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Global wave-front sets of intersection and union

type

Sandro Coriasco, Karoline Johansson and Joachim Toft

Abstract. We show that a temperate distribution belongs to an ordered in-
tersection or union of admissible Banach or Frechét spaces if and only if the
corresponding global wave-front set of union or intersection type is empty.
We also discuss the situation where intersections and unions of sequences of
spaces with two indeces are involved. A main situation where the present
theory applies is given by sequences of weighted, general modulation spaces.

Mathematics Subject Classification (2000). 35A18,35S30,42B05,35H10.

Keywords. Wave-front, Fourier, Banach space, Modulation space, Micro-local,
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1. Introduction

Wave-front sets of global type are a standard tool to investigate the regularity,
local and at infinity, of solutions f 2 S 0 = S 0(Rd) to equations

Tf = g, (1.1)

for a (pseudo)di↵erential operator T and some given distribution g 2 S 0.
In particular, it is often necessary to deal with situations where T is not

globally hypoelliptic, and the involved distributions f and g belong to appropriate
Banach or Fréchet spaces of temperate distributions B and C, respectively.

In this paper we complete the analysis carried on in [4] (see also [6]), by giv-
ing the detailed proofs of some results involving global wave-front sets associated
with sequences of appropriate function spaces, compatible with the class of pseudo-
di↵erential operators we use here, namely, the SG-operators. The SG-calculus of
pseudo-di↵erential operators was introduced in the ’70s, independently by C. Par-
enti [17] and H.O. Cordes, see e.g. [2] (for a di↵erent approach, see R. Melrose [16]).
This calculus allows to treat global problems associated, e.g., with any linear par-
tial di↵erential operator with constant coe�cients, the Klein-Gordon’s equation,
the Schrödinger equations for di↵erent atoms, and classes of Dirac-type operators



2 Sandro Coriasco, Karoline Johansson and Joachim Toft

on Rd. The definition and some basic facts about the SG-operators can be found
in Section 2.

The general assumptions on B and C in (1.1) are described in detail in Section
1 of [4]. For example, B and C can be modulation spaces, a family of Banach spaces
of functions and tempered distributions, introduced by H.G. Feichtinger, see e.g.
[8], and developed further and generalized by H.G. Feichtinger and K.H. Gröchenig
[7], see also [9, 11]. For the convenience of the reader, we included the essential
definitions in Section 2, following the approach in [9]. We remark that the family
of modulation spaces is broad, in the sense that it contains the Sobolev spaces H2

s

and the Sobolev-Kato spaces H2

s,t

, see Remark 2.4 below.

In Section 3 we recall the definition of the global wave-front set WFB(f) of
the distribution f , with respect to the Banach or Fréchet space B, given in [4]. This
object, loosely speaking, gives informations about the local regularity (smoothness)
and the behavior at infinity (decay and oscillation properties within certain cones)
of f . It is a remarkable fact that, whenever the space B is SG-admissible (see
Section 2 below for the precise definition), then

WFB(f) = ; () f 2 B. (1.2)

This fact, together with the mapping properties which hold for these global
wave-front sets under the action of SG-pseudo-di↵erential operators (namely, the
so-called microlocality and microellipticity properties), can be used to obtain
rather precise relations between the regularity properties of f and g in (1.1).

Note that, if B equals S or H2

s,t

, then WFB(f) agrees with the wave-front
sets of f with respect to S and H2

s,t

, respectively, given in [5] and [16]. Conse-
quently, we recover also all the properties that hold for wave-front sets of Sobolev
type introduced by Hörmander [14], and classical wave-front sets with respect to
smoothness (cf. Sections 8.1 and 8.2 in [13]), as well as for wave-front sets of Ba-
nach function types in [3] (cf. also [18, 19]), and wave-front sets with respect to
S and H2

s1,s2
in [5, 16].

In order to get even more detailed information on the links between the
regularity properties of f and g in (1.1), in [4] we introduced global wave-front
sets with respect to sequences of SG-admissible spaces, whose definitions we recall
in Section 4. Microlocality and microellipticity under the action of SG-pseudo-
di↵erential operators hold also for this refined type of wave-front set. Here we deal
with the relations between the union/intersection type wave-front sets and the
unions/intersections of the wave-front sets of the spaces belonging to the involved
sequences. The main focus is the extension of (1.2) to this more general case, which
in Section 4 is proved to hold as well. In other words, the property of a distributions
to belong to an intersection, union, union of intersections, or intersection of unions
of SG-admissible spaces is still equivalent to the emptiness of the corresponding
type of wave-front set, under rather mild assumptions on the involved sequences
of spaces.
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An example where our theory applies is the case where B = C equals S (Rd),
Q

0

(Rd) or Q(Rd), where

Q
0

(Rd)⌘{f 2C1(Rd) : |@↵f(x)| . hxiN for some N and every ↵2Zd}
and

Q(Rd)⌘{f 2C1(Rd) : |@↵f(x)| . hxiN↵ , whereN
↵

depends on ↵2Zd},
where A(x) . B(x) means that there exists C > 0, independent of x, such that,
for any value of x on which A and B are defined, A(x)  C ·B(x).

The proofs of the results mentioned in Sections 2 and 3 can be found in [4].

Acknowledgment

We wish to thank Professor H.G. Feichtinger and Professor L. Rodino for useful
discussions and suggestions.

2. Preliminaries

We start by recalling some basic definition and concept which will be needed
throughout the paper. The material in this section comes mainly from [4].

