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Prey gathering may act as a counterattack measure against
predators

El agrupamiento de presas puede actuar como una medida de
contraataque contra los depredadores.
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Abstract—Two generalist predators not interfering with each other and hunting the same single prey that gathers in a herd are here
considered. The system allows only two possible final outcomes, the prey-free state in which both predators thrive at their own carrying
capacities, an equilibrium that is always present, and coexistence, which is not guaranteed to exist. When it arises, it does it in pair, of which
one point is a saddle. As a result, the phase space is partitioned into two domains of attraction corresponding to these two equilibria. If the
prey represents a pest, this result would provide a theoretical tool for its eradication, provided that it is coupled with some human external
action, such as insecticide spraying, which however can be administered just in a mild way, sufficient to push the system trajectories into the
prey-free point domain of attraction. If it is a species to be preserved instead, corresponding measures for enhancing its survival should be
taken, such as increasing its reproductivity or lowering the predators’ pressure, so that the state of the system would fall into the attraction
domain of the coexistence equilibrium.

Keywords—Mathematical Ecology, Mathematical Models, Population theory, Herding, Two-predators-one-prey

Resumen—Aqui se consideran dos depredadores generalistas que no interfieren entre si y cazan la misma presