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Via dell’Ateneo Lucano 10, I-85100 Potenza, Italy

e-mail: incoronata.notarangelo@unibas.it

(Received November 24, 2010; revised April 6, 2011; accepted April 7, 2011)

Dedicated to Professor Giuseppe Mastroianni on the occasion of his 70th birthday

Abstract. Letting 0 < p � ∞, we prove Remez-, Bernstein–Markoff-,
Schur- and Nikolskii-type inequalities for algebraic polynomials with exponen-
tial weights on (−1, 1) multiplied by another weight function, which will satisfy
the doubling or the A∗ condition at different occurrences. Moreover, we state em-
bedding theorems between some function spaces related with exponential weights.

1. Introduction

The aim of this paper is to extend some classical polynomial inequalities,
considering weights of the form σu, where σ is a doubling weight and u is a
weight defined by

u(x) =
(
1 − x2)β

e−(1−x2)−α

, α > 0 and β � 0.

We emphasize that the weight u violates not only the doubling condition,
but also the Szegő condition

∫ 1

−1

log w(x)√
1 − x2

dx > − ∞
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for α � 1/2, and it belongs to a wide class of exponential weights defined in
[9,10] (the definition is given at the beginning of Section 2).

To be more precise we will state Remez-, Bernstein–Markoff-, Schur- and
Nikolskii-type inequalities with the weight σu, extending the results proved
in [9,10,12] for exponential weights and in [6,16] for doubling weights.

Then we will prove some embedding theorems between function spaces
related with the weight u, defined in [15].

The paper is structured as follows. In Section 2 we recall some basic
facts. In Sections 3 and 4 we state some polynomial inequalities and em-
bedding theorems, respectively. Finally, in Section 5 we prove our main
results.

In the sequel, we will denote by Pm the collection of polynomials of degree
at most m and by C a positive constant which can assume different values in
different formulae. We shall write C �= C(a, b, . . .) when C is independent of
a, b, . . . . Furthermore, if A and B are positive quantities depending on some
parameters, then A ∼ B will mean that there exists a positive constant C
independent of these parameters such that (A/B)±1 � C.

By a slight abuse of notation, in the sequel we denote by ‖ · ‖p the quasi-
norm of the Lp-spaces for 0 < p < 1, defined in the usual way.

2. Basic facts and preliminary results

Exponential weights. First of all, we recall the definition of a class of ex-
ponential weights, given by A. L. Levin and D. S. Lubinsky in [9, p. 5]. If
� is a weight function in (−1, 1), we will say that the weight �(x) = e−Q(x),
x ∈ (−1, 1), belongs to the class Ŵ and write � ∈ Ŵ if and only if the func-
tion Q : (−1, 1) → R fulfills the following conditions:

(i) Q is even and twice continuously differentiable, with limx→1 Q(x) =
+∞;

(ii) Q′(x) � 0 Q′ ′(x) � 0 for x ∈ (0, 1);
(iii) the function

T (x) = 1 +
xQ′ ′(x)
Q′(x)

is increasing in [0, 1) with T (0) > 1;
(iv) For some A ∈ (0, 1), the function T satisfies T (x) ∼ Q′(x)

Q(x) for x ∈
[A, 1).

The Mhaskar–Rahmanov–Saff number am = am(�), related to the weight
�, is defined as the positive root of the equation

(2.1) m =
2
π

∫ 1

0
amtQ′(amt)

dt√
1 − t2
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and the equivalence (see [11])

(2.2) Q′(am) ∼ m
√

T (am)

can lead to an approximation of am.
Let us now consider the weight function

u(x) = vβ(x)w(x) =
(
1 − x2)β

e−(1−x2)−α

, x ∈ (−1, 1), α > 0, β � 0.
(2.3)

It is easily seen that the weight w belongs to the class Ŵ , while u can be
considered as a logarithmic perturbation of w. In [15] it has been shown
that the weight u belongs to the class Ŵ and its related function T fulfills

(2.4) T (x) ∼ 1
1 − x2

,

for x close enough to 1.
In the sequel we will denote by am = am(u) the Mhaskar–Rahmanov–

Saff number related to the weight u. By (2.2) and (2.4), we get

(2.5) 1 − am ∼ m
− 1

α+1/2 .

If x, y ∈ [−am, am], with |x − y| � (K/m)
√

1 − x2, we have (see [14])

(2.6) u(y) ∼ u(x).

Moreover, setting

(2.7) bm = bm(u) = am(1 − λδm),

where λ > 0 is a constant and

(2.8) δm = δm(u) =
(
mT (am)

)−2/3 ∼ m− 2
3( 2α+3

2α+1),

by (2.4) and (2.5), the following restricted range inequality has been proved
by D. S. Lubinsky and E. B. Saff [12] for p = ∞ and by A. L. Levin and
D. S. Lubinsky for 0 < p � ∞.

Theorem 2.1 [10, pp. 95–97]. Let 0 < p � ∞ and let u(x) be defined by
(2.3). For every polynomial Pm ∈ Pm we have

(2.9) ‖Pmu‖p � C ‖Pmu‖Lp[−bm,bm],

where C is independent of m and Pm.
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The next lemma will be crucial in order to prove our polynomial inequal-
ities.

Lemma 2.2. Let u(x) be defined by (2.3). Then, for sufficiently large m,
there exists a polynomial Rlm ∈ Plm, with a fixed integer l, satisfying the
properties

(2.10)
1
2

u(x) � Rlm(x) � 3
2

u(x)

and

(2.11)
∣
∣R′

lm(x)
∣
∣ϕ(x)

m
� Cu(x)

for |x| � asm, s � 1 a fixed integer, with C independent of m, u and Rlm,
where ϕ(x) =

√
1 − x2.

