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bUniversità degli Studi di Milano

Dipartimento di Informatica
Via Comelico, 39 - 20135 Milano, Italy

Abstract

Given a set N , a pairwise distance function d and an integer number m,
the Dispersion Problems (DPs) require to extract from N a subset M of
cardinality m, so as to optimize a suitable function of the distances between
the elements in M . Different functions give rise to a whole family of Com-
binatorial Optimization problems. In particular, the max-sum DP and the
max-min DP have received strong attention in the literature. Other prob-
lems (e. g., the max-minsum DP and the min-diffsum DP) have been recently
proposed with the aim to model the optimization of equity requirements, as
opposed to that of more classical efficiency requirements. Building on the
main ideas which underly some state-of-the-art methods for the max-sum
DP and the max-min DP, this work proposes some constructive procedures
and a Tabu Search algorithm for the new problems. In particular, we inves-
tigate the extension to the new context of key features such as initialization,
tenure management and diversification mechanisms. The computational ex-
periments show that the algorithms applying these ideas perform effectively
on the publicly available benchmarks, but also that there are some interest-
ing differences with respect to the DPs more studied in the literature. As a
result of this investigation, we also provide optimal results and bounds as a
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useful reference for further studies.

Keywords: Combinatorial Optimization, Dispersion problems, Binary
quadratic programming, Tabu Search

1. Introduction

Let N be a set of n elements, m a positive integer number smaller than n
and d : N×N → R a distance function on the elements ofN , such that dii = 0
for all i ∈ N , dij ≥ 0 and dij = dji for all i, j ∈ N . The literature denotes
by Dispersion Problems (DPs) a family of problems which require to extract
from N a subset M of cardinality m, so as to optimize a suitable function
of the distances between the extracted elements (Erkut, 1990; Prokopyev
et al., 2009). The natural mathematical programming formulations for these
problems associate a binary variable xi to each element i ∈ N and set xi = 1
if i belongs to M , xi = 0 otherwise:

max z = fd (x) (1a)

s.t.
∑

i∈N
xi = m (1b)

xi ∈ {0, 1} i ∈ N (1c)

where notation fd (x) means that the objective is a composite function of
vector x through the distance function d, and specifically it depends only on
the distances dij between pairs of elements (i, j) such that xi = xj = 1.

A whole family of problems can be derived from (1) by specifying in dif-
ferent ways the expression of fd(·). All of them share the same set of feasible
solutions, but the properties and behaviour of their objective functions can
be strongly different. In particular, the classical application of DPs has been
the maximization of some dispersion index used as a measure of operational
efficiency. This may refer to the location of facilities (Kuby, 1987; Erkut and
Neuman, 1989), but also to the protection of biological diversity, the formu-
lation of admission policies, the formation of committees, the composition of
medical crews (Adil and Ghosh, 2005; Glover et al., 1998; Kuo et al., 1993;
Weitz and Lakshminarayanan, 1998; Aringhieri, 2009) and, more theoreti-
cally, the identification of densest subgraphs (Brimberg et al., 2009). For
example, the max-sum DP, more commonly known as Maximum Diversity
Problem (MDP) aims to maximize the sum of the pairwise distances between
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all selected elements (Kuo et al., 1993):

fd (x) =
1

2

∑

i,j∈N
dijxixj (2)

whereas the max-min DP aims to maximize the distance between the two
closest elements (Erkut, 1990):

fd (x) = min
i,j∈N :xi=xj=1

dijxixj (3)

In contrast to the classical line of research, Erkut and Neuman (1991)
and Prokopyev et al. (2009) introduced alternative definitions of fd(·) to
express equity requirements, referring in particular to the idea of fairness
among candidate sites for urban public facilities. This alternative approach
is focused on an intermediate aggregate dispersion measure

Di (x) =
∑

j∈N
dijxj i ∈ N (4)

that is the sum of the distances between each single element and the selected
ones, and can be equivalently expressed as

∑
j∈M dij. Both papers investigate

the optimization of the max-minsum DP, which aims to guarantee that each
selected element is as distant as possible from the other ones, setting:

fd (x) = min
i∈N :xi=1

Di (x) (5)

which is the minimum aggregate dispersion for the selected elements, and
which should be maximized. Prokopyev et al. (2009) also consider the min-
diffsum DP, which aims to guarantee that each selected element has approx-
imately the same total distance from the other ones, setting

fd (x) = max
i∈N :xi=1

Di (x)− min
j∈N :xj=1

Dj (x) (6)

that is the maximum difference between the aggregate dispersions of the
selected elements. Notice that function fd (·) should be minimized here,
instead of maximized.

This work proposes heuristic algorithms for the max-minsum DP and the
min-diffsum DP, inspired by the state-of-the-art methods for the max-sum
DP and max-min DP.
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Our first aim is to investigate whether the main ideas which guarantee a
strong performance on efficiency-concerned DPs maintain their effectiveness
when applied to equity-concerned DPs. On one hand, the identical structure
of the feasible set for these two subfamilies of DPs suggests that it might
be the case. On the other hand, the completely different structure of the
objective function, and consequently of the so called landscape of the prob-
lem (Stadler, 1992), poses reasonable doubts on this assumption. See also
Resende et al. (2010) for a discussion on the weak correlation between the
optimal solutions of the max-sum DP and the max-min DP. From this per-
spective, we investigate the impact of some constructive heuristics based on
the idea of determining a more favourable initial solution and compare them
with the use of a random restart procedure as in Aringhieri and Cordone
(2011).

The second aim of this work is to provide best known results for publicly
available benchmark instances of equity-concerned DPs, thus stimulating
further research on the topic, as done for the max-sum DP in Mart̀ı et al.
(2011). Since the instances considered in Prokopyev et al. (2009) are not
publicly available and their size (50−100 elements) is currently too small for
a significant algorithmic comparison, we adopted the benchmark instances
of the Optsicom web site (http://www.optsicom.es/mdp). These were orig-
inally proposed for the max-sum DP, but can be directly employed for all
DPs. Specifically, we consider instances up to 500 elements. For some of
them, we also provide optimal results, or at least bounds, obtained with a
general purpose Mixed Integer Linear Programming (MILP) solver.

The paper is organized as follows. Section 2 surveys the relevant liter-
ature. Section 3 presents the algorithms here proposed to solve the max-
minsum DP and the min-diffsum DP, discussing in detail the basic ideas
inspired by the literature on efficiency-concerned DPs. Section 4 reports and
discusses the computational results. The appendix reports the best known
results on all the tested instances.

2. A survey on dispersion problems

Most of the literature on DPs concerns the max-sum DP and the max-min
DP. Briefly summarizing, the exact methods for the max-sum DP can solve
instances up to 100 − 150 elements (Erkut, 1990; Pisinger, 2006; Aringhieri
et al., 2009; Mart̀ı et al., 2010), whereas larger instances require heuristic ap-
proaches. Most of these approaches are local search metaheuristics based on
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the simple exchange of elements in and out of the current solution. In partic-
ular, the hybrid metaheuristic proposed by Wu and Hao (2013) provides the
best known results for a large set of benchmark instances, whose size goes
up to 5 000 elements. Other approaches exhibiting remarkable performances
are Variable Neighbourhood Search (Brimberg et al., 2009; Aringhieri and
Cordone, 2011), Iterated Tabu Search (Palubeckis, 2007), Learnable Tabu
Search (Wang et al., 2012), basic Tabu Search (Duarte and Mart̀ı, 2007; Ar-
inghieri et al., 2008), Scatter Search (Gallego et al., 2009; Aringhieri and
Cordone, 2011) and GRASP (Duarte and Mart̀ı, 2007; Silva et al., 2007).
According to our experience on this problem, the key to impressively good
performances and fast execution times is the use of strong, though not nec-
essarily sophisticated, diversification mechanisms (Aringhieri and Cordone,
2011).

The max-min DP, on the other hand, suffers from a very flat landscape
of the objective function (several different solutions have exactly the same
value). This poses a severe challenge on local search metaheuristics, as dis-
cussed in Resende et al. (2010), where different heuristics are extensively
compared, among which a GRASP with evolutionary Path Relinking exhibits
the best performance. To partly overcome the issue of the flat landscape, this
work minimizes also a secondary objective function, that is the number of
pairs (i, j) in the solution such that dij is minimum. Della Croce et al.
(2009) reformulate the max-min DP as a dichotomic search on a sequence
of instances of the Maximum Clique Problem (MCP), which are solved with
the powerful Iterated Local Search (ILS ) heuristic proposed in Grosso et al.
(2008). This approach allows to prove the optimality of the solution for sev-
eral instances up to n = 250 elements, provided that the clique subproblem
is solved with an exact algorithm. In the end, the Tabu Search algorithm
described in Porumbel et al. (2011) applies separate add and drop operations
to reduce the complexity of each iteration from quadratic to linear, and it
adopts an extremely simple tabu rule: the drop operation always removes the
oldest selected element. In this way, each element remains in the solution
for exactly m iterations. The algorithm also exploits the sum of all pair-
wise distances between the elements of the solution as an auxiliary objective
function to perturb the flat landscape of the problem.

Switching to equity-concerned models, the max-minsum DP has been in-
troduced by Erkut and Neuman (1991) and the min-diffsum DP by Prokopyev
et al. (2009), who provide MILP formulations and discuss the computational
complexity of both problems, and of other related ones. They also apply a
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general-purpose solver on instances from 30 to 100 elements and a GRASP
metaheuristic on the instances with 50 and 100 elements. This algorithm
generates a starting solution adding one element at a time, chosen randomly
from a restricted candidate list of random length, which includes the elements
yielding the best partial solutions. Then, the starting solution is improved
with a sort of first-improvement local search on a restricted neighbourhood.
This attempts a random exchange between one element in the solution and
one out of it: if the objective improves, the new solution is accepted and
the search restarts from it. If it is rejected for a specified number of times,
the improvement phase gives place to a new constructive phase. The whole
algorithm terminates after a given number of constructive and improvement
phases.

Some works on equity-concerned models (Prokopyev et al., 2009) allow
the distance function d to assume also negative values. Notice that, due to
the cardinality constraint, if all distances between two distinct elements are
increased by a uniform amount δ > 0, the value of each feasible solution
correspondingly increases by a fixed amount depending on δ and on the
cardinality m:

• for the max-sum DP, objective function (2) increases by m (m− 1) δ/2;

• for the max-min DP, objective function (3) increases by δ;

• for the max-minsum DP, objective function (5) increases by (m− 1) δ,
because all aggregate dispersions (4) increase by (m− 1) δ;

• for the min-diffsum DP, objective function (6) remains unmodified,
because all aggregate dispersions (4) increase by (m− 1) δ.

This implies the following simplifying remark.

Remark 1. The assumption that the distance function d is nonnegative does
not introduce any loss of generality.

A problem related to the ones here considered is the Equitable Dispersion
Problem, or max-mean DP, which maximizes the average distance between
the elements of the solution. This problem, contrary to the ones here con-
sidered, does not impose a cardinality constraint. The assumption that the
distance function can assume both positive and negative values, then, be-
comes crucial. Mart́ı and Sandoya (2012) propose a GRASP algorithm with
Path Relinking for the max-mean DP, applying it to instances up to 500
elements, drawn from the Optsicom web site.
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3. Algorithms for equity-concerned dispersion problems

This section describes a number of two-phase algorithms for the the max-
minsum DP and the min-diffsum DP inspired by the authors’ work on max-
sum and the max-min DP. The constructive phase exploits the relation be-
tween these problems and the MCP, computing a sequence of candidate
solutions as maximum cliques on a progressively sparsified auxiliary graph
(Section 3.1). The improvement phase is a Tabu Search procedure based on
the exchange of an element belonging to the current solution with an element
out of it (Section 3.2). The two phases repeat iteratively; at each iteration, a
simple diversification mechanism rules the constructive phase so as to differ-
entiate the solution built from the one returned by the previous improvement
phase (Section 3.3).

3.1. Constructive phase

As discussed in Prokopyev et al. (2009), several DPs are strongly NP-
hard. The reduction associates the vertices of a MCP instance to the ele-
ments of a DP instance, and the edges to suitable pairs of elements, such as
those with a large distance.

Algorithm 1: BuildDP(N, d,m,DP )

begin
E := N ×N ; M∗ := ∅; f∗ := 0;
repeat

(N,E) := Sparsify(N,E, d,DP );
M := FindClique(N,E,m);
if M 6= ∅ then

f := EvaluateSolution(M,DP );
if Better(f, f∗, DP ) then M∗ := M ; f∗ := f ;

until M = ∅;
Output: M∗;

Procedure BuildDP (see Algorithm 1) heuristically exploits this concept.
It receives the element set N , the distance function d, the desired cardinality
m and the indication of the problem to solve (max-minsum DP or min-
diffsum DP). After building an auxiliary complete graph G = (N,E) and
an empty best known solution M∗ of value f ∗ = 0, it applies procedure
Sparsify to trim G removing its less promising components, as explained
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later in detail. Procedure FindClique applies the ILS heuristic of Grosso
et al. (2008) to find a clique M of m vertices on the reduced graph. The
solution corresponding to that clique is evaluated according to the selected
objective function by applying Equation (5) or (6) and, if better, replaces
the best solution found so far. When no clique can be found by procedure
FindClique, the algorithm terminates, and returns the best solution found
overall.

Procedure Sparsify applies one of two alternative removal strategies:

• edge removal : delete from E the edges with the minimum distance for
the max-minsum DP

E :=

{
(i, j) ∈ E : dij > min

(h,k)∈E
dhk

}

and those with the minimum and the maximum distance for the min-
diffsum DP

E :=

{
(i, j) ∈ E : min

(h,k)∈E
dhk < dij < max

(h,k)∈E
dhk

}

• vertex removal : denoting by D̃h the sum of the (m− 1) largest dis-
tances dhk, which is an estimate of the unknown aggregate dispersion
Dh, delete from N the elements with the minimum estimate for the
max-minsum DP

N :=

{
i ∈ N : D̃i > min

h∈N
D̃h

}

and those with the minimum and the maximum estimate for the min-
diffsum DP

N :=

{
i ∈ N : min

h∈N
D̃h < D̃i < max

h∈N
D̃h

}

Both strategies remove the less promising components of the graph, in order
to drive the search towards cliques which correspond to solutions of higher
quality. Notice that procedure Sparsify does not necessarily remove elements
of the last clique M found by FindClique. Thus, M could be found more than
once. However, the randomized nature and the diversification mechanisms
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built in procedure FindClique make this rather unlikely (see Grosso et al.
(2008) for details).

The vertex removal strategy recalls a stingy heuristic, while the edge re-
moval strategy is inspired by the exact max-min DP algorithm proposed
by Della Croce et al. (2009). However, both return the best solution found
during the process, instead of the last one. Notice that the vertex removal
strategy computes O (n) solutions (each step forbids at least one vertex),
whereas the edge removal strategy computes O (n2) solutions (each step for-
bids at least one edge). Consequently, the latter is slower, but more gradual,
and possibly less prone to incorrect choices in its first steps.

3.2. Improvement phase

The improvement phase is a Tabu Search procedure. Tabu Search (TS ) is
a well known metaheuristic approach introduced in Glover (1986) to enhance
the performance of local search. A complete exposition of Tabu Search can
be found in Glover and Laguna (1997). We here focus on our application to
the equity-concerned DPs.

As already remarked, the feasible solutions of these problems are char-
acterized by their cardinality: they should include exactly m elements. It is
therefore a common choice, as well as natural, to define a move as the re-
moval of an element s ∈M , compensated by the introduction of an element
t ∈ N \M . If M ′ denotes the resulting neighbour solution, we have:

M ′ = M ∪ {t} \ {s}
Each solution has exactly m (n−m) neighbours. Our Tabu Search procedure
visits and evaluates all of them before selecting the incumbent one, i. e., the
one which will replace the current solution.

The procedure is described in pseudocode format in Algorithm 2. Draw-
ing inspiration from the basic procedure applied to the max-sum DP in Ar-
inghieri et al. (2008), the algorithm divides the possible moves into tabu and
nontabu on the basis of two parameters `in and `out. These are denoted as
tabu tenures, respectively for the insertion and removal of an element. At
each iteration, the procedure evaluates all possible moves and returns the
nontabu move (s, t) which yields the best solution. An aspiration criterium
overcomes this general rule, stating that the best move must be returned,
even if classified as tabu, if it yields the best solution found so far. The Tabu
Search terminates after a specified number of iterations K returning the best
solution found in the run.
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Algorithm 2: ImproveDP
(
M,N, d,m,DP, `min, `

M
in , `

m
out, `

M
out, Kw, Ki, K

)

begin
f0 := EvaluateSolution(M,DP );

M̃ := M ; f̃ := f0 ; // Initialize best known solution

Li := −∞ for all i ∈ N ; // Initialize tabu list

`in :=
(
`min + `Min

)
/2; `out :=

(
`mout + `Mout

)
/2 ; // and tabu tenures

for k := 1→ K do
(s, t) := FindBestMove(M,N,m, d, L, `in, `out, k, f

∗);
M := M ∪ {t} \ {s};
fk := EvaluateSolution(M,DP );

if Better(fk, f̃ , DP ) then M̃ := M ; f̃ := fk;
Ls := k; Lt := k; // Update the tabu list

`in :=UpdateTabuTenure
(
`in, `

m
in , `

M
in ,Kw,Ki, k, f

)
; // and tabu

`out :=UpdateTabuTenure
(
`out, `

m
out, `

M
out,Kw,Ki, k, f

)
; // tenures

Output: (M̃, f̃);

Management of the tabu mechanism. Our implementation of the tabu mech-
anism works as follows (Gendreau et al., 1994). A suitable vector L stores
for each element i ∈ N the iteration Li in which i has joined the current
solution (if i ∈ M) or left it (if i ∈ N \M) for the last time. All moves
which remove an element s ∈M from the solution are labelled as tabu until
iteration Ls + `out; as well, all moves which introduce an element t ∈ N \M
in the solution are labelled as tabu until iteration Lt + `in. At the beginning,
all elements of vector L are set to a very large negative value, represented by
symbol −∞, so that all moves are nontabu.

To refine the search, intensifying or diversifying it according to its latest
results, the values of the two tenures are not fixed once for all, but adaptively
tuned from iteration to iteration by procedure UpdateTabuTenure, based on
the vector f of the values assumed by the objective in the previous iterations.
More specifically, the tabu tenure for insertion, `in, varies within

[
`min, `

M
in

]
.

At the beginning of the algorithm, it is set to the middle point of this range(
`min + `Min

)
/2; at the i-th iteration, if in the Kw previous consecutive itera-

tions the objective f always worsened, `in increases by 1 (up to the maximum
`Min ), whilst it decreases by 1 (down to `min) after Ki consecutive improving
iterations. The same occurs for `out, which ranges from `mout to `Mout, starting
at
(
`mout + `Mout

)
/2 and increasing or decreasing by 1 according to the values

10
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of f in the last iterations. The rationale of this update mechanism is to
decrease the tabu tenure if the objective function has steadily improved in
the most recent iterations, in order to intensify the search in a region which
appears more promising; symmetrically, the tabu tenure increases if the ob-
jective function has steadily worsened, in order to diversify the search driving
it out of a region which appears less promising.

We set `out < `in because usually n − m > m, i. e., more elements are
out of the solution than inside it. Consequently, the number of exchanges
which remove each element in M is larger than the number of moves which
introduce each element out of it. This suggests that the prohibition should
last longer for the insertion than for the removal.

Objective function evaluation and computational complexity. The most time-
consuming operation of procedure ImproveDP is, of course, the evaluation
of the objective function for each neighbour solution. Both the considered
objectives depend on the minimum value of the aggregate dispersions Di

for the elements in M ; one of them depends on the maximum value (see
Equations (5) and (6)). Since a move modifies all the aggregate dispersions,
it is in general necessary to compute all indices Di associated to the m
selected elements i ∈ M . A straightforward recomputation of these indices
would require O (m2) time. However, the modified value of each Di after the
removal of s and the insertion of t can be computed in constant time with
the following formula:

Di := Di − dis + dit (7)

so that the value of the objective function can be computed in O (m) time for
each neighbour solution. Since the number of neighbour solutions evaluated
is m (n−m), the overall computational complexity of a single iteration is
O (m2n).

3.3. Diversification mechanism

Algorithm 3 gives a unified pseudocode of our algorithms. The construc-
tive and improvement phases are repeated a prespecified number of times T .
At the first application, the constructive phase works on the full set of ele-
ments N . In the following iterations, on the contrary, it works on a reduced
set N ′ which is obtained forbidding the elements of the best solution found
in the previous improvement phase.

This simple mechanism, based on the perturbation of the data, aims to
diversify the search, inducing the constructive procedure BuildDP to produce

11
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a different starting point M for each iteration of the improvement procedure
ImproveDP. It is true that the tabu search might actually reintroduce some,
or even all, of the original elements, frustrating this aim. However, the
reduced set N ′ moves the search to a solution as different as possible from
the original one, therefore limiting as much as possible the probability to
replicate it.

