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Abstract 

Hepatocellular carcinoma (HCC) develops through a multistage process, but the nature of the molecular changes 
associated with the different steps, the very early ones in particular, is largely unknown. Recently, dysregulation of the 
NRF2/KEAP1 pathway and mutations of these genes have been observed in experimental and human tumors, 
suggesting their possible role in cancer development. To assess whether Nrf2/Keap1 mutations are early or late events 
in HCC development, we investigated their frequency in the rat Resistant Hepatocyte model, consisting of the 
administration of diethylnitrosamine followed by a brief exposure to 2-acetylaminofluorene. This model enables the 
dissection of all stages of hepatocarcinogenesis. We found that Nrf2/Keap1 mutations were present in 71% of early 
preneoplastic lesions and in 78.6% and 59.3% of early and advanced HCCs, respectively. Mutations ofNrf2 were more 
frequent, missense, and located in the Nrf2-Keap1 binding region. Mutations of Keap1 occurred at a much lower 
frequency in both preneoplastic lesions and HCCs and were mutually exclusive with those of Nrf2. Functional in 
vitro and in vivostudies showed that Nrf2 silencing inhibited the ability of tumorigenic rat cells to grow in soft agar and to 
form tumors. Unlike Nrf2mutations, those of Ctnnb1, which are frequent in human HCC, were a later event as they 
appeared only in fully advanced HCCs (18.5%). Conclusion: In the Resistant Hepatocyte model of hepatocarcinogenesis 
the onset of Nrf2 mutations is a very early event, likely essential for the clonal expansion of preneoplastic hepatocytes to 
HCC, while Ctnnb1 mutations occur only at very late stages. Moreover, functional experiments demonstrate that Nrf2 is 
an oncogene critical for HCC progression and development. (HEPATOLOGY2015;62:851-862) 
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aHCC: advanced HCC 

DENA: diethylnitrosamine 
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eHCC: early HCC 

GS: glutamine synthase 

HCC: hepatocellular carcinoma 

qRT-PCR: quantitative reverse-transcriptase polymerase chain reaction 

R-H: resistant-hepatocyte 

 

Hepatocellular carcinoma (HCC) is the third most frequent cause of cancer-related deaths worldwide.[1] Unfortunately, 
our knowledge of the genomic alterations implicated in HCC initiation and progression is still fragmentary. Moreover, 
different from other solid tumors, no driving genetic alteration to which tumor cells are addicted and that can be 
effectively targeted has ever been identified. In this scenario, HCC is probably one of the tumor types where a more 
complete understanding of the underlying genetic alterations could have a major impact on the development of new 
treatment strategies. Also known as NFE2L2, NRF2 is of particular interest as conflicting results have been reported 
concerning the role of the NRF2/KEAP1 pathway in cancer development.[2] It is a master transcriptional activator of 
genes encoding enzymes that protect cells from oxidative stress and xenobiotics by induction of transcriptional 
regulation of several antioxidant enzymatic pathways and various drug efflux pumps and members of the multidrug 
resistance protein family.[3] It is negatively regulated and targeted to proteosomal degradation by KEAP1.[4] It was 
reported in several studies that either loss of NRF2-KEAP1 interaction or point mutations in the KEAP1 or NRF2 gene 
are often associated with primary tumors.[3] As for human HCC, two recent studies using whole-exome sequencing have 
revealed mutations of either NRF2 (6.4%) or KEAP1 (8%),[5, 6] suggesting that dysregulation of this pathway may play a 
relevant role in a subset of human HCCs. Dysregulation of the Nrf2/Keap1 pathway, monitored through analysis of the 
expression profile of HCC, has also been described in two mouse models where tumors developed in the liver of 
transforming growth factor-α–c-myc double knockout or in the liver of mice subjected to treatment with diethylnitrosamine 
plus phenobarbital.[7, 8] In both these studies, as well as in humans, however, gene mutation and/or dysregulation of the 
Nrf2/Keap1 pathway were investigated only at the final biological endpoint, namely, HCC. This makes it difficult to 
understand whether alteration of this pathway is critical for HCC development or if it represents one of the several 
molecular changes featured in HCC. The same problem applies also to mutations in the Ctnnb1 gene; in fact, while 
mutations of this gene are frequent in human HCC,[9] whether they are involved in HCC initiation[10] or take place only 
during HCC progression[11] is still a matter of debate. 

Recently, we have shown that the Nrf2/Keap1 pathway is dysregulated in the very early steps of the carcinogenic 
process in rat liver.[12]Therefore, this study investigated whether, similar to the human situation, mutations 
of Nrf2 and/or Keap1 could be responsible for the alteration of this pathway. Using the same animal model, we also 
investigated the occurrence of Ctnnb1 mutations in the different stages of hepatocarcinogenesis. The results 
demonstrate that (1) mutations of Nrf2 are extremely frequent in rat HCC, (2) they represent a very early event in the 
tumorigenic process occurring in early preneoplastic stages, and (3) mutations of Ctnnb1, a gene frequently mutated in 
human HCC, occur only during the progression from early to advanced HCC. 

 

Materials and Methods 

Resistant-Hepatocyte Model 

Guidelines for the Care and Use of Laboratory Animals were followed during the investigation. All animal procedures 
were approved by the Ethical Committee of the University of Cagliari and the Italian Ministry of Health. Male Fischer F-
344 rats (100-125 g) were purchased from Charles River (Milan, Italy). Animals were injected intraperitoneally with 
diethylnitrosamine (DENA; Sigma, St. Louis, MO) at a dose of 150 mg/kg body weight. After a 2-week recovery period, 
rats were fed a diet containing 0.02% 2-acetylaminofluorene (Sigma) for 1 week, followed by a two-thirds partial 
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hepatectomy and by an additional week of the 2-acetylaminofluorene diet. Animals were then returned to the basal diet 
and killed at 10 weeks (preneoplastic nodules), 10 months (early HCCs [eHCCs]), or 14 months (advanced HCCs 
[aHCCs]) after DENA (for a schematic representation of the experimental protocol, see Supporting Fig. S1A). Histologic 
classification of preneoplastic nodules as eHCCs or aHCCs was performed as described[13] and as detailed in the 
Supporting Information. Lung metastases were macroscopically identified in aHCC-bearing rats and further analyzed by 
hematoxylin and eosin staining. 

Immunohistochemistry 

Frozen liver sections were collected and fixed in −20°C acetone for 20 minutes at room temperature. Paraffin-embedded 
sections were incubated overnight with the following antibodies: anti–placental glutathione S-transferase (MBL, Nagoya, 
Japan), anti–glutamine synthase (GS; Sigma-Aldrich), anti-NQO1 (Abcam, Cambridge, MA), and anti-NRF2 (Santa Cruz 
Biotechnology, Dallas, TX) and detected by antirabbit HRP antibody and 3,3′-diaminobenzidine (Dako Envision). 
Sections were counterstained with Harris hematoxylin. 

Laser-Capture Microdissection 

We microdissected 38 early preneoplastic nodules, 14 eHCCs, and 27 aHCCs. Serial frozen sections of rat livers (16 μm 
thick) were attached to 2-μm RNase free polyethylene naphthalate membrane slides (Leica, Wetzlar, Germany). 
Microdissection (Leica, LMD6000) was followed by hematoxylin and eosin staining. 

Quantitative Reverse-Transcriptase Polymerase Chain Reaction Analysis 

We isolated RNA from microdissected preneoplastic and neoplastic lesions using MirVana (Ambion, Austin, TX), as 
reported.[12]Retrotranscription was performed starting from 0.5 μg RNA/sample using the High Capacity Kit (Applied 
Biosystems, Carlsbad, CA). Gene expression was assessed by quantitative reverse-transcriptase polymerase chain 
reaction (qRT-PCR) using specific TaqMan probes (Nqo1, Gclc, Gsta4, Gs, Nrf2, Gapdh, and β-actin; Applied 
Biosystems) or Express Sybr Green (Invitrogen, Paisley, UK) for Keap1 and β-actin. The relative levels were determined 
using the ΔΔCT method. 

Sequencing 

Genomic DNA was extracted from the same samples used for qRT-PCR analysis with minor modifications (see 
Supporting Information). To identify Nrf2 mutations, we analyzed 38 rat preneoplastic lesions, 14 eHCCs, and 27 aHCCs 
obtained from five, three, and 14 rats, respectively (Supporting Fig. S1B). Nine fragments corresponding to the five 
exons of rat Nrf2 gene (annealing 66°C-60°C) were amplified using a Touch-down PCR protocol. For details of the 
amplification protocols, please see the Supporting Information. All PCR products were amplified with High-
Fidelity Taq polymerase (Platinum Taq DNA Polymerase High Fidelity; Invitrogen), purified (by exonuclease 1 and 
shrimp alkaline phosphatase), and sequenced by fluorescence-based Sanger's direct sequencing in an ABI 3130 DNA 
capillary sequencer. The mutation nomenclature described in this study is given according to the numbering of the amino 
acids in the human protein sequence (Ensembl). 

