
15 October 2023

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

VNS solutions for the critical node problem

Published version:

DOI:10.1016/j.endm.2014.11.006

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/155351 since 2015-12-11T17:17:53Z

This is an author version of the contribution published on:

R. Aringhieri, A. Grosso, P. Hosteins, and R. Scatamacchia.

VNS solutions for the critical node problem.

In The 3rd International Conference on Variable Neighborhood Search
(VNS’14), volume 47 of Electronic Notes in Discrete Mathematics, pages
37-44, February 2015

DOI: 10.1016/j.endm.2014.11.006

The definitive version is available at:

http://www.sciencedirect.com/science/article/pii/S1571065314000481

http://www.sciencedirect.com/science/article/pii/S1571065314000481

VNS solutions for the Critical Node Problem

Roberto Aringhieri, Andrea Grosso, Pierre Hosteins 1,2

Dipartimento di Informatica
Università degli Studi di Torino

Turin, Italy

Rosario Scatamacchia 1,3

Dipartimento di Automatica e Informatica
Politecnico di Torino

Turin, Italy

Abstract

We present a VNS algorithm for the Critical Node Problem, i.e., the maximal frag-
mentation of a graph through the deletion of k nodes. Two computational efficient
neighbourhoods are proposed proving also their equivalence to the straightforward
exchange of two nodes. The results of the proposed VNS algorithms outperform
those currently available in literature.

Keywords: Critical Node Problem, graph fragmentation.

1 Work supported by a Google Focused Grant on Mathematical Programming, project
“Exact and Heuristic Algorithms for Detecting Critical Nodes in Graphs”.
2 Email: roberto.aringhieri@unito.it, grosso@di.unito.it, hosteins@di.unito.it
3 Email: rosario.scatamacchia@polito.it

1 Introduction

Given an undirected graph G(V,E) and an integer k, the Critical Node Prob-
lem (CNP) consists in finding a subset of k nodes S ⊆ V , such that the
number of node pairs still connected in the induced subgraph G[V \ S]

f(S) = |{u, v ∈ V \ S : u and v are connected by a path in G[V \ S]}|

is as small as possible.

To the authors’ knowledge, the problem can be traced back to the so-called
network interdiction problems studied by Wollmer [14] and later Wood [15]
where anyway emphasis is placed on arc deletion instead of nodes. The interest
about node deletions seems to have spread more recently: Borgatti [3] states
the CNP in the context of detecting so-called “key players” in a relational
network; Arulselvan et al. [1] and Ventresca [13] emphasize contagion control
via vaccination of a limited number of individuals, when the nodes of the
graph are potentially infected individuals and the edges represent contacts
occurring between them. Similar problems are studied for assessing robustness
of communication networks by Dinh et al. [5,11].

The CNP is known to be NP-complete [1], polynomially solvable on trees [4]
and other “simple” kinds of graphs [2,10]. For a broad literature review, in-
cluding problems with different metrics about graph fragmentation, we refer
to comprehensive references given in other works, for example [10,9]. From a
practical point of view, the CNP on general graphs has been tackled by Arul-
selvan et al. [1] by proposing a MILP model and a heuristic approach based on
a greedy heuristic coupled with a successive local search phase. Sophisticated
metaheuristics – namely population-based incremental learning and simulated
annealing – are studied and experimentally compared by Ventresca [13].

In this paper, we present a solution framework for the CNP based on the
Variable Neighbourhood Search (VNS) methodology [7,8]. The main contri-
bution of this paper concerns the development of two computational efficient
neighbourhoods which are also proved to be equivalent to the straightforward
neighbourhood exchanging of two nodes u and v in such a way that u ∈ S
and v ∈ V \ S. This allows the development of a VNS solution framework for
the CNP which largely improves the best known solutions provided in liter-
ature. The paper is organized as follows. Section 2 reports the two efficient
neighbourhood explorations. Section 3 depicts the proposed VNS approach
for the solution of CNP. Section 4 discusses the computational results of the
proposed algorithm on the state of the art benchmark instances. Finally,
Section 5 closes the paper.

