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Abstract

SRL is a total programming language with distinctive features: (i) every program
that mentions n registers de�nes a bijection Zn → Zn, and (ii) the generation of
the SRL-program that computes the inverse of that bijection can be automatic.
Containing SRL a very essential set of commands, it is suitable for studying
strengths and weaknesses of reversible computations.

We deal with the �xed points of SRL-programs. Given any SRL-program P,
we are interested in the problem of deciding if a tuple of initial register values of
P exists which remains unaltered after its execution. We show that the existence
of �xed points in SRL is undecidable and complete in Σ0

1. We show that such
problem remains undecidable even when the number of registers mentioned by
P is limited to 12. Moreover, if we restrict to the linear programs of SRL, i.e. to
those programs where di�erent registers control nested loops, then the problem
is already undecidable for the class of SRL-programs that mention no more than
3712 registers. Last, we show that, except for trivial cases, �nding if the number
of �xed points has a given cardinality is also undecidable.

Keywords: Reversible Computing, Fixed points, Decidability

1. Introduction

The Loop languages are an important sub-class of the while programming
languages [1, 2, 3, 4, 5]. Loop languages are the starting point to design the
reversible languages SRL and ESRL, de�ned in [6] (see also [7]).

We start by recalling the distinctive features of SRL. Its programs operate
on tuples of registers. Each register contains a value in Z. So, a program

IThis paper revises and extends �The Fixed Point Problem for General and for Linear SRL
Programs is Undecidable� in the Proceedings of the 16th Italian Conference on Theoretical
Computer Science (Firenze, 9�11 September 2015).

Email addresses: armandobcm@yahoo.com (Armando B. Matos),
luca.paolini@unito.it,paolini@di.unito.it (Luca Paolini),
luca.roversi@unito.it,roversi@di.unito.it (Luca Roversi)

Preprint submitted to Elsevier 06.10.2019



that mentions n registers de�nes a bijection Zn → Zn. The class of functions
that SRL de�nes is closed under inversion and the SRL-program that computes
the inverse of another program can be automatically generated. Moreover, the
instruction set of SRL is strictly contained in almost every current programming
language. So, the properties of SRL hold for every programming language that
contains it.

Computable bijections form a crucial subset of computable functions (see [6,
8, 9, 10]). In the classical setting, besides the theoretical motivations, studying
SRL is interesting from truly pragmatic perspectives which range from lossless
compression to cryptographic functions, passing through backtracking mecha-
nisms. A survey is in [7]. Moreover, from a fundamental point of view, SRL sup-
plies the core of total reversible programs that would allow to keep the energetic
ine�ciency of classical computation under control [11, 12, 13, 14, 6, 15, 9, 10, 7].
Last, but not least, reversible programs are also crucial in the quantum com-
puting model under many perspectives [14, 16].

Consider the following SRL programs:

P0 : for x(inc r) P2 : for y(for x(inc r))
P1 : for x(dec r) P3 : for x(for x(dec r))

The program P0 mentions the two registers x and r. If the initial value of x is
strictly positive, P0 eventually increments the initial value of r by (the initial
value of) x. If the initial value of x is negative, P0 eventually decrements the
initial value of r by x. In any case, P0 is the inverse of P1. I.e., running P1
after P0, written as P0;P1, we compute the identity on the tuple (x, r). It is
worth to note that SRL ensures the reversibility by forbidding the modi�cation
of a register driving a loop (as x in P0) in the loop-body. P2 iterates P1 when the
value in y is positive. The �nal value of r is its initial value plus the product xy.
P2 is linear because no register driving a loop is mentioned in its body. Clearly,
P3 is non-linear exactly for the opposite reason. So, the �nal value of r that P3
yields is its initial value minus x2. The language ESRL extends SRL with the
instruction that exchanges the contents of two registers.

The here above examples underline the three main aspects that di�erentiate
both SRL and ESRL from non-reversible, i.e. classic, Loop languages and which
ensure they only compute bijections: (i) a program register may contain any,
possibly negative, integer; (ii) every elementary operation is reversible; (iii) over-
writing the content of a register is forbidden. This is similar, but not completely
identical, to what happens in Quantum Mechanics. General forms of �cloning�
� copying the content of a register to another � and erasing are not possible.
Instead, some limited version of cloning is compatible with reversible comput-
ing. Examples are the representation of the fan-out in [17] and the cloning of
orthogonal states in [18, page 530].

Among the languages whose programs represent total reversible functions
[6, 19, 20, 10], SRL and ESRL are the simplest ones, but they are far from being
trivial. No language which is expressive enough to contain all the computable
bijections can be e�ectively formalized. However, SRL, and similar languages,
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are very expressive despite their terseness. It is an open question whether SRL
is equally expressive as the languages presented in [19, 10]. The latter question
and the decidability of many further questions about SRL are harder to answer
than the corresponding ones about Loop languages.

In this paper, we focus on the �xed point problem (shortened to ��xpoint
problem�) for SRL: �given a program P, is there an input tuple which is not
modi�ed by the execution of P?�. We prove that the �xpoint problem is unde-
cidable and complete in Σ0

1. In particular, the undecidability shows up when the
programs mention 12 registers and, in the case of linear programs, when they
mention 3712 registers. Moreover, we tackle the decidability of the cardinality
of �xed points of SRL-program. The main technical tool to obtain our results is
Hilbert's Tenth Problem (shortened in HTP) which look promising for dealing
with the problem we may ask about SRL, and, in fact, about every programming
language: �Given P and Q, are they equivalent?�

1.1. Rationale

As outlined, the �rst author introduces SRL in the context of Loop lan-
guages. He keeps SRL syntactically so simple that SRL is a candidate to be
the simplest, among reversible programming languages, that can express total
invertible functions only. However, �simple� does not mean �trivial�. Showing
that the �xpoint problem for SRL is undecidable gives further evidence about
the expressiveness of SRL that we already knew from [21] which proves that
programs of SRL exist whose output can be as large as any primitive recursive
function. In particular, for every k ∈ N, there is a program Pk in SRL whose
output value is given by Tk(n) ≥ 2 ↑k n, i.e. a tower of exponentials with k
occurrences of 2s.

On the other side, the last two authors characterize classes of total invertible
functions according to formalisms and ideas typical of Recursion Theory [19, 20,
10]. The long term goal is to prove that some analogous of Kleene Normal Form
Theorem [22] holds for Turing complete classes of recursive reversible functions,
like the one in [10].

In this work we focus on total reversible functions only. Eventually, we are
interested to the relation between SRL and some of the classes of total reversible
functions in [19, 20], the simplest one being RPP [20]. RPP is the class of Re-
versible Primitive Recursive functions. It is Primitive Recursive Complete, the
proof being the one we may expect: a �compilation� of any primitive recursive
function into an equivalent representation of RPP.

Both SRL and RPP rely almost on the same set of computational primitives,
but with some relevant di�erences that we summarize:

� The linear use of every single input and output by a function of RPP is
more explicit than in a corresponding program of SRL;

� Both languages include some ability to say if the value of an argument to a
function is greater, equal or smaller than zero. RPP let the discriminating
primitives explicitly available under the form of a conditional selection
(namely, an if-then-else construct). On the contrary, SRL (stricly)
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incorporates tests inside the iteration condition, as outlined by means
of the informal description of P0,P1,P2 and P3 in the �rst lines of our
introduction.

The here above, apparently small, di�erences have some consequences. On
one side, proving that RPP is equivalent to the Primitive Recursive Functions is
relatively simple. On the other, the direct proof that SRL and RPP are equivalent
is surprisingly di�cult. Despite it is obvious that SRL is a sub-language of RPP,
so far, we have not been able to prove, or disprove, that the converse holds,
i.e. that RPP is, or is not, a sub-language of SRL. More precisely, it is an
open problem if the conditional instruction of RPP can be implemented in SRL.
With a positive answer, SRL would be Primitive Recursive Complete and would
become the candidate as the simplest base for a characterization of reversible
computable functions.

The above question led us to explore many possible alternatives to compare
the expressive power of SRL and RPP. We started to investigate the di�culty
of computational problems for programming languages like SRL and RPP. The
problem that we see as paradigmatic is the equivalence between two programs.
Namely, let L be SRL or RPP. Is it possible to answer: �Given the programs P,
Q in L and that use the same set of registers, does P(x) = Q(x) hold, for
every tuple x of initial values for the registers?� In the reversible computational
models we can answer the previous question if we know how to answer the
identity problem: �Given a program R in L, does R(x) = x hold for every
(tuple) x?�. Obviously, if R is the serial composition of P and the inverse of Q
we also answer the previous equivalence problem between P and Q.

The �xpoint problem seems related to the identity problem because the
universal quanti�cation over x becomes an existential one. Section 6 is about
how the undecidability of the �xpoint problem that we prove in this work relates
to the undecidability of the identity problem.

Contents. This paper revises and extends [23]. The current introduction widens
the one in [23] by explaining the motivations in more detail. Section 2 introduces
the formal background necessary to understand this work. Section 3 illustrates
the �xed points undecidability of SRL programs. Section 4 illustrates the �xed
points undecidability of linear programs. Section 5 is new. It shows that the
cardinality of the set of �xed points of an SRL program is undecidable. Section 6
contains �nal discussions.

2. Technical Preliminaries

The sets of positive integers, non-negative integers, integers, and rational
numbers are denoted by N+, N, Z and Q, respectively.

2.1. The language SRL

SRL is a language whose programs work on registers that store values of Z.
Each program P of SRL de�nes a bijection Zn → Zn, where n ∈ N+ is the
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number of registers that occur in the de�nition of P. Such n registers are said
to bementioned or used in P. The program P−1 is the inverse of P and computes
the inverse bijection (below we explain how to get P−1 in an e�ective manner).

The syntax of SRL-programs relies on four possible constructions: (i) incx
increments the content of the register x by 1; (ii) decx decrements the content of
the register x by 1; (iii) P0;P1 is the sequential composition of 2 programs; and,
(iv) for r(P) iterates P as many times as the initial contents of r if that value
is non-negative; otherwise, if r contains a negative value, then the iteration is
on P−1. Moreover, the constraint that (iv) must satisfy is that neither inc r nor
dec r occur in P, leaving the content of r unchanged.

An SRL-program is linear if, in every instruction of the form for r(P), the
program P does not mention the register r. That is, P can contain neither inc r,
nor dec r, nor for r(P′) instructions.