Transient Transfection of HEK293T Cells 

In a 5% CO2 atmosphere HEK293T cells (ATCC, Manassas, VA) were cultured in Dulbecco's modified Eagle's medium 
with 10% fetal bovine serum (Lonza, Basel, Switzerland). For transient transfection, an NRF2 lentiviral construct (217EX-
T3128-Lv157; GeneCopoeia, Rockville, MD) and a KEAP1 encoding plasmid (pCDNA3-T7-Keap1; AddGene, 
Cambridge, MA) were used. The mutant forms of NRF2 (V32E and E82G) were obtained using the QuikChange II XL 
Site-Directed Mutagenesis Kit (Agilent Technologies). Using the calcium phosphate technique, HEK293T cells were 
transfected with 10 μg of NRF2 and KEAP1 constructs. Extraction of RNA was performed upon 48 hours using the 
miRNeasy Mini Kit (Qiagen). Expression of NQO1 was evaluated by qRT-PCR as described above. Western blot 
analysis was performed as described.[12] 
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Stable Transduction With Nrf2 Targeting Short Hairpin RNA 

Cells isolated from an HCC-bearing rat (resistant-hepatocyte [R-H] cells),[12] cultured in Roswell Park Memorial Institute 
10% fetal bovine serum medium, were stably transduced with the 217CS-SH213J-LVRH1P lentiviral vector containing a 
specific custom-designed Nrf2targeting short hairpin RNA (GeneCopoeia). Transduced cells were selected by treatment 
with puromycin (1 μg/mL for 7 days; Invitrogen). Anchorage-independent growth in soft agar was performed, embedding 
3000 cells/well in 0.5% agar (SeaPlaque) in a 24-well plate. At the end of the experiment grown colonies were stained 
with crystal violet and quantified by counting all visible colonies. 

Wild-type and stably Nrf2 silenced R-H cells (1,000,000/rat) were injected subcutaneously in the flank of F-344 
syngeneic rats (n = 6 rats/group). Tumor size was measured twice a week by caliper. Subcutaneous tumor volume was 
calculated using the formula 4/3π (D/2) (d/2) 2, where d is the minor tumor axis and D is the major tumor axis. Rats were 
sacrificed 28 days after injection, and tumors were excised. 

 

Statistical Analysis 

Data are expressed as mean ± standard deviation or mean ± standard error. Analysis of significance was done by the 
Student t test and by one-way analysis of variance using GraphPad software (La Jolla, CA). P values were considered 
significant at P < 0.05. 

 

Results 

Onset of Nrf2 and Keap1 Mutations Is an Early Event in Hepatocarcinogenesis 

The R-H model allows us to dissect the several stages of the carcinogenic process (Supporting Fig. S1A).[14] To 
investigate whetherNrf2/Keap1 mutations take place early in the carcinogenic process and are therefore fundamental for 
HCC progression, we microdissected preneoplastic nodules arising 10 weeks after DENA initiation; these lesions were 
identified by their positivity to the placental form of glutathione S-transferase.[15] As published works indicate that 
most Nrf2 mutations occur in exon 2,[16] we sequenced this exon in 38 preneoplastic lesions and in eight age-matched 
control livers, using Sanger fluorescence-based sequence analysis. Mutational analysis showed that 25/38 (65.8%) 
preneoplastic lesions did exhibit Nrf2 mutations. All of them were missense, the most frequent being at codons 32 (8/25, 
V32E) and 77 (4/25, D77G) (Fig. 1A,B). Twenty-four of 25 Nrf2 mutations were located in the Nrf2 regions coding for 
either the LxxQDxDLG motif (spanning amino acids 17-32) or the DxETGE motif (amino acids 77-82) (Fig. 1C).[16] Both 
these motifs, evolutionarily conserved, bind to the Kelch domain in Keap1. Analysis of the predicted effects of these 
changes (MUpro software, athttp://www.ics.uci.edu/∼baldig/mutation.html, PolyPhen-2, 
at http://genetics.bwh.harvard.edu/pph2/) showed that all the mutations profoundly impair the binding between Keap1 
and Nrf2 and should be considered as activating mutations (data not shown). Given the extremely high frequency 
of Nrf2 mutations in early lesions, we sequenced the remaining Nrf2 exons (exons 1, 3, 4, 5); but no further mutations 
were detected. Because Keap1 mutations disrupting the interaction with Nrf2 have already been described in human 
HCCs,[4]we also sequenced Keap1 exons coding for the Kelch domain, involved in the binding to 
Nrf2.[17] Notably, Keap1 mutations were found in two samples lacking Nrf2 mutations (Fig. 1A). Sequencing 
of Keap1 exons not involved in Nrf2 binding was also performed, but no further mutations were found. Complementary 
DNA sequencing of Nrf2 full-length transcripts confirmed the presence of the same mutations (data not shown). Analysis 
of age-matched control livers revealed no Nrf2/Keap1 mutation. Thus, Nrf2/Keap1 mutations represent very early events 
in the hepatocarcinogenic process. 