Notice that the mechanism actually breaks down when m > n/2, because
the reduced set N ′ does not include enough elements to build a full solution.
In this case, which never occurs in the instances available in the literature and
is less common in practical applications, the mechanism should be modified:
instead of removing the elements of M̃ from the data, we should modify
procedure BuildDP (in particular its subroutines Sparsify and FindClique)
so as to include in the new solution M all the elements of N \ M̃ . This, in
fact, would still guarantee the strongest possible differentiation with respect
to the best solution found in the previous phase.

The whole mechanism can also be interpreted as a form of Variable Neigh-
bourhood Search (Hansen and Mladenovic, 2003) with a nonstandard shaking
procedure which generates a new starting solution with the maximum num-
ber of different elements with respect to the previous one, instead of gradually
increasing the difference from iteration to iteration. Such an approach is rea-
sonable if one does not expect to find better solution near the ones already
explored.

Diversification is also supported by the random choices of the maximum
clique heuristic used in BuildDP. Thus, even if different improvement steps
find the same solution M̃ and consequently yield the same reduced set N ′,
the following constructive steps will usually build different starting points.
Experience on the max-sum DP shows that a similar combination of data
perturbation and randomness outperforms other more complex algorithmic
strategies (Aringhieri and Cordone, 2011).

4. Computational results

This section presents our computational experiments on the algorithms
described above for the max-minsum DP and the min-diffsum DP. First we
introduce the computational environment, i. e., the machine, the software and
the instances used during the experiments (Section 4.1). Then, we discuss the
application of a general-purpose MILP solver to estimate the largest size of
the instances which can be solved to optimality and to provide some reference

12
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Algorithm 3: SolveDP
(
N, d,m,DP, T, `min, `

M
in , `

m
out, `

M
out, Kw, Ki, K

)

begin
M∗ := ∅; f∗ := 0;
N ′ := N ;
for t := 1→ T do

M := BuildDP(N ′, d,m,DP );

(M̃, f̃) := ImproveDP
(
M,N, d,m,DP, `min , `

M
in , `

m
out, `

M
out,Kw,Ki,K

)
;

if Better(f̃ , f∗, DP ) then M∗ := M̃ ; f∗ := f̃ ;

N ′ := N \ M̃ ; // Diversify with respect to iteration t

Output: (M∗, f∗);

results to assess the quality of the heuristic algorithms (Section 4.2). The
last subsection presents the results of the heuristic algorithms.

4.1. Computational environment

The heuristic algorithms have been coded in C, while the max-clique
heuristic of Grosso et al. (2008), which is used as a subroutine in the con-
struction phase, is coded in C++. All of them have been compiled by gcc

and run on a 2.1 GHz AMD Opteron 8425HE with 12 cores and 16 GB of
memory. The MILP formulation discussed in Section 4.2 has been imple-
mented via OPL scripts and solved on the same machine. While the MILP
solver exploits parallel computation, the heuristics are purely sequential.

As anticipated in the introduction, we do not make a comparison with
the GRASP algorithm of Prokopyev et al. (2009). The first reason for this
is that they only provide results for the max-minsum DP, ignoring the min-
diffsum DP. The second is that the range of sizes they consider, i. e., from 30
to 100 elements, is much smaller than the one here taken into account (from
50 to 500 elements). A preliminary phase of experiments showed that the
heuristics here proposed can solve in a few seconds instances with n = 100,
systematically returning the same solution in nearly all runs. The MILP
solver is never able to improve these solutions, and usually proves their op-
timality, or at least their proximity to the best achievable bound. A third
reason is that the GRASP algorithm adopts the same neighbourhood consid-
ered in our work, but limits the exploration to at most 100 neighbours and
stops as soon as an improving one has been found, according to the so called
first-best exploration strategy. The computational times reported for 1 000
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restarts, but an indeterminate number of local search iterations, range from
5 to 15 seconds on the instances with n = 100, running on a 2.66 GHz Intel
Core 2 CPU with 3 GB of RAM. As discussed later, our heuristics, running
on instances of the same size and on a roughly comparable machine, take
a similar time to perform 50 000 local search iterations while exploring the
whole neighbourhood, which includes from 900 to 2 400 solutions.

Hence, we decided to skip a detailed comparison with this algorithm and
to derive new benchmarks of a larger size from the instances of the max-sum
DP which are publicly available on the web site of the Optsicom project1 and
on our own2. The structure of these instances is compatible with any DP, as
it consists of a set of elements N , a distance function d : N × N → R and
an integer number m < |N |. We consider the following benchmarks, which
cover the range of sizes for which significant remarks can be made:

• benchmark APOM, which consists of 40 instances with a number of
elements n ranging from 50 to 250, while m is equal to 0.2n or 0.4n; the
distance function is Euclidean for 10 instances, random for the other
ones;

• benchmark SOM, which consists of 20 instances, with integer-valued
distances uniformly extracted at random from [0, 9]; n ranges from 100
to 500 and m from 0.1n to 0.4n;

• benchmark GKD, which consists of 20 instances, with Euclidean dis-
tances, n = 500 and m = 50;

• benchmark DM1a, which consists of 20 instances, with real-valued
distances uniformly extracted at random from [0, 10], n = 500 and
m = 200;

• benchmark DM1c, which consists of 20 instances, with real-valued
distances uniformly extracted at random from [0, 10], n = 500 and
m = 50;

• benchmark DM2, which consists of 20 instances with real-valued dis-
tances uniformly extracted at random from [0, 1000], n = 500 and
m = 50.

1http://www.optsicom.es/mdp
2http://www.di.unito.it/~aringhie/benchmarks.html
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4.2. Mixed Integer Linear Programming formulations

This section investigates the application of a general-purpose MILP solver,
in order to estimate the limit size of the instances which can be solved to op-
timality without ad hoc algorithms, and to assess the quality of the proposed
heuristics, at least on the instances for which the mathematical program-
ming bounds remain tight. We remind that, according to previous works,
exact methods can solve max-sum DP instances up to 100 – 150 elements,
adopting semidefinite programming (Aringhieri et al., 2009) or combinatorial
techniques (Mart̀ı et al., 2010).

The max-minsum DP admits the following MILP formulation, proposed
in Prokopyev et al. (2009), where the binary variables xi distinguish the
elements belonging to the solution (xi = 1) from the other ones (xi = 0) and
the continuous variable φ represents the value of the objective function:

max z = φ (8a)

φ ≤
∑

j∈N
dijxj +Q (1− xi) i ∈ N (8b)

∑

i∈N
xi = m (8c)

φ ∈ R, xi ∈ {0, 1} i ∈ N (8d)

While constraint (8c) imposes the correct cardinality and constraints (8d)
the integrality of the xi variables, constraints (8b) guarantee that the max-
imum value of φ is identical to the minimum aggregate dispersion Di of
the elements belonging to the solution. In fact, thanks to the “big-M” co-
efficient Q, when xi = 0 the right-hand side of the constraint associated
to element i becomes much larger than all aggregate dispersions and the
constraint is relaxed. To this purpose, Q must overestimate any possi-
ble aggregate dispersion in the optimal solution. The original paper sets
Q = 1 + maxi∈N

∑
j∈N max (dij, 0)−∑j∈N min (dij, 0), which can be simpli-

fied, with no loss of generality, to Q = 1 + maxi∈N
∑

j∈N dij, assuming that
dij ≥ 0 for all i, j ∈ N .