The inverse of an SRL-program is obtained by transforming incx, decx,
P0;P1 and for r(P) in decx, incx, P1

−1;P0
−1 and for r(P−1), respectively. For

more information on SRL and its extensions, as well as results related with that
language, consult for instance [6] and [20].
Example. Let P be the program for r(for b(inc a); for a(inc b)). Let a = 0, b = 1,
and r = n be the initial values of the corresponding registers. The �nal value
of a is F2n, the Fibonacci number with index 2n where we take Fk de�ned for
every k ∈ Z. (the extension of the de�nition of Fk to negative values of k is
straightforward). We remark that F2n is exponential in n. Moreover, the inverse
of P is for r(for a(dec b); for b(dec a)).

De�nition 1 (Fixpoint of a program). Let P be a SRL program that mentions n
registers x = 〈x1, . . . , xn〉. Let x, a tuple of n integers, denote the initial values
of x. Let P(x) be the tuple of the corresponding �nal contents after P is executed
with the initial values x. If P(x) = x, then the tuple x is a �xpoint of P.

2.2. Decision problems and reductions

Let A(x) be a predicate, i.e. a function from a set to truth values. The
decision problem corresponding to A is: �given x (the instance) is A(x) true?�.
Let B be also a decision problem. A (many-one) reduction of A to B, written
A ≤ B, is an e�ective function f which maps every instance x of A to an
instance f(x) of B such that the answer to �A(x)?� is yes i� the answer to
�B(f(x))?� is yes. The relation ≤ is transitive. If A ≤ B and A is undecidable,
then B is also undecidable, [22, 24, 25, 26, 27, 28, 29, 30].

De�nition 2 (FIXPOINT-decision problem). Let P be a SRL-program. The
FIXPOINT-decision problem is

FIXPOINT(P) ≡ �Does P have a �xpoint?�.

More explicitly, FIXPOINT(P) is equivalent to: �Given a SRL program P, is there
a tuple x such that P(x) = x ?�.
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Moreover, we write l-FIXPOINT(P) whenever the instances are linear SRL pro-
grams. We mean to ask: �Given a linear SRL program P, is there a tuple x such
that P(x) = x?�.

Roughly speaking, this paper is about reducing Hilbert's Tenth Problem [31,
32, 33, 34], also known as the �Diophantine decision problem�, to FIXPOINT(P)
and to l -FIXPOINT(P). We shall �nd a constant c such that the problem
FIXPOINT(P) is undecidable, even for the class of SRL programs that do not
mention more than c registers.

We also prove analogous results for the problem l -FIXPOINT(P), that is,
when P is linear.

2.3. Polynomials

Let p(x1, . . . , xn) be an integer polynomial, i.e. a polynomial with integer
coe�cients and unknowns x1, . . . , xn. A polynomial is in normal form if: (i) it
is a sum of monomials; (ii) each monomial has form cxe1

1 xe2
2 . . . xek

k where c 6= 0
is a constant, the unknowns x1,. . . , xk are pairwise distinct, and ei ≥ 1, for
every 1 ≤ i ≤ k; (iii) no two monomials have the same unknowns with the same
exponents.

For instance, 3x2y+y2−yx2+5 is not in normal form. An unique normal form
of a given p(x1, . . . , xn) can be obtained by sorting in lexicographic order: (i) the
unknowns within each monomial, and (ii) the monomials of the polynomial. For
example, the normal form of 3xy(z + y2) + 2z − 3y3x is 3xyz + 2z. We shall
often omit exponents equal to 1 as well as monomial coe�cients c equal to 1.
The null polynomial is denoted by 0.

De�nition 3. For any polynomial p(x1, . . . , xn) in normal form:

u(p) is the number of unknowns
deg(xi) is the maximum degree of the unknown xi

deg(p) is the maximum among deg(x1) . . . deg(xn)
d(p) is the maximum degree of a monomial of p,

or �the degree of the polynomial� p.

Example. Let p(x, y, z) = xy3z + 2xyz3 − z4. The polynomial p has three
unknowns x, y and z, so u(p) = 3. The unknowns occur with various degrees in
distinct monomials, but the maximal exponents are deg(x) = 1, deg(y) = 3 and
deg(z) = 4. So 4 = deg(p) = deg(z). Finally, d(p) = 5, given by summing up all
the exponents of 2xyz3.

2.4. Hilbert's Tenth Problem and the Diophantine equation problem.

Let D be one among N+, N, Z or Q. As said, we shorten Hilbert's Tenth
Problem by HTP. Its question about a given polynomial p(x1, . . . , xn) is:

HTP(D)(p) ≡ � Does a tuple x1, . . . , xn of values in D exist

such that p(x1, . . . , xn) = 0? �
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HTP(X) can be straightforwardly generalized to questions on a set of integer
polynomials {p1(x1, . . . , xn), . . . , pm(x1, . . . , xn)} as follows:

HTP(X)(p1, . . . , pm) ≡ � Does a tuple x1, . . . , xn of values in D exist

such that pi(x1, . . . , xn) = 0, for every 1 ≤ i ≤ m ? �

The di�culty of solving HTP(D) depends on D, see [31, (1.3.1)], [35, 32, 34].
If a given HTP(D) problem is undecidable, we can look for the least number of
unknowns and the least degrees which su�ce to keep HTP(D) undecidable. To
our knowledge [33] contains the latest (very recent) improvements concerning
the bounds on that number of unknowns. I.e., for a single equation, HTP(Z) is
undecidable for the class of polynomials with at most 11 unknowns.

De�nition 4. If the system of equations consists of a single equation, then
Equ(D) is our favourite notation for HTP(D). Instead, the notation Sys(D)
underlines that the given instance of HTP(D) has more than one Diophantine
equation.

3. Fixpoint problem for SRL

The �rst part of this section focuses on proving the next theorem.

Theorem 1. The problem FIXPOINT as in De�nition 2 (page 5), is undecidable
and complete in Σ0

1.

Proving Theorem 1

The strategy is to reduce Equ(Z), i.e. HTP(Z) that deals with a single Dio-
phantine equation, to FIXPOINT. We show how by means of a signi�cant run-
ning example. The example illustrates how to map a polynomial to a program
of SRL. The general case will follow easily. Let p(x, y) be the polynomial:

p(x, y) = 2x3y2 − xy2 + 2. (1)

We map p(x, y) to the program P(p) which is the sequential composition of the
following three lines of code:

for x(for x(for x(for y(for y(inc s; inc s))))); (A)

for x(for y(for y(dec s))); (B)

inc s; inc s. (C)

Line (A) updates the content of s in accordance with the assignment:

s← s + 2x3y2. (2)

The factor x3 follows from the three nested iterations driven by x. Analogously,
the two nested iterations driven by y yield the factor y2. Factor 2 comes from
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� inc s; inc s�. Under the same idea, lines (B) and (C) produce:

s← s− xy2 (3)

s← s + 2, (4)

respectively. The overall e�ect of P(p) is thus to update the initial value of s
with the value of (1), for every �xed value of x and y.

Concerning the general case, for any polynomial p, the corresponding P(p)
uses as many registers as the number of unknowns of p, plus one register s which
is incremented by the value of p(x, y).

Every monomial of p �is transformed in� blocks of iterations nested as many
times as required to obtain the corresponding exponents. The nested blocks
eventually operate on a program that only contains sequences of inc s, or dec s,
which determine the multiplicative constant factor of the monomial.

We are now ready to comment on how �P(p) has a �xpoint, if, and only if,
p(x, y) = 0 has a solution�, following our running example.

�If P(p) has a �xpoint, then p(x, y) = 0 has a solution�.
Let us assume that the tuple (x, y, s) used as input for the registers (x, y, s) is
a �xpoint of P(p). The execution of P(p) from (x, y, s) � let us denote it as
P(p)(x, y, s) � necessarily replaces the value s + 2x3y2 − xy2 + 2 for s. We can
formalize the overall e�ect as follows:

P(p)(x, y, s) = (x, y, s + 2x3y2 − xy2 + 2).

Being (x, y, s) a �xpoint of P(p), we must have s = s + 2x3y2 − xy2 + 2 which
is possible only if 2x3y2 − xy2 + 2 = 0 = p(x, y). Thus (x, y) is a solution of
p(x, y)=0. �

�If p(x, y) = 0 has a solution, then P(p) has a �xpoint�.
Let us assume that the tuple (x, y) is a solution of p(x, y) = 0. Execute
P(p)(x, y, s), i.e. the program P(p) whose variables (x, y, s) assume the initial
values x, y and s, respectively, with some arbitrarily �xed value s. Then:

P(p)(x, y, s) = (x, y, s + 2x3y2 − xy2 + 2) = (x, y, s + p(x, y))

= (x, y, s + 0) = (x, y, s),

which means that (x, y, s) is a �xpoint of P(p). Since Equ(Z) is Σ0
1-complete [22],

also FIXPOINT is, and this concludes the justi�cation to Theorem 1. �

We now proceed to the strengthening of Theorem 1. In [33, Part 1: Corol-
lary 1.1 (p. 5)] it is stated that the problem Equ(Z) keeps being undecidable even
if the number of unknowns of the polynomials of Equ(Z) does not exceed 11.
Since we know how to reduce Equ(Z) to FIXPOINT in the general case, and in
this reduction the number of program registers equals the number of unknowns
plus 1 (2 + 1 = 3 in our running example), we can improve our result.
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Corollary 1. FIXPOINT is undecidable and complete in Σ0
1 already when FIX-

POINT contain programs that mention at most 12 registers.

4. Linear �xpoint problem for SRL

Let us recall from Section 2 that a program P of SRL is linear, if nested
iterations driven by the same register are forbidden.

De�nition 5 (Linear SRL programs). Let n ∈ N. Then l-SRL(n) denotes the
subset of linear SRL programs that use no more than n registers.

The �rst part of this section focuses on the next theorem.

Theorem 2. The problem l-FIXPOINT is undecidable and complete in Σ0
1.

This result corresponds to Theorem 1 (page 7). The proof strategy reduces
Equ(Z) to l -FIXPOINT. The proof is somewhat more complex than that of
Theorem 1 because the number of registers in a linear program of SRL that
represents the polynomial p of a Diophantine equation depends on the number
of unknowns of p and on its monomial degree (De�nition 3, page 3).

Corollary 2. Let p be a polynomial which is an instance of Equ(Z). Let u(p)
and d(p) be respectively the number of unknowns and the monomial degree of p.
It is possible to reduce the problem p = 0 to the �xpoint problem of a pro-
gram P (p) that belongs to l-SRL(2u(p)d(p)).

Proving Theorem 2

We de�ne a reduction from Equ(Z) � single equation Diophantine problem
over Z � to l -FIXPOINT, the �xpoint problem on linear SRL.

As in the proof of Theorem 1 we illustrate how the proof works by means
of an example. The general case will follow intuitively and, in fact, will be
summarized by Corollary 2. Once again, let:

p(x, y) = 2x3y2 − xy2 + 2. (5)

be the polynomial already used to illustrate how the proof of Theorem 1 works.
The program P(p) which p(x, y) maps to, is the sequential composition of

the following lines of code:

Program Comment

for x(inc a1); for x1(dec a1); a1 ← a1 + x− x1 (a)

for x(inc a2); for x2(dec a2); a2 ← a2 + x− x2 (b)

for y(inc b1); for y1(dec b1); b1 ← b1 + y − y1 (c)

for x(for x1(for x2(for y(for y1(inc s; inc s))))); s← s + 2xx1x2yy1 (d)

for x(for y(for y1(dec s))); s← s− xyy1 (e)

inc s; inc s s← s + 2. (f)

9



The whole sequential composition belongs to l-SRL(9). The registers used
are x, x1, x2, a1, a2, y, y1, b1, and s. By x, x1, x2, y, and y1 we denote the
initial values of the homonyms registers. We remark that the code at lines (d)
and (e) linearize in some sense, the code (A) and (B) of the non linear case at
page 7. We now comment on why �p(x, y) = 0 has a solution if, and only if, the
linear program P(p) has a �xpoint� holds, by following our running example.

�If p(x, y) = 0 has a solution, then P(p) has a �xpoint�.
Let us assume that the tuple (x, y) of instances of (x, y) is a solution of p(x, y) =
0.

Execute P(p)(x, x, x, a1, a2, y, y, b1, s), i.e. the program P(p) whose variables x,
x1, x2, a1, a2, y, y1, b1 and s have initial values x, x, x, a1, a2, y, y, b1, and s,
respectively, for some arbitrarily �xed a1, a2, b1, and s. Then:

P(p)(x, x, x, a1, a2, y, y, b1, s) =

= (x, x, x, a1 + x− x, a2 + x− x, y, y, b1 + y − y, s + 2xxxyy − xyy + 2) (6)

= (x, x, x, a1, a2, y, y, b1, s + 2x3y2 − xy2 + 2)

= (x, x, x, a1, a2, y, y, b1, s) (7)

where (6) holds because x, x1, x2, y and y1 never change while a1, a2, b1 and s
get updated in accordance with the behavior of P(p). On the other hand, (7) is
true because 0 = 2x3y2− xy2 + 2 by assumption. Thus, the linear program P(p)
of SRL has a �xpoint. �

�If P has a �xpoint, then p(x, y) = 0 has a solution�.
Let (x, x1, x2, a1, a2, y, y1, b1, s), inputs for the registers (x, x1, x2, a1, a2, y, y1, b1, s),
be a �xpoint of P(p). Let P(p)(x, x1, x2, a1, a2, y, y1, b1, s) denote the execution of
P(p) from (x, x1, x2, a1, a2, y, y1, b1, s). By following what happens to the values
of x, x1, x2, a1, a2, y, y1, b1 and s from (a) through (f) in the program above, we
obtain:

P(p)(x, x1, x2, a1, a2, y, y1, b1, s) =

(x, x1, x2, a1 + x− x1, a2 + x− x2, y, y1, b1 + y − y1,

s + 2xx1x2yy1 − xyy1 + 2)

where x, x1, x2, y, and y1 remain constant because they only drive iterations.
Being (x, x1, x2, a1, a2, y, y1, b1, s) a �xpoint of P(p), we must satisfy the following
series of constraints:

a1 = a1 + x− x1 (8)

a2 = a2 + x− x2 (9)

b1 = b1 + y − y1 (10)

s = s + 2xx1x2yy1 − xyy1 + 2. (11)

10



As the left and right-hand side of (8), (9) and (10) must be equal, forcefully:

x1 = x x2 = x y1 = y.

Distributing them inside (11) yields the constraint that: s = s+ 2x3y2− xy2 + 2
which we can satisfy only if 0 = 2x3y2 − xy2 + 2 = p(x, y), i.e. p(x, y) has a
solution. Since Equ(Z) is Σ0

1-complete [22], l -FIXPOINT is and this concludes
the justi�cation of Theorem 2. �

4.1. Proving Corollary 2

We want to exploit our running example to estimate a reasonably tight
bound on the amount of registers that P(p) uses, where P(p) is the program
de�ned in the above reduction. Looking at P(p) as the sequential composition
of (a) through (f) we can state the following.

� P(p) must have one register for every unknown of p(x, y) plus one register
which stores the value of p(x, y). So we have the three registers x, y and s.
For a generic polynomial q, this means that P(q) needs u(q) + 1 registers.