Lemma 2.2 was proved in [14] for the weight w(x) = e−(1−x2)−α

, i.e. for
β = 0. We will omit the proof, since it is similar to that in [14], taking into
account (2.4).

Doubling weights. In the sequel, we will consider, in addition to the
exponential weight u in (2.3), another function σ, which will be a doubling,
an A∞ or an A∗ weight at different occurrences. We recall that a weight σ
is said to be doubling if

σ(2I) � Cσ(I),

for all intervals I ⊂ (−1, 1), where

σ(I) :=
∫

I
σ(t) dt,

2I is the interval twice the length of I and with midpoint at the midpoint
of I , C is independent of I . Moreover, σ is an A∞ weight if, for every a > 0,
there exists a b > 0 such that

σ(E) � bσ(I)

for any interval I ⊂ (−1, 1) and any measurable set E ⊂ I with |E| � a|I|,
where |E| denotes the Lebesgue measure of E. Finally, we call σ an A∗

weight if there exists a constant C such that

σ(x) � C
|I|

∫

I
σ(t) dt

for all intervals I ⊂ (−1, 1) and x ∈ I . As is well-known, the A∗ property
implies the A∞ condition and the latter implies the doubling condition.
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If σ is a doubling weight, we set

(2.12) σm(x) =
1

Δm(x)

∫ x+Δm(x)

x−Δm(x)
σ(t) dt,

where

Δm(x) =
ϕ(x)
m

+
1

m2
=

√
1 − x2

m
+

1
m2

.

By means of σm we can characterize the weight σ (see [16, Lemma 7.1]). In
fact σ is doubling if and only if for some s > 0 we have

σm(y) � C(1 + m|x − y| + m
∣
∣
√

1 − x2 −
√

1 − y2
∣
∣)

s
σm(x),

for any x, y ∈ [−1, 1] and m ∈ N. In particular, if σ is a doubling weight, for
any m ∈ N and x, y ∈ [−1, 1], with |x − y| � KΔm(x), we get

(2.13) σm(y) ∼ σm(x),

where the constants in “∼” are independent of K.
The following theorem, stating a Remez-type inequality for A∞ weights,

has been proved by G. Mastroianni and V. Totik [16] for 1 � p < ∞, and
then extended for 0 < p < 1 by T. Erdélyi [6].

Theorem 2.3 [6,16]. Let 0 < p < ∞ and σ be an A∞ weight. For any
Pm ∈ Pm and for every Λ > 0 there is a constant C = C(Λ) such that, if E ⊂
[−1, 1] is a measurable set with

∣
∣cos−1(E)

∣
∣ =

∫

E

dx√
1 − x2

� Λ
m

,

then

(2.14)
∫ 1

−1

∣
∣Pm(x)σ(x)

∣
∣p dx � C

∫

[−1,1]\E

∣
∣Pm(x)σ(x)

∣
∣p dx.

For p = ∞, if σ is an A∗ weight, we have

(2.15) ‖Pmσ‖∞ � C sup
[−1,1]\E

∣
∣Pm(x)σ(x)

∣
∣ .

If the weight σ satisfies the less restrictive doubling condition, The-
orem 2.3 holds with stronger assumptions on the subset E, namely if
E ⊂ [−1, 1] such that E =

⋃N
k=1 Ik, where Ik are intervals, N ∈ N is fixed,

and

∣
∣cos−1(Ik)

∣
∣ =

∫

Ik

dx√
1 − x2

� c

m
, c > 0,

N∑

k=1

∣
∣cos−1(Ik)

∣
∣ � Λ

m
.
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In analogy with Lemma 2.2, the following lemma holds for doubling
weights.

Lemma 2.4 [16]. Let σ be a doubling weight and let σm be defined by
(2.12). Then there exist polynomials qm ∈ Pm such that

(2.16) qm(x) ∼ σm(x)

and

(2.17)
∣
∣q′

m(x)
∣
∣ϕ(x)

m
� Cσm(x),

for x ∈ (−1, 1), where C and the constants in “∼” are independent of m.

Note that if σ is an A∗ weight, then σ(x) � Cσm(x) for x ∈ (−1, 1).
Further tools in our proofs will be the following two theorems, proved in

[16] for 1 � p � ∞ and in [6] for 0 < p < 1.

Theorem 2.5 [6,16]. Let 0 < p < ∞, σ be a doubling weight on (−1, 1)
and let σm be given by (2.12). Then for every Pm ∈ Pm we have

∫ 1

−1

∣
∣Pm(x)σ(x)

∣
∣p dx ∼

∫ 1

−1

∣
∣Pm(x)σm(x)

∣
∣ p dx,

where the constant in “∼” depends only on the doubling constant and p.

Theorem 2.6 [16]. Let σ be an A∗ weight on (−1,1) and let σm be given
by (2.12). Then for every Pm ∈ Pm we have

‖Pmσ‖∞ ∼ ‖Pmσm‖∞,

where the constant in “∼” is independent of m and Pm.

Finally, we recall the following Schur-type inequality, proved in [16] for
1 � p < ∞ and in [6] for 0 < p < 1.

Theorem 2.7 [6,16]. Let 0 < p < ∞, σ be a doubling weight and h be a
generalized Jacobi weight of the form

(2.18) h(x) =
N∏

i=1

|x − xi|γi , γi > 0, x, xi ∈ [−1, 1].

