
ABSTRACT

Milk coagulation ability is of central importance for 
the sheep dairy industry because almost all sheep milk 
is destined for cheese processing. The occurrence of milk 
with impaired coagulation properties is an obstacle to 
cheese processing and, in turn, to the profitability of 
the dairy companies. In this work, we investigated the 
causes of noncoagulation of sheep milk; specifically, we 
studied the effect of milk physicochemical properties on 
milk coagulation status [coagulating and noncoagulat-
ing (NC) milk samples, which do or do not coagulate 
within 30 min, respectively], and whether mid-infrared 
spectroscopy (MIR) could be used to assess variability 
in coagulation status. We also investigated the genetic 
background of milk coagulation ability. Individual milk 
samples were collected from 996 Sarda ewes farmed in 
47 flocks located in Sardinia (Italy). Considered traits 
were daily milk yield, milk composition traits, and milk 
coagulation properties (rennet coagulation time, curd 
firming time, and curd firmness), and MIR spectra 
were acquired. About 9% of samples did not coagulate 
within 30 min. A logistic regression approach was used 
to test the effect of milk-related traits on milk coagula-
tion status. A principal component (PC) analysis was 
carried out on the milk MIR spectra, and PC scores 
were then used as covariates in a logistic regression 
model to assess their relationship with milk coagula-
tion status. Results of the present work demonstrated 
that the probability of having NC samples increases as 
milk contents of proteins and chlorides and somatic cell 
score increase. The analysis of PC extracted from milk 
spectra that influenced coagulation status highlighted 
key regions associated with lactose and protein con-
centrations, and others not associated with routinely 
collected milk composition traits. These results suggest 
that the occurrence of NC is mostly related to dam-
age of the epithelium secretory mammary cells, which 

occurs with the advancement of a lactation or due to 
unhealthy mammary gland status. Genetic analysis of 
milk coagulation status and of the extracted PC con-
firmed the genetic background of the milk coagulability 
of sheep milk.
Key words: milk coagulation, multivariate, mid-
infrared spectroscopy, coagulation heritability

INTRODUCTION

Milk coagulation ability is of crucial importance for 
the dairy industry because it regulates the conversion 
of milk solids into cheese. Milk coagulation proper-
ties (MCP); that is, rennet coagulation time (RCT) 
and curd firmness (a30), are related to cheese yield 
(De Marchi et al., 2008). The MCP of individual milk 
samples are of interest to the dairy industry because of 
their possible inclusion as breeding goals in selection 
plans (Pretto et al., 2012; Tiplady et al., 2020). The oc-
currence of noncoagulating (NC) milk samples—milks 
that do not coagulate within the testing time (RCT) of 
30 or 40 min—has been reported in ruminant dairy spe-
cies. In cattle, the occurrence of NC milk ranges from 
18% in Swedish Red (Gustavsson et al., 2014; Nilsson 
et al., 2019, 2020), to 8 to 10% in Finnish Ayrshire 
(Ikonen et al., 1999; Tyrisevä et al., 2003), and to 9.7 
and 3.5% in Italian Holstein and Brown Swiss, respec-
tively (Cecchinato et al., 2011). In sheep, up to 10% NC 
samples have been observed both in individual and bulk 
milk (Pazzola et al., 2014; Manca et al., 2016; Puledda 
et al., 2017). A larger percentage, from 17.7 to 19.4%, 
was reported for Manchega ewes (Caballero-Villalobos 
et al., 2018; Garzón et al., 2021).

Factors affecting the MCP variability of individual 
milk have been widely studied (Bittante et al., 2015; 
Manca et al., 2016; Puledda et al., 2017), but little at-
tention has been paid to the causes of NC milk because 
these samples are usually discarded from analysis. Some 
authors suggested that physicochemical differences in 
milk could play an important role (Park et al., 2007). In 
particular, individual variation in pH, SCS, and masti-
tis events have been proposed to explain the occurrence 
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of NC milks in sheep (Okigbo et al., 1985; Ikonen et al., 
2004; Harzia et al., 2012), although in some cases no 
large differences were found between coagulating and 
NC milk samples (Nilsson et al., 2019).