http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-bib-0012
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-bib-0014
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-bib-0015
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-bib-0016
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-fig-0001
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-fig-0001
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-bib-0016
http://www.ics.uci.edu/baldig/mutation.html
http://genetics.bwh.harvard.edu/pph2/
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-bib-0004
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-bib-0017
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-fig-0001


 
Figure 1. Mutations in Nrf2/Keap1 in preneoplastic lesions. (A) Mutations inNrf2 and Keap1 identified in 38 preneoplastic lesions. All 
PCR products were purified and sequenced by fluorescence-based Sanger's direct sequencing in an ABI 3130 DNA capillary 
sequencer. *These two mutations were identified in the same lesion. (B) Electropherogram showing the most frequent Nrf2mutation. 
(C) Scheme illustrating the position of Nrf2 mutations. All mutations are located in the LxxDQxDLG and DxETGE motifs responsible 
for Keap1binding. Amino acid changes are shown in red. 

 

Nrf2/Keap1 Mutations Lead To Pathway Activation 

To directly establish whether Nrf2 and Keap1 mutations result in increased Nrf2 transcriptional activity, we analyzed the 
expression of three established target genes.[18] The results shown in Fig. 2A demonstrate that all three examined 
genes (Nqo1, Gclc, Gsta4) were strongly up-regulated in mutated preneoplastic lesions compared to control liver or to 
nonmutated preneoplastic nodules, suggesting that these are, actually, activating mutations. 
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Figure 2. Mutations in Nrf2 lead to pathway activation. (A) Expression levels of three Nrf2-target genes in Nrf2/Keap1 mutated or 
nonmutated preneoplastic lesions. Messenger RNA levels of Nqo1, Gclc, and Gsta4 were evaluated by qRT-PCR and normalized to 
age-matched control livers. Glyceraldehyde 3-phosphate dehydrogenase was used as endogenous control. Error bars represent 
standard deviation. ***P < 0.001, **P < 0.01, *P < 0.05. (B,C) Lentiviral vectors containing wild-type or mutated Nrf2 complementary 
DNAs were transfected alone (B) or in combination with a Keap1 expression vector (C) in HEK293T cells with the calcium-phosphate 
technique. Expression of Nqo1 was evaluated by qRT-PCR 48 hours after transfection and normalized to mock transfected cells. 
Beta-actin was used as endogenous control. Error bars represent standard deviation. ****P < 0.0001, **P < 0.01. NRF2_V32E and 
NRF2_E82G are NRF2 mutated forms; “Mock” indicates empty vector. Abbreviation: mRNA, messenger RNA; NS, not significant. 

 

To further assess if the mutations observed in preneoplastic lesions are indeed activating mutations, transient 
transfection of HEK293T cells with lentiviral vectors containing either wild-type or mutated NRF2 complementary DNA 
(V32E and E82G) was performed (Supporting Fig. S2A). The results showed a significantly stronger activation of the 
NRF2 pathway (evaluated as NQO1 transcription) in cells expressing the two analyzed mutated forms (Fig. 2B). 
Moreover, while cells transduced with both wild-type NRF2 and KEAP1 expression vectors did not show any increase 
of NQO1 expression, a significant increase of this gene was observed in cells expressing the two NRF2 mutants 
andKEAP1 (Fig. 2C and Supporting Fig. S2B). These data provide evidence that the NRF2 mutated forms are indeed 
unable to interact with KEAP1 and thus sustain the increased pathway activation. 

Nrf2 Mutations Occur at High Frequency in HCCs 

Next, we investigated Nrf2 mutations in eHCCs developed 10 months after DENA treatment. The lesions were 
composed of well-differentiated cells with minimal atypia, frequent fatty change, and increased nuclear/cytoplasmic ratio; 
they were not encapsulated and blended imperceptibly into adjacent nontumorous parenchyma. Normal lobular 
architecture was replaced by a compact pattern of thin trabeculae, with occasional small pseudoglandular or acinar 
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structures (Supporting Fig. S3A). No lung metastases were found in animals bearing eHCC. Advanced HCCs developed 
4 months later and were composed of poorly differentiated cells, not resembling hepatocytes, arranged in thick 
trabeculae or pseudoglandular patterns. Pleomorphism, including bizarre giant cells, was frequently seen (Supporting 
Fig. S3B). Lung metastases (Supporting Fig. S3C) were found in 50% of the animals. 