Then, for any polynomial Pm ∈ Pm, we have

(2.19) ‖Pmσ‖p � CmΓ ‖Pmσh‖p

with C independent of m and Pm, where Γ = maxi γ
∗
i , γ∗

i = γi if xi �= ±1
and γ∗

i = 2γi if xi = ±1.
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To complete Theorem 2.7, inequality (2.19) holds also for p = ∞ if σ is
an A∗ weight.

3. Polynomial inequalities

Now, we are going to state polynomial inequalities related to the weight
σu, where σ is a doubling weight and u is given by (2.3). In their proofs we
will use the restricted range inequality (2.9), and approximate the weight u
in [−am, am] by means of a polynomial, by arguments analogous to those in
[13,16].

First, we prove a Remez-type inequality, generalizing the results hold-
ing for exponential or A∞ weights (see Theorems 2.1 and 2.3). We set
bm = am(1 − λδm), λ > 0, with am = am(u) and δm = δm(u) satisfying (2.5)
and (2.8).

Theorem 3.1. Let 0 < p � ∞, u be the weight in (2.3), σ be a doubling
weight and σm be as in (2.12). For any Pm ∈ Pm and for every fixed Λ > 0,
if E ⊂

[
− b2m, b2m

]
is a measurable set with

∫

E

dx
√

b2
2m − x2

� Λ
m

,

then

(3.1) ‖Pmσmu‖p � C ‖Pmσmu‖Lp([−b2m,b2m]\E),

where b2m = a2m(1 − λδ2m), λ > 0, C is independent of m, Pm and depends
only on Λ, λ.

Taking into account Theorems 2.1 and 2.3, a natural question arising is
whether it is possible to replace the weight σm by σ in (3.1). For instance,
it is easily seen that, if σ is a doubling weight, for 0 < p � ∞ and for any
Pm ∈ Pm, the inequality

(3.2) ‖Pmσu‖p � C ‖Pmσu‖Lp[−1+m−2,1−m−2]

holds with C independent of m and Pm. Obviously this inequality is weaker
than (3.1) near ±1. On the other hand, with more assumptions on the
weight σ, as a consequence of Theorem 3.1, we can prove the following in-
equalities.

Corollary 3.2. For 0 < p < ∞, under the assumptions of Theorem 3.1,
if σ is an A∞ weight, for any polynomial Pm ∈ Pm and for every Λ > 0, if
E ⊂

[
− b3m, b3m

]
is a measurable set with

∫

E

dx
√

b2
3m − x2

� Λ
m

,
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then

(3.3)
∫ 1

−1

∣
∣Pm(x)σm(x)u(x)

∣
∣p dx � C

∫

[−b3m,b3m]\E

∣
∣Pm(x)σ(x)u(x)

∣
∣p dx.

Moreover, for 0 < p � ∞, if σ is an A∗ weight, then

(3.4) ‖Pmσu‖p � C ‖Pmσu‖Lp([−b3m,b3m]\E),

where b3m = a3m(1 − λδ3m), λ > 0, and in both cases C depends only on Λ
and λ.

For instance, from Theorem 3.1, letting u be the weight in (2.3) and
σ(x) = |x|γ , with γ > −1/p if 1 � p < ∞ and γ � 0 if p = ∞, and for any
Pm ∈ Pm, it follows that

∥
∥Pm| · |γu

∥
∥

p � C
∥
∥Pm| · |γu

∥
∥

Lp { c

m
�|x|�a3m(1−λδ3m)}, 1 � p � ∞,

with c, λ, C independent of m and Pm.
In the following theorems, we state the Bernstein–Markov inequalities

related to the weight σmu and as before, in their corollaries, we replace the
weight σm by σ.

Theorem 3.3. Let 0 < p � ∞, u(x) the weight in (2.3), σ a doubling
weight and σm as in (2.12). Then, for any polynomial Pm ∈ Pm, we have

(3.5) ‖P ′
mϕσmu‖p � Cm‖Pmσmu‖p,

where C is independent of m and Pm.

In particular, from Theorem 3.3, for any Pm ∈ Pm, we deduce

sup
x∈(−1,1)

∣
∣
∣
∣
∣
P ′

m(x)
(√

1 − x2 +
1
m

)γ+1

w(x)

∣
∣
∣
∣
∣

� Cm sup
x∈(−1,1)

∣
∣
∣
∣Pm(x)

(√
1 − x2 +

1
m

)γ

w(x)
∣
∣
∣
∣ ,

with γ ∈ R, w(x) = e−(1−x2)−α

, α > 0, and C �= C(m,Pm). The previous in-
equality, useful in various contexts, generalizes a result of Khalilova [8] (see
also [17]), holding for Jacobi weights.

Corollary 3.4. Under the assumptions of Theorem 3.3, for any
Pm ∈ Pm and for 0 < p < ∞,

(3.6) ‖P ′
mϕσmu‖p � Cm‖Pmσu‖p.
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Moreover, if σ is an A∗ weight, then for any Pm ∈ Pm and for 0 < p
� ∞,

(3.7) ‖P ′
mϕσu‖p � Cm‖Pmσu‖p,

where in both cases C is independent of m and Pm.

Theorem 3.5. Let 0 < p � ∞, u(x) the weight in (2.3), σ a doubling
weight and σm as in (2.12). Then, for any polynomial Pm ∈ Pm, we have

(3.8) ‖P ′
mσmu‖p � C m√

1 − am
‖Pmσmu‖p

with C independent of m and Pm.