2 Efficient neighbourhood exploration

A straightforward neighbourhood, say N0, tries to improve a given solution S
by exchanging a node u ∈ S with another node v ∈ V \ S (2-node-exchange).
Its main drawback lies in the computational complexity of the move evaluation
which requires to perform a graph search whose complexity is O(|V | + |E|).
In the worst case, that is when k = |S| = |V |

2
, the whole neighbourhood

exploration is O(|V |3) because of the number of exchanges to be evaluated
is quadratic in the number of nodes in V . We propose two more efficient
neighbourhoods based on the idea of reducing the number of exchanges to be
evaluated to overcome this computational issue.

The former, say N1, considers all nodes in u ∈ S and evaluates, for each
node, the exchange with the node v ∈ V \ S that disconnects the graph as
much as possible, i.e., such that v = arg max{f((S ∪ {v′}) \ {u}) − f(S)}.
The latter, say N2, builds a move exchanging each node v ∈ V \ S with
the node u which yields the minimum increase in the objective function, i.e.,
u = arg min{f((S ∪ {v}) \ {u′}) − f(S)}. Note that, both N1 and N2 break
ties at random.

The number of exchanges in N1 and N2 are, respectively, k and |V | − k.
Therefore, the complexity of a complete neighbourhood exploration is O(|V |2)
instead of O(|V |3) of 2-node-exchange. This is due to the fact that v′ and u′

can be computed in O(|V |+ |E|) through a modified depth-first search [12].

Finally, we would like to remark that N0, N1 and N2 yield the same best
move (u∗, v∗), unless breaking ties lead to the choice of different pairs of nodes,
as proved below.

Theorem 2.1 Neighbourhood exploration methods N0, N1 and N2 all yield
the same result (u∗, v∗) when there is only one best move (no ties).

Proof. Let us suppose there exists one and only one best possible move
(u∗, v∗). By construction N0 is sure to identify it. Let us now consider N1: if
we select a node u 6= u∗ from set S, any resulting move (u, v) the algorithm
finds is by construction inferior to (u∗, v∗). If in fact we choose u = u∗, let us
suppose the algorithm extracts a pair (u∗, v) where v 6= v∗: since the algorithm
evaluates the impact of all possible nodes v ∈ (V \S)∪{u}, it means we have
found a pair (u∗, v) with higher impact than (u∗, v∗), which is impossible by
construction.
Thus N1 extracts the best possible pair (u∗, v∗). Given that for a given
v ∈ V \S, the rule based on N2 evaluates the impact of all nodes u ∈ S ∪{v},
a similar reasoning proves that N2 will also select (u∗, v∗). 2

3 A Variable Neighbourhood Search for CNP

In this section we present a general VNS solution framework to deal with
CNP. In the following we refer to the basic VNS scheme discussed in [8] (cf.,
algorithm 7). From a notational point of view, we use h instead of k to denote
the kth neighbourhood of a solution x, and S to denote a solution.

The main ingredients of our algorithm are: the procedure to compute an
initial solution, the improvement and the shake procedures. The pseudocode
of our algorithm is depicted in Algorithm 1.

The initial solution can be any set S of deleted k nodes. In our current
implementation, we select such nodes by applying the greedy algorithm pro-
posed in [1]. The improvement procedure is a Local Search (line 3) based on
the first improvement exploration of the neighbourhood N1 or, alternatively,
N2. Let φu be the occurrence or frequency in which u belongs to a solution
S. The value φu is updated (φu ←− φu + 1) in two cases: if u is added to the
solution S during the neighbourhood exploration (line 3), and if u belongs to
a solution improving the current best solution (line 5). The shaking procedure
replaces the h most frequent nodes in S with the h least frequent nodes in
V \ S.

Algorithm 1 A Variable Neighbourhood Search for CNP

CNP-VNS (S, tmax, hmax)
repeat
1 h←− 2;

repeat
2 S ′ ←− Shake(S, h);
3 S ′′ ←− FirstImprovement(S ′, N1);
4 if (f(S ′′) < f(S)) then
5 S ←− S ′′; h←− 2;

else
6 h←− h+ 1;

end;
until h = hmax;

7 t←− cpuTime();
until t ≥ tmax;
return S

In the following, we consider 4 different versions derived from Algorithm 1
varying the neighbourhood in the Local Search (N1 or N2) and increasing h

(h = 2, . . . , hmax) or decreasing h (h = hmax, . . . , 2). We denote them as VNS-
I-N1, VNS-I-N2, VNS-D-N1, VNS-D-N2 where I and D stand for increasing
and decreasing h, respectively.