Eight of the 14 eHCCs (57.1%) showed missense mutation of Nrf2; three were located at codon 32 (V32E) and one each 
at codons 23 (L23P), 27 (D27G), 30 (L30R), 77 (D77G), and 82 (E82G) (Fig. 3A). Mutations of Keap1 were also 
observed in three eHCCs. Interestingly,Keap1 mutations, similar to what was observed in early lesions, were mutually 
exclusive with Nrf2 mutations (Fig. 3A). 

 
Figure 3. Mutations in Nrf2/Keap1 and pathway activation in eHCCs and aHCCs. (A) Mutations in Nrf2 and Keap1 in 14 eHCCs and 
27 aHCCs. All PCR products were purified and sequenced by fluorescence-based Sanger's direct sequencing in an ABI 3130 DNA 
capillary sequencer. *These two mutations were identified in the same lesion. (B) Expression levels of the Nrf2-target gene Nqo1, 
evaluated in all the eHCCs and aHCCs. (C) Expression levels of Nqo1, evaluated in Nrf2/Keap1 mutated or nonmutated eHCCs and 
aHCCs. Messenger RNA levels in Nqo1 were evaluated by qRT-PCR and normalized to age-matched control livers. Glyceraldehyde 
3-phosphate dehydrogenase was used as endogenous control. Error bars represent standard deviation. ***P < 0.001, **P < 0.01, 
*P < 0.05. Abbreviation: mRNA, messenger RNA; NS, not significant. 
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Mutations in Nrf2 were present in 15/27 aHCCs (55.6%) developed at 14 months after DENA. Eleven mutations were 
located in the region coding for the LxxQDxDLG motif, while four were in the DxETGE motif. In particular, seven 
mutations were located at codon 32 (V32E), three at codon 30 (two L30H, one L30P) and one each at codons 29 
(D29G), 77 (D77G), 79 (E79G), 80 (T80A), and 82 (E82G) (Fig. 3A). Only one mutation (V581E) of Keap1 was detected 
in an aHCC devoid of Nrf2 mutations. Therefore, mutation of Nrf2/Keap1 accounted for 59.3% of the examined aHCCs. 
Age-matched control livers showed no mutations of Nrf2 or Keap1. 

When we investigated the activation of the Nrf2/Keap1 pathway, we found a strong up-regulation of Nqo1 in eHCCs and 
aHCCs compared to normal liver (Fig. 3B). Interestingly, unlike preneoplastic lesions, no significant difference 
in Nqo1 expression was found in mutated versus nonmutated HCCs (Fig. 3C), suggesting that at late stages the 
Nrf2/Keap1 pathway no longer depends on the presence of activating mutations only but can be activated by other 
mechanisms as well.[12] 

The Nrf2/Keap1 Pathway Is Also Activated in Lung Metastases 

Finally, we also examined the Nrf2/Keap1 pathway in lung metastases of rats sacrificed 14 months after DENA 
administration. The results showed the presence of multiple metastases in 50% of HCC-bearing rats (Supporting Fig. 
S3C). Lung metastases examined in five animals displayed strong and uniform cytoplasmic positivity for Nqo1 
(Fig. 4A,B). Accordingly, the same metastases exhibited both cytoplasmic and nuclear positivity for Nrf2 (Fig. 4C). These 
data show that activation of the Nrf2 pathway persists up to the final stage of the carcinogenic process. 

 
Figure 4. The Nrf2/Keap1 pathway is activated in lung metastases. (A) Representative photomicrograph of a lung displaying several 
HCC metastases, immunostained for Nqo1 (×10). (B) Higher magnification of the inset shown in (A). Ciliary cells and metastatic 
hepatocytes are intensely positive for Nqo1 staining (×20). (C) Serial section of the same area as in (B), immunostained for Nrf2 
(×20). 

 

Targeting Nrf2 Mutations Impairs Anchorage-Independent Growth and Tumorigenic Ability of HCC Cells 

Because our results suggest a critical role of Nrf2 in early onset and progression of HCC, to directly establish its 
oncogenic role, we moved to in vitro studies. Neoplastic hepatocytes were isolated by collagenase perfusion from the 
liver of a rat with multiple HCCs generated by the R-H model (R-H cells).[12] In agreement with our in vivo data, R-H 
cells bear a mutation of Nrf2 (D38G). To establish the biological effect of the modulation of Nrf2 levels in HCC cells, we 
performed soft agar assays on Nrf2-silenced cells (Supporting Fig. S4). As shown in Fig. 5A, while R-H cells were able 
to grow in soft agar, Nrf2 silencing caused a significant inhibition of their anchorage-independent growth ability. We then 
tested if Nrf2 inhibition could impact their tumorigenic ability as well. Parental R-H cells were able to form tumors in all 
animals (six out of six) within 28 days when subcutaneously grafted into syngeneic F-344 rats; on the contrary, the 
tumorigenic ability ofNrf2-silenced cells was completely inhibited (Fig. 5B,C). No tumors, in fact, were observed up to 3 
months after cell grafting (data not shown). These experiments suggest that Nrf2 targeting can effectively interfere with 
HCC growth. 

http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-fig-0003
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-fig-0003
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-fig-0003
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-bib-0012
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-fig-0004
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-fig-0004
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-bib-0012
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-fig-0005
http://onlinelibrary.wiley.com/doi/10.1002/hep.27790/full#hep27790-fig-0005


 
Figure 5. Silencing of Nrf2 impairs anchorage-independent growth and tumorigenic ability of HCC cells. Resistant-hepatocyte cells 
were isolated by collagenase perfusion from the liver of a rat with multiple HCCs.[12] (A) The R-H cells were stably transduced with 
an Nrf2 short hairpin RNA lentiviral vector and puromycin-selected. Anchorage-independent growth was performed, embedding 3000 
cells/well in soft agar. Ten days later grown colonies were stained with crystal violet (bottom panel) and quantified by counting all 
visible colonies (upper panel). (B) Lentivirus-transduced R-H cells (1 × 106) were subcutaneously injected into the right posterior 
flanks of syngeneic male Fischer F-344 rats (n = 12). The graph shows tumor size, evaluated twice weekly by caliper (triplicate 
measurements); approximate volume of the mass was calculated as indicated in Materials and Methods. Error bars represent 
standard deviation. **P < 0.01. (C) Rats injected with Nrf2 silenced or not silenced R-H cells, 28 days postinjection. Abbreviation: sh, 
short hairpin. 

 

Mutations of Ctnnb1 Are a Very Late Event in the R-H Model 

Dysregulation of the Wnt/β-catenin pathway and occurrence of activating mutations in CTNNB1 are among the most 
frequent alterations in human HCC (15%-33%).[5, 6, 9] However, whether CTNNB1 mutations occur at early stages of 
the carcinogenic process is unclear. Therefore, we investigated Ctnnb1 mutations in the same samples (38 
preneoplastic lesions, 14 eHCCs, and 27 aHCCs) analyzed for Nrf2/Keap1. Interestingly, while five of 27 aHCCs (18.5%) 
exhibited missense mutations in hot spots of exon 3 (codons 32, 33, and 37, corresponding to human codons 31, 32, 
and 36), none of the 38 preneoplastic lesions, nor the eHCCs, harbored Ctnnb1 mutations (Fig.6A). This indicates that 
mutations of this gene, unlike Nrf2, are a very late event in the process of hepatocarcinogenesis induced in this rat 
model. Evidence that either mutation of Ctnnb1 or activation of the Wnt/β-catenin pathway is not involved in the early 
stages of hepatocarcinogenesis in this rat model is also supported by the following: (1) GS, a β-catenin target 
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gene[19] analyzed by both qRT-PCR and immunohistochemistry, was not expressed in preneoplastic nodules 
(Fig. 6B,C) and (2) GS expression was significantly increased only in advanced HCCs carrying Ctnnb1 mutations 
(Fig. 6D). Interestingly, only those mutations resulting in TGT and TAT nucleotide substitutions, i.e., cysteine and 
tyrosine, were associated with enhanced expression of GS (Fig. 6D). The same mutations were found to be activating 
mutations in previous works.[20] 