Corollary 3.6. Let 0 < p < ∞. Under the assumptions of Theo-
rem 3.5, for any Pm ∈ Pm,

(3.9) ‖P ′
mσmu‖p � C m√

1 − am
‖Pmσu‖p.

Moreover, if σ is an A∗ weight, then for any Pm ∈ Pm and 0 < p � ∞,

(3.10) ‖P ′
mσu‖p � C m√

1 − am
‖Pmσu‖p,

where in both cases C is independent of m and Pm.

Notice that the Bernstein-type inequality (3.7) has the same form as
that proved in [14] for the weight u and also the one related to doubling
or A∗ weights, for p < ∞ or p = ∞ respectively, proved in [16]. Moreover,
inequality (3.7) can be easily iterated as

‖P (r)
m ϕrσu‖

p
� Cmr ‖Pmσu‖p,

for 1 � r ∈ Z.
Concerning the Markoff-type inequality, in case of weights belonging to

the class Ŵ , it has been obtained in [12] for p = ∞ and in [10, p. 294] for
0 < p � ∞. While, with respect to the Markoff inequality proved in [16] for
doubling weights, in inequality (3.8) the factor 2 is replaced by a smaller
one. To be more precise, from Theorem 3.5 and equivalence (2.5), it follows
that

(3.11) ‖P ′
mu‖p � Cm

2α+2
2α+1 ‖Pmu‖p,

and then the factor 2 in the classical Markoff inequality is replaced by 2α+2
2α+1 .

Now, we state some Schur-type inequalities.
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Theorem 3.7. Let 0 < p < ∞, u(x) the weight in (2.3), σ a doubling
weight and σm as in (2.12). Furthermore, let h be a generalized Jacobi weight
of the form (2.18). Then, for any polynomial Pm ∈ Pm, we have

(3.12) ‖Pmσmu‖p � CmΓ‖Pmσmuh‖p

with C independent of m and Pm, where Γ = maxi γ
∗
i , γ∗

i = γi if xi �= ±1
and γ∗

i = γi/(α + 1/2) if xi = ±1.

Corollary 3.8. Let 0 < p < ∞. Under the assumptions of Theo-
rem 3.7, for any Pm ∈ Pm,

(3.13) ‖Pmσmu‖p � CmΓ‖Pmσuh‖p.

Moreover, if σ is an A∗ weight, for any Pm ∈ Pm and 0 < p � ∞, then

(3.14) ‖Pmσu‖p � CmΓ‖Pmσuh‖p.

where in both cases C is independent of m and Pm, Γ = maxi γ
∗
i , γ∗

i = γi if
xi �= ±1 and γ∗

i = γi/(α + 1/2) if xi = ±1.

To conclude this section, we state some Nikolskii-type inequalities. By a
slight abuse of notation, for q = ∞ we will set 1/q = 0.

Theorem 3.9. Let 1 � p < q � ∞, u(x) the weight in (2.3), σ a dou-
bling weight and σm as in (2.12). Then, for any Pm ∈ Pm,

(3.15) ‖Pmσmu‖q � C
(

m√
1 − am

) 1
p

− 1
q

‖Pmσmu‖p

and

(3.16) ‖Pmϕ
1
p

− 1
q σmu‖q

� Cm
1
p

− 1
q ‖Pmσmu‖p,

where C does not depend on m and Pm.

Corollary 3.10. Under the assumptions of Theorem 3.9, for any
Pm ∈ Pm and for 1 � p < q < ∞,

(3.17) ‖Pmσmu‖q � C
(

m√
1 − am

) 1
p

− 1
q

‖Pmσu‖p

and

(3.18) ‖Pmϕ
1
p

− 1
q σmu‖

q
� Cm

1
p

− 1
q ‖Pmσu‖p.
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Moreover, if σ is an A∗ weight, then for any Pm ∈ Pm and for 0 < p < q
� ∞,

(3.19) ‖Pmσu‖q � C
(

m√
1 − am

) 1
p

− 1
q

‖Pmσu‖p

and

(3.20) ‖Pmϕ
1
p

− 1
q σu‖

q
� Cm

1
p

− 1
q ‖Pmσu‖p,

where in each of the previous inequalities C is independent of m and Pm.

4. Embedding theorems

Here, using the Nikolskii inequalities (3.19) and (3.20), we prove some
embedding theorems, connecting function spaces related to the weight (2.3).
These spaces were introduced in [14] for β = 0 (see also [2,3] for the case
α = 1/2 and β = 0).

Let us first define the spaces. By Lp
u, 1 � p < ∞, we denote the set of

all measurable functions f such that

‖f ‖Lp
u

:= ‖fu‖p =
(∫ 1

−1
|fu|p(x) dx

)1/p

< ∞,

while, for p = ∞, by a slight abuse of notation, we set

L∞
u = Cu =

{
f ∈ C0(−1, 1) : lim

x→±1
f(x)u(x) = 0

}

and we equip this space with the norm

‖f ‖L∞
u

:= ‖fu‖∞ = sup
x∈[−1,1]

∣
∣f(x)u(x)

∣
∣ .

For 1 � p � ∞, r � 1 and 0 < t < t0, we define the main part of the rth
modulus of smoothness as

Ωr
ϕ(f, t)u,p = sup

0<h�t

∥
∥Δr

hϕ(f)u
∥
∥

Lp(Ih(B)),

where Ih = [ − 1 + B h1/(α+ 1
2 ), 1 − B h1/(α+ 1

2 )], B > 1 is a fixed constant,
and

Δr
hϕf(x) =

r∑

i=0

(
r

i

)

(−1)if

(
x + (r − 2i)

hϕ(x)
2

)
.
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Then we define the complete rth modulus of smoothness by

ωr
ϕ(f, t)u,p = Ωr

ϕ(f, t)u,p + inf
P ∈Pr−1

∥
∥(f − P )u

∥
∥

Lp[−1,−t∗](4.1)

+ inf
P ∈Pr−1

∥
∥(f − P )u

∥
∥

Lp[t∗,1]

with t∗ = 1 − B t1/(α+ 1
2 ) and B > 1 is a fixed constant. We remark that the

behaviour of ωr
ϕ(f, t)u,p is independent of the constant B.