In our experiments, we strengthen the continuous relaxation of Formula-
tion (8) by minimizing the value of coefficient Q, under the condition that
no feasible solution should be forbidden. Defining a specific coefficient Qi

for each element i ∈ N and observing that the aggregate dispersion Di sums
only m− 1 distances between i and other elements, we can replace Q in (8b)
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with:
Qi =

∑

j∈Nm
i

dij i ∈ N (9)

where Nm
i is composed of the m−1 elements with the largest distance from i.

The min-diffsum DP admits a similar MILP formulation, where the bi-
nary variables xi are defined as above, while the continuous variables φ and
ψ represent, respectively, the smallest and the largest aggregate dispersion:

min z = (ψ − φ) (10a)

φ ≤
∑

j∈N
dijxj +Q (1− xi) i ∈ N (10b)

ψ ≥
∑

j∈N
dijxj −Q′ (1− xi) i ∈ N (10c)

∑

i∈N
xi = m (10d)

φ, ψ ∈ R, xi ∈ {0, 1} i ∈ N (10e)

where Q is the same coefficient used above and Q′ relaxes constraint (10c)
for all elements i ∈ N such that xi = 0. The original paper sets Q′ = 1 −
mini∈N

∑
j∈N min (dij, 0)+

∑
j∈N max (dij, 0), which can be simplified to Q′ =

Q = 1 + maxi∈N
∑

j∈N dij with the usual nonnegativity assumption. In our
experiments, we strengthen the formulation replacing Q′ in each constraint
with the specific coefficient Qi defined in (9).

The discussion on the MILP formulations focuses on benchmark APOM,
because the other benchmarks consist of larger instances, for which no mean-
ingful result can be obtained with a MILP solver. Table 1 reports the results
obtained with a limit time of 4 hours, i. e., 14 400 seconds on our 12-core
parallel machine. The first column provides the number of elements. The
following four ones refer to the original setting of Q: first, the average per-
centage gap (UB − z̃) /z̃ between the best value z̃ found by the MILP solver
and the value UB of the upper bound; then, the average percentage gap
(z∗ − z̃) /z̃ between the best value z∗ found in the whole experimental cam-
paign and that found by the MILP solver; then, the number of instances
solved to optimality; finally, the average computational time in seconds. The
last four columns provide the same information for the formulation strength-
ened with the Qi coefficients. It is clear that this strengthening consistently
reduces the solving time and the residual gaps, and increases the number of
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solved instances. In particular, the largest size for which at least one instance
can be solved to optimality grows from n = 150 to n = 200. Though the
improvement is not huge, the reduced coefficients are so easy to compute
that their introduction is definitely recommendable. The very limited gap
between z̃ and the overall best known result z∗ suggests that the use of a
general-purpose MILP solver is a viable approach, if the computational time
is not strictly limited. An additional remark of some interest is that the
instances with random distance values distributed in a large range have the
largest gaps. This supports the identification of DM2 is the hardest bench-
mark in our experiments, which will be also confirmed by the results of the
heuristic algorithms.

Original Q Strengthened Qi

n
UB − z̃

z̃

z∗ − z̃

z̃
#S CPU

UB − z̃

z̃

z∗ − z̃

z̃
#S CPU

50 0.00% 0.00% 8 10.14 0.00% 0.00% 8 6.71
100 1.71% 0.03% 5 6 194.88 0.78% 0.15% 6 4 956.83
150 5.78% 0.17% 2 11 715.69 4.08% 0.09% 3 10 777.39
200 8.55% 0.21% 0 14 400.00 6.91% 0.24% 2 12 301.04
250 11.61% 0.35% 0 14 400.00 9.33% 0.20% 0 14 400.00

Table 1: Results obtained with the MILP formulation of the max-minsum DP on bench-
mark APOM

The results obtained applying the MILP solver to Formulation (10) are
quite different. The MILP bound, in fact, is very often equal to zero, even af-
ter 4 hours of computation, and consequently provides no useful information.
Since the problem is a minimization problem, the gap between the MILP
heuristic value and the overall best known result is expressed as (z̃ − z∗) /z∗.
Only the smallest instances, up to 50 elements, can be solved to optimality:
specifically, the average residual gap is 2.31% and only two instances out of
8 are solved exactly. For the larger instances, the residual gap ranges around
20 − 25%, though it does not exhibit a sharp increase with size. As for the
structure of the instances, there is a consistent difference between the in-
stances in which the cardinality m is set to 0.2n and those with m = 0.4n:
the former are harder. Rather unexpectedly, the introduction of the reduced
coefficients does not bring any improvement. On the contrary, sometimes it
yields worse results, probably because the information provided by the MILP
relaxation is scarcely useful. In fact, the heuristics here proposed clearly out-
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perform the MILP solver, even neglecting the fact that the computational
time they require is orders of magnitude smaller. The direct use of a general-
purpose solver on the min-diffsum DP is, therefore, almost ineffective, and
specific heuristics must be applied to obtain solutions of acceptable quality.
On the other hand, part of this huge difference between the percentage gaps
obtained on the max-minsum DP and the min-diffsum DP is due to the fact
that the optimal objective value for the former is typically large, being an
aggregate dispersion, whereas it can be very small (potentially, even zero)
for the latter.

4.3. Experiments on the proposed heuristics

The algorithms proposed in this paper iteratively apply a constructive
procedure and an improvement procedure, with an auxiliary diversification
mechanism. This section first compares the quality of the solutions produced
by the two constructive procedures. Then, it discusses the tuning of the Tabu
Search parameters and of the total number of iterations which according to
experience are required to obtain stable results. Finally, it investigates the
impact on the final result of the restart frequency and of the constructive
procedure adopted. For comparison purposes, we also test a simple random
initialization, verifying that, in practice, the use of a refined constructive
procedure is not justified since the advantage of a good initialization fades
away after a sufficient number of improvement steps. For the sake of briefness,
the preliminary phases of this analysis focus on a restricted set of benchmarks,
namely APOM, which includes the smallest instances, and DM2, which
includes the hardest ones.

Constructive procedures. We first applied the edge removal and the vertex
removal strategies as standalone algorithms, to estimate the quality of the
solutions they can provide to a subsequent improvement procedure.

The first two columns of Table 2 report the size of the instances consid-
ered for the max-minsum DP : those with n ranging from 50 to 250 belong
to benchmark APOM (8 for each size), whereas those with n = 500 belong
to benchmark DM2 (20 overall). The horizontal line stresses the separation
between the two benchmarks. The following two pairs of columns report,
for each initialization procedure, the average computational time in seconds
and the average percentage gap with respect to the best result obtained in
the whole experimental campaign. This is assumed as the best possible ap-
proximation for the optimum, since the lower bounds yielded by the MILP
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formulations are very weak. Table 3 provides the same information for the
min-diffsum DP. As expected, the edge removal strategy outperforms the ver-
tex removal strategy but requires a longer computational time. The quality
of both procedures is, however, modest.

The main interest of these results, then, concerns the different perfor-
mance on the two benchmarks and on the two problems. Benchmark DM2,
in fact, exhibits smaller gaps and a stronger difference between the compu-
tational times of the two methods. This is because the distance function has
a wider range of values, so that the edge removal strategy removes less edges
at each step and evaluates more solutions overall.