An interesting tool to investigate reasons for occur-
rence of NC milks is mid-infrared (MIR) analysis; 
MIR spectroscopy is routinely used for predicting milk 
composition traits in dairy recording programs. Milk 
MIR spectra have also been exploited to predict other 
phenotypes for which the standard analysis procedures 
are expensive and time consuming; for example, milk 
fatty acid (Soyeurt et al., 2011) and mineral (Visentin 
et al., 2018) composition, cheese-making properties 
(De Marchi et al., 2009; Cellesi et al., 2019), body en-
ergy status (McParland et al., 2011), pregnancy status 
(Brand et al., 2021), and feed composition and intake 
(Klaffenböck et al., 2017; Wallén et al., 2018). The use 
of milk spectra to predict the milk fatty acid profile 
allowed the use of these phenotypes for genomic pre-
dictions in Sarda dairy sheep (Cesarani et al., 2019). 
Therefore, milk MIR could represent a powerful source 
of information on animal milk metabolism that could 
be used to investigate complex phenotypes such as co-
agulation properties.

The main aim of this work was to investigate the 
occurrence of noncoagulation in sheep milk. With this 
aim in view, we investigated the effects of milk physi-
cochemical properties on milk coagulation status, the 
relationships between MIR spectra and coagulation 
status variability, and the genetic background of milk 
coagulation status.

MATERIALS AND METHODS

Animals and Protocols

Milk samples from 996 Sarda ewes farmed in 47 flocks 
located in Sardinia (Italy) were analyzed. A detailed 
description of sample structure is given in previous 
papers (Manca et al., 2016; Puledda et al., 2017). The 
RCT, a30, and curd firming time (k20) were determined 
using a Formagraph instrument (Foss Electric A/S) 
according to standard procedures. Milk composition 
(Table 1) was determined at the milk laboratory of 
the breeders’ association of Sardinia (Oristano, Italy). 
Morning milk samples were used for determination of 
fat, protein, casein, lactose, urea, and chloride contents, 
using a Milkoscan 6000 instrument (Foss Electric); 
SCS was determined using a Fossomatic 360 instru-
ment (Foss Electric), and pH using a pH meter. Each 
milk sample was analyzed by MIR spectroscopy using 
a spectrometer (MilkoScan 6000, Foss Electric). The 
MIR spectra were recorded in the region between 

925.92 and 5,011.54 cm−1. Because the instrumental 
resolution was 3.858 cm−1, each spectrum consisted of 
1,060 data points. Data on individual milk yield was 
provided by the provincial association of breeders. Milk 
samples were discarded from the analysis when pheno-
typic traits or MIR spectra were missing.

Ethical approval was not necessary, because milk 
samples were taken during routine milk recordings, ac-
cording to ICAR protocols.

Statistical Analysis

The effect of milk-related traits on the occurrence 
of NC (p) was estimated using the following threshold 
animal model:

 Logit (p) = PAR + DIM + LM + FP × β1 + PP   

 × β2 + SCS × β3 + Cl × β4 + FTD + a + e, [1]

where PAR is the fixed effect of the parity class (1, 2, 
3); DIM is the fixed effect of the days in milking inter-
val (1 = <110 d; 2 = 110–140 d; 3 = 141–170 d; 4 = 
171–200 d; 5 = >200 d); LM is the fixed effect of lamb-
ing month (1 = January; 2 = February to March; 3 = 
October to November; 4 = December); β1, β2, β3, and β4 
are the regression coefficients for fat percentage (FP), 
protein percentage (PP), SCS, and chloride (Cl) respec-
tively; FTD is the random effect of flock-test date (69 
levels) distributed as ∼ N ftd0 2, ,Iσ( )  where I is a diagonal 

matrix and σftd
2  is the variance component associated 
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Table 1. Descriptive statistics of animals and milk-related traits of 
the considered milk samples

Item Mean ± SD CV (%)