4 Computational analysis

In this section we report the computational analysis of the 4 versions of Al-
gorithm 1, with two different update mechanisms of the frequencies of the
selected nodes. They were programmed in standard C++ and compiled with
gcc 4.1.2. All tests were performed on an HP ProLiant DL585 G6 server
with two 2.1 GHz AMD Opteron 8425HE processors and 16 GB of RAM. We
use the graphs presented in [13] as benchmark instances and compare our re-
sults with the best known results (coming from [6]), provided in our tables in
the column “BK”. Each graph has a specific topology based on Erdos-Renyi,
Barbasi-Albert, Watts-Strogatz and Forest Fire models (see [13] for more de-
tails). In the column “graph” we indicate the type of graph by two letters
(e.g. BA stands for Barabasi-Albert, etc...), followed by its number of nodes.
New best known results are displayed in bold font.

The results are clearly in favour of the VNS algorithms, with a few very
remarkable improvements. The gap between the VNS and the best known
result is often around 50% and sometimes much higher, except for BA graphs
where it can be only a few percent lower.

In Table 2, we report the results of our algorithms when adopting a different
policy – less pervasive – for the updating of frequencies: actually, we update
φu only when u belongs to a solution improving the current best solution (line
5 of Algorithm 1). Thus, while we previously updated the frequency of a node
each time it was found in a solution, we now only update it when it is found
in a local optimum. Comparing the results with those in Table 1, it is evident
that there is not a clear dominance of the updated method, in the sense that
the conclusion will differ according to the family of graphs considered. We
also observe that the number of best known solutions are almost the same,
that is 22 in Table 1 and 24 Table 2.

Running times can be quite long when the graphs reach 1000 nodes so
we choose to terminate the algorithm after 10000 seconds. Even though this
seems substantial, they are comparable or inferior to meta-heuristics from
[13], however the newer algorithms in [6] usually run in a matter of seconds
as greedy algorithms usually do. Note that VNS based on N1 are faster (in

terms of running time) than those based on N2 when k < |V |
2

. This is true for
all our test instances.

A version with best improvement instead of first improvement gives sim-
ilarly good results (although it finds a lower number of best known results),
however the running times are higher for almost all instances: on average from
45% to 244% depending on the algorithm.
Table 3 summarizes the best known solution computed by the 4 versions of
the algorithm both in the case of first and best improvements (results from
the best improvement versions are displayed in italic).

5 Conclusions

We devised a solution framework based on VNS methodology for the Critical
Node Problem. Our solution framework exploits the two efficient neighbour-
hoods discussed in Section 2. The results proposed in Table 1 and Table 2
largely outperform those reported in literature, especially for harder bench-
mark instances. Running times can be high but are justified by the improve-

graph K BK VNS-D-N1 VNS-D-N2 VNS-I-N1 VNS-I-N2

BA500 50 203 195 195 195 195

BA1000 75 580 559 559 559 559

BA2500 100 4254 3722 3704 3722 3704

BA5000 150 11886 10196 10218 10196 10196

ER235 50 1141 306 306 301 298

ER466 80 19952 1562 1611 1561 1725

ER941 140 114166 5470 6106 8106 5198

ER2344 200 1606656 1112994 1091185 1118785 1094239

WS250 70 13786 7175 11196 10237 12457

WS500 125 53779 2148 2209 2230 2209

WS1000 200 308596 198494 139653 268500 179531

WS1500 265 653015 16210 16549 14623 14619

FF250 50 302 194 198 198 198

FF500 110 344 257 258 257 257

FF1000 150 1880 1270 1274 1263 1265

FF2000 200 7432 4578 4584 4583 4549

Table 1
Results of the 4 algorithms (BK stands for Best Known result from previous

works, while K is the number of nodes deleted from the graph).