2.1. Weight functions

Let ! and v be positive measurable functions on Rd. Then ! is called v-moderate
if

!(x+ y) . !(x)v(y). (2.1)

If v in (2.1) can be chosen as a polynomial, then ! is called a function or weight of
polynomial type. We let P(Rd) be the set of all polynomial type functions on Rd.
If !(x, ⇠) 2 P(R2d) is constant with respect to the x-variable or the ⇠-variable,
then we sometimes write !(⇠), respectively !(x), instead of !(x, ⇠). In this case we
consider ! as an element in P(R2d) or in P(Rd) depending on the situation. We
say that v is submultiplicative if (2.1) holds for ! = v. For convenience we assume
that all submultiplicative weights are even, and we always let v and v

j

stand for
submultiplicative weights, if nothing else is stated.

Without loss of generality we may assume that every ! 2 P(Rd) is smooth
and satisfies the ellipticity condition @↵!/! 2 L1. In fact, by Lemma 1.2 in [20]
it follows that for each ! 2 P(Rd), there is a smooth and elliptic !

0

2 P(Rd)
which is equivalent to ! in the sense

! ⇣ !
0

, (2.2)

where A ⇣ B means A . B . A.
The weights involved in the sequel have to satisfy additional conditions.

More precisely let r, ⇢ � 0. Then P
r,⇢

(R2d) is the set of all !(x, ⇠) in P(R2d)
T

C1(R2d) such that

hxir|↵|h⇠i⇢|�|
@↵
x

@�
⇠

!(x, ⇠)

!(x, ⇠)
2 L1(R2d),
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for every multi-indices ↵ and �. Note that P
r,⇢

is di↵erent here compared to
[3], and that there are elements in P(R2d) which have no equivalent elements in
P

r,⇢

(R2d). On the other hand, if s, t 2 R and r, ⇢ 2 [0, 1], then P
r,⇢

(R2d) contains
all weights of the form !(x, ⇠) = hxith⇠is, which are one of the most common type
of weights in the applications.

2.2. Modulation spaces

Let � 2 S (Rd). Then the short-time Fourier transform of f 2 S (Rd) with
respect to (the window function) � is defined by

V
�

f(x, ⇠) = (2⇡)�d/2

Z

Rd

f(y)�(y � x)e�ihy,⇠i dy. (2.3)

More generallly, the short-time Fourier transform of f 2 S 0(Rd) with respect to
� 2 S 0(Rd) is defined by

(V
�

f) = F
2

F, where F (x, y) = (f ⌦ �)(y, y � x), (2.3)0

where F
2

F is the partial Fourier transform of F (x, y) 2 S 0(R2d) with respect
to the y-variable. We refer to [10, 11] for more facts about the short-time Fourier
transform. We now recall the notion of translation invariant BF-space on Rd.

Definition 2.1. Let B be a Banach space which is continuously embedded in
L1

loc

(Rd), and let v 2 P(Rd) be submultiplicative. Then B is called a trans-

lation invariant BF-space on Rd (with respect to v), if there is a constant C such
that the following conditions are fulfilled:

1. S (Rd) ✓ B ✓ S 0(Rd) (continuous embeddings);

2. if x 2 Rd and f 2 B, then f(·� x) 2 B, and

kf(·� x)kB  Cv(x)kfkB; (2.4)

3. if f, g 2 L1

loc

(Rd) satisfy g 2 B and |f |  |g| almost everywhere, then f 2 B
and

kfkB  CkgkB.

The following definition of modulation spaces is due to Feichtinger [9].

Definition 2.2. Let B be a translation invariant BF-space on R2d with respect to
v 2 P(R2d), � 2 S (Rd)\0 and let ! 2 P(R2d) be such that ! is v-moderate.
The modulation space M(!,B) consists of all f 2 S 0(Rd) such that V

�

f ·! 2 B.
We note that M(!,B) is a Banach space with the norm

kfk
M(!,B)

⌘ kV
�

f!kB (2.5)

(cf. [7]).

Remark 2.3. Assume that p, q 2 [1,1], and let Lp,q

1

(R2d) and Lp,q

2

(R2d) be the
sets of all F 2 L1

loc

(R2d) such that

kFk
L

p,q
1

⌘
⇣Z ⇣Z

|F (x, ⇠)|p dx
⌘
q/p

d⇠
⌘
1/q

< 1
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and

kFk
L

p,q
2

⌘
⇣Z ⇣Z

|F (x, ⇠)|q d⇠
⌘
p/q

dx
⌘
1/p

< 1.

Then M(!, Lp,q

1

(R2d)) is equal to the classical modulation space Mp,q

(!)

(Rd), and

M(!, Lp,q

2

(R2d)) is equal to the space W p,q

(!)

(Rd), related to Wiener-amalgam

spaces (cf. [8, 9, 7, 11]). We will set Mp

(!)

= Mp,p

(!)

= W p,p

(!)

. Furthermore, if ! = 1,

then we write Mp,q, Mp and W p,q instead of Mp,q

(!)

, Mp

(!)

and W p,q

(!)

respectively.

In what follows we let �
s

and �
s,t

be the weights

�
s

(x, ⇠) = hx, ⇠is and �
s,t

(x, ⇠) = hxith⇠is, x, ⇠ 2 Rd. (2.6)

Remark 2.4. Several important spaces agree with certain modulation spaces. In
fact, let s, t 2 R. Then M2

(�s,t)
(Rd) is equal to the weighted Sobolev space (or

Sobolev-Kato space) H2

s,t

(Rd) in [5, 16], the set of all f 2 S 0(Rd) such that
hxithDisf 2 L2. In particular, M2

(�s,0)
and M2

(�0,t)
are equal to H2

s

and L2

t

, respec-

tively. Furthermore, M2

(�s)
(Rd) is equal to the Shubin-Sobolev space of order s.

(Cf. e. g. [15]).

2.3. Pseudo-di↵erential operators and SG-symbol classes

Next we recall some facts in Chapter XVIII in [14] concerning pseudo-di↵erential
operators. Let a 2 S (R2d), and t 2 R be fixed. Then the pseudo-di↵erential
operator Op

t

(a) is the linear and continuous operator on S (Rd) defined by the
formula

(Op
t

(a)f)(x) = (2⇡)�d

ZZ
a((1� t)x+ ty, ⇠)f(y)eihx�y,⇠i dyd⇠. (2.7)

For general a 2 S 0(R2d), the pseudo-di↵erential operator Op
t

(a) is defined as the
continuous operator from S (Rd) to S 0(Rd) with distribution kernel

K
t,a

(x, y) = (2⇡)�d/2(F�1

2

a)((1� t)x+ ty, x� y). (2.8)

If t = 0, then Op
t

(a) is the Kohn-Nirenberg representation Op(a) = a(x,D), and
if t = 1/2, then Op

t

(a) is the Weyl quantization.
We now recall the definition of the generalized SG-symbol classes. Letm,µ, r, ⇢ 2

R be fixed. Then SGm,µ

r,⇢

(R2d) is the set of all a 2 C1(R2d) such that

|D↵

x

D�

⇠

a(x, ⇠)| . hxim�r|↵|h⇠iµ�⇢|�|,

for all multi-indices ↵ and �. Usually we assume that r, ⇢ � 0 and ⇢+ r > 0.
More generally, assume that ! 2 P

r,⇢

(R2d). Then SG(!)

r,⇢

(R2d) consists of all

a 2 C1(R2d) such that

|D↵

x

D�

⇠

a(x, ⇠)| . !(x, ⇠)hxi�r|↵|h⇠i�⇢|�|, x, ⇠ 2 Rd, (2.9)

for all multi-indices ↵ and �. We note that

SG(!)

r,⇢

(R2d) = S(!, g
r,⇢

), (2.10)
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when g = g
r,⇢

is the Riemannian metric on R2d, defined by the formula
�
g
r,⇢

�
(y,⌘)

(x, ⇠) = hyi�2r|x|2 + h⌘i�2⇢|⇠|2 (2.11)

(cf. Section 18.4–18.6 in [14]). Furthermore, SG(!)

r,⇢

= SGm,µ

r,⇢

when !(x, ⇠) =
hximh⇠iµ.

It is a well-known fact that SG-operators give rise to linear continuous map-
pings from S (Rd) to itself, extendable as linear continuous mappings from S 0(Rd)
to itself. They also act continuously between modulation spaces. Indeed, see [4], if
a 2 SG(!0)

r,⇢

(R2d), then Op
t

(a) is continuous from M(!,B) to M(!/!
0

,B). More-

over, there exist a 2 SG(!0)

r,⇢

(R2d) and b 2 SG(1/!0)

r,⇢

(R2d) such that for every choice

of ! 2 P(R2d) and every translation invariant BF-space B on R2d, the mappings

Op
t

(a) : S (Rd) ! S (Rd), Op
t

(a) : S 0(Rd) ! S 0(Rd)

and Op
t

(a) : M(!,B) ! M(!/!
0

,B).

are continuous bijections with inverses Op
t

(b).

Definition 2.5. Let r, ⇢ 2 [0, 1], t 2 R, B be a topological vector space of distribu-
tions on Rd such that

S (Rd) ✓ B ✓ S 0(Rd)

with continuous embeddings. Then B is called SG-admissible (with respect to r, ⇢
and d) when Op

t

(a) maps B continuously into itself, for every a 2 SG0,0

r,⇢

.

If B and C are SG-admissible with respect to r, ⇢ and d, and !
0

2 P
r,⇢

(R2d),
then the pair (B, C) is called SG-ordered (with respect to !

0

), when the mappings

Op
t

(a) : B ! C and Op
t

(b) : C ! B

are continuous for every a 2 SG(!0)

r,⇢

(R2d) and b 2 SG(1/!0)

r,⇢

(R2d).

Remark 2.6. Let t, r, ⇢, ! and !
0

be as in Definition 2.5, and let B be SG-admissible
with respect to r, ⇢ and d. Then there is a unique SG-admissible C such that (B, C)
is an SG-ordered pair with respect to !

0

. In fact, let a be as above. Then C is the
image of B under Op

t

(a).
In particular, S (Rd), S 0(Rd) and M(!,B) are SG-admissible, and

(S (Rd),S (Rd)), (S 0(Rd),S 0(Rd)) and (M(!,B),M(!/!
0

,B))

are SG-ordered with respect to !
0

.

If a 2 SG(!0)

r,⇢

(R2d), then

|a(x, ⇠)| . !
0

(x, ⇠).

On the other hand, a is invertible, in the sense that 1/a is a symbol in SG(1/!0)

r,⇢

(R2d),
if and only if

!
0

(x, ⇠) . |a(x, ⇠)|. (2.12)

A slightly relaxed condition appears when (2.12) hold for all points (x, ⇠), outside
a compact set K ✓ R2d. In this case we say that a is elliptic (with respect to !

0

).
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Definition 2.7. Let r, ⇢ � 0, !
0

2 P
r,⇢

(R2d) and let a 2 SG(!0)

r,⇢

(R2d).

1. a is called locally or type-1 invertible with respect to !
0

at the point (x
0

, ⇠
0

) 2
Rd ⇥ (Rd\0), if there exist a neighbourhood X of x

0

, an open conical neigh-
bourhood � of ⇠

0

and a positive constant R such that (2.12) holds for x 2 X,
⇠ 2 � and |⇠| � R.

2. a is called Fourier-locally or type-2 invertible with respect to !
0

at the point
(x

0

, ⇠
0

) 2 (Rd \0)⇥Rd, if there exist an open conical neighbourhood � of x
0

,
a neighbourhood X of ⇠

0

and a positive constant R such that (2.12) holds
for x 2 �, |x| � R and ⇠ 2 X.

