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ABSTRACT 

Rho GTPases, which control processes such as cell proliferation and cytoskeleton remodeling, are often hyperexpressed in 

tumors. Several members, such as RhoA/B/C, must be isoprenylated to interact with their effectors. Statins, by inhibiting 

the synthesis of prenyl groups, may affect RhoA/B/C activity and represent a promising tool in anticancer therapy. 
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INTRODUCTION 

Rho GTPases belong to the Ras superfamily of low molecular weight (MW 20-30 kDa) monomeric 

GTP-binding proteins and are found in all eukaryotic cells [1; 2; 3; 4]. Until now, twenty 

mammalian genes encoding Rho GTPases have been described [4; 5; 6]. The most investigated 

members are Rho (Ras homologous), Rac (Ras-related C3 botulinum toxin substrate) and Cdc42 

(cell division cycle 42). In this chapter we have focused our attention on the RhoA, RhoB and RhoC 

isoforms and on the effects of statins on Rho activity in human tumors. Similar to other regulatory 

GTPases, Rho proteins act as molecular switches cycling between an inactive GDP-bound state and 

an active GTP-bound state: in their GTP-bound form the Rho GTPases are localized at membranes 

and are able to interact with effector molecules initiating downstream responses. Their intrinsic 

GTPase activity turns the proteins back into the GDP-bound state thereby terminating signal 

delivery [2]. The activation of growth factor receptors and integrins can promote the exchange of 

GDP for GTP on Rho proteins: among the upstream activating agonists, we can mention epidermal 

growth factor (EGF), hepatocyte growth factor (HGF), lysophosphatidic acid (LPA), platelet-

derived growth factor (PDGF), transforming growth factor-β (TGF-β), int-1/wingless (WNT1) [7]. 

The cycling between the GTP- and GDP-bound states is regulated by three types of regulatory 

proteins: (a) guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GDP for 

GTP to activate the switch [8]; (b) GTPase-activating proteins (GAPs), which stimulate the intrinsic 

GTPase activity to inactivate the switch [9]; and (c) guanine nucleotide dissociation inhibitors 

(GDIs), which, by binding many (but not all) Rho proteins, prevent their spontaneous activation in 

the cytosol [10] and favor their removal from the membranes at the end of the signaling process 

[11]. Besides activating Rho GTPases, GEFs participate also in the selection of downstream 

effectors [12]. To perform their biological functions, most Rho proteins have to dock onto cell 

membranes, by means of a lipid moiety, either a geranylgeranyl or farnesyl residue, attached to the 

cystein of the C-terminal CAAX box (C = Cys, A = aliphatic amino acid, X = any amino acid) [13; 

2], a process catalyzed in the cytoplasm by either geranylgeranyltransferases or 
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farnesyltransferases, respectively [14]. The majority of Rho family proteins (i.e. RhoA, RhoC, 

Rac1, Cdc42, Rab, Rap1A) are geranylgeranylated, while only few members, such as RhoB, RhoD, 

Rnd, are farnesylated. Rho B has a unique behavior amongst Rho family members, since it may be 

geranylgeranylated as well as farnesylated; moreover it has an additional tail of palmitic acid [5]. 

The attachment of the isoprenyl group to the CAAX box promotes the translocation of the GTPases 

to the endoplasmic reticulum, where the AAX tripeptide tail is cleaved and the new C terminus is 

methylated. Following full processing, GTPases are directed to their cellular location, which is 

often the cytoplasmic surface of cell membranes, through mechanisms that are still poorly 

understood [15]. The Rho-specific GDI (RhoGDI) plays an important role in this regulatory 

context, because it masks the isoprenyl group, thereby promoting the cytosolic sequestration of Rho 

[10; 16]. Finally, Rho GTPases can be regulated through direct serine phosphorylation or 

ubiquitination, but the meaning of these covalent modifications in normal physiology is still unclear 

[4]. 

Activated Rho GTPases interact with a large number of effector molecules that, in turn, lead to the 

stimulation of signaling cascades promoting general cellular responses, such as cell migration, cell 

adhesion, cell polarity, gene expression, cell cycle progression and transformation, cell survival, 

secretion, phagocytosis, endocytosis and NADPH oxidase activation [3; 4]. RhoA is ubiquitous and 

seems to be strongly involved in all these cellular processes (Fig. 1). Also RhoB and RhoC proteins, 

which show a 85% homology with RhoA and are expressed in a great number of human tissues [5], 

regulate cell proliferation, polarity and migration [7; 17]. It is widely thought that Rho proteins may 

contribute to cancer due to their effects on cell migration (influencing invasion and metastasis) and 

proliferation (favoring the cell survival and growth), but, in contrast to the oncogenic Ras proteins 

(N-Ras, H-Ras, K-Ras), which are frequently mutated in human cancers, until now there are no 

reports of mutated, constitutively active forms of Rho proteins in tumors [7]. Only in 

haematopoietic cells of patients affected by non-Hodgkin’s lymphoma it has been shown that RhoH 

gene is often mutated and rearranged, but it is not clear if this gene translocation may contribute to 
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the onset and progression of the disease [17; 18]. However, recent works have shown that several 

Rho proteins are overexpressed in human tumors and in some cases such increased expression is 

associated with a poor clinical outcome [7; 18]. 

Figure 1 

 

 

ROLE OF RHOA IN NORMAL AND TUMOR CELLS. 

RhoA is a 21-kDa protein containing 193 amino acids. Crystal structure-based comparative analysis 

of GDP- versus GTP-bound Rho revealed conformational differences in two surface regions of the 

N-terminal half: Switch region 1 and Switch region 2. These two domains interact with GDP or 

GTP, as well as with Rho-specific GEF [19]: in the GDP-bound protein, the Switch 2 region is 

close onto Switch 1 and has a disordered conformation. The binding of Rho-GEF to Switch 2 

domain causes extensive conformational changes, facilitating the loss of GDP and unmasking the 

binding site for GTP. Aminoacidic residues involved in GTP binding lay on both Switch 1 and 

Switch 2 regions [19] (Fig. 2). The N-terminal half of RhoA contains the majority of the amino 

acids involved in GTP binding and hydrolysis, together with the Switch 1 and 2 regions [2]. The C-

terminus of RhoA is essential for the correct localization of the protein, which is subsequent to the 

post-translational geranylgeranylation or farnesylation of the C-terminal cysteine [14; 15]. In 
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addition, the C-terminal peptide of RhoA has been recently indicated as an allosteric activator of 

AGAP proteins, a class of GAPs that recognize Arf proteins as substrates [20]. The activation of 

Arf proteins by AGAP controls membrane trafficking and actin organization.  