By means of the main part of the modulus of smoothness, for 1 � p � ∞,
we can define the Zygmund-type spaces

Zp
s (u) := Zp

s,r(u) =

{

f ∈ Lp
u : sup

t>0

ωr
ϕ(f, t)u,p

ts
< ∞, r > s

}

, s ∈ R
+,

equipped with the norm

‖f ‖Zp
s,r(u) = ‖f ‖Lp

u
+ sup

t>0

ωr
ϕ(f, t)u,p

ts
.

In the sequel we will denote these subspaces briefly by Zp
s (u), without the

second index r and with the assumption r > s. We remark that, since
for f ∈ Zp

s (u), we have Ωr
ϕ(f, t)u,p ∼ ωr

ϕ(f, t)u,p, in the definition of the
Zygmund-type spaces ωr

ϕ(f, t)u,p can be replaced by Ωr
ϕ(f, t)u,p (see [14]).

Let us denote by Em(f)u,p = infP ∈Pm

∥
∥ (f − P )u

∥
∥

p the error of best poly-
nomial approximation in Lp

u, 1 � p � ∞. An element realizing the infimum
in the previous definition is called polynomial of best approximation for
f ∈ Lp

u. Moreover, we say that P ∈ Pm is a polynomial of quasi best ap-
proximation for f ∈ Lp

u if
∥
∥ (f − P )u

∥
∥

p � C Em(f)u,p,

with C independent of m and f .
Since the weights w and u in (2.3) satisfy the same properties, in partic-

ular they fulfill (2.4), proceeding as in [14] for the weight w(x) = e−(1−x2)−α

,
α > 0, we can obtain the following Jackson- and Stechkin-type inequalities.

Theorem 4.1. Let u(x) be as in (2.3). For any f ∈ Lp
u, 1 � p � ∞, we

get

(4.2) Em(f)u,p � C ωr
ϕ

(
f,

1
m

)

u,p
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and

(4.3) ωr
ϕ

(
f,

1
m

)

u,p
� C

mr

m∑

i=0

(1 + i)r−1Ei(f)u,p,

where in both cases C is independent of m and f .

From the previous inequalities we deduce f ∈ Lp
u if and only if Em(f)u,p

→ 0.
Moreover, a weak Jackson-type inequality in the next theorem can be

proved (see [14]).

Theorem 4.2. Let 1 � p � ∞ and u(x) as in (2.3). Assume f ∈ Lp
u

with Ωr
ϕ(f, t)u,pt

−1 ∈ L1[0, 1]. Then

(4.4) Em(f)u,p � C
∫ 1/m

0

Ωr
ϕ(f, t)u,p

t
dt, r < m,

with C independent of m and f .

Now we can state some embedding theorems among the previously in-
troduced spaces, extending some results due to Ul’yanov [18] (see also [4,
7]).

Theorem 4.3. Let 1 � p < ∞ and u(x) as in (2.3). For any f ∈ Lp
u,

such that

(4.5)
∫ 1

0

Ωr
ϕ(f, t)u,p

t1+η/p
dt < ∞,

where η = (2α + 2)/(2α + 1), we have

Em(f)u,∞ � C
∫ 1/m

0

Ωr
ϕ(f, t)u,p

t1+η/p
dt,(4.6)

Ωr
ϕ

(
f,

1
m

)

u,∞
� C

∫ 1/m

0

Ωr
ϕ(f, t)u,p

t1+η/p
dt(4.7)

and

(4.8) ‖fu‖∞ � C
{

‖fu‖p +
∫ 1

0

Ωr
ϕ(f, t)u,p

t1+η/p
dt

}
,

where C depends only on r.
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Theorem 4.4. Let 1 � p < ∞ and u(x) as in (2.3). For any f ∈ Lp
u,

such that

(4.9)
∫ 1

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt < ∞,

we have

Em(f)ϕ1/pu,∞ � C
∫ 1/m

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt,(4.10)

Ωr
ϕ

(
f,

1
m

)

ϕ1/pu,∞
� C

∫ 1/m

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt(4.11)

and

(4.12)
∥
∥fϕ1/pu

∥
∥

∞ � C
{

‖fu‖p +
∫ 1

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt

}
,

where C depends only on r.

From Theorem 4.4 we can easily deduce the following corollary, useful
in several contexts.

Corollary 4.5. Let 1 � p < ∞ and u(x) as in (2.3). If f ∈ Lp
u is such

that

(4.13)
∫ 1

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt < ∞,

then f is continuous on (−1, 1).

5. Proofs

We recall that we denote by ‖ · ‖p the quasinorm of the Lp-spaces for
0 < p < 1.