graph K BK VNS-D-N1 VNS-D-N2 VNS-I-N1 VNS-I-N2

BA500 50 203 195 195 195 195

BA1000 75 580 559 559 559 559

BA2500 100 4254 3722 3704 3722 3704

BA5000 150 11886 10196 10218 10196 10218

ER235 50 1141 303 335 301 302

ER466 80 19952 1542 1727 1567 1751

ER941 140 114166 5503 6289 5658 5628

ER2344 200 1606656 1067397 1097573 1052406 1034333

WS250 70 13786 8833 6610 10413 7186

WS500 125 53779 2170 2199 2152 2213

WS1000 200 308596 200225 256239 255061 154813

WS1500 265 653015 17198 26225 14719 15692

FF250 50 302 194 199 194 199

FF500 110 344 257 258 257 258

FF1000 150 1880 1270 1274 1270 1273

FF2000 200 7432 4576 4584 4577 4550

Table 2
Results of the 4 algorithms (update φu only on line 5 of Algorithm 1).

graph BA500 BA1000 BA2500 BA5000 ER235 ER466 ER941 ER2344

BK 195 559 3704 10122 297 1542 5198 1034333

graph FF250 FF500 FF1000 FF2000 WS250 WS500 WS1000 WS1500

BK 194 257 1260 4549 6610 2148 139653 14619

Table 3
New Best Known

ment of the solution quality.

Ongoing work is devoted to devise auxiliary data structure or different
neighbourhoods, which could improve the average case complexity, possibly
trading a loss in the quality of the solution for a reduction of the computational
time.

References

[1] A. Arulselvan et al, Detecting critical nodes in sparse graphs, Computers &
Operations Research 36 (2009), pp. 2193–2200.

[2] B. Addis, M. D. S. and A. Grosso, Removing critical nodes from a graph:
complexity results and polynomial algorithms for the case of bounded treewidth,
Discrete Applied Mathematics 16-17 (2013), pp. 2349–2360.

[3] Borgatti, S. P., Identifying sets of key players in a network, Computational and
Mathematical Organization Theory 12 (2006), pp. 21–34.

[4] Di Summa, M., A. Grosso and M. Locatelli, The critical node problem over
trees, Computers and Operations Research 38 (2011), pp. 1766–1774.

[5] Dinh, T. N. and M. T. Thai, Precise structural vulnerability assessment via
mathematical programming, in: MILITARY COMMUNICATIONS
CONFERENCE, 2011-MILCOM 2011, IEEE, 2011, pp. 1351–1356.

[6] Edalatmanesh, M., “Heuristics for the Critical Node Detection Problem in Large
Complex Networks,” Ph.D. thesis, Faculty of Mathematics and Science, Brock
University, St. Catharines, Ontario (2013).

[7] Hansen, P., N. Mladenović and J. A. M. Pérez, Variable neighbourhood search:
methods and applications, 4OR 6 (2008), pp. 319–360.

[8] Hansen, P., N. Mladenović and J. A. M. Pérez, Variable neighbourhood search:
methods and applications, Ann Oper Res 175 (2010), pp. 367–407.

[9] S. Shen et al, Exact interdiction models and algorithms for disconnecting
networks via node deletions, Discrete Optimization 9 (2012), pp. 172–88.

[10] Shen, S. and J. Cole Smith, Polynomial-time algorithms for solving a class of
critical node problems on trees and series-parallel graphs, Networks 60 (2012),
pp. 103–119.

[11] T. N. Dinh et al, On new approaches of assessing network vulnerability:
Hardness and approximation on approximation of new optimization methods
for assessing network vulnerability, IEEE/ACM Transactions on Networking
20 (2012), pp. 609–619.

[12] Tarjan, J., Efficient algorithms for graph manipulation, Communications of the
ACM 16 (1973), pp. 372–378.

[13] Ventresca, M., Global search algorithms using a combinatorial unranking-based
problem representation for the critical node detection problem, Computers &
Operations Research 39 (2012), pp. 2763–2775.

[14] Wollmer, R., Removing arcs from a network, Operations Research 12 (1964),
pp. 934–940.

[15] Wood, R. K., Deterministic network interdiction, Mathematical and Computer
Modelling 17 (1993), pp. 1–18.