 

Figure 2 

 

RhoA usually shuttles between cytosol and plasma membrane, RhoB may localize on plasma 

membrane and endosomal vesicles, RhoC may be cytosolic or associated to perinuclear structure 

[5]. RhoA is a target for several bacterial toxins, which modify key conserved amino acids involved 

in its regulation [21]. Clostridium botulinum exoenzyme C3 transferase specifically ADP-

ribosylates RhoA at asparagine-41, inhibiting its biological activity, probably by stabilizing the 

Rho/GDI complex and inhibiting the GEF-mediated nucleotide exchange of RhoA [22]. The large 

toxins A and B from Clostridium difficile block the RhoA interaction with downstream effectors by 

glucosylating the protein at threonine-37 [21]. 

RhoA and RhoC mRNA and protein are constitutively expressed during the cell cycle; on the 

opposite, the amount of RhoB protein is usually low, increasing during the G1/S phase transition, 

and is upregulated by growth factors [5]. Activated RhoA interacts with several effector molecules 
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including Rho-kinases (ROCK or ROK) 1 and 2, the myosin-binding subunit (MBS) of myosin 

phosphatase, protein kinase N (PKN) 1 and 2, rhotekin, rhophilin, kinectin, citron kinase, Lim 

kinase, p76RBE, protein kinase C (PKC)ε, p140 mDIA and DB1 transcription factor [23; 2; 4]. 

Similarly to GEFs and GAPs, effectors bind to RhoA through the Switch 1 and 2 regions, but the 

amino acids involved in the interaction with each target are different [2]. Although the downstream 

effectors of Rho proteins are often similar, slight differences exist among RhoA, RhoB and RhoC 

concerning their binding to specific GEF [24] or GAP proteins [25]. Furthermore, it has been 

reported that RhoC interacts with ROCK more efficiently than RhoA [26]. p120 β-catenin, a 

cytosolic effector of E-cadherin, can recruit and control the activation of ROCK1, which increases 

the actin polymerization, or of RhoAGAP, which turns off RhoA activity and ROCK1 effects [27]. 

This cycling represents the first known feed-back mechanism that controls the activity of RhoA and 

overcomes the schematic division into RhoA downstream and upstream effectors, since p120 β-

catenin belongs to both classes. The progression of our knowledge on RhoA activation and 

deactivation will likely uncover other feed-back loops. 

RhoA's functions in the cell are primarily related to cytoskeletal regulation. RhoA plays a central 

role in regulating cell shape, polarity and locomotion through its effects on actin polymerization, 

actomyosin contractility, cell adhesion and microtubule dynamics [2; 3; 4]. Amongst the ascertained 

effects of RhoA, it is known that RhoA is required for the generation of contractile force leading to 

rounding of the cell body [12] and that the proper localization of RhoA in the nucleus is essential 

during cytokinesis [28]. In particular the activity of the RhoA effectors Citron Kinase [28] and 

GEF-H1 [29] is necessary for the correct control of cytokinesis in non-transformed cells. RhoA is 

important for cell cycle progression through G1, since it regulates the expression of cyclin D1 and 

cyclin-dependent kinase inhibitors [4] and it is required for processes involving cell migration [30]. 

RhoA regulates the activity of a variety of biochemical pathways, including the activation of MAP 

kinases (MAPK), in particular c-Jun-N-terminal kinases/stress-activated protein kinases 

(JNK/SAPK) and p38 kinase [31], as well as numerous transcription factors, such as serum 
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response factor (SRF) [32], activator protein 1 (AP-1) [33], nuclear factor kB (NF-kB) [34], 

c/EBPb, FHL-2, PAX6, GATA-4, E2F, ER-α, ER-β, CREB [35; 36] and STAT proteins [37; 38]. 

Rho GTPases show transforming activity by their own [7; 38; 39]: indeed, the overexpression of 

constitutively activated Rho proteins, such as RhoA, RhoG, Rac, Cdc42 and TC10, induces tumoral 

transformation in non-transformed fibroblasts [7; 40; 41]. Active Rho proteins are necessary for 

Ras-mediated oncogenic transformation [40; 42], whereas dominant negative mutants of Rac1 and 

RhoA inhibit the Ras transforming activity [40]. Although at a lesser extent, also the overexpression 

of RhoC seems to be related to the oncogenic transformation [5; 7]. On the opposite, RhoB has been 

described as an oncosuppressor gene [43; 44], and the loss of RhoB expression has been shown to 

be involved in lung carcinogenesis [45]. Curiously, the anti-tumoral action of RhoB in murine 

fibroblasts is evident only when RhoB is geranylgeranylated, while it is lost if the protein is 

farnesylated [46]. 

RhoA overexpression confers to cancer cells a highly invasive phenotype. LPA, a strong activator 

of RhoA, promoted matrix invasion and metalloproteinase activity in ovarian cancer [47]. A highly 

active RhoA is necessary for the cellular motility in prostate cancer [48], where the GTPase is 

negatively controlled by the endocannabinoid receptors-dependent signaling [49]. RhoA favors cell 

motility also in tumors with aberrant activity of ephrin-B receptor [50] or E-cadherin/epidermal 

growth factor receptor [51]. The hyperactivity of RhoA-related proteins, such as ROCK [52] or 

Dia1 [53], enhanced the invasive attitude in tumors, while the overexpression of the tumor 

suppressor gene Deleted in Liver Cancer (DLC1) greatly reduced the cell motility in hepatocellular 

carcinoma because of the RhoGAP activity of DLC1 [54]. In mice injected with human pancreatic 

cancer cells, liver metastatic nodules were reduced when cells were transfected with the p190 

RhoGAP, which slackens the RhoA signaling [55]. In normal and transformed breast epithelium, 

EGFR and β3-integrin control p190 RhoGAP and RhoA, which increases filopodia formation and 

cell migration [56]. This mechanism is important for the shape change that occurs during epithelial-

mesenchymal transition and matrix invasion by breast cancer cells. RhoA GEF-H1 is another factor 
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favoring cell invasion: in breast cancers it is under the transcriptional control of the “human 

pituitary tumor-transforming gene” oncogene, which up-regulates RhoA GEF-H1 and RhoA 

activity, increasing cell migration [57]. 