3. a is called oscillating or type-3 invertible with respect to !
0

at the point
(x

0

, ⇠
0

) 2 (Rd \0)⇥ (Rd \0), if there exist open conical neighbourhoods �
1

of
x
0

and �
2

of ⇠
0

, and a positive constant R such that (2.12) holds for x 2 �
1

,
|x| � R, ⇠ 2 �

2

and |⇠| � R.

If m 2 {1, 2, 3} and a is not type-m invertible with respect to !
0

at (x
0

, ⇠
0

),
then (x

0

, ⇠
0

) is called type-m characteristic for a with respect to !
0

. The set of
type-m characteristic points for a with respect to !

0

is denoted by Charm
(!0)

(a).
The (global) set of characteristic points (the characteristic set), for a symbol

a 2 SG(!0)

r,⇢

(R2d) with respect to !
0

, is

Char(a) = Char
(!0)

(a) = Char1
(!0)

(a)
[

Char2
(!0)

(a)
[

Char3
(!0)

(a).

Remark 2.8. In the case !
0

= 1 we exclude the phrase “with respect to !
0

”
in Definition 2.7. For example, a 2 SG0,0

r,⇢

(R2d) is type-1 invertible at (x
0

, ⇠
0

) 2
Rd ⇥ (Rd\0) if (x

0

, ⇠
0

) /2 Char1
(!0)

(a) with !
0

= 1. This means that there exist a
neighbourhood X of x

0

, an open conical neighbourhood � of ⇠
0

and R > 0 such
that (2.12) holds for !

0

= 1, x 2 X and ⇠ 2 � satisfies |⇠| � R.

In the next definition we introduce di↵erent classes of cuto↵ functions (see
also Definition 1.9 in [3]).

Definition 2.9. Let X ✓ Rd be open, � ✓ Rd \ 0 be an open cone, x
0

2 X and let
⇠
0

2 �.

1. A smooth function ' on Rd is called a cuto↵ (function) with respect to x
0

and X, if 0  '  1, ' 2 C1
0

(X) and ' = 1 in an open neighbourhood of
x
0

. The set of cuto↵s with respect to x
0

and X is denoted by C
x0(X) or C

x0 .

2. A smooth function  on Rd is called a directional cuto↵ (function) with re-
spect to ⇠

0

and �, if there is a constant R > 0 and open conical neighbourhood
�
1

✓ � of ⇠
0

such that the following is true:
• 0    1 and supp ✓ �;

•  (t⇠) =  (⇠) when t � 1 and |⇠| � R;

•  (⇠) = 1 when ⇠ 2 �
1

and |⇠| � R.
The set of directional cuto↵s with respect to ⇠

0

and � is denoted by
C dir

⇠0
(�) or C dir

⇠0
.



8 Sandro Coriasco, Karoline Johansson and Joachim Toft

Remark 2.10. Let X ✓ Rd be open and �,�
1

,�
2

✓ Rd\0 be open cones. Then
the following is true.

1. if x
0

2 X, ⇠
0

2 �, ' 2 C
x0(X) and  2 C dir

⇠0
(�), then c

1

= '⌦  belongs to

SG0,0

1,1

(R2d), and is type-1 invertible at (x
0

, ⇠
0

);

2. if x
0

2 �, ⇠
0

2 X,  2 C dir

x0
(�) and ' 2 C

⇠0(X), then c
2

=  ⌦ ' belongs to

SG0,0

1,1

(R2d), and is type-2 invertible at (x
0

, ⇠
0

);

3. if x
0

2 �
1

, ⇠
0

2 �
2

,  
1

2 C dir

x0
(�

1

) and  
2

2 C dir

⇠0
(�

2

), then c
3

=  
1

⌦  
2

belongs to SG0,0

1,1

(R2d), and is type-3 invertible at (x
0

, ⇠
0

).

The next proposition shows that Op
t

(a) for t 2 R satisfies convenient invert-
ibility properties of the form

Op
t

(a)Op
t

(b) = Op
t

(c) + Op
t

(h), (2.13)

outside the set of characteristic points for a symbol a. Here Op
t

(b), Op
t

(c) and
Op

t

(h) have the roles of “local inverse”, “local identity” and smoothing operators
respectively. From these statements it also follows that our set of characteristic
points in Definition 2.7 are related to those in [5, 14].

We let I
m

and ⌦
m

, m = 1, 2, 3, be the sets

I
1

⌘ [0, 1]⇥ (0, 1], I
2

⌘ (0, 1]⇥ [0, 1], I
3

⌘ (0, 1]⇥ (0, 1] = I
1

\ I
2

,

and
⌦

1

= Rd ⇥ (Rd \ 0), ⌦
2

= (Rd \ 0)⇥Rd,

⌦
3

= (Rd \ 0)⇥ (Rd \ 0),
(2.14)

which will be useful in the formulation of our results.