Sample description   
 DIM (d) 154.4 ± 39.6 25.6
 Parity (n) 3.8 ± 2.2 56.8
 Lactation length (d) 205.1 ± 38 1.85
Milk yield and composition   
 Milk (kg/d) 1.72 ± 0.43 25.2
 Fat (%) 6.08 ± 1.37 22.5
 Protein (%) 5.48 ± 0.61 11.2
 Casein (%) 4.25 ± 0.50 11.8
 Lactose (%) 4.81 ± 0.33 6.8
 Urea (mg/dL) 39.22 ± 12.39 31.6
 SCS [log2(SCC/100) + 3] 4.68 ± 2.34 49.9
 Chloride (mg/100 mL) 145.47 ± 38.8 26.7
 pH 6.65 ± 0.12 1.9
Milk coagulation property1   
 RCT (min) 15.13 ± 6.5 43.3
 k20 (min) 1.55 ± 0.9 55.4
 a30 (mm) 49.6 ± 20.0 40.3
1RCT = rennet coagulation time (min), k20 = curd firming time (min); 
a30 = curd firmness (mm).
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with the FTD effect; a is the random effect of the ani-
mal, given as ∼ N a0 2, ,Aσ( )  where A is the pedigree re-
lationship matrix (5,031 animals tracking back for 3 
generations), and σa

2 is the additive genetic variance 
component. Random residuals were assumed to be nor-
mally distributed ∼ N e0 2, ,Iσ( )  where I is a diagonal 

matrix and σe
2 is the residual variance (set to 1).

Milk-related traits to be included in model [1] were 
selected through a stepwise procedure to avoid mul-
ticollinearity problems. Starting variables were milk 
yield, fat, protein, casein, lactose, urea, chloride, pH, 
and SCS. The threshold for a variable to stay in or 
enter the model was set to P < 0.10 for Wald chi-
squared test. The final model presented the highest 
area under the receiver operating characteristic curves 
(0.90) as implemented in the LOGISTIC procedure of 
SAS (SAS Institute Inc.). Statistical significance of ef-
fects included in model [1] was assessed by GLIMMIX 
procedure of SAS (SAS Institute Inc.).

Variance components and heritability were estimated 
with model [1], using a Gibbs sampling algorithm 
implemented in the “thrgibbs1f90” software (Misztal et 
al., 2014) with the following parameters: 50,000 rounds, 
5,000 rounds as initial burn-in, saving all samples of the 
chain. The heritability on the liability scale was trans-
formed on the observed 0–1 scale using an equation 
originally proposed by Dempster and Lerner (1950) and 
then arranged by Wray and Visscher (2015): the heri-
tability on the observed scale is a function of h2 in the 
liability scale (estimated with the Gibbs sampling de-
scribed above) and the incidence of coagulation classes.

Multivariate Analysis of Milk Spectra

A principal component (PC) analysis was used to 
assess relationships between NC milk occurrence and 
MIR spectra. The analysis was performed on the 
spectral data of milk samples (1,060 variables for 996 
samples). Seven out of 1,060 PC were able to explain 
about 90% of the total variance of the system and were 
retained for the subsequent analysis. PCi scores (for i 
= 1, 2, …, 7) were then used as covariables in model 
[1] instead of milk-related traits, because the latter are 
predicted from the MIR spectra.

Moreover, variance components and heritability of 
the PC were estimated by a Gibbs sampling using the 
“gibbs2f90” software (Misztal et al., 2014) with the 
following parameters: 50,000 rounds, 5,000 rounds as 
initial burn-in, saving all samples of the chain. The 
adopted model was

 PCi = PAR + DIM + LM + FTD + a + e. [2]

Trait Definition

The milk coagulation ability index (IAC) was calcu-
lated according to the formula proposed by Penasa et 
al. (2015), as follows:

 IAC = 100 + [(a30 – meana30)/SDa30 × 2.5]   

– [(RCT – meanRCT)/SDRCT × 2.5],

where SDa30 and SDRCT are the standard deviations of 
a30 and RCT, respectively.

To better describe the relationships between MIR 
spectra and milk traits, Pearson correlations between 
the milk absorbance at a given wavelength and each 
phenotype (including IAC) were calculated.

RESULTS AND DISCUSSION

Descriptive Statistics

The mean milk yield and composition of samples 
considered here are reported in Table 1. In general, 
the values agreed with means reported for the milk of 
Sarda dairy sheep as detailed in Manca et al. (2016). 
As far as coagulation was concerned, 89 milk samples 
(~9%) did not coagulate within 30 min from rennet 
addition, giving no results for RCT, k20, or a30.

The frequency of the NC milk samples per flock 
ranged from 0 to 33.3%, independently from the num-
ber of ewes sampled, with an overall mean of 8.78%. 
The NC samples occurred in most of the studied flocks, 
thus they could not be ascribed to a sampling error or 
specific problems related to just one or a few flocks. 
The distribution of NC milks across flocks (Figure 1) 
was similar to that in a previous report on Swedish Red 
Dairy Cattle (Nilsson et al., 2019).

Factors Affecting Milk Coagulation Status

Fixed factors (PAR, DIM, and LM) included in model 
[1] did not significantly affect milk coagulation status. 
The preliminary variable selection step identified the 4 
relevant and biologically sound milk composition traits. 
Although stepwise selection has been criticized to select 
the best model when a very large number of features 
are jointly analyzed, the present application (few pre-
dictors) slightly suffers of the abovementioned issue. 
Moreover, multiple logistic regression is a good choice 
when looking for causal relationships between indepen-
dent and dependent variables, whereas it is much less 
suited for prediction problems, where advanced statisti-
cal learning algorithms are instead recommended (Tu, 
1996; Liu et al., 2021). For milk composition, logistic 
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analysis (Table 2) showed that increases in protein 
content (P < 0.05), SCS (P < 0.0001), and chloride 
content (P < 0.0001) increased the probability of NC 
milk, whereas fat content was not significantly related 
to the noncoagulation of milk (P = 0.267). Based on 
the odds ratios, a 1-unit of increase in protein, SCS, 
and chloride in milk yielded 3.8-, 1.7-, and 1.0-fold 
increased probabilities, respectively, of NC milk oc-
currence. Based on these outcomes, the occurrence of 
NC milk seems to be associated with an increase in 
the permeability of mammary gland epithelium cells, 
which facilitates exchanges between the alveolar struc-
tures and the bloodstream. This condition occurs as 
lactation proceeds and in animals affected by udder 
inflammation. Mastitis, in particular, is character-
ized by increases in SCS, chloride, and pH, and by a 
decrease of lactose (Pulina and Nudda, 2004). High 
SCS have been reported to be detrimental to MCP 
(Raynal-Ljutovac et al., 2008; Caballero-Villalobos et 
al., 2015). A study on dairy sheep reported that lactose 
content has the largest influence on milk coagulation 
pattern (Vacca et al., 2019), even if it is not directly 
involved in the cheese-making process. In the present 
work, lactose concentration (which can be considered 
a good indicator of udder health) was excluded by the 
stepwise procedure for the successive logistic analysis 
because of its strong association with chloride content. 
In contrast to our findings, Tyrisevä et al. (2003), us-
ing a logistic regression analysis, concluded that the 
NC risk was not apparently associated with the udder 

health, but mainly to a cow’s nutrition, as suggested by 
the relationship between noncoagulation and year and 
season. Using a multivariate approach, Figueroa et al. 
(2020) found that SCS, pH, and lactose contents best 
differentiated the coagulation properties of Manchega 
sheep milk. In a previous study on Holstein-Friesian 
cows, the prediction of NC milk by MIR spectra failed, 
probably because no differences were found between the 
composition of coagulating and NC milks (De Marchi 
et al., 2013).

Principal Component Analysis

Seven PC explained 92% of the total variance of 
the milk MIR spectra, with the first 3 PC accounting 
for 46, 24, and 11%, respectively (Table 3). Plots of 
individual PC scores (Supplemental Figure S1; https: 
/ / data .mendeley .com/ datasets/ jzrrxc79ts/ 1) did not 
show a clear clustering of the observations. However, 
separation between coagulating and NC milks could 
be observed in the PC2 versus PC3 plot, suggesting 
a relationship between these 2 PC and the coagula-
tion ability of milk. This result was confirmed by 
logistic analysis that showed a statistically significant 
effect of PC2 and PC3 on milk coagulation status. In 
contrast, PC1, which accounted for about half of the 
total explained variance (46.17%), was not related to 
coagulation status (P = 0.451). Sometimes, the PC as-
sociated with the largest amount of variance does not 
have a defined meaning, whereas PC associated with 
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Figure 1. Distribution of the coagulating (gray bars) and noncoagulating (black bars) sheep milk samples across the sampled farms.

https://data.mendeley.com/datasets/jzrrxc79ts/1
https://data.mendeley.com/datasets/jzrrxc79ts/1
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smaller eigenvalues may contain technical or biological 
information (Jombart et al., 2009). A significant effect 
was also observed for PC5, even though it did not ex-
plain much variance, making this PC less interesting 
and of less clear interpretation. Principal components 
6 and 7 were not statistically related to coagulation 
status (P = 0.101 and 0.108, respectively). To un-
derstand the meaning of the extracted PC and their 
relationship with original variables (i.e., MIR spectra 
wavenumbers), the structure of the eigenvectors should 
be analyzed (Correddu et al., 2021). In this case, the 
plot of eigenvectors of each considered PC against MIR 
spectra is an efficient and simple way to analyze this. 
Figure 2 shows the plots of the PC2 and PC3 eigenvec-
tors along the milk absorbance pattern (Figure 2A and 
2B, respectively). About 85 and 53% of the original 
variables (MIR wavenumbers) had positive loadings for 
PC2 and PC3, respectively. Overall, higher values were 
found in regions that were not informative for the usual 
interpretation of milk MIR spectra.

The highest values of PC2 loadings (Figure 2A) were 
in 2 regions, from about 2,300 to 2,650 cm−1 (maxi-
mum value of 0.0561 at 2,522 cm−1) and from 3,660 to 
3,740 cm−1 (maximum value of 0.0566 at 3,682 cm−1), 
respectively. The first region is located within a large 
area that is not associated with typical infrared absorp-
tions of main milk components. Indeed, the milk MIR 

spectrum did not show any peak in the area spanning 
1,800 to 2,800 cm−1 (Figure 2A). However, this region 
has been reported to be important for the prediction of 
MCP in sheep and cattle (Ferragina et al., 2015, 2017). 
In particular, the most relevant wavenumbers for MCP 
prediction are located in a region from 2,577 to 2,357 
cm−1. Interestingly, signals recorded at these spectral 
regions were associated with the presence of calcium 
salts (Miliani et al., 2012; Monico et al., 2013). It is well 
known that concentrations of Ca and P play an impor-
tant role in the definition of the milk coagulation abil-
ity (Fossa et al., 1994; Stocco et al., 2021). The second 
region where high values of PC2 loadings were detected 
is at the border of a very large area (from 3,052 to 
3,670 cm−1) that is often discarded from the spectra for 
prediction purposes (Karoui et al., 2010; Bittante and 
Cecchinato, 2013). The first part, spanning from 3,052 
to 3,670 cm−1, is characterized by relevant variability 
due to the major component of milk (i.e., water). The 
second is a large and uninformative area (3,670 to 5,000 
cm−1) with relatively constant average values, related 
to the absorption of the O–H bond.

The highest values of PC3 loadings were retrieved in 
3 spectral regions. The first was located between 1,050 
and 1,500 cm−1 (Figure 2B) with maximum values of 
0.076, 0.089, and 0.079 at 1,138, 1,265, and 1,442 cm−1, 
respectively. This region contains important wavenum-
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Table 2. Results of logistic regression on the effect of milk composition traits on the probability of observing 
a noncoagulating sample

Trait

Coefficient

 

Odd ratio1

β̂ (SE) P-value OR LL95 UL95

Fat (%) −0.297 (0.264) 0.267  0.743 0.437 1.265
Protein (%) 1.332 (0.512) <0.011  3.789 1.370 10.483
SCS [log2(SCC/100) + 3] 0.573 (0.127) <0.001  1.744 1.388 2.266
Chloride (mg/100 mL) 0.030 (0.007) <0.001  1.031 1.017 1.045
1OR = odds ratio estimate; LL95 and UL95 = lower and upper bounds of α = 0.05 confidence interval, respec-
tively.

Table 3. Results of logistic regression on the effect of principal components (PC) of Fourier transform infrared 
(FTIR) spectra on the probability of observing a noncoagulating sample

PC (% variance)

Coefficient

 

Odds ratio1

β̂ (SE) P-value OR LL95 UL95

PC1 (46.17) −0.015 (0.020) 0.451  0.985 0.947 1.024
PC2 (24.69) −0.133 (0.024) <0.001  0.875 0.834 0.918
PC3 (10.17) −0.072 (0.022) 0.001  0.931 0.891 0.972
PC4 (3.85) −0.035 (0.043) 0.410  0.965 0.887 1.050
PC5 (2.49) 0.259 (0.053) <0.001  1.296 1.166 1.440
PC6 (1.92) 0.085 (0.053) 0.108  1.090 0.981 1.210
PC7 (1.02) −0.134 (0.081) 0.102  0.875 0.745 1.027
1OR = odds ratio estimate; LL95 and UL95 = lower and upper bounds of α = 0.05 confidence interval, respec-
tively.
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bers associated with the infrared absorption of milk 
components. In particular, MIR peaks from 1,000 to 
1,200 cm−1 are often associated with the stretching 
vibration of the C–O bond of alcohols, ethers, and 
esters. Specifically, signals at 1,034 and 1,065 cm−1 
are related to C–O bonds of primary and secondary 
alcohols, whereas signals at 1,157 cm−1 are linked to 

the C–O bond of ether groups, mainly attributable to 
carbohydrates (Coates, 2000). In the case of milk, MIR 
spectral peaks at 1,034 to 1,111 and at 1,157 cm−1 can 
be associated with the corresponding functional groups 
of lactose (Bittante and Cecchinato, 2013). Absorptions 
in these regions, in particular from 1,028 to 1,068 cm−1, 
were found to be useful for estimating lactose milk 
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Figure 2. Plot of overlapping values of the second (A, dotted line) and third (B, dotted line) principal component eigenvectors at each given 
wavenumber, and of the average mid-infrared spectra of milk samples (A and B, black solid line).
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content (Kaylegian et al., 2009). This was confirmed 
by the high correlations between absorbance of milk 
samples and milk lactose content observed in this spec-
tral region in the present work (Supplemental Figure 
S2; https: / / data .mendeley .com/ datasets/ jzrrxc79ts/ 1). 
Considering that PC3 significantly affected coagulation 
status, our results confirm the importance of lactose 
in the coagulation process. These findings agree with 
previous investigations reporting the importance of the 
wavenumbers included in this region in the prediction 
of MCP and cheese yield traits (Ferragina et al., 2017). 
The other 2 regions with high values for PC3 loadings 
were from 2,600 to 2,840 cm−1 (maximum value of 0.082 
at 2,818 cm−1) and at 2,973 (maximum value of 0.079). 
The first region encloses the range from 2,778 to 2,870 
cm−1 (named fat B) and is used by MIR filter-based 
instruments to quantify milk fat content (Lynch et al., 
2006; Kaylegian et al., 2009); the second is close to the 
region from 2,951 to 2,963 cm−1, which is reported to 
be very important for MCP calibration (Ferragina et 
al., 2015, 2017).

Figures 2A and 2B show that 2 regions with high 
values for the PC2 (2,290–2,657 cm−1) and PC3 (2,668–
2,826 cm−1) loadings are adjacent, highlighting a large 
area that is not related to milk components. However, 
in this region, some wavenumbers that play an impor-
tant role in the calibration for MCP traits (Ferragina et 
al., 2015, 2017) are located; in particular, some of these 
wavenumbers have been associated with mineral (e.g., 
calcium salts) absorptions, as explained above. Inter-
estingly, in these spectral regions, we found strong cor-
relations between absorbance of milk samples and milk 

chloride content (Supplemental Figure S3; https: / / data 
.mendeley .com/ datasets/ jzrrxc79ts/ 1), in agreement 
with the significant effect of this milk component on 
coagulation status demonstrated in the logistic analysis 
(Table 2). Penasa et al. (2015) proposed an index of 
milk aptitude to coagulate (IAC), which is calculated 
by the combination of RCT and a30. Interestingly, when 
the Pearson correlations between IAC (calculated in the 
present study) and milk absorbance at given wavenum-
ber were studied (Figure 3), similar evolution to that 
observed in some regions for PC2 and other regions for 
PC3 was observed, confirming the relevance of these 2 
PC for milk coagulation ability.

The pattern of Pearson correlations between PC2 and 
PC3 scores and MCP (Supplemental Table S1; https: / / 
data .mendeley .com/ datasets/ jzrrxc79ts/ 1) showed that 
a worsening of coagulation properties could be associ-
ated with negative values of these 2 components. Spe-
cifically, PC2 exhibited a moderate negative correlation 
with RCT (−0.55) and positive correlations with a30 
(0.35) and IAC (0.47). Correlations between PC3 scores 
and MCP were similar, but the values were of lower 
magnitude. In agreement with these results, odd ratios 
values (Table 3) showed that the occurrence of NC milk 
increased as PC2 and PC3 scores decreased (odds ratio 
= 0.875 and 0.931, respectively).

Heritability

The heritability (mean ± SD) of NC occurrence 
on the observed scale (0 to 1) was 0.23 ± 0.04. This 
estimate was similar to results (h2 = 0.28) reported by 

Correddu et al.: CHARACTERIZATION OF NONCOAGULATING MILK

Figure 3. Plot of overlapping values of the Pearson correlation between the milk coagulation ability index (IAC) and the milk absorbance 
at a given wavenumber, and that of the average mid-infrared spectra of milk samples.

https://data.mendeley.com/datasets/jzrrxc79ts/1
https://data.mendeley.com/datasets/jzrrxc79ts/1
https://data.mendeley.com/datasets/jzrrxc79ts/1
https://data.mendeley.com/datasets/jzrrxc79ts/1
https://data.mendeley.com/datasets/jzrrxc79ts/1
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Duchemin et al. (2020) in Swedish Red Dairy Cattle, 
and lower than that found by Gustavsson et al. (2014) 
in the same breed. The higher estimates found by 
Gustavsson et al. (2014) could be related to the inclu-
sion of the herd as a fixed effect in the model and to 
the different data set size, as also noted by Duchemin 
et al. (2020). Heritability for noncoagulability was of 
the same magnitude as that for RCT (Puledda et al., 
2017; Sánchez-Mayor et al., 2019) but higher than 
values reported for a30 (h

2 < 0.10) for the Sarda breed 
(Bittante et al., 2017; Puledda et al., 2017). In Span-
ish Assaf, Sánchez-Mayor et al. (2019) found h2 for 
a30 to be 0.30. Table 4 shows the heritability of the 
first 7 extracted PC. Heritabilities (±SD) of 0.40 ± 
0.13, 0.24 ± 0.12, and 0.18 ± 0.12 were obtained for 
PC1, PC2, and PC3, respectively. Heritability for PC 
>3 could not be considered different from zero be-
cause of high standard deviations. Interestingly, PC2 
and PC3 exhibited h2 values of the same magnitude 
as other MCP traits and, as previously noted, these 
2 PC affected milk coagulation ability. Wang and 
Bovenhuis (2018), analyzing the bovine milk infrared 
spectra by a genome-wide association study, demon-
strated a genetic background of certain regions that 
were not associated with any one of these routinely 
collected milk composition traits but were associated 
with some minor milk components (contents of phos-
phorus, orotic acid, and citric acid). This supports 
our findings, considering the heritability of PC2 and 
PC3, their relationship with milk coagulation ability, 
and correlations with some regions of the milk spectra 
likely associated with minor milk components (i.e., 
calcium salts).

CONCLUSIONS

This work provided information about the relation-
ship between milk physicochemical properties and milk 
coagulation status in Sarda ewes and on the genetic 
background of noncoagulation. In particular, the occur-

rence of NC milk samples increased when protein con-
tent, chloride content, and SCS increase, which appears 
to be related to damage of the epithelium secretory 
mammary cells that occurs with advancing lactation 
or an unhealthy mammary gland status. This finding 
was reinforced by the analysis of MIR spectra, which 
showed key regions associated with milk coagulation 
status and related to lactose and protein concentrations. 
In addition, our analysis of MIR spectra highlighted 
other regions not related to routinely collected milk 
composition traits but associated with the coagulation 
ability of milk. Furthermore, individual coagulability 
differences among samples can be used to early select 
animals with better cheese-making aptitude.
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