RhoC has a minor effect than RhoA on cell proliferation [58], but confers to cancer cells a highly 

invasive attitude [58; 59] and is directly related to an increased number of lung metastasis [60].  

Several types of human cancers have been analyzed for Rho proteins mutations or overexpression 

[61]. RhoA levels are significantly increased in breast cancer, correlating with the tumor grade [62; 

63; 64]. RhoA mRNA is higher in ovarian carcinoma: such an increase is particularly significant in 

metastatic lesions of peritoneal dissemination than in the respective primary tumors [65]. Protein 

expression of RhoA and its two downstream effectors ROCK1 and ROCK2 is significantly higher 

in testicular germ cell tumors [66]. The overexpression of RhoA GEF-H1 has been also described in 

aggressive cancers, where it is associated to high aneuploidy due to aberrant mitosis [29] and high 

invasion [57]. 

RhoA may control several autocrine loops in tumor cells: for instance, in transformed lung 

epithelium, active RhoA increases the synthesis and secretion of prostaglandin E2 [67], which is 

critical for epithelial tumor growth. Another attractive autocrine mechanism is the tumoral secretion 

of exosomes, small vesicles produced by tumor cells and carrying growth factors, cytokines, 

receptors, miRNA, which support or repress cancer cell proliferation. Recently, the 

RhoA/ROCK1/Lim Kinase pathway has been identified as a controller of secretion of exosomes 

with transforming activity on mitotically arrested cells [68]. RhoA also mediates the effects of 

endocrine messengers, as suggested by the higher responsiveness to androgens in prostate cancers 

overexpressing RhoA [69]. This effect is due to the RhoA/ROCK1-operated nuclear localization of 

transcription factors, like the so-called “serum response factor megakaryocytic acute leukemia 

cofactor”, which cooperate with androgen receptor in androgen-dependent prostate tumors [69]. 

Furthermore, RhoA has been suggested as an useful prognostic factor of the invasion and metastasis 

of upper urinary tract cancer: RhoA and ROCK protein levels are elevated in bladder cancer, 
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showing higher expression in less differentiated tumors and metastatic lymph nodes [70]. The 

expression and activation of RhoA is greater in small cell lung carcinoma than non-small cell lung 

carcinoma cell lines [71]. Patients with esophageal squamous cell carcinoma overexpressing RhoA 

tended to have poor prognosis compared with patients with RhoA under-expression [72]. RhoA was 

found frequently overexpressed in gastric cancer compared with normal tissue [73]. Invasiveness of 

hepatocellular carcinoma is facilitated by the RhoA/ROCK pathway and is likely to be relevant to 

tumor progression [74]. A high proportion of colon cancers overexpresses RhoA [75] and the 

inhibition of RhoA activity through the introduction of dominant negative mutants completely 

abolishes the invasive capacity of colonic epithelial cells [76]. Plasminogen Activator Inhibitor 

type-1 is important for matrix invasion by colon cancer cells: its localization in the connective 

tissue surrounding transformed cells creates selective “hot spots” in the plasma membrane of tumor 

cells where RhoA and ROCK1 are activated and promote cells blebbing and epithelial-

mesenchymal transition [77], one of the first steps of metastasis. The epithelial-mesenchymal 

transition in colon cancer is also supported by the increased activity of the mammalian Target of 

Rapamycin Complexes mTORC1 and mTORC2, which have RhoA and ROCK as downstream 

effectors [78]. These results suggest that the RhoA/ROCK axis may act as a collector of multiple 

signals, all promoting matrix invasion and cell migration. Furthermore, the RhoA/ROCK pathway 

has been implicated in the vascular endothelial growth factor (VEGF)-mediated angiogenesis [79], 

which is also increased in highly proliferating tumors. These evidences suggest that RhoA 

activation should be considered a strong marker of aggressive tumors. 

As far as RhoC is concerned, its expression has been related to a more aggressive phenotype in 

ovarian [65], head and neck cancer [80] and in melanoma [81]. In contrast, only one contradictory 

study reports that RhoC enhances the tissue invasion, without affecting the directional motility of 

prostate cancer cells [82]. Recently, RhoC has been also proposed as a novel biomarker of tumor 

invasiveness, metastasis [83] and poor prognosis [84]. The selective silencing of RhoC increased 

the expression of oncosuppressor genes and reduced cell migration and anoikis in breast and 
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prostate cancer cells [85]. Both RhoA and RhoC activities are necessary to explain the highly 

metastatic behavior of Erb2-overexpressing breast cancers, where ErB-2 oncogene recruits and 

phosphorylates the semaphorin receptor Plexin-1, which activates both GTPases [86].   

On the other hand, RhoA and RhoC have sometimes mutually exclusive signals, due to the 

competition for RhoA-GDI: for instance, only when RhoC is removed by gene silencing, RhoGDIα 

can stabilize RhoA and promote its activation by RhoGEF, resulting in an increased activity of 

RhoA-operated pathways [85]. In the case of cell migration, RhoC preferentially promotes a 

directed and polarized migration, through the downstream effector FMNL3, which reduces the 

spreading of lamellipodia; the effects of RhoA are more variable, depending on which type of 

kinases is predominantly activated: ROCK2 promotes a polarized cell movement, whereas ROCK1 

is specifically involved in the tail retraction events on the opposite side of the migratory front [87]. 