 
Figure 6. β-Catenin mutations are a late event in hepatocarcinogenesis. (A) Mutations in Ctnnb1 and Kras found in 14 eHCCs and 
27 aHCCs. All mutations identified in the Ctnnb1 gene are located in exon 3, whereas Krasmutations are located in exon 1 and are 
missense mutations. (B) Expression of GS in 38 preneoplastic nodules was assessed by qRT-PCR and compared to age-matched 
control rat livers. The levels were calculated as fold change compared to control liver. Glyceraldehyde 3-phosphate dehydrogenase 
was used as endogenous control. Error bars represent the standard deviation of technical triplicates. ***P < 0.001. (C) Serial 
sections of preneoplastic nodules stained for the placental form of glutathione S-transferase (GSTP) and GS (4×). (D) Quantitative 
RT-PCR analysis of GS expression in 14-month HCCs with or without Ctnnb1 mutations. The levels were calculated as fold change 
compared to age-matched control livers. Glyceraldehyde 3-phosphate dehydrogenase was used as endogenous control. *P < 0.05. 
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The KRAS gene is one of the most frequently mutated in human cancers.[21] However, an extremely low frequency of 
mutation of this gene has been reported in human HCC.[5, 6] In agreement with these findings, no mutations 
of Kras could be observed in 30 preneoplastic nodules. Kras mutations were found only in 1/14 eHCCs and 1/27 aHCCs. 
Both these mutations were in codon 12 (Fig. 6A). 

 