� P(p) also uses a pair x1, x2 of registers. All together, x, x1 and x2 com-
pute x3 for any value x that we assign to the unknown x of the polyno-
mial p. Equivalently, x1 and x2 stand for the linearization of x inside P(p)
and they are as many as the degree d(x) of x minus 1 because x counts
for one occurrence of itself, of course. The meaning of y1 is analogous.
Together with y it counts for the two occurrences of y in P(p) that we
use for the unknown y of p to obtain y2. For a generic polynomial q, this
means that P(q) also needs

∑
x, unknown of q [d(x)− 1] registers.

� Finally, P(p) also uses a pair of registers a1, a2. They are the key ingre-
dient that let the reduction work. Speci�cally, every ai assures that the
corresponding xi is in fact a copy of x. The meaning of b1 (there is an
unique bi in our running example) is analogous. It ensures that y1 contains
the same value as y. For a generic polynomial q, this boils down to have
as many registers as the number of copies of the unknowns of q. So P(q)
needs

∑
x, unknown of q [d(x)− 1] further registers.

Summarizing, given an instance q(x1, . . . , xm) = 0 of Equ(Z), the linear pro-
gram P(q) of SRL uses as many as u(p) + 1 + 2u(p)(d(p) − 1) registers, which
can be bounded as

u(p) + 1 + 2u(p)(d(p)− 1) = u(p)(2d(p)− 1) + 1 ≤ 2u(p)d(p).

So, P(q) ∈ l-SRL( 2u(p)d(p) ). �

4.2. Strengthening Theorem 2

Theorem 2 can be strengthened like Theorem 1.

Theorem 3. The problem l-FIXPOINT is undecidable and complete in Σ0
1 for

linear programs in l-SRL(3712).
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Equation Program
u d 16ud

58 4 3 712 ←
38 8 4 864
32 12 6 144
29 16 7 424
28 20 8 960
26 24 9 984
25 28 11 200
24 36 13 824
. . . . . . . . .

Figure 1: The �rst two columns are from [32, page 861]. For each row they state that the
Equ(N+) sub-problem that asks for the existence of zeros of a Diophantine equations over N+

(with coe�cients in Z) with no more than u unknowns and monomial degree not exceeding d,
is undecidable. The third column expresses that l-FIXPOINT is undecidable even considering
programs with no more than 16ud registers only. Thus, from the data in [32], the best upper
bound on the �number of registers su�cient for undecidability� is 3 712.

The proof of Theorem 3 relies on two results of [32]. The �rst result presents
an universal system of Diophantine equations which includes the parameters x,
z, u and y and 28 unknowns that take values in N+ [32, Theorem 3]. Fixing
values for x, y, u and z yields a set Sx,y,u,z of Diophantine equations, i.e. an
instance of Sys(N+). Then, Sx,y,u,z has a solution if and only if x ∈ W〈z,u,y〉
(notation of [32]), where W〈z,u,y〉 is a system of equations which we can think
of as expressive as a universal Turing machine. The system Sx,y,u,z can be
transformed into a single Diophantine equation sx,y,u,z over N+ whose polyno-
mial has monomial degree 4 and 58 unknowns, besides the above x, y, u and z.
Therefore, sx,y,u,z belongs to Equ(N+).

The second result we need is [32, Theorem 4]. It lists a sequence of pairs
(u, d) of natural numbers as in Figure 1. The decision problem p = 0 of Equ(N+)
is undecidable even if the instance p belongs to the class of polynomials with no
more than u unknowns and monomial degree not exceeding d. So, Theorem 4
of [32] directly implies that sx,y,u,z is undecidable and Σ0

1-complete whenever
the u and the d of the polynomial it involves occur in Figure 1.

Standard techniques [31] imply that we can reduce the instance sx,y,u,z
of Equ(N+) to s′x,y,u,z of Equ(Z) so that the polynomial p of s′x,y,u,z has 4×58 =
232 unknowns and monomial degree equal to 2 × 4 = 8. Corollary 2 at page 9
applies to s′x,y,u,z, so that that the number of registers that the linear pro-
gram P(p) uses is 2 × 232 × 8 = 3712. Being s′x,y,u,z undecidable implies that
l -FIXPOINT is undecidable for P(p) ∈ l-SRL(3712). �
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5. Cardinality of the set of �xpoints

In this section we study some problems related with the number of �xpoints
that a SRL program can have. The results we obtain are a consequence of a new
reduction of Hilbert's Tenth problem to the SRL �xpoint problem.

Let p(x1, . . . , xn) = 0 be a Diophantine equation. If we had to summarize
the e�ect of the corresponding program P(p) in Section 3, we would write:

P(p)(x1, . . . , xn, s) = (x1, . . . , xn, s + p(x1, . . . , xn)) . (12)

If x1, . . . , xn is a solution of p(x1, . . . , xn) = 0, then in�nitely many �xpoints
(x1, . . . , xn, 0), (x1, . . . , xn,±1), (x1, . . . , xn,±2),. . . of P(p) exist because the ini-
tial value of the register s has no in�uence on the overall behavior of P(p).

Theorem 4 (Cardinality preserving map). Let Z be the set of solutions for a
given Diophantine equation p(x1, . . . , xn) = 0. A map Q from p(x1, . . . , xn) to
a program Q(p) exists such that if F denotes the set of �xpoints of Q(p), then
the cardinalities of Z and F coincide.

For proving Theorem 4 we �rst introduce the map Q. Given p(x1, . . . , xn),
by de�nition:

Q(p) = for s(incx1); P(p) (13)

where P(p) is the program in SRL that we generate with the map used in the
reduction of HTP(Z) to FIXPOINT in Section 3 and s is the register that even-
tually contains the result. We remark that, using any among x1, . . . , xn in place
of x1 would be irrelevant.

In our running example, i.e. p(x, y) = 2x3y2 − xy2 + 2 in (1), the new map
Q(p) produces:

for s(incx); (*)

for x(for x(for x(for y(for y(inc s; inc s))))); (A)

for x(for y(for y(dec s))); (B)

inc s; inc s. (C)

Compared with P(p) at (A), (B) and (C), the new line (*) modi�es the content
of the register x if and only if the initial contents of s is not 0. In general, it is
easy to see that any eventual �xpoint of Q(p) must have the initial contents of
s equal to 0.

We are now ready to show that Theorem 4 above is, in fact, a corollary of
the next lemma.

Lemma 1. Let Z be the set of solutions of the Diophantine equation p(x1, . . .
, xn) = 0. Then, (x1, . . . , xn) ∈ Z if, and only if, Q(p)(x1, . . . , xn, 0) = (x1, . . . , xn, 0).

Proof. Let us start by assuming (x1, . . . , xn) ∈ Z, i.e. p(x1, . . . , xn) = 0. Then,
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Q(p) behaves as follows:

Q(p)(x1, x2, . . . , xn, 0) = (for s(incx1); P(p))(x1, x2, . . . , xn, 0)

= (x1 + 0, x2, . . . , xn, 0 + p(x1 + 0, . . . , xn))

= (x1, x2, . . . , xn, 0).

In the other direction, let Q(p)(x1, x2, . . . , xn, 0) = (x1, x2, . . . , xn, 0). Then:

Q(p)(x1, x2, . . . , xn, 0) = (x1, x2, . . . , xn, 0) (14)

= (x1 + s, x2, . . . , xn, s + p(x1 + s, x2, . . . , xn)) (15)

where s is the value of the register s. The equation (15) is the tuple that
Q(p)(x1, x2, . . . , xn, s) e�ectively computes. Since (14) holds by assumption, nec-
essarily s = 0 and p(x1 + 0, x2, . . . , xn) = 0, i.e. (x1 + 0, x2 . . . , xn) ∈ Z.

Corollary 3. Programs of SRL exist with exactly k �xpoints, for any k ∈ N.
Moreover, programs of SRL exist with an in�nite number of �xpoints.

Proof. It is easy to see that multivariate polynomials exist with exactly k solu-
tions, for any k ∈ N. For instance, for k = 3 and variables x1 and x2 we can
have (x1 − 1)(x1 − 2)(x1 − 3)(x2

2 + 1). There are also multivariate polynomi-
als with an in�nite number of solutions, for instance, x1x2 (for k = 2). The
corresponding SRL programs inherits the same �xpoint cardinalities, thanks to
Theorem 4.

Let C = {0, 1, 2, . . . ,ℵ0} where ℵ0 is the cardinality of natural numbers. Let
∅ ⊂ A ⊂ C. Let Z be the set of solutions of a given Diophantine equation
p(x1, . . . , xn) = 0. In [36], Davis says that we cannot decide if the cardinality
of Z belongs to A. Namely, no general algorithms exists for determining the
�dimension� of Z.

Corollary 4. Let ∅ ⊂ A ⊂ {0, 1, 2, . . . ,ℵ0}. We cannot decide if the cardinality
of the set of �xpoints of a program of SRL belongs to A.

Proof. Use Theorem 4 above and [36, Theorem in page 552].

Albeit the cardinality of F can be decided only for trivial cases, some further
interesting cardinality problem is still open. We comment on this in Section 6.

6. Conclusions and future work

In this work have investigated the expressiveness of SRL by studying the de-
cidability of a computational problem which is a classical one for paradigmatic
programming languages. We prove that �Does a given SRL program P have a
�xed point x?�, that is, �∃x : P(x) = x?�, is undecidable. We look at our re-
sults as signi�cant because, broadly speaking, simple decision problems about
very simple programming languages, like SRL is, are expected to be decidable.
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In extreme synthesis, the �xpoint problem for SRL is undecidable because it
�contains� the problem that asks for the existence of a solution of a polynomial
equation which, in its turn, contains the undecidable Turing machine (or uni-
versal register language) halting problem. We deepen the above results in two
directions. First, we show that upper bounds on the number of programming
registers exist which imply the undecidability: 12 registers are enough in the
general case and 3712 in the linear one. Second, we show that, except in trivial
cases, deciding if the set of �xpoints of a SRL program has a given cardinality
is also undecidable.

6.1. Future work

Plans for future work are manifold.

Lower bounds on the number of registers. Strengthen the above lower bounds
on the number of registers that let FIXPOINT undecidable.