These and other in vitro and in vivo studies provided good evidence that RhoA and RhoC activation 

is highly relevant for tumor progression and invasiveness [88;89], and have suggested that 

abrogation of RhoA and RhoC functions could be a promising strategy to attenuate tumor 

metastasis [90; 91; 92; 93]. 

Synthetic compounds affecting the geranylgeranylation [94] or the post-translational modifications 

of RhoA [95], bacterial toxins [96] and specific anti-RhoA small interfering RNA (siRNA) [97] 

have shown anti-tumor activity. However, many of these strategies have dose-limiting toxicity [94] 

and have only been tested in vitro [93]. Other therapeutic tools have been addressed to inhibit the 

downstream RhoA effectors. Y-27632, which specifically inhibits the ROCKs [98], largely reduced 

metastasis in animal models [90] and the newly developed ROCK inhibitor Wf-536 reduced 

angiogenesis, tumor growth and metastasis in vivo [99; 100]. Fasudil [1-(5-isoquinolinesulfonyl)-

homopiperazine, also known as HA-1077 and AT877], another ROCK inhibitor currently used in 

the treatment of cardiovascular [101] and neurological disorders [102], blocked the tumor 

progression in animal models [103] and exhibited anti-angiogenic properties [104]. A further 

strategy is to reduce the amount of active geranylgeranylated RhoA by statins. 
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STATINS INHIBIT RHOA ACTIVITY 

By inhibiting the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoAR), statins decrease 

the synthesis of cholesterol and isoprenoids molecules, such as farnesyl pyrophosphate (FPP) and
 

geranylgeranyl pyrophosphate (GGPP) [105]. By this way, statins may impair the isoprenylation 

and the activity of Ras and Rho family G-proteins [92]. Nowadays, many natural and synthetic 

statins (Table 1) are used in clinical practice as anti-cholesterolemic agents [105], in the prevention 

therapy of coronary artery disease (to view the structures of main statins, see [106]). Statins inhibit 

HMGCoAR by binding to the HMGCoA pocket with a common hydrophobic bulk, whereas the 

other substitute groups are positioned in a non polar groove [105]. In consequence of the high 

number of van derWaals interactions formed with the enzyme, statins tightly bind at nanomolar 

concentrations, displacing the physiological substrate HMGCoA, which binds at micromolar 

concentrations [107]. Small differences in the chemical structure account for the different kinetic 

properties of each drug [108]. 

Factors other than the reduction of cholesterol synthesis have been invoked to justify such a variety 

of therapeutic properties [109]. Many statins’ effects appear more related to the inhibition of RhoA 

activity than to the decrease of cholesterol synthesis. For instance fluvastatin prevents heart 

dysfunction and interstitial myocardial fibrosis in diabetic rats by inhibiting RhoA activity [110]. 

Using the same mechanism, statins inhibit the smooth muscle cells proliferation [111] and the 

cardiac remodeling [112] in hypertensive rats, and decrease the secretion of lipoprotein-associated 

phospholipase A2 by macrophages in atherosclerotic lesions [113]. Recently, pitavastatin has been 

employed as inhibitor of the accumulation of Tau protein in neurons, an effect due to the decrease 

in RhoA/ROCK1 pathway [114] and that opens new perspectives for the therapeutic use of statins 

in Alzheimer disease. 

 

Table 1. Chemical, pharmacodynamic and pharmacokinetic properties of the most employed 

statins.  
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Compound Chemical 

properties 

Ki (nM) 

HMGCoAR * 

IC50 ** 

(nM) 

Biovailability *** 

(%) 

Plasma t1/2 *** 

(h) 

Cerivastatin - Hydrophobic 

drug 
- Entry in cells by 

passive diffusion 

1.3 5 60 2-3 

Simvastatin - Hydrophobic 

drug 

-Administered as 

a lactone prodrug, 

which needs to be 

activated in liver 

-Entry in cells by 

passive diffusion 

- Substrate of 

ABC-transporters 

0.1 345-1500 < 5 1.9 

Atorvastatin - Hydrophobic 

drug 

- Entry in cells by 

passive diffusion 

0.5-1 40-100 41 12-58 

Lovastatin - Hydrophobic 

drug 

- Administered as 

a lactone  

prodrug, which 

needs to be 

activated in liver 

- Substrate of 

ABC-transporters 

0.6 24-50 < 5 1.5 

Pravastatin - Hydrophilic 

drug 

- Substrate of 

ABC-transporters 

 

2.3 700-2650 10-26 1.8 

Fluvastatin - Hydrophilic 

drug 

- Substrate of 

ABC-transporters 

 

0.3 30-43 25 0.5 

Adapted from Moghadasian [107]. 

* HMGCoAR: 3-hydroxy-3-methylglutaryl coenzyme A reductase.  

** Concentrations resulting in the 50% inhibition of cholesterol synthesis in HepG2 human 

hepatoma cells. 

*** After oral administration. 

 

 

STATINS AND TUMOR GROWTH/APOPTOSIS 

Since the overexpression of the enzymes of mevalonate pathway cooperates with Ras to promote 

malignant transformation [115], drugs inhibiting this pathway have been regarded in the last years 
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as attractive anti-cancer tools. It is conceivable that statins slacken the rate of cell proliferation by 

lowering the synthesis of cholesterol, a major component of cellular membranes. However, an 

increasing number of experimental evidences suggest that the inhibition of RhoA isoprenylation is a 

crucial mechanism in reducing tumor growth and eliciting apoptosis [116;92]. Statins exert in vitro 

and in vivo anti-proliferative effects in solid [117; 118] and hematopoietic malignancies [119; 120]. 

