k

points other than Γ, for FAUc all 3 points have a value of 5, while for MFI there are 2 points with

1, 4 points with 2, and 1 point with 4.
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PYR FAUp MFI FAUc

initialize 9.36 6.84 123.12 73.40

orthog 0.24 0.63 41.88 43.22

integrals 170.44 75.62 1397.64 821.77

dft 41.58 42.91 271.92 223.15

Fock 0.12 0.22 0.95 1.60

diag 0.68 2.60 647.92 315.19

diagΓ 0.02 0.16 16.04 19.51

densmat 0.91 1.72 28.69 35.78

TOTcyc 213.77 123.10 2347.15 1397.53

TOTSCF 4285.00 2469.47 47108.00 28067.22

gradient 1351.74 650.41 10620.98 5885.82

TABLE II: Running time (seconds) of the SCF+gradient calculations with one single core. Data

refer to the following steps: 1) initialization of the simulation, including the construction of the

symmetry group and transformation matrices (initialize); 2) orthogonalization of the basis set

(orthog); 3) calculation of one- and two-electron integrals (integrals); 4) numerical integration of

the exchange-correlation density functional (dft); 5) transformation of fg into Fk (Fock); 6) Fock

matrix block-diagonalization (diag); 7) Contribution to diag for the Γ point only (diagΓ); 8)

construction of the density matrix (densmat); 9) a single SCF cycle (TOTcyc, corresponding to a

step 3-8 sequence); 10) the entire SCF procedure (TOTSCF , 20 SCF cycles at the chosen

conditions); 11) calculation of the total energy gradients with respect to the nuclear positions

(gradient).
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PYR FAUp MFI FAUc

initialize 427.05 (45.6) 292.69 (42.8) 1039.78 (8.4) 1686.64 (23.0)

orthog 15.07 (62.8) 99.06 (157.2) 718.07 (17.1) 5796.12 (134.1)

integrals 8103.48 (47.5) 3912.40 (51.7) 12035.45 (8.6) 21156.91 (25.7)

dft 712.62 (17.1) 828.14 (19.3) 1842.86 (6.8) 4067.00 (18.2)

Fock 0.17 (1.4) 0.55 (2.5) 2.30 (2.4) 12.99 (8.1)

diag 116.38 (171.1) 507.82 (195.2) 8240.35 (12.7) 35876.57 (113.8)

diagΓ 7.93 (330.5) 46.78 (292.4) 416.15 (25.9) 3241.32 (166.1)

densmat 6.89 (7.6) 24.48 (14.2) 126.32 (4.4) 437.94 (12.2)

TOTcyc 8939.57 (41.8) 5273.42 (42.8) 22247.34 (9.5) 61551.54 (44.0)

TOTSCF 179233.52 (41.8) 105860.15 (42.9) 446704.65 (9.5) 1238513.56 (44.1)

gradient 56383.43 (41.7) 27347.14 (42.0) 84248.80 (7.9) 134572.70 (22.9)

TABLE III: Running time (seconds) of the SCF+gradient calculations with one single core, when

symmetry is not exploited; see caption to Table II as a legend. Data in parentheses are the ratios

between these times and the ones obtained using symmetry (Table II).

PYR FAUp MFI FAUc

initialize 5.72 (20) 2.62 (33) 18.81 (82) 14.62 (63)

orthog 0.09 (33) 0.28 (28) 20.01 (26) 19.87 (27)

integrals 24.03 (89) 10.37 (91) 179.85 (97) 107.49 (96)

dft 5.41 (96) 5.57 (96) 36.31 (94) 29.93 (93)

Fock 0.03 (47) 0.06 (49) 0.20 (60) 0.33 (61)

diag 0.31 (28) 0.77 (42) 251.29 (32) 124.74 (32)

densmat 0.39 (29) 0.66 (33) 9.72 (37) 13.31 (34)

TOTcyc 30.16 (89) 17.40 (88) 477.39 (61) 275.67 (63)

TOTSCF 609.01 (88) 350.90 (88) 9586.62 (61) 5547.89 (63)

gradient 189.43 (89) 87.40 (93) 1376.14 (96) 772.70 (95)

TABLE IV: Running time (seconds) of the SCF+gradient calculations when 8 core are used; see

caption to Table II as a legend. Data in parentheses represent the percent efficiency of the

scaling, taking the single core calculation as a reference (Table II).
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PYR FAUp MFI FAUc

initialize 55 73 215 233

orthog 57 76 287 331

integrals 67 85 202 251

dft 64 80 182 221

Fock + diag 60 79 411 452

densmat 97 110 355 524

TOTSCF 97 110 411 524

gradient 197 213 390 478

TABLE V: Memory peaks (MBytes) of the SCF+gradient calculations with one single core; see

caption to Table II as a legend.

PYR FAUp MFI FAUc

initialize 266 (4.8) 494 (6.8) 956 (4.5) 1900 (8.2)

orthog 190 (3.3) 398 (5.3) 1008 (3.5) 2935 (8.9)

integrals 201 (3.0) 321 (3.8) 630 (3.1) 1190 (4.7)

dft 192 (3.0) 310 (3.9) 607 (3.3) 1153 (5.2)

Fock + diag 243 (4.1) 533 (6.7) 1523 (3.7) 4893 (10.8)

densmat 271 (2.8) 512 (4.6) 1384 (3.9) 4098 (7.8)

TOTSCF 271 (2.8) 533 (4.8) 1523 (3.7) 4893 (9.3)

gradient 311 (1.6) 467 (2.2) 1316 (3.4) 4008 (8.4)

TABLE VI: Memory peaks (MBytes) of the SCF+gradient calculations with one single core,

when symmetry is not exploited; see caption to Table II as a legend. Data in parentheses are the

ratios between these allocations and the ones obtained using symmetry (Table V).
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