Cardinality of FIXPOINT. Investigate the decidability of quantitative questions.
Let FIXPOINTi(P) denote the problem: �Does the set of �xpoints of the program
P have cardinality i?�, for some i. Complementarily, let NOT-FIXPOINTi(P)
denote the problem: �Does the set of inputs which are not �xpoints of the
program P have cardinality i?�, for some i. Possible questions are:

1. Does any i ∈ N+ exist such that NOT-FIXPOINTi(P) is true, for some
SRL programs P? As a comment, we remark that Davis' [36] is not useful
to answer this question. The reason is that there is no polynomial whose
number of integer non-solutions is �nite and positive. Equivalently, if a
tuple of integers is not a solution of a given polynomial, then in�nitely
many tuples exist which are not solutions of that polynomial. However
�in�nite� is not equivalent to saying that every tuple of integer values is
not a solution.

2. Do both FIXPOINTi(P) and FIXPOINTj(P) always belong to the same
class of the Arithmetic Hierarchy? We conjecture that FIXPOINTℵ0(P)
cannot belong to the classes that contain every FIXPOINTi(P), for i > 0.
Moreover, any among FIXPOINTi(P), with i > 0, can be in the classes
which FIXPOINT0(P) belongs to.

The question at Point 1 here above is crucial, because it represents the next
step in our �xed point search. Answering to it when i = 0 would amount to
answering about the equivalence between two programs of SRL. That is why we
see the study of FIXPOINT and of �counting� the number of �xpoints of programs
of SRL relevant.

SRL and Counter Machines. As suggested by an anonymous referee, a good
way to study the decidability of decision problems over SRL might resume to
analogous results on Counter Machines automata (CM for short).

A �rst justi�cation to that suggestion says that a wide source of (un)decid-
ability results on CM variants exists. The reason is that a CM with 2 counters
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is equivalent to a Turing machine, but suitable restrictions on registers allow to
de�ne weaker CMs.

A second reason is that CM, at �rst glance, looks similar to SRL, especially if
we restrict to BRCM, i.e. bounded-reversal CM. The following table summarizes
common aspects of the two computational models:

CM SRL

Memory Counter Register

Arithmetic

operators
Increment/Decrement Increment/Decrement

State
Explicit in the structure
of an automata

Hidden in the �ow structure
of a program

Computational

restrictions

Limited number of
increment/decrement
reversals

Built-in as �nite iterations

However, also neat di�erences exist between the two models. We outline them
in the following table:

CM SRL

Register

Domain
(Typically restricted to) N Z

Input On-line Registers with initial values

Flow (Non)Deterministic automata Reversible program

Termination
Accepting or rejecting
con�gurations

Registers with �nal values in
them

Control

operators
Conditional jump No jump intructions

whose entries we brie�y comment about here below.
Concerning the Register Domain, in principle, it is possible to devise a vari-

ant of SRL working on N, instead than Z, because Z can be represented by pairs
of natural numbers that can express negative values, if we think of subtracting
the second component of the pair from the �rst one, for example. However,
even if we restricted SRL to work on N its main purpose would be to repre-
sent bijective functions. On the other side, the goal of CM is to accept or
reject strings with the help of the values that their counters may assume. Typ-
ically, (un)decidability results relative to CM refer to counter machines where
the decrement operation cannot make the value of any counter negative. Excep-
tions are blind and partially blind CM in [37] by Greibach, whose counters can
assume negative values. Currently, we hardly see how to accomodate the global
blocking condition, which stops a partially blind CM when a register becomes
negative, in a reversible setting. Instead, we think it is sensible to explore how
to accommodate the global accepting condition of blind CM which successfully
holds whenever, starting from a con�guration whose counters are all set to 0,
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eventually reaches again a situation with all its counters set to 0. This behavior
might correspond to a careful use of input and ancillary registers in a program
of SRL which are expected to contain 0 at the end of its reversible computa-
tion. Essentially, this idea has been also considered in [10] for another reversible
language.

Concerning the Input, being the CM automata, they typically operate on an
input which is a stream of characters. Programs of SRL model a functional-
like computation which assumes that all the required input is available in the
registers when the computation starts.

Concerning the Flow, we think that Morita outlines which is the point
in [38, 15]. He essentially observes that to make a CM reversible, it is necessary
to explicitly restrict its underlying automaton with some kind of backward de-
terminism. At that point, applying (un)decidability results that hold on CM, to
SRL, does not look an immediate task.

Concerning the Termination, beside the above observations on blind and
partially blind CM, we remark that the global blocking condition that can stop
any blind CM con�gures those automata as computing partial functions. This
is not at all contemplated in the interpretation of SRL programs which compute
total functions.

Finally, concerning Control operators, the instruction set of a CM typically
contains conditional jumps, something which, to us, is not at all immediately
available in SRL. By the way, were we able to encode some sort of if-then-else
in SRL, we would prove its equivalence with the class of Reversible Primitive
Permutations in [19, 20], by incontrovertibly making SRL the simplest primitive
recursive complete reversible programming language.

All that said, we anyway conclude by sketching how a possible embedding
from CM into a program of SRL could work. The starting point could be [39]
by Straÿburger. He shows that the problem of deriving a formula in a speci�c
version of Linear Logic � he calls it NEL � is undecidable because 2-counter
machines (2CM) can be mapped to formulas of NEL. The culprit of the result is
to show that accepting an initial con�guration by a 2CM becomes the problem
of deriving a suitable formula in NEL. We conjecture that an analogous result
holds once the current operational semantics of SRL is rephrased as a deductive
system inspired in NEL.
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