The statin-mediated mitotic arrest was related to the reduced RhoA isoprenylation: for instance, the 

addition of GGPP or mevalonate, but not FPP or cholesterol, and the expression of constitutively 

active RhoA prevented the lovastatin-induced G1 phase cell cycle arrest and cell senescence in 

human prostate cancer cells [121]. The pro-apoptotic effect of statins has been related to the 

lowering of protein geranylgeranylation also in glioblastoma [122], melanoma [123] and acute 

myeloid leukemia [124]. By gene microarray approach, RhoA has been shown to be one of the 

genes modulated by lovastatin in cervix and head and neck squamous carcinomas cells [125]. The 

statin-induced apoptosis in these tumors was prevented by supplying GGPP and restoring RhoA 

isoprenylation [125]. The mechanism by which the reduced RhoA isoprenylation leads to growth 

arrest and apoptosis of tumor cells still remains to be elucidated. The lovastatin-mediated mitotic 

arrest in human prostate cancer cells was associated with a rapid alteration of phosphorylation state 

of Rb protein, a decrease in E2F-1, cyclin A and cdc2, and an accumulation of p27 protein level, 

leading to a significant reduction in the proportion of S phase cells [121]. Similarly, lovastatin 

decreased cell proliferation of anaplastic thyroid cancer cells by reducing RhoA/ROCK1 activity, 

which lowered cyclin A2 and cyclin D3 and increased the amounts of p27 and cyclin-dependent 

kinase 4, producing a G0/G1-arrest [126]. In prostate PC3 cancer cells, the cell cycle arrest induced 

by atorvastatin was accompanied by an increased expression of LC3-II, indicative of enhanced 

autophagy; this event was prevented by the addition of geranylgeraniol, suggesting that the statin 

inhibited a geranlygeranylated protein [127]. Such GTPase has not yet been identified. 

In human breast cancer cells the simvastatin-induced apoptosis was mediated by the JNK pathway 

[128], while in human osteosarcoma lipophilic statins promoted apoptosis by inhibiting RhoA 
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activity and decreasing phospho-p42/p44 levels [129]. In contrast with all these evidences, we did 

not find any anti-tumor activity by atorvastatin in Her2/neu-overexpressing mammary cancer: 

although atorvastatin decreased Ras and extracellular-regulated kinase (ERK) 1/2 activity, thus 

slowing down pathways that are critical for cell proliferation, it simultaneously decreased 

RhoA/ROCK signaling, which resulted in an increased activity of the pro-survival factor NF-kB 

[130]. Interestingly, Ras and RhoA displayed a differential sensitivity to atorvastatin and the latter 

was the most inhibited by the drug: it means that at doses compatible with those used in 

hypercholesterolemic patients, the proliferative signals derived from the inhibition of RhoA 

balanced the anti-proliferative signals derived from the inhibition of Ras [130]. To our knowledge 

this is the first evidence proving an antagonistic effect between Ras and RhoA in terms of tumor 

growth and suggests that the anti-tumor effect of statins can be highly variable and tumor-

dependent. 

It cannot be excluded that the anti-proliferative and pro-apoptotic effects of statins may be mediated 

by Rho proteins other than RhoA: for instance, the downregulation of the RhoC protein by 

antisense oligonucleotides [131] or siRNA [132] induced the arrest of proliferation as well as the 

apopotic death of cancer cells. However, no reports link the statin action to a selective inhibition of 

RhoC proteins. 

In addition statins may also increase cellular differentiation: for instance, lovastatin was able to 

promote differentiation in neuroblastoma cells and in acute myeloid leukemia cells [133]. The effect 

of lovastatin on immature leukemia cells was similar to that evoked by retinoic acid: both drugs 

increased the expression of the integrins CD11b and CD18 and decreased the expression of bcl-2 

protein. These changes were associated with late stage differentiation of the myeloid cells and were 

considered as an index of myeloid blasts maturation [133]. Lovastatin also promoted the neurite 

growth and immature pheochromocytoma cells, transforming them into more differentiated 

neuronal cells [134]. Again, such an effect was reverted by mevalonate and geranylgeraniol [134]. 

Not all statins exert a pro-apoptotic effect at the same extent, because of the different 
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pharmacokinetic and pharmacodynamic properties [124]. Besides being direct pro-apoptotic agents, 

statins also enhanced the apoptosis induced by other chemotherapeutic drugs [118; 135]. Such 

effect was prevented by GGPP [118]. In several cases, statins have been also observed to exert 

anticancer effects independently of the mevalonate pathway [136; 137]. 

Recently, the overexpression of mevalonate pathway genes has been reported in breast cancers with 

mutated p53, where it is predictive of poor prognosis [138]: mutated p53 enhanced the transcription 

of mevalonate pathway genes and increased the invasive growth of cancer cells. Since simvastatin 

and the inhibitor of geranylgeranyltransferase fully prevented the latter event [138], it is likely that a 

geranylgeranylated protein of Rho family is involved.  

STATINS AND ANGIOGENESIS 

Both pro- and anti-angiogenic effects of statins have been widely described [139; 140; 141]. On one 

hand, statins increased the differentiation of endothelial progenitor cells in mice and humans [142] 

and stimulated the capillary formation through a hsp90- and nitric oxide (NO)-dependent 

mechanism [139]. On the other hand, statins blocked the proliferation and promoted the tumor 

necrosis factor (TNF)-α-mediated apoptosis of endothelial cells [141], inhibited the formation of 

vascular tubes [140], and prevented the matrix remodeling [143]. Recently it has been reported that 

simvastatin, fluvastatin and cerivastatin reduce the endothelial cell growth also under hypoxia 

[144], an environmental condition resembling that occurring in the inner core of solid tumors. The 

sensitivity to the anti-angiogenic effect of statins is strictly dose- and cell type-dependent [145; 

146]. In human vascular smooth muscle cells and microvascular endothelial cells, which 

constitutively produce large amounts of VEGF, statins reduced the VEGF secretion; on the 

opposite, in primary macrovascular endothelial cells, which do not basally secrete VEGF, statins 

were pro-angiogenic at less than 1 µM and anti-angiogenic at higher concentrations [146]. 

In a recent screening aimed to discover new anti-angiogenic drugs for prostate cancer, four statins 

(mevastatin, lovastatin, simvastatin, rosuvastatin) have been identified amongst the leading anti-

angiogenic compounds; rosuvastatin was the most potent in vitro and efficiently decreased the 
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tumor growth in mice xenografts, thanks to a dual action, i.e. the reduction of microvessel density 

within tumor and the induction of apoptosis in tumor cells [147]. 