Proposition 2.11. Let m 2 {1, 2, 3}, (r, ⇢) 2 I
m

, !
0

2 P
r,⇢

(R2d) and let a 2
SG(!0)

r,⇢

(R2d). Also let ⌦
m

be as in (2.14), (x
0

, ⇠
0

) 2 ⌦
m

, and let (r
0

, ⇢
0

) be equal

to (r, 0), (0, ⇢) and (r, ⇢) when m is equal to 1, 2 and 3, respectively. Then the

following conditions are equivalent:

1. (x
0

, ⇠
0

) /2 Charm
(!0)

(a);

2. there is an element c 2 SG0,0

r,⇢

which is type-m invertible at (x
0

, ⇠
0

), and an

element b 2 SG(1/!0)

r,⇢

such that ab = c;

3. (2.13) holds for some c 2 SG0,0

r,⇢

which is type-m invertible at (x
0

, ⇠
0

), and

some elements h 2 SG�r0,�⇢0
r,⇢

and b 2 SG(1/!0)

r,⇢

;

4. (2.13) holds for some c
m

2 SG0,0

r,⇢

in Remark 2.10 which is type-m invertible

at (x
0

, ⇠
0

), and some elements h and b 2 SG(1/!0)

r,⇢

, where h 2 S when

m 2 {1, 3} and h 2 SG�1,0

when m = 2.
Furthermore, if t = 0, then the supports of b and h can be chosen to be

contained in X ⇥Rd

when m = 1, in � ⇥Rd

when m = 2, and in �
1

⇥Rd

when m = 3.
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3. Global wave-front sets and SG-pseudo-di↵erential operators

In this section we recall the definition given in [4] of global wave-front sets for
temperate distributions with respect to Banach or Fréchet spaces and state some
of their properties. We first introduce the complements of the wave-front sets.
More precisely, let ⌦

m

, m 2 {1, 2, 3}, be given by (2.14), B be a Banach or Fréchet
space such that S (Rd) ✓ B ✓ S 0(Rd), and let f 2 S 0(Rd). Then the point
(x

0

, ⇠
0

) 2 ⌦
m

is called type-m regular for f with respect to B, if

Op(c
m

)f 2 B, (3.1)

for some c
m

in Remark 2.10. The set of all type-m regular points for f with respect
to B, is denoted by ⇥m

B (f).

Definition 3.1. Let m 2 {1, 2, 3}, ⌦
m

be as in (2.14), and let B be a Banach or
Fréchet space such that S (Rd) ✓ B ⇢ S 0(Rd).

1. the type-m wave-front set of f 2 S 0(Rd) with respect to B is the complement
of ⇥m

B (f) in ⌦
m

, and is denoted by WFm

B (f);

2. the global wave-front set WFB(f) ✓ (Rd ⇥Rd)\0 is the set

WFB(f) ⌘ WF1

B(f)
[

WF2

B(f)
[

WF3

B(f).

The sets WF1

B(f), WF2

B(f) and WF3

B(f) in Definition 3.1, are also called the
local, Fourier-local and oscillating wave-front set of f with respect to B.

From now on we assume that B in Definition 3.1 is SG-admissible, and recall
that Sobolev-Kato spaces and, more generally, modulation spaces, and S (Rd) are
SG-admissible. (Cf. Definition 2.5, and Remarks 2.4 and 2.6.)

The next result describes the relation between “regularity with respect to B ”
of temperate distributions and global wave-front sets, which is the aspect of the
theory we are focused on in this paper.

Theorem 3.2. Let B be SG-admissible, and let f 2 S 0(Rd). Then

f 2 B () WFB(f) = ;.

For the sake of completeness, we recall that microlocality and microellip-
ticity hold for our global wave-front sets and pseudo-di↵erential operators in
Op(SG(!0)

r,⇢

), see [4]. This implies that operators which are elliptic with respect

to !
0

2 P
⇢,�

(R2d) when 0 < r, ⇢  1 preserve the global wave-front set of temper-
ate distributions. We recall that a and Op(a) are called SG-elliptic with respect
to SG(!0)

r,⇢

(R2d) or !
0

, if there is a compact set K ⇢ R2d such that (2.12) holds
when (x, ⇠) /2 K. By (2.9) it follows that

|D↵

x

D�

⇠

a(x, ⇠)| . |a(x, ⇠)|hxi�r|↵|h⇠i�⇢|�|, (x, ⇠) 2 R2d \K,

for every multi-index ↵, when a is SG-elliptic (see, e.g., [14, 1]). The following
result is an immediate corollary of microlocality and microellipticity for operators
in Op(SG(!0)

r,⇢

):
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Theorem 3.3. Let m 2 {1, 2, 3}, (r, ⇢) 2 I
m

, t 2 R, !
0

2 P
r,⇢

(R2d), a 2
SG(!0)

r,⇢

(R2d) be SG-elliptic with respect to !
0

and let f 2 S 0(Rd). Moreover,

let (B, C) be a SG-ordered pair with respect to !
0

. Then

WFm

C (Op
t

(a)f) = WFm

B (f).

4. Wave-front sets with respect to sequences of spaces

In this section we recall the definition of wave-front sets based on sequences of
admissible spaces, see [4], and prove the result corresponding to Theorem 3.2 in
this more general situation. In the first part we consider sequences of spaces which
are parameterized with one index. Thereafter we discuss further extensions where
we consider sequences of spaces which are parameterized with two indices. Here
we also recall wave-front sets which are related to “classical wave-front sets”, in
the sense that they are wave-front sets with respect to classical spaces of smooth
functions. In particular, a refinement of the wave-front set of Schwartz-type treated
in [5] can also be obtained as a wave-front set based on sequences of admissible
spaces, see [4]. An example is discussed at the end of the section.

4.1. Wave-front sets with respect to sequences with one index parameter

Again we start by introducing the complements of the wave-front sets. More pre-
cisely, let J be an index set of integers, ⌦

m

, m 2 {1, 2, 3}, be given by (2.14),
(B

j

) = (B
j

)
j2J

, be a sequence of Banach or Fréchet spaces such that S (Rd) ✓
B
j

✓ S 0(Rd), for every j, and let f 2 S 0(Rd). Then the point (x
0

, ⇠
0

) 2 ⌦
m

is
called type-(m,[) regular (type-(m,\) regular) for f with respect to (B

j

), if

Op(c
m

)f 2
\

j

B
j

0

@Op(c
m

)f 2
[

j

B
j

1

A , (4.1)

for some c
m

in Remark 2.10 The set of all type-m,[ regular points (type-m,\
regular points) for f with respect to (B

j

), is denoted by ⇥m,[
(Bj)

(f) (⇥m,\
(Bj)

(f)).