Discussion 

Hepatocellular carcinoma is among the most aggressive and prevalent cancers worldwide.[1, 22] Despite an enormous 
number of studies aimed at elucidating the exact nature of the molecular events fundamental for the development and 
progression of HCC, there is only a rudimentary understanding of the genetic/epigenetic events associated with the 
development of HCC. Moreover, due to the multistage nature of HCC, the molecular pathogenesis of this cancer cannot 
be properly understood without more information on the molecular alterations characterizing its early development. 
Unfortunately, knowledge about molecular events in early-stage HCC development is hampered by the clinical difficulty 
in the histomorphologic distinction between nonmalignant lesions and early HCC. Therefore, experimental models can 
help to identify genetic changes occurring at initial stages of the hepatocarcinogenic process. However, only few studies 
have investigated the presence of mutations in early lesions in nontransgenic mouse models,[11, 23] and no studies 
have been done in rats. In the present study we used a rat model characterized by a cirrhosis-like reaction limited to the 
very early stages of the carcinogenic process, while cirrhosis/fibrosis, usually associated with human HCCs, is no longer 
present at later stages of the process. Nevertheless, the molecular signature of rat HCCs strikingly overlaps with that of 
human HCCs characterized by poor prognosis.[12, 13] 
We identified Nrf2 mutations at an extremely high frequency and established that they occur at very early stages of the 
carcinogenic process. The NRF2/KEAP1 axis is an integrated redox-sensitive signaling system that regulates 1%-10% of 
human genes.[3] Notably, an oncogenic role of NRF2 activation has recently been proposed, based on the finding that 
its overexpression and/or mutation takes place in many human cancers, including HCC,[5, 24, 25] and that cancers with 
high NRF2 levels are associated with poor prognosis.[26, 27]However, as pointed out by Sporn and Liby, 
whether NRF2 plays a pro- or an antitumorigenic role in premalignant lesions or early malignancy is still 
unclear.[2] Indeed, while, on the one hand, NRF2 can protect normal cells from oxidative stress and DNA-damaging 
electrophiles, on the other hand, it can confer cytoprotection against high endogenous levels of reactive oxygen species, 
thus increasing survival and resistance to chemotherapy of cancer cells.[27] The results stemming from our in 
vivo and in vitro studies prove that Nrf2 plays a tumorigenic role and that inhibition of Nrf2 is sufficient to impair colony-
forming ability and in vivo growth of hepatocarcinoma cells. The finding that activating mutations of Nrf2 occur at very 
early stages of the carcinogenic process suggests that activation of the Nrf2/Keap1pathway is mandatory for HCC 
progression and that its inhibition deeply affects the tumorigenic capacity of HCC cells. 
Several studies have shown that many oncogenic pathways are involved in the modulation of metabolism.[28, 29] In this 
context, it is interesting to note that Nrf2, other than maintaining redox homeostasis in quiescent cells, is able to redirect 
glucose metabolism into anabolic pathways[30]; indeed, while increased Nrf2 expression shifts glucose distribution 
toward purine nucleotide synthesis (through activation of the pentose phosphate pathway), Nrf2 knockdown inhibits this 
process.[30] Even if the impact of Nrf2/Keap1 activation on the hepatocyte pentose phosphate pathway is unknown, it is 
conceivable that Nrf2-induced expression of this pathway may account (1) for the aggressive proliferation of Nrf2-
overexpressing cells, by providing purines required for nucleic acid synthesis, and (2) for increased survival due to its 
ability to generate antioxidant species. 
Most of the identified Nrf2 mutations were located in the regions coding for either the LxxQDxDLG motif or the DxETGE 
motif (Fig. 1C). Both these motifs, evolutionarily conserved, bind to the Kelch domain in Keap1.[31, 32] The highest 
affinity is located in the ETGE motif[4, 16]; however, the weaker Keap1-binding DLG region has been shown to be more 
vulnerable to structural changes and fits into a role of the “latch” for the Nrf2-repression gate in the stress 
response.[16] On this basis, it seems that although the DLG motif has a lower affinity than the ETGE motif, mutations in 
the former motif may dramatically alter the Nrf2 transcriptional activity. 
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Interestingly, we observed that while Nrf2/Keap1 mutations result in a much higher increase of Nrf2-target genes in 
mutated preneoplastic lesions compared to nonmutated ones (Fig. 2A), the Nrf2/Keap1 pathway is activated to a similar 
extent in mutated and nonmutated HCCs. These results suggest that while gene mutations confer an advantage to 
preneoplastic hepatocytes, other events may be responsible for the activation of this pathway. Notably, up-regulation of 
the Keap1-targeting miR-200a was previously found in HCCs generated by the R-H model.[12] 
Our results in rat liver provide evidence that the Nrf2/Keap1 pathway plays a tumorigenic role not only in the progression 
but also in the onset of HCC. Although in humans NRF2/KEAP1 mutations have been identified in HCCs,[5, 6] they were 
not found in dysplastic cirrhotic macronodules, where TERT mutation was the earliest identified event.[33] However, 
regulation of telomerase activity is different in humans and rodents. In fact, while telomerase activity is usually 
undetectable in adult human tissues, several organs of normal adult rodents display substantial amounts of telomerase 
activity; in particular, in the liver telomerase is expressed at a nearly constant level throughout life and decreases during 
liver regeneration.[34, 35] Indeed, we did not observe an increase of telomerase expression in any of the lesions we 
examined (data not shown). This remarkable difference between animal species may reflect the different regulation 
mechanisms of telomerase expression. As for the Nrf2/Keap1 pathway, it is important to underline that it can be 
activated also through mechanisms other than mutations, such as dysregulation of microRNAs targeting Keap1.[12] We 
can speculate that in a tumor not induced by chemicals, epigenetic alterations controlling the Nrf2/Keap1 pathway are 
more likely involved rather than mutations. 
Because the R-H model is based on initial exposure to a genotoxic agent, it is conceivable that DENA might have 
induced Nrf2/Keap1 mutations in hepatocytes and that these mutations might provide an advantage for their clonal 
expansion; however, it is also possible that the promoting procedure based on the cytostatic effect of 2-
acetylaminofluorene on regenerating liver might select, among the hepatocytes carrying different DENA-induced lesions, 
those displaying Nrf2/Keap1 mutations. Many studies, in fact, have recently highlighted the interplay between 
initiated/tumor cells and the microenvironment that can select the genetic alterations conferring the best clonogenic 
ability in a specific environment. 
In the present study, Cnntb1 mutations, among the most frequent in human HCC, were found only at very late stages 
(aHCC) of the tumorigenic process but not in preneoplastic nodules or early HCCs. Evidence that Cnntb1 mutations are 
late events in the tumorigenic process, and thus β-catenin is unlikely a driving force in early HCC development, also 
came from a mouse model of hepatocarcinogenesis[11]; moreover, our data showing that Ctnnb1 mutations are a late 
event are in agreement with other works that identified β-catenin mutation only in tumors (adenomas and HCCs) and not 
in cirrhotic nodules.[23, 33, 36] Taken together, all these findings indicate that β-catenin activating mutations are not 
involved in the onset of HCC but that they occur in already transformed cells and are probably implicated in the final 
steps of cancer progression. Because the R-H model reflects a histological and molecular signature similar to that of 
KRT-19-positive human HCCs characterized by poor prognosis,[13] results stemming from this model are potentially 
relevant for human hepatic tumorigenesis. In turn, they also suggest that studies aimed at analyzing not only 
genetic/epigenetic changes in advanced tumors but the chronological order of molecular changes starting from the very 
early steps of the process are highly relevant for the identification of new fundamental alterations. 
In summary, the present study identifies Nrf2 as the most frequently mutated gene in a rat model of chemically induced 
hepatocarcinogenesis and provides evidence for its mandatory activation in HCC development. In view of the recent 
finding of NRF2mutations in a subset of human HCC,[5] the possibility that Nrf2 might represent a new targetable gene 
should be actively pursued. This study also provides evidence that Cnntb1 mutations are a very late event as they are 
absent in preneoplastic hepatocytes and in eHCCs. 
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