There is general agreement that most statins' anti-angiogenic effects are mediated by RhoA and 

RhoC inhibition. The active RhoA/ROCK pathway stimulates angiogenesis by increasing the 

secretion of VEGF, interleukin (IL)-6 [148] and IL-8 [149], by modulating the activity of 

metalloproteinase-9 [150] and by regulating the cytoskeletal remodeling and the cellular migration 

[143]. The ROCK inhibitor Fasudil indeed has demonstrated to possess anti-angiogenic properties 

in human endothelial cells [151]. The overexpression of RhoC in breast cancer cells led to increased 

secretion of pro-angiogenic factors, such as VEGF, basic fibroblast growth factor, IL-6 and IL-8 

[152], in a MAP-kinase dependent way [153]. Both the cerivastatin-induced decrease of endothelial 

cell locomotion in vitro and the simvastatin-elicited decrease of capillary growth in vivo were 

reversed by GGPP [143; 154]. The available experimental evidences suggest that RhoA and RhoC 

are mainly involved in favoring angiogenesis and may be considered promising targets in the anti-

angiogenic therapy. Recently RhoB expression has been shown to be crucial to regulate the 

endothelial survival and proliferation during the physiological vascular development [155]; 

however the role of RhoB in the tumor angiogenesis and the effects of statins on RhoB activity still 

remain to be elucidated. 

STATINS AND METASTASIS 

Statins inhibited the invasiveness of human colon carcinoma cells [156], human pancreatic cancer 

cells [157] and human anaplastic thyroid cancer cells [158]. It has been reported above that RhoA 

overexpression is highly relevant for tumor progression and invasiveness. In the aggressive breast 

cancer MDA-MB-231 cells the anti-invasive properties of statins were related to the inhibition of 

the RhoA/ROCK/NF-kB pathway [159]. NF-kB, whose nuclear translocation may depend on RhoA 

activity [48; 160; 161], in turn up-regulates the expression of genes involved in cellular 

invasiveness, such as urokinase-type plasminogen, tissue factor and metalloproteinase 9 [159]. 

Statins inhibited cell motility also by disrupting the RhoA/Focal-Adhesion-Kinase (FAK)/Akt 
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signaling [162]: it has been reported that RhoA activity is necessary for the tyrosine 

phosphorylation and activation of FAK [162; 163], which is then responsible for the activation of 

the Akt kinase [164]. Akt may further enhance the nuclear translocation of NF-kB [162]. 

Interestingly, the effects of lovastatin were nearly absent in the less invasive breast cancer MCF-7 

cells [159], but a differential activity of RhoA was not further investigated. Moreover, lovastatin 

impaired the TNF-α- and RhoA-dependent increase of E-selectin in human endothelial cells, 

reducing a potential mechanism of cancer cell adhesion and transendothelial migration [165]. RhoB 

seems responsible for the increase of E-selectin caused by TNF- α as well [165]. Statins showed 

good efficacy in reducing metastasis also in vivo: fluvastatin and lovastatin decreased the metastatic 

ability of renal cancer cells [166] and mammary carcinoma cells [167]. In the latter model lovastatin 

impaired the secretion of urokinase, a key proteolytic enzyme during tumor invasion [167]. In a 

murine model of melanoma, simvastatin and fluvastatin reduced the number of lung metastasis by 

decreasing the expression of metalloproteinases and α2-, α4-, α5-integrins, other molecules 

important for tumor cell invasion; these effects have been attributed to the lower amount of RhoA 

localized at the plasma membrane and to the lower phosphorylation of Lim kinase and myosin light 

chain in animals exposed to statins [168]. A similar decrease of integrins, due to the low activity of 

RhoA/ROCK pathway, was reported in invasive hepatocellular carcinoma cells treated with 

simvastatin [169]. 

Due to the central role of RhoC in tumor invasion and metastasis [60], several studies pointed out a 

relationship between the anti-metastatic effect of statins and the specific inhibition of RhoC in 

human cancers: for instance atorvastatin lowered the metastatic attitude of melanoma cells by 

decreasing the RhoC isoprenylation [170]. By preventing the activation of both RhoA and RhoC, 

fluvastatin impaired the transendothelial migration of MDA-MB-231 cells [171]. Furthermore, the 

inhibition of both RhoA and RhoC, by specific siRNA [132; 172], prevented the matrix invasion by 

human breast cancer cells. 
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STATINS, CHEMOTHERAPY EFFICACY AND MULTIDRUG RESISTANCE 

In vitro studies reported that statins synergized with γ rays [173], doxorubicin, paclitaxel and 5-

fluorouracile [174] in reducing cancer growth. Besides increasing the sensitivity to doxorubicin, 

lovastatin also reduced the drug cardiotoxicity in mice, via an hypothetical lipid-lowering effect 

[175]. On the other hand, in a limited group of experimental works, statins and chemotherapeutic 

agents had no synergistic effects [176; 177]. It has been hypothesized that the p53 level may 

influence the efficacy of statins: indeed pravastatin and atorvastatin sensitized p53-deficient tumor 

cells to etoposide, doxorubicin and 5-fluorouracil, but failed in p53 wild-type cells [178]. Several 

evidences pointed out that the inhibition of RhoA isoprenylation is involved in modulating the 

response to chemotherapy. For instance, lovastatin increased the apoptotic effect of 5-fluorouracil 

or cisplatin in human colon cancer cells, whereas the addition of GGPP prevented the cell death 

[118]. Fluvastatin enhanced the pro-apoptotic effect of gemcitabine in pancreatic cancer in vitro and 

in vivo and such an effect was prevented by the administration of mevalonic acid [135]. 

Interestingly, fluvastatin increased the expression of deoxycytidine kinase, the enzyme required for 

the activation of gemcitabine, and simultaneously reduced the level of 5α-nucleotidase, responsible 

for its catabolism [135]. 

Multidrug resistance (MDR), an acquired or constitutive cross-resistance towards many unrelated 

anti-cancer drugs, is the major obstacle to a successful pharmacological therapy of tumors [179]. 