It is also desirable that right-hand sides of (4.1) should be a vector space,
which is guaranteed by imposing that (B

j

) should be ordered, i. e. B
j

should be
increasing or decreasing with respect to j 2 J .

Definition 4.1. Let J be an index set of integers, m 2 {1, 2, 3}, ⌦
m

be as in (2.14),
and let (B

j

)
j2J

be a sequence of Banach or Fréchet space such that S (Rd) ✓
B
j

⇢ S 0(Rd), for every j.

1. the type-(m,[) wave-front set (type-(m,\) wave-front set) of f 2 S 0(Rd)
with respect to (B

j

) is the complement of ⇥m,[
(Bj)

(f) (⇥m,\
(Bj)

(f)) in ⌦
m

, and is

denoted by WFm,[
(Bj)

(f) (WFm,\
(Bj)

(f));
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2. the global wave-front sets WF[
(Bj)

(f) ✓ (Rd⇥Rd)\0 and WF\
(Bj)

(f) ✓ (Rd⇥
Rd)\0, of [ and \ types, respectively, are the sets

WF[
(Bj)

(f) ⌘ WF1,[
(Bj)

(f)
[

WF2,[
(Bj)

(f)
[

WF3,[
(Bj)

(f),

WF\
(Bj)

(f) ⌘ WF1,\
(Bj)

(f)
[

WF2,\
(Bj)

(f)
[

WF3,\
(Bj)

(f).

Example. We can consider wave-front sets with respect to sequences of the form

(B
j

) ⌘ (B
j

)
j2J

, with B
j

= M(!
j

,B
j

), (4.2)

where !
j

2 P(R2d), B
j

is a translation invariant BF-space on Rd, and j belongs
to some index set J .

Remark 4.2. Let p
j

, q
j

2 [1,1], B
j

= L
pj ,qj

1

(R2d), !
j

(x, ⇠) = hx, ⇠i�j and let
B
j

be as in (4.2) for j 2 J = N
0

. Then it follows that WFm,[
(Bj)

(f), m = 1, 2, 3,

in Definition 4.1 are equal to the wave-front sets WF (f), WFe(f) and WF e(f)
in [5], respectively. In particular, it follows that WF[

(Bj)
(f) is equal to the global

wave-front set WFS (f), which in [5] is denoted by WFS(f).

Remark 4.3. Evidently, if B
j

= B for every j 2 J , then

WFm,[
(Bj)

(f) = WFm,\
(Bj)

(f) = WFm

B (f), m = 1, 2, 3.

Proposition 4.4. Let m 2 {1, 2, 3}, B
j

be the same as in Definition 4.1, and let

f 2 S 0(Rd). Then
[

WFm

Bj
(f) ✓ WFm,[

(Bj)
(f),

[
WFBj

(f) ✓ WF[
(Bj)

(f)

and

\
WFm

Bj
(f) = WFm,\

(Bj)
(f),

\
WFBj

(f) = WF\
(Bj)

(f).

Proof. It su�ces to prove the first and third relation. Let ⌦
m

be as in (2.14), and
let X

0

= (x
0

, ⇠
0

) 2 ⌦
m

.
First let X

0

2 ⇥m,[
Bj

(f). Then Op(c
m

)f 2 \B
j

, for some c
m

as in Remark

2.10, giving that Op(c
m

)f 2 B
j

for every j. This implies that X
0

2 ⇥m

Bj
(f) for

every j, i. e. X
0

2 \⇥m

Bj
(f), and the first relation is proved.

The third relation follows from the relations

X
0

2 [⇥m

Bj
(f) () X

0

2 ⇥m

Bj
(f) for some j ()

Op(c
m

)f 2 B
j

for some c
m

as in Remark 2.10, and some j ()

Op(c
m

)f 2 [B
j

for some c
m

as in Remark 2.10 () X
0

2 ⇥m,\
(Bj)

(f).

The proof is complete. ⇤

We can now prove the result corresponding to Theorem 3.2 for wave-front sets
associated with one-parameter sequences of admissible spaces.



12 Sandro Coriasco, Karoline Johansson and Joachim Toft

Theorem 4.5. Let B
j

be SG-admissible for every j, and let f 2 S 0(Rd). Then

f 2
\

B
j

() WF[
(Bj)

(f) = ; ()
[

WFBj
(f) = ;,

and if in addition (B
j

) is ordered, then

f 2
[

B
j

() WF\
(Bj)

(f) = ; ()
\

WFBj
(f) = ;.

Proof. Let (1)–(6) be the statements in the theorem. Then (2) ) (3) and (5) ,
(6), by Proposition 4.4.

Next we prove (1) ) (2). Let f 2 \B
j

. Then Op(c
m

)f 2 \B
j

for every c
m

in Remark 2.10, and then WFm,[
(Bj)

(f) = ;, and the implication follows.