Edge removal Vertex removal

n m CPU Gap CPU Gap

50 { 10,20 } 0.12 14.76% 0.00 59.88%
100 { 20,40 } 0.20 21.92% 0.02 59.79%
150 { 30,60 } 0.43 24.71% 0.03 58.92%
200 { 40,80 } 0.86 27.45% 0.09 58.87%
250 { 50,100 } 1.74 29.85% 0.18 56.63%

500 50 43.45 14.34% 1.59 32.70%

Table 2: Computational time and percentage gap with respect to the best known solution
of the two initialization procedures on the max-minsum DP

Table 3 reports the corresponding results for the min-diffsum DP : they
exhibit the same dependences, but much larger gaps, thus confirming that
this problem is harder.

Tabu Search parameters. The improvement procedure is a Tabu Search al-
gorithm with two adaptively varying tabu tenures, one for the insertion and
one for the removal of elements. After a preliminary phase of experiments,
we tuned the range of the former tenure, `in, as [8; 14]: at first, the tenure
is set equal to 11, which is the middle point of the range; then, it decreases
after Ki = 3 consecutive improving iterations and increases after Kw = 5
consecutive worsening iterations. The range of the tenure for removal, `out,
is [3; 7]: its starting value is 5 and it is updated with the same rule of the
other tenure. These values confirm the general remark we made on the max-
sum DP (Aringhieri et al., 2008; Aringhieri and Cordone, 2011) that the
tabu tenure for insertion should be larger than that for removal, because the
number of elements out of the solution exceeds the number of those inside it.
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Edge removal Vertex removal

n m CPU Gap CPU Gap

50 { 10,20 } 0.10 370.86% 0.00 609.38%
100 { 20,40 } 0.13 514.62% 0.01 477.68%
150 { 30,60 } 0.21 614.71% 0.03 474.41%
200 { 40,80 } 0.29 687.18% 0.05 408.52%
250 { 50,100 } 0.41 798.39% 0.11 378.45%

500 50 22.29 341.31% 0.84 441.03%

Table 3: Computational time and percentage gap with respect to the best known solution
of the two initialization procedures on the min-diffsum DP

Total number of iterations. We then experimentally identified the number
of iterations after which the objective function tends, for all the available
instances, to converge to a stable value with only occasional spaced out im-
provements. This occurs between 10 000 and 50 000 iterations for the max-
minsum DP and between 50 000 and 100 000 iterations for the min-diffsum
DP. On the basis of these experiments, in the following we decided to set
the total number of local search iterations to 50 000 for the max-minsum DP
and 100 000 iterations for the min-diffsum DP. This is approximately twice
the average number of iterations k∗ after which the heuristic finds the last
improving solution on the benchmarks considered (see Table 4).

max-minsum DP min-diffsum DP

n m Edge removal Vertex removal Edge removal Vertex removal

50 { 10,20 } 5132.5 3837.1 4197.5 7992.8
100 { 20,40 } 17647.3 10053.8 39028.5 53817.3
150 { 30,60 } 15107.3 14449.9 37091.3 50682.9
200 { 40,80 } 26350.0 15733.9 66693.3 53613.3
250 { 50,100 } 27673.0 27838.1 67624.9 29355.6

500 50 23601.0 26310.8 65936.1 59901.0

Table 4: Average number of iterations before the last improvement with the two variants
of the proposed heuristic on the max-minsum DP (T = 1 and K = 50 000) and the
min-diffsum DP (T = 1 and K = 100 000)
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Restart frequency. The following phase of experiments focused on investigat-
ing whether it is more profitable to concentrate the improvement iterations
in a single run of the Tabu Search procedure or to distribute them among
independent runs. We kept the same total number of iterations determined
above, i. e., 50 000 for the max-minsum DP and 100 000 for the min-diffsum
DP and divided it into T blocks of K iterations each. At the beginning of
each block, the constructive procedure builds a new starting solution, oper-
ating on the auxiliary graph defined by the diversification mechanism. The
number of restarts T and the number of local search iterations per restart K
are, therefore, inversely proportional.

This experiment also allows to investigate whether the constructive pro-
cedure exerts or not a lasting influence on the final result. In fact, a refined
initialization is justified only if the time spent to perform it is compensated
by a significantly better final solution. Otherwise, the same time could be
employed to increase the number of improvement iterations. In order to eval-
uate the long-term influence of the starting solution on the final result, we
have applied the same total number of iterations K T to the solutions pro-
duced by the edge removal strategy, by the vertex removal strategy and by a
simple random initialization, denoted in the following as random strategy. If
the final result exhibits little or no dependence on the initialization, we will
be authorized to prefer faster and simpler mechanisms. If, on the contrary,
a better starting solution is related to a better final result, we will need to
investigate further the balance between the time spent in the constructive
and the improvement phase.

Starting, as usual, with the max-minsum DP, Figures 1 and 2 show,
respectively for benchmark APOM and benchmark DM2, the average per-
centage gap (z∗ − z) /z between the best value z∗ found in the whole exper-
imental campaign and the value found by the heuristics. For each strategy,
we test the following restart frequencies: T = 1, 5, 10, 20, 50 or 100 restarts,
which correspond to K = 50 000, 10 000, 5 000, 2 500, 1 000 and 500 local
search iterations for each restart.

Summarising, when applied to the max-minsum DP, all of the three
strategies provide solutions very close to the best known ones, and prob-
ably also to the optimum (though this can be guaranteed only for n ≤ 100).

To estimate in detail the sensitivity of the algorithm performance to
the restart frequency, we have applied Wilcoxon’s matched-pairs signed-ranks
test Wilcoxon (1945). With respect to the random strategy, the test indicates
that the setting with T = 10 restarts with K = 5 000 iterations each, which
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Figure 1: Average percentage gap with respect to the best known result obtained with
the vertex removal strategy, the edge removal strategy and a random restart, applied with
different restart frequencies to benchmark APOM for the max-minsum DP

is the best on average, is not significantly different from T = 5 and T = 20
(i. e., the probability that the difference is produced by random fluctuations
exceeds 5%), but it dominates the other restart frequencies considered. For
the vertex removal strategy, the best setting is T = 5, but the other settings
with T ≤ 50 are not significantly worse. For the edge removal strategy, the
best setting is T = 1, but the settings with T ≤ 20 are not significantly worse.
These results suggest that, while a random initialization has a specific range
of effective restart frequencies, a good initialization allows the algorithm to
perform well with less restarts, and to be more robust with respect to the
restart frequency.

The results on benchmark DM2 partly confirm these indications. In fact,
the random strategy performs best with T = 5 restarts, but T = 1 and T = 10
are not significantly worse. So, there is once again an optimal range of values,
largely overlapping with the previous one. The vertex removal strategy and
the edge removal strategy perform best with T = 20, but all settings with
T ≤ 50 have similar performance. Thus, a good initialization still improves
the robustness of the heuristic, and the optimal range of parameter values is
more or less the same. The fact that the parameter setting which performs
best has a larger value of T could be related to the larger size of these
instances, but this does not hold for the random strategy.