Many statins are substrates of ATP-binding cassette (ABC) transporters, like P-glycoprotein (Pgp) 

and MDR-related proteins (MRPs) [180; 181], whose overexpression mediates the enhanced efflux 

of chemotherapeutic agents [179]. ABC transporters are membrane pumps which bind and 

hydrolyze ATP, thus mediating the active efflux of endogenous metabolites and drugs [179]. 

Lovastatin, simvastatin, fluvastatin and pravastatin are transported out of the cells by Pgp [182], 

which is also responsible for the efflux of anthracyclines, Vinca alkaloids, epipodophyllotoxins, 

taxanes, actinomycin-D, mitoxantrone [179]. Therefore, statins might affect the accumulation of 

chemotherapeutics in cancer cells by competing with them for the same ABC pump-mediated 
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transport [181]. Statins induced a selective apoptosis in drug-resistant cancer cells [183; 184]: the 

molecular mechanism was not fully clarified, but it has been reported that drug-resistant cells were 

partially protected from statins-induced apoptosis by the addition of FPP and GGPP [185]. 

Furthermore, a recent study implicates RhoA in MDR: hepatocellular carcinoma cells 

overexpressing the Rho-specific GEF Lymphoid blast crisis (Lbc) were resistant to doxorubicin, but 

this resistance was reverted by the C3 exotoxin from C. Botulinum [186]. These evidences suggest 

that statins could revert MDR by impairing the RhoA operation. Indeed, atorvastatin increased the 

doxorubicin's cytotoxic efficacy and accumulation in both sensitive and drug-resistant human colon 

cancer cells [187]. Interestingly, such effect of atorvastatin was mediated by its ability to induce the 

cellular synthesis of NO, which in turn may nitrate the ABC transporter MRP3, leading to a reduced 

efflux of doxorubicin [187]. The increased synthesis of NO followed by the nitration on ABC 

transporters was not statin-specific: indeed simvastatin produced the same sequence of events in 

colon cancer [188]. The molecular basis of the statins' effect was clarified in the human malignant 

mesothelioma, which is highly resistant to a large number of chemotherapeutic agents: both 

mevastatin and simvastatin corrected the doxorubicin resistance of mesothelioma cells by inhibiting 

the RhoA/ROCK pathway [189]. The statins' effects, reverted by mevalonic acid and mimicked by 

Y-27632, were NO-dependent [189]. These results led to hypothesize that the inhibition of 

RhoA/ROCK causes the activation of the NF-kB transcription factor and the subsequent induction 

of NO synthase: in mesothelioma cells the increased synthesis of NO was accompanied by the 

nitration of another ABC transporter, the Pgp [189]. The central role of RhoA GTPase in 

modulating NO synthesis and MDR was confirmed in RhoA-silenced doxorubicin-resistant colon 

cancer cells, where the only depletion of RhoA was sufficient to turn the drug-resistant phenotype 

into a drug-sensitive one [190]. 

A cell adhesion-mediated drug resistance (CAM-DR), dependent on Wnt3 overexpression and 

RhoA/Rho kinase activity [191], is often observed in myeloma cells. Also CAM-DR was totally 

overcome by statins and specific inhibitors of geranylgeranyltransferases and ROCKs [192]. 
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The inhibition of RhoA does not always produce a chemosensitization: for instance, lovastatin 

conferred cross-resistance to doxorubicin and etoposide in human endothelial cells [177] and the 

expression of constitutive active RhoA induced a significant resistance to etoposide, 5-fluorouracil 

and taxol, but increased the sensitivity to vincristine in human prostate carcinoma cells [193]. In the 

light of these findings, we cannot exclude that the inhibition of RhoA by statins may modulate both 

chemotherapy efficacy and MDR, with different effects depending on the anti-cancer agent and on 

the type of tumor. 

STATINS AND CHEMOPREVENTION OF TUMORS 

In a small number of studies, statins exhibited a carcinogenic and genotoxic effect, but HMGCoAR 

inhibitors were used at concentrations higher than the common therapeutic doses [194; 195]. By 

inhibiting cellular proliferation and invasion, statins are likely to exert rather a cancer-preventing 

effect. Indeed the chemopreventive action of statins was confirmed in in vivo models of chemical 

carcinogenesis [196; 197] or pre-cancerous diseases, such as ulcerative colitis [198] and familial 

adenomatous polyposis [199]. The oral administration of statins, at a dose very close to that used in 

the treatment of cardiovascular diseases, efficiently reduced the growth of breast cancer in mice, 

through a MAP-kinase- and NF-kB-dependent mechanism [200].  

In mice with pancreatic intraepithelial neoplasms, atorvastatin prevented the transition into invasive 

adenocarcinoma, reducing the activity of RhoA and of other molecules favoring survival and/or 

proliferation, such as PI3K, Akt, PCNA, p27, cyclin D, survivin, β-catenin [201].  

Yet, when considering the cancer prevention in patients regularly taking statins, conflicting data 

exist: some case-control studies and randomized controlled trials found no association between the 

use of statins and reduced frequency of solid tumors [202; 203]. Only a long-term therapy with 

statins partially lowered the incidence of tumors [204]. On the opposite, other studies showed that 

statins efficiently reduced the incidence of pancreatic cancers [205], as well as metastasis and 

mortality in advanced stages of prostate cancer [206]. Randomized controlled trials for preventing 
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cardiovascular disease indicated that statins reduced the incidence of colorectal cancer and 

melanoma [207]. 

Experimental evidences are not yet available in support of the hypothesis that the in vivo 

chemopreventive action of statins is due to the inhibition of Rho proteins. Interestingly, statins in 

combination with non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to prevent 

colorectal cancer. In mice affected by adenomatous polyposis, atorvastatin and the cyclooxygenase 

2 (COX2) inhibitor celecoxib synergistically prevented the development of colon adenocarcinoma 

[199]. Similarly, in a population-based case-control study, the association of aspirin and statins was 

more chemopreventive than the single drugs [208]. It has been reported that COX2 induces the 

activation of the RhoA/ROCK pathway, leading to the disruption of cellular adherens junctions and 

increased motility of colon cancer cells [209]. Since Rho and COX2 activities appear to be strictly 

related in colon cancer cells [210], the synergistic effect of statins and NSAIDs could be exerted by 

inhibiting a COX2/Rho/ROCK pathway, but this hypothesis needs to be still confirmed. 