Next we prove (3) ) (1). We have

[WFm

Bj
(f) = ; =) WFm

Bj
(f) = ; for all j =)

f 2 B
j

for all j =) f 2 \B
j

,

and we have proved that (1) , (2) , (3).
We have

f 2 [B
j

=) f 2 B
j

for some j = j
0

=)

Op(c
m

)f 2 B
j0 for every c

m

as in Remark 2.10 =)

WFm

Bj0
(f) = ; =) \WFm

Bj
(f) = ;,

which shows that (4) ) (6).
Finally, if \WFm

Bj
(f) = ;, then \N

k=1

WFm

Bjk
(f) = ; for some j

1

, . . . , j
N

, by

compactness. Let B0 = [N

1

B
jk . Then WFm

B0(f) = ;, since (B
j

) are ordered. This
implies that f 2 [N

1

B
jk , which in turn implies that f 2 [B

j

. This gives that (6)
) (4), and the proof is complete. ⇤

4.2. Wave-front sets with respect to sequences of spaces with two indices param-

eters

Next we shall consider wave-front sets with respect to sequences of spaces, param-
eterized with two indices, and start by introducing the complements of the wave-
front sets. More precisely, let J be an index set of integers, ⌦

m

, m 2 {1, 2, 3}, be
given by (2.14), (B

j,k

) = (B
j,k

)
j,k2J

, be a sequence of Banach or Fréchet spaces
such that S (Rd) ✓ B

j,k

✓ S 0(Rd), for every j, k, and let f 2 S 0(Rd). Then
the point (x

0

, ⇠
0

) 2 ⌦
m

is called type-(m,[\\\) regular (type-(m,\[[[) regular) for f
with respect to (B

j,k

), if

Op(c
m

)f 2
\

j

 
[

k

B
j,k

! 0

@Op(c
m

)f 2
[

j

 
\

k

B
j,k

!1

A , (4.3)

for some c
m

in Remark 2.10. The set of all type-m,[\\\ regular points (type-m,\[[[
regular points) for f with respect to (B

j,k

), is denoted by ⇥m,[\\\
(Bj,k)

(f) (⇥m,\[[[
(Bj,k)

(f)).
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Also in here it is desirable that right-hand sides of (4.3) should be a vector
space. For this reason, the sequence (B

j,k

) is called ordered with respect to j, if
B
j,k

increases with j for every k fixed, or decreases with j for every k fixed. The
definition of ordered sequences with respect to k is defined in analogous way.

Definition 4.6. Let J be an index set, m 2 {1, 2, 3}, ⌦
m

be as in (2.14), and let
(B

j,k

)
j,k2J

be a sequence of Banach or Fréchet space such that S (Rd) ✓ B
j,k

⇢
S 0(Rd), for every j.

1. the type-(m,[\\\) wave-front set (type-(m,\[[[) wave-front set) of f 2 S 0(Rd)
with respect to (B

j,k

) is the complement of ⇥m,[\\\
(Bj,k)

(f) (⇥m,\[[[
(Bj,k)

(f)) in ⌦
m

, and

is denoted by WFm,[\\\
(Bj,k)

(f) (WFm,\[[[
(Bj,k)

(f));

2. the global wave-front sets WF[\\\
(Bj,k)

(f) ✓ (Rd ⇥ Rd)\0 and WF\[[[
(Bj,k)

(f) ✓
(Rd ⇥Rd)\0, of [\\\ and \[[[ types, respectively, are the sets

WF[\\\
(Bj,k)

(f) ⌘ WF1,[\\\
(Bj,k)

(f)
[

WF2,[\\\
(Bj,k)

(f)
[

WF3,[\\\
(Bj,k)

(f),

WF\[[[
(Bj,k)

(f) ⌘ WF1,\[[[
(Bj,k)

(f)
[

WF2,\[[[
(Bj,k)

(f)
[

WF3,\[[[
(Bj,k)

(f).

Remark 4.7. In analogy with Remark 4.3 we notice that if B
j,k

= B
j

is independent
of k 2 J , then

WFm,[\\\
(Bj,k)

(f) = WFm,[
(Bj)

(f), WFm,\[[[
(Bj,k)

(f) = WFm,\
(Bj)

(f), m = 1, 2, 3.

Hence, the families of wave-front sets in Definition 4.6 contain the wave-front sets
in Definition 4.1.

Remark 4.8. We observe that if m 2 {1, 2, 3}, B
j,k

is SG-admissible for every j, k,
⌦

m

is given by (2.14) and f 2 S 0(Rd), then WFm,[\\\
(Bj,k)

(f) and WFm,\[[[
(Bj,k)

(f) are

closed subsets of ⌦
m

.

From now on we assume that the involved sequence spaces, (B
j,k

), are ordered
with respect to k when wave-front sets of the form WFm,[\\\

(Bj,k)
(f) are involved,

and ordered with respect to j when wave-front sets of the form WFm,\[[[
(Bj,k)

(f) are

involved.

Proposition 4.9. Let m 2 {1, 2, 3}, B
j,k

be the same as in Definition 4.6, and let

f 2 S 0(Rd). Then
[

j

⇣\

k

WFm

Bj,k
(f)
⌘
✓ WFm,[\\\

(Bj,k)
(f),

[

j

⇣\

k

WFBj,k
(f)
⌘
✓ WF[\\\

(Bj,k)
(f),

and

\

j

⇣[

k

WFm

Bj,k
(f)
⌘
✓ WFm,\[[[

(Bj,k)
(f),

\

j

⇣[

k

WFBj,k
(f)
⌘
✓ WF\[[[

(Bj,k)
(f).
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Proof. It su�ces to prove the first and third inclusion. Let X
0

2 ⇥m,[\\\
(Bj,k)

(f). Then

Op(c
m

)f 2 \
j

([
k

B
j,k

) for some c
m

in Remark 2.10, which implies that Op(c
m

)f 2
[
k

B
j,k

for every j, i. e. for every j, there is a k = k(j) such that Op(c
m

)f 2 B
j,k(j)

.
This means that X

0

2 ⇥m

j,k(j)

for every j, giving that X
0

2 [
k

⇥m

Bj,k
(f) for

every j. Hence X
0

2 \
j

([
k

⇥m

Bj,k
(f)), and the first inclusion follows.