Proof of Theorem 3.1. Let 0 < p � ∞. By Lemma 2.4, there ex-
ists a polynomial qm ∈ Pm such that qm ∼ σm in [−1, 1]. Moreover, by
Lemma 2.2, we can choose a polynomial Rlm ∈ Plm, l sufficiently large, sat-
isfying Rlm ∼ u in

[
− b2m, b2m

]
, where b2m = a2m(1 − λδ2m), λ > 0, 1 − a2m

∼ (2m)− 2
2α+1 and δ2m ∼ (2m)− 2(2α+3)

3(2α+1) . Hence, by Theorem 2.1, for any
Pm ∈ Pm, we get

‖Pmσmu‖p ∼ ‖Pmqmu‖p � C ‖Pmqmu‖Lp[−b2m,b2m]

� C ‖PmqmRlm‖Lp[−b2m,b2m].
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Then, for any E ⊂
[

− b2m, b2m

]
, with

∫
E

(
b2
2m − x2

)−1/2
dx � Λ/m, us-

ing the unweighted Remez-type inequality (see [1, pp. 227–274]), by Lem-
mas 2.4 and 2.2, we have

‖Pmσmu‖p � C ‖PmqmRlm‖Lp[−b2m,b2m]

� C ‖PmqmRlm‖Lp([−b2m,b2m]\E) � C ‖Pmσmu‖Lp([−b2m,b2m]\E),

that is (3.1). �
Proof of Corollary 3.2. We are going to prove only inequality (3.3).

Proceeding as in the proof of Theorem 3.1, by Lemmas 2.4 and 2.2, there
exist polynomials qm ∈ Pm and Rlm ∈ Plm, l sufficiently large, such that qm

∼ σm in [−1, 1] and Rlm ∼ u in
[

− b3m, b3m
]
.

Now, in order to use Theorem 2.5, observe that for x ∈
[

− b2m, b2m
]
,

from
√

1 − x2 ∼
√

b2
3m − x2 we deduce σm(x) ∼ σ̃m(x), where

σ̃m(x) =
1

Δ̃m(x)

∫ x+Δ̃m(x)

x−Δ̃m(x)
σ(t) dt, Δ̃m(x) =

√
b2
3m − x2

m
+

1
m2

.

Then, for 0 < p < ∞, by Theorem 2.5, we have

‖Pmσmu‖p � C ‖PmσmRlm‖Lp[−b2m,b2m] � C ‖Pmσ̃mRlm‖Lp[−b2m,b2m]

� C ‖Pmσ̃mRlm‖Lp[−b3m,b3m] � C ‖PmσRlm‖Lp[−b3m,b3m].

Using Theorem 2.3, inequality (3.3) follows. �
We will omit the proofs of inequality (3.4) and also of Corollaries 3.6,

3.8 and 3.10, since they follow from Theorems 3.5, 3.7 and 3.9 by using
arguments analogous to those in the previous proof and in the proof of
Corollary 3.4.

Proof of Theorem 3.3. We use arguments analogous to those in [14].
Let 0 < p � ∞. By Lemma 2.4, there exist two polynomials qm, rm ∈ Pm

such that σm ∼ qm and ϕ < Cϕm ∼ rm in [−1, 1], where ϕm is defined as in
(2.12). Hence, by the restricted range inequality (2.9), we have

∥
∥P ′

mϕσmu
∥
∥

p � C
∥
∥P ′

mrmqmu
∥
∥

p � C
∥
∥P ′

mrmqmu
∥
∥

Lp[−a3m,a3m].

By Lemma 2.2, there exists Rlm ∈ Plm, satisfying (2.10) and (2.11) in[
− a4m, a4m

]
. Note that

[
− a4m, a4m

]
⊂ [ − 1 + c

m2 , 1 − c
m2 ] for m suffi-

ciently large and then rm ∼ ϕ in
[

− a4m, a4m
]
. Hence, by (2.10) and (2.16),

it follows that
∥
∥P ′

mϕσmu
∥
∥

p � C
∥
∥P ′

mqmRlmϕ
∥
∥

Lp[−a3m,a3m](5.1)
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� C ‖(PmqmRlm

) ′
ϕ‖

Lp[−a3m,a3m]
+ C

∥
∥Pmq′

mRlmϕ
∥
∥

Lp[−a3m,a3m]

+ C
∥
∥PmqmR′

lmϕ
∥
∥

Lp[−a3m,a3m].

Let us consider the first summand in (5.1). Since ϕ(x) ∼
√

a2
4m − x2 for x ∈

[
− a3m, a3m

]
, using the unweighted Bernstein inequality in

[
− a4m, a4m

]
,

by (2.16) and (2.10), we get

‖(PmqmRlm

) ′
ϕ‖

Lp[−a3m,a3m]
� C ‖(PmqmRlm

) ′
√

a2
4m − ·2‖

Lp[−a4m,a4m]

(5.2)

� Cm
∥
∥PmqmRlm

∥
∥

Lp[−a4m,a4m] � Cm‖Pmσmu‖Lp[−a4m,a4m].

Concerning the second summand in (5.1), by (2.17) and (2.10), we have
∥
∥Pmq′

mRlmϕ
∥
∥

Lp[−a3m,a3m] � Cm
∥
∥PmσmRlm

∥
∥

Lp[−a3m,a3m](5.3)

� Cm‖Pmσmu‖Lp[−a3m,a3m].

Finally, for the third summand in (5.1), by (2.11) and (2.16), we get
∥
∥PmqmR′

lmϕ
∥
∥

Lp[−a3m,a3m] � Cm‖Pmqmu‖Lp[−a3m,a3m](5.4)

� Cm‖Pmσmu‖Lp[−a3m,a3m].