STATINS IN CANCER TREATMENT 

The anti-cancer effect of statins was analyzed in different human clinical trials: the therapy with 

statins was well tolerated and did not enhance the adverse effects of anti-cancer drugs [211; 212] or 

radiotherapy [213], but conflicting results were reported about its efficacy [211]. The limited 

number of patients taking statins [202], the advanced stage of the disease and the too small median 

survival of patients [211] may affect the statistical potency of these studies. Some variability of 

response in hepatocellular cancer has been described: fluvastatin exerted a different anti-

proliferative effect in mice, depending on the tumor stage [214], and the addition of pravastatin to 

the 5-fluorouracil therapy significantly prolonged the patients survival [215]. However this result 

was not confirmed by subsequent studies [216]. 

Better results have been obtained in hematological malignancies: simvastatin stabilized the disease 

progression in patients both sensitive and resistant to chemotherapy [217] and reversed the 

resistance to bortezomib and bendamustine in patients with relapsed myeloma [218]. Similarly, 
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lovastatin improved the clinical response and the overall survival of patients with relapsed 

myeloma, if added to the standard therapeutic regimen (thalidomide and dexamethasone) [219]. 

The statins' effect in myeloma was attributed to the reduced prenylation of small G-proteins, 

including the Rho homologue Rap1 [217]. In a phase 1 study, pravastatin, added to idarubicin and 

cytarabine, obtained encouraging response rates in patients with acute myeloid leukemia [212]. In 

this type of tumor the exposure to cytotoxic drugs evoked an increase of cholesterol synthesis and 

chemoresistance, whereas statins restored the chemosensitivity by lowering the cholesterol levels 

[220]. Most of these experimental works provided only preliminary results and did not investigate 

the molecular mechanisms of the action of statins.  

Other drugs targeting the mevalonate pathway, like the anti-osteoporotic drugs 

aminobisphosphonates, which inhibit isopentenyl diphosphate (IPP) isomerase and FPP synthase 

[221], showed anti-tumor activity and slackened the progression of metastasis in cancer patients 

[222]. Interestingly aminobisphosphonates exhibited anti-angiogenic properties by suppressing 

RhoA activity [223]. The association of statins and bisphosphonates was more effective than the 

single drugs in reducing the geranylgeranylation of proteins [224], and clinically achievable 

concentrations of fluvastatin and zoledronic acid synergistically induced apoptosis in cancers [225]. 

Another noteworthy recent study reported that simvastatin decreases the invasive attitude of p53-

mutated breast cancer cells by impairing the activity of an unknown geranylgeraylated protein 

[138]: this result looks particularly appealing because it is the first evidence that statins treatment 

corrects the phenotypical consequences of a genetic mutation. RhoA, RhoB and RhoC are under 

intensive investigations as antitumor targets, with promising results: the C3-transferase homologue 

CT04, a cell-permeant inhibitor of the three Rho GTPases, but not of other geranylgeranylated or 

farnesylated proteins, efficiently reduced cell migration in ovarian cancer [226], one of most 

invasive and chemoresistant tumors. Narciclasine, a novel selective RhoA inhibitor extracted from 

Amaryllidaceae plants, has been tested in vivo against primary and metastatic brain tumors, 

showing good anti-tumor efficacy and few side-effects [227]. Furthermore the experiments in mice 
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also suggest that this new inhibitor has an excellent delivery across the brain-blood barrier, which is 

hardly crossed by many other anti-cancer drugs. 

Taken as a whole, present evidences suggest that the inhibition of RhoA might be an important anti-

cancer tool in vitro and in vivo. Moreover, also the reduction of RhoC activity may decrease the 

tumor invasiveness and metastasis. The relative importance of the inhibition of these two isoforms 

in the efficacy of anti-tumor therapy with statins has to be still clarified. As to RhoB, which may 

have differential (enhancing or suppressive) effects on carcinogenesis, depending on the nature of 

its prenylation [46], the prevailing effect of statins is not known. Specific siRNA have been 

constructed to knock-down Rho proteins separately, but they have been only applied in mice 

models or in in vitro studies [93; 94; 97]. Presently it can be only affirmed that, by inhibiting the 

isoprenylation, statins lower the activity of RhoA and RhoC, and subsequently may impair the 

promoting effects of these GTPases in the development of many tumors. This is a stimulus to keep 

on investigating statins (and other inhibitors of Rho and Rho-associated regulators and effectors) as 

potential tools in the future anti-tumor therapy. 
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Figure Legends 

 

Fig.1. Schematic representation of the activation/inactivation cycle of the small GTPase RhoA, of 

the ultimate effects of RhoA activation and of the site of action of statins. The mechanism by which 

Rho GTPases lose the prenyl chain during the cycle is still poorly known. Abbreviations: GAPs: 

GTPase-activating proteins; GDIs: guanine nucleotide dissociation inhibitors; GEFs: guanine 

nucleotide exchange factors; GGT: geranylgeranyl transferase; HMGCoA: 3-hydroxy-3-

methylglutaryl coenzyme A; HMGCoAR: 3-hydroxy-3-methylglutaryl coenzyme A reductase; 

PKC: protein kinase C; PKN: protein kinase N; ROCK: Rho-kinase. 

 

Fig. 2. Role of Switch 1 and Switch 2 regions in the RhoA cycle. When bound to GDP, RhoA is in 

a “closed” conformation, with the Switch 2 region laying down on Switch 1 and avoiding any 

interaction with GTP or effectors. The binding of Rho-specific GEF to the Switch 2 domain 

modifies the shape of RhoA into an “open” conformation, which favors the loss of GDP and 

unmasks the binding site for GTP and downstream effectors. Following the action of Rho-specific 

GAP, GTP is hydrolysed into GDP and the protein returns in the “closed” conformation. 

Abbreviations: GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; Sw1 

and Sw2: Switch domains 1 and 2, respectively. 

 

 