Similar comments can be made on the other benchmarks, on which we
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Figure 2: Average percentage gap with respect to the best known result obtained with
the vertex removal strategy, the edge removal strategy and a random restart, applied with
different restart frequencies to benchmark DM2 for the max-minsum DP

give here only summarised comments for the sake of briefness. The Euclidean
benchmark GKD exhibits very small gaps (always < 0.14%) with nearly no
dependence on the value of T . For the other three benchmarks, the best
value for T varies, but there is always a range of statistically equivalent
values which never includes the setting T = 100 and often excludes T = 50.
The range for the random initialization, in particular, tends to be smaller
and usually excludes also T = 1.

Figures 3 and 4 show the corresponding information for the min-diffsum
DP with K T = 100 000. The values considered for the number of restarts
T are T = 1, 10, 20, 40, 100 or 200, and the corresponding number of
local search iterations for each restart are K = 100 000, 10 000, 5 000, 2 500,
1 000 and 500. The gap here is expressed as (z − z∗) /z∗, because this is a
minimization problem. In summary, all of the three strategies yield a 5−8%
gap with respect to the best known result. This gap is not huge, but it is
one order of magnitude larger than that observed on the max-minsum DP,
confirming that the min-diffsum DP is harder. Moreover, the best known
result is also less likely to be optimal.

The random strategy performs best with T = 40 restarts and K = 2 500
iterations each, but lower frequencies are not significantly worse. The vertex
removal strategy performs best with T = 20, but the setting with T = 10 is
statistically equivalent. The edge removal strategy, in the end, performs best
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Figure 3: Average percentage gap with respect to the best known result obtained with
the vertex removal strategy, the edge removal strategy and a random restart, applied with
different restart frequencies, on benchmark APOM for the min-diffsum DP

with T = 20, though all settings with T ≤ 40 are statistically equivalent.
The results on benchmark DM2 (Figure 4) with the random strategy

show an unexpected minimum gap with T = 1 restart, with a maximum in
T = 10 followed by steady improvements as T increases. Wilcoxon’s test
suggests that the results obtained with T ≥ 20 are not statistically different
from those obtained with T = 1. The vertex removal strategy and the edge
removal strategy also perform best with many restarts (T = 200), though,
once again, Wilcoxon’s test suggests that the difference with respect to the
other settings is not statistically dominated. So, there is a slightly improving
trend with higher restart frequencies, but the strength of this trend is not
statistically significant. The other benchmarks tend to confirm the remarks
made on APOM, rather than those made on DM2: the three strategies
very often perform best with T = 10, while the gap tends to rise with more
frequent restarts. The increase is slow on benchmark SOM, for which many
different settings are statistically equivalent, whereas it is rather quick on the
other benchmarks.

Comparison of the initialization procedures. The experiments on the restart
frequency also suggest that none of the three initialization strategies dom-
inates the others. The random strategy is often slightly better on average,
but it seems to be less robust, since its optimal range of frequencies tends
to be smaller. Indeed, we have also applied Wilcoxon’s test to compare the
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Figure 4: Average percentage gap with respect to the best known result obtained with
the vertex removal strategy, the edge removal strategy and a random restart, applied with
different restart frequencies, on benchmark DM2 for the min-diffsum DP

three strategies, each one with the best setting of the restart frequency, on
the overall collection of benchmark instances. The test fail to reveal any
statistically significant difference.

A complementary point of view can be found in Table 5, which reports,
for both problems (first column) and all benchmark classes (second column),
the total number of instances (third column) and the number of instances on
which each of the three reinitialization procedures hits the best known result
(last three columns). With respect to this index, none of the alternatives
outperforms the others, though the edge removal strategy tends to find more
best results than the other two.

Summarising, there is no statistical dominance among the three heuris-
tics considered. The random initialization is much faster, especially on large
instances, and it has the nonnegligible advantage of being simpler. Though
it is less robust with respect to the restart frequency, this parameter can vary
within a reasonably wide range without significantly affecting the quality of
the final solution (for example, setting the number of restarts to T = 10 guar-
antees an effective performance on all benchmark classes). Our conclusion is
that it is reasonable to prefer a simple random initialization, since it allows
to gain additional time, which could be exploited to increase the number of
improvement iterations.
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Problem Benchmark # of inst. Edge removal Vertex removal Random

APOM 40 28 26 29
SOM 20 11 15 10

max-minsum GKD 20 15 15 12
DP DM1a 20 9 5 6

DM1c 20 11 5 4
DM2 20 10 5 5
Tot. 140 84 71 66

APOM 40 24 20 18
SOM 20 11 11 12

min-diffsum GKD 20 7 9 5
DP DM1a 20 10 8 2

DM1c 20 5 8 7
DM2 20 5 9 6
Tot. 140 62 65 50

Table 5: Number of best known results reached by applying each initialization procedure
for each instance class of the max-minsum DP and the min-diffsum DP

Average gap and computational time of the best parameter setting. To con-
firm these conclusions, we have adopted the random initialization strategy
and compared its performance to the best results obtained in the whole ex-
perimental campaign. We keep the total number of improvement iterations
to K T = 50 000 for the max-minsum DP and to K T = 100 000 for the
min-diffsum DP. We set the number of restarts to T = 10, so that each
improvement phase consists of K = 5 000 iterations for the max-minsum DP
and to K = 10 000 iterations for the min-diffsum DP.

Table 6 reports, for both problems (first column) and for each class of
benchmark instances (second column), the number of instances (third col-
umn), the average percentage gap obtained with this setting with respect to
the best known results (fourth column) and the average CPU time in seconds
required (fifth column).

The first remark is that the percentage gap obtained for the max-minsum
DP is small (nearly always < 1%), while it is still significant for the min-
diffsum DP (between 3 and 10% on average). The computational times are
in good accordance with the theoretical analysis of Section 3.2. In fact, they
are approximately proportional to m2 (n−m), and the time required to solve
the max-minsum DP is half that required for the min-diffsum DP, given that
the number of local search iterations is also half as much.
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Problem Benchmark # of inst. Avg. gap Avg. CPU

APOM 40 0.12% 108.38
SOM 20 0.58% 828.73

max-minsum GKD 20 0.03% 342.67
DP DM1a 20 0.12% 5 042.17

DM1c 20 0.16% 368.14
DM2 20 0.37% 370.23
Avg. - 0.21% 1 024.10

APOM 40 6.92% 212.39
SOM 20 10.66% 1 707.06

min-diffsum GKD 20 4.78% 714.55
DP DM1a 20 3.20% 10 452.93

DM1c 20 10.16% 767.71
DM2 20 8.31% 768.09
Avg. - 7.28% 2 119.30

Table 6: Average percentage gap with respect to the best known results and average CPU
time in seconds for each instance class of the max-minsum DP and the min-diffsum DP
with a random inititialization, and T = 10 restarts.

For reference purposes, we report in the Appendix our best known results
for each instance of the available benchmarks.

5. Conclusions

We have proposed constructive and improvement heuristics for two equity-
concerned DPs, namely the max-minsum DP and the min-diffsum DP, based
on the fundamental ideas which underly the state-of-the-art algorithms on
efficiency-concerned DPs.

The investigation of smart techniques to reduce the computational com-
plexity of each iteration has allowed a shift from the straightforward quadratic
evaluation to a linear update mechanism. In this way, it is possible to solve
in a matter of few minutes instances up to 500 elements, much larger than
the ones previously considered in the literature. Ongoing work is devoted
to devise auxiliary data structure or different neighbourhoods, which could
improve the average case complexity, possibly trading a loss in the quality
of the solution for a reduction of the computational time. In this regard,
the equity-concerned DPs appear intrinsically challenging, due to the hybrid
nature of their objective function, which combines two different operators: a
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sum on the lower level to compute the Di coefficients, and a minimization
or maximization at the upper level. Exchanging each pair of elements modi-
fies each aggregate dispersion by an independent amount (see Equation (7)).
This makes unlikely that the worst-case time to update the minimum (and
the maximum) aggregate dispersion could become less than linear.

The comparison of different initialization procedures and different restart
frequencies suggests that the best approach for these problems is to apply a
simple random initialization, as it is for the max-sum DP and contrary to the
max-min DP. However, the best restart frequency appears to be larger than
that reported for the max-sum DP in Brimberg et al. (2009) and Aringhieri
and Cordone (2011), and more specific for each class of instances. Moreover,
while the max-minsum DP appears to be easily solved to near optimality, the
min-diffsum DP exhibits larger gaps and much less stable results. In other
words, these problems partly confirm and partly disprove what was known
for the more investigated efficiency-concerned DPs.

We have also estimated the practicability of directly applying a general-
purpose solver to a MILP formulation of the two problems, obtaining very
different outcomes. On one hand, the max-minsum DP can be solved exactly
up to n = 150 elements, obtaining limited gaps and solutions comparable to
those provided by tailored heuristics for larger instances, up to n = 500
elements. On the other hand, the general-purpose solver is unable to solve
even small instances of the min-diffsum DP (n = 50), and it does not provide
useful lower bounds.
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Appendix A. Best known results
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Instance max-minsum min-diffsum Instance max-minsum min-diffsum

01a050m10 95.071 1.406 21c050m10 58 994 1 124
02a050m20 184.495 14.721 22c050m20 91 338 6 205
03a100m20 195.300 3.645 23c100m20 112 002 2 135
04a100m40 370.508 25.497 24c100m40 194 357 11 098
05a150m30 294.565 6.562 25c150m30 164 357 3 849
06a150m60 556.147 46.987 26c150m60 290 121 13 087
07a200m40 392.625 11.744 27c200m40 217 583 5 604
08a200m80 738.100 63.557 28c200m80 391 587 19 714
09a250m50 489.318 14.821 29c250m50 270 932 6 561

10a250m100 921.230 82.434 30c250m100 485 728 22 889
11b050m10 61 831 1 091 31d050m10 74 113 1 049
12b050m20 108 248 5 552 32d050m20 145 411 4 564
13b100m20 118 380 3 634 33d100m20 152 236 2 529
14b100m40 214 671 10 803 34d100m40 294 991 8 979
15b150m30 171 973 6 547 35d150m30 228 316 3 950
16b150m60 315 019 13 793 36d150m60 443 413 13 127
17b200m40 224 560 8 179 37d200m40 303 932 5 401
18b200m80 416 971 19 939 38d200m80 590 671 19 184
19b250m50 278 178 12 152 39d250m50 379 314 6 608

20b250m100 519 758 23 338 40d250m100 741 573 21 511

Table A.7: Best known results for the max-minsum DP and min-diffsum DP instances of
benchmark APOM

Instance max-minsum min-diffsum Instance max-minsum min-diffsum

1 29 158.15 1 120.68 11 28 984.71 1 114.49
2 29 073.30 1 088.45 12 28 919.71 1 079.26
3 29 086.14 1 045.53 13 29 083.33 1 054.02
4 29 093.40 1 090.29 14 29 218.03 1 099.61
5 28 924.19 1 049.80 15 29 343.22 1 073.46
6 29 093.21 1 002.56 16 29 135.51 1 107.80
7 29 185.38 1 098.34 17 28 993.85 1 084.23
8 29 156.69 1 117.33 18 29 015.67 1 094.80
9 28 967.58 1 079.44 19 29 189.34 1 111.04

10 28 971.87 1 132.51 20 29 132.29 1 087.97

Table A.8: Best known results for the max-minsum DP and min-diffsum DP instances of
benchmark DM2
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Instance max-minsum min-diffsum Instance max-minsum min-diffsum

01-n100m10 62 0 11-n300m90 433 21
02-n100m20 110 5 12-n300m120 565 30
03-n100m30 150 8 13-n400m40 215 9
04-n100m40 193 10 14-n400m80 396 18
05-n200m20 115 4 15-n400m120 570 27
06-n200m40 207 9 16-n400m160 743 36
07-n200m60 293 15 17-n500m50 262 11
08-n200m80 381 21 18-n500m100 492 22
09-n300m30 165 7 19-n500m150 713 33
10-n300m60 301 13 20-n500m200 926 44

Table A.9: Best known results for the max-minsum DP and min-diffsum DP instances of
benchmark SOM

Instance max-minsum min-diffsum Instance max-minsum min-diffsum

1 761.98 8.02 11 765.74 7.67
2 771.15 8.17 12 754.50 8.01
3 764.02 7.62 13 755.97 7.46
4 763.81 7.69 14 760.16 7.66
5 765.63 8.30 15 757.41 8.15
6 761.34 8.11 16 769.81 8.08
7 764.68 8.48 17 756.73 7.79
8 766.07 7.87 18 759.64 8.28
9 755.15 8.10 19 761.52 7.81

10 769.00 8.52 20 763.97 8.33

Table A.10: Best known results for the max-minsum DP and min-diffsum DP instances
of benchmark GKD
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Instance max-minsum min-diffsum Instance max-minsum min-diffsum

1 1 034.08 41.07 11 1 030.54 41.59
2 1 031.22 41.58 12 1 028.18 40.78
3 1 031.47 41.43 13 1 036.35 41.58
4 1 029.77 41.19 14 1 032.48 41.71
5 1 028.80 41.95 15 1 029.48 40.68
6 1 031.37 40.75 16 1 033.87 42.25
7 1 029.56 42.22 17 1 032.40 41.06
8 1 028.46 41.03 18 1 028.28 41.72
9 1 032.64 41.19 19 1 030.34 42.32

10 1 030.37 41.10 20 1 030.55 41.10

Table A.11: Best known results for the max-minsum DP and min-diffsum DP instances
of benchmark DMI1a

Instance max-minsum min-diffsum Instance max-minsum min-diffsum

1 291.04 11.39 11 291.63 10.13
2 289.92 10.98 12 290.05 10.72
3 292.31 10.88 13 292.82 10.37
4 289.66 10.90 14 291.98 9.46
5 289.60 10.87 15 291.62 10.50
6 292.67 10.43 16 290.69 9.77
7 290.15 10.60 17 290.90 11.19
8 290.69 10.95 18 289.63 10.83
9 292.64 10.75 19 290.17 10.86

10 291.78 10.92 20 289.86 10.98

Table A.12: Best known results for the max-minsum DP and min-diffsum DP instances
of benchmark DM1c
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