Next assume that X 2 ⇥m,\[[[
(Bj,k)

(f). Then Op(c
m

)f 2 [
j

(\
k

B
j,k

) for some

c
m

in Remark 2.10. Hence Op(c
m

)f 2 \
k

B
j,k

, for some j = j
0

. This implies
that Op(c

m

)f 2 B
j0,k for every k, giving that X

0

2 ⇥m

Bj0,k
(f) for every k. Hence

X
0

2 \
k

⇥m

Bj0,k
(f) ✓ [

j

(\
k

⇥m

Bj,k
(f)), and the third inclusion follows. The proof is

complete. ⇤

Theorem 4.10. Let B
j,k

be SG-admissible for every j and k, and let f 2 S 0(Rd).
Then

f 2
\

j

⇣[

k

B
j,k

⌘
() WF[\\\

(Bj,k)
(f) = ; ()

[

j

⇣\

k

WFBj,k
(f)
⌘
= ;,

provided (B
j,k

) is ordered with respect to k, and if instead (B
j,k

) is ordered with

respect to j, then

f 2
[

j

⇣\

k

B
j,k

⌘
() WF\[[[

(Bj,k)
(f) = ; =)

\

j

⇣[

k

WFBj,k
(f)
⌘
= ;.

Remark 4.11. Some steps of the proof are dependent of the parametrix construc-
tions in the framework of Proposition 2.11. We note that if B

jk

are as in Proposition
4.9 and ⇥m

Bj0,k
(f) = ⌦

m

, then for every X 2 ⌦
m

, there are elements c
m

= c
m,X

as in Remark 2.10 such that Op(c
m,X

)f 2 \
j

([
k

B
j,k

). By compactness, there are
c
m,X1 , . . . cm,XN such that if a = c

1

+ · · ·+ c
N

, then a � 1 outside a compact set
in ⌦

m

. Furthermore, Op(a)f 2 \
j

([
k

B
j,k

).
Let b be as in Proposition 2.11 (4). Then Op(b) maps \

j

([
k

B
j,k

) into itself.
Hence Proposition 2.11 gives

f = Op(b)Op(a)f mod S ✓ \
j

([
k

B
j,k

).

Proof of Theorem 4.10. Let (1)–(6) be the statements in the theorem. It is clear
that (2) ) (3) and (5) ) (6), in view of Proposition 4.9.

If f 2 \
j

([B
j,k

), then Op(c
m

)f 2 \
j

([B
j,k

), for every c
m

as in Remark 2.10.
Consequently, WF[\\\

(Bj,k)
(f) = ;, and we have proved that (1) ) (2). By Remark

4.11, it follows that (2) ) (1), and the equivalence between (1) and (2) follows.
Next assume that (3) holds, i. e. [

j

(\
k

WFBj,k
(f)) = ;. Then \

k

WFBj,k
(f) =

; for every j. Hence f 2 [
k

B
j,k

for every j, by Theorem 4.5. This implies that
f 2 \

j

([B
j,k

), and the equivalences between (1)–(3) follows.
Next we prove (4) ) (5). Therefore, let f 2 [

j

(\B
j,k

). Then Op(c
m

)f 2
[
j

(\B
j,k

) for every c
m

in Remark 2.10. Hence ⇥m,\[[[
(Bj,k)

(f) = ⌦
m

, and therefore

WF\[[[
(Bj,k)

(f) = ;. This proves the inclusion.
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Finally we prove that (5)) (4). Assume that WF\[[[
(Bj,k)

(f) = ;. Then for every
X 2 ⌦

m

, there is an c
m

= c
m,X

as in Remark 2.10 such that Op(c
m

)f 2 [
j

(\B
j,k

),
giving that Op(c

m

) 2 \
k

B
j,k

for some j = j
0

. This implies that Op(c
m

)f 2 B
j0,k,

for every k. By similar arguments as in Remark 4.11, it follows that f 2 B
j0,k

for every k, i. e. f 2 \
k

B
j0,k ✓ [

j

(\B
j,k

), and the assertion follows. The proof is
complete. ⇤
4.3. An example.

In a similar way as in Remark 4.2, we may construct wave-front sets with respect
to the spaces Q

0

(Rd) and Q(Rd) (see [4] for the definition of these spaces). In
fact, let

p
j,k

, q
j,k

2 [1,1], B
j,k

= L
pj,k,qj,k

1

(R2d), !
j,k

(x, ⇠) = hxi�jh⇠ik,

B
j,k

= M(!
j,k

,B
j,k

), C
j,k

= B
k,j

when j, k 2 J = N
0

.

By similar arguments as in [12, Remark 2.18] it follows that

Q
0

(Rd) =
[

j

⇣\

k

B
j,k

⌘
, Q(Rd) =

\

j

⇣[

k

C
j,k

⌘
.

Now we define the components of the wave-front sets with respect to Q
0

and
Q as

WFm

Q0
(f) = WFm,\[[[

(Bj,k)
(f), WFm

Q

(f) = WFm,[\\\
(Cj,k)

(f), m = 1, 2, 3,

when f 2 S 0(Rd). By Theorem 4.10 it follows that (1.2) holds when B = Q
0

(Rd)
or B = Q(Rd). We also note that

WF1

S (f) = WF1

Q0
(f) = WF1

Q

(f) = WF1

C

1(f)

agrees with the classical wave-front set of f (see [4] and Section 8.1 in [14]).
The next result deals with the regularity of the solutions f to Tf = g,

in terms if the regularity of the datum g, under appropriate hypotheses on the
operator T . It is a straightforward consequence of the theory developed above and
of the propagation results proved in [4].

Theorem 4.12. Let T
1

= 1�� be the harmonic oscillator and T
2

= @
t

� a(t, x,D)
be a generalized heat operator, with the symbol a(t, ., ..) 2 SG0,0

r,⇢

(R2d) chosen in

such a way that T
2

is elliptic with respect to the weight !
0

= 1. Then, both T
1

and

T
2

map continuously S (Rd) to itself, Q to itself, and Q
0

to itself.
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