Combining (5.2), (5.3) and (5.4) with (5.1), we obtain the Bernstein-type
inequality (3.5) for 0 < p � ∞. �

Proof of Corollary 3.4. We first prove inequality (3.6). Proceeding
as in the proof of Theorem 3.3, we choose a polynomial Rlm ∈ Plm, l suffi-
ciently large, satisfying (2.10) in

[
− a5m, a5m

]
, and then we have

∥
∥P ′

mϕσmu
∥
∥

p � Cm
∥
∥PmσmRlm

∥
∥

Lp[−a4m,a4m], 0 < p < ∞,

where

σm(x) =
1

Δm(x)

∫ x+Δm(x)

x−Δm(x)
σ(t) dt, Δm(x) =

√
1 − x2

m
+

1
m2

.

Now, for x ∈
[

− a4m, a4m

]
, σm(x) ∼ σ̃m(x), where

σ̃m(x) =
1

Δ̃m(x)

∫ x+Δ̃m(x)

x−Δ̃m(x)
σ(t) dt, Δ̃m(x) =

√
a2

5m − x2

m
+

1
m2

.
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Hence, by Theorem 2.5 and inequality (2.10), we get
∥
∥P ′

mϕσmu
∥
∥

p � Cm
∥
∥Pmσ̃mRlm

∥
∥

Lp[−a4m,a4m]

� Cm
∥
∥PmσRlm

∥
∥

Lp[−a5m,a5m] � Cm‖Pmσu‖Lp[−a5m,a5m]

for 0 < p < ∞, i.e. (3.6).
Finally, to prove inequality (3.7), we can proceed as in the first part of

this proof, using Theorem 2.6 in place of Theorem 2.5, in order to obtain
(3.6) also in the case where p = ∞ and σ is an A∗ weight. Then, since
σ � Cσm if σ is an A∗ weight, from (3.6) we deduce (3.7) for 0 < p � ∞. �

Proof of Theorem 3.5. By Lemma 2.4, there exists qm ∈ Pm such
that σm ∼ qm in (−1, 1). Hence, by the restricted range inequality (2.9), we
have

∥
∥P ′

mσmu
∥
∥

p � C
∥
∥P ′

mqmu
∥
∥

Lp[−a2m,a2m], 0 < p � ∞.

Thus, multiplying and dividing by ϕ, and proceeding as in the proof of The-
orem 3.3, we get

∥
∥P ′

mσmu
∥
∥

p � C
√

1 − a2
2m

∥
∥P ′

mqmuϕ
∥
∥

Lp[−a2m,a2m] � C m√
1 − am

‖Pmσmu‖p,

which was our claim. �

Proof of Theorem 3.7. By Theorem 3.1, letting E =
⋃

xi �=±1

[
xi −

m−1, xi + m−1
]
, we have

‖Pmσmu‖p � C ‖Pmσmu‖Lp([−a2m,a2m]\E) � CmΓ‖Pmσmuh‖Lp([−a2m,a2m]\E),

where Γ = maxi γ
∗
i , γ∗

i = γi if xi �= ±1 and γ∗
i = γi/(α + 1/2) if xi = ±1,

taking into account that, for xi = ±1 and x ∈
[

− a2m, a2m
]
, by (2.5), we

have

|xi ± x| −γi = (1 ± x)−γi �
(
1 − a2

2m

)−γi � Cm
γi

α+1/2 . �

Proof of Theorem 3.9. We first prove (3.16) for q = ∞. Taking into
account that, by Theorem 3.1 and Corollary 3.2, we deduce

∥
∥Pmϕ1/pσmu

∥
∥

∞ � C
∥
∥Pmϕ1/pσmu

∥
∥

L∞[a3m,a3m],

we can assume x ∈ [−a3m, a3m], with a3m = a3m(u). Then, by the equality
∫ b

a
f(t) dt = (b − a)

{
f(a)
f(b)

}
+
∫ b

a

{
(b − t)
(a − t)

}
f ′(t) dt,
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since ϕ(x) ∼ ϕ(t) for t ∈ Ix :=
[
x − ϕ(x)/m, x + ϕ(x)/m

]
, we have

∣
∣Pm(x)ϕ(x)

∣
∣ � Cm

[ ∫

Ix

∣
∣Pm(t)

∣
∣ dt +

ϕ(x)
m

∫

Ix

∣
∣P ′

m(t)
∣
∣ dt

]
(5.5)

� Cm

[ ∫

Ix

∣
∣Pm(t)

∣
∣ dt +

1
m

∫

Ix

∣
∣P ′

m(t)ϕ(t)
∣
∣ dt

]
.

Since, by (2.6) and (2.13), u(x) ∼ u(t) and σm(x) ∼ σm(t) for t ∈ Ix, by
using the Hölder inequality, we get

∣
∣Pm(x)ϕ(x)σm(x)u(x)

∣
∣

� Cm

(
ϕ(x)
m

)1−1/p
⎡

⎣
(∫

Ix

∣
∣Pmσmu

∣
∣p(t) dt

)1/p

+
1
m

(∫

Ix

∣
∣P ′

mϕσmu
∣
∣p(t) dt

)1/p
⎤

⎦

� Cm

(
ϕ(x)
m

)1−1/p
⎡

⎣
(∫ 1

−1
|Pmσmu|p(t) dt

)1/p

+
1
m

(∫ 1

−1

∣
∣P ′

mϕσmu
∣
∣p(t) dt

)1/p
⎤

⎦.

Hence, by using the Bernstein-type inequality (3.5) and inequality (5.5), we
obtain

∥
∥Pmϕ1/pσmu

∥
∥

∞ � Cm1/p‖Pmσmu‖p,

i.e. (3.16) for q = ∞. Otherwise, if 1 � p < q < ∞, it follows that

‖Pmϕ
1
p

− 1
q σmu‖q

q
�
∥
∥Pmϕ1/pσmu

∥
∥ q−p

∞ ‖Pmσmu‖p
p � Cm

q−p

p ‖Pmσmu‖q
p,

i.e. (3.16).
Let us now prove inequality (3.15) for q = ∞. Using Lemma 2.4 and

Theorem 3.1, by (3.16) and (2.5), we have

‖Pmσmu‖∞ � C ‖Pmσmu‖L∞[−a2m,a2m]

� C
(

1√
1 − a2m

)1/p ∥
∥Pmϕ1/pσmu

∥
∥

∞ � C
(

m√
1 − am

)1/p

‖Pmσmu‖p.
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Proceeding as before, for 1 � p < q < ∞, we get

‖Pmσmu‖q
q � ‖Pmσmu‖q−p

∞ ‖Pmσmu‖p
p

� C
(

m√
1 − am

) q−p

p

‖Pmσmu‖q
p � C

(
m√

1 − am

) q−p

p

‖Pmσmu‖q
p,

which completes the proof. �

Proof of Theorem 4.3. Let us denote by {Pm}m, where Pm ∈ Pm, a
sequence of polynomials of quasi best approximation for f ∈ Lp

u, 1 � p < ∞.
By Theorem 4.2, the assumption (4.5) implies limm Em(f)u,p = 0. Then the
equalities

(f − Pm)u = lim
n→∞

(
P2nm − Pm

)
u(5.6)

= lim
n→∞

{ n−1∑

k=0

(
P2k+1m − P2km

)
u

}
=

∞∑

k=0

(
P2k+1m − P2km

)
u

hold a.e. in (−1, 1).
By the Nikolskii-type inequality (3.19), with η = (2α + 2)/(2α + 1), and

the restricted range inequality (2.9), and using the inequality (see [14])

(5.7) Ẽm(f)u,p = inf
Pm ∈Pm

∥
∥ (f − Pm)u

∥
∥

Lp[−am,am] � C Ωr
ϕ

(
f,

1
m

)

u,p
,

we get

‖(P2k+1m − P2km

)
u‖∞ � C

(
2k+1m

)η/p‖(P2k+1m − P2km

)
u‖

p

� C
(
2k+1m

)η/p‖(P2k+1m − P2km

)
u‖

Lp[−a2k+1m,a2k+1m]

� C
(
2km

)η/pΩr
ϕ

(
f,

1
2km

)

u,p
,

in analogy with (5.7). Hence, since

1 =
1

2km

∫ 1
2km

1
2k+1m

dt

t2
� 2

∫ 1
2km

1
2k+1m

dt

t

we get
∞∑

k=0

‖(P2k+1m − P2km

)
u‖∞ � C

∞∑

k=0

(
2km

)η/pΩr
ϕ

(
f,

1
2km

)

u,p
(5.8)
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� C
∞∑

k=0

(
2km

)η/p
∫ 1

2km

1
2k+1m

Ωr
ϕ(f, t)u,p

t
dt

� C
∞∑

k=0

∫ 1
2km

1
2k+1m

Ωr
ϕ(f, t)u,p

t1+η/p
dt � C

∫ 1
m

0

Ωr
ϕ(f, t)u,p

t1+η/p
dt.

Therefore, by (4.5), we deduce that, in (5.6), the series is uniformly conver-
gent (in particular f ∈ Cu) and the equalities hold everywhere in (−1, 1).
Thus, by (5.6) and (5.8), we obtain (4.6).

In order to prove inequality (4.7), we denote by Pm ∈ Pm a polynomial
of quasi best approximation for f ∈ Lp

u. Since the equivalence

ωr
ϕ

(
f,

1
m

)

w,p
∼ inf

Pm ∈Pm

{∥
∥ (f − Pm)w

∥
∥

p +
1

mr ‖P (r)
m ϕrw‖

p

}

holds true for any 1 � p � ∞ (see [14]), we have

Ωr
ϕ

(
f,

1
m

)

u,p
� C

{∥
∥ (f − Pm)u

∥
∥

p +
1

mr ‖P (r)
m ϕru‖

p

}
.

Moreover, proceeding as in [5, p. 99] and as was done [14] to prove the weak
Jackson-type inequality (4.4), one can show that

‖P (r)
m ϕru‖

p
� C mr

∫ 1
m

0

Ωr
ϕ(f, t)u,p

t
dt.

Hence, by (3.19), we obtain

Ωr
ϕ

(
f,

1
m

)

u,∞
� C

{
∥
∥(f − Pm)u

∥
∥

∞ +
mη/p

mr ‖P (r)
m ϕru‖p

}

� C
{

Em(f)u,∞ +
∫ 1

m

0

Ωr
ϕ(f, t)u,p

t1+η/p
dt

}
,

and then (4.7), by (4.6).
Finally, (4.8) follows by applying (4.6) with m = r + 1. In fact, denoting

by Pr+1 ∈ Pr+1 a polynomial of quasi best approximation for f ∈ Lp
u and

using (3.19) with m = r + 1, we have

‖fu‖∞ �
∥
∥(f − Pr+1)u

∥
∥

∞ + ‖Pr+1u‖∞

�
∥
∥(f − Pr+1)u

∥
∥

∞ + C ‖Pr+1u‖p � C
{
Er+1(f)u,∞ + ‖fu‖p

}
,
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where C depends only on r. This completes the proof, taking into account
(4.6). �

We omit the proof of Theorem 4.4, which follows by similar arguments
of the previous one, using inequality (3.20) in place of (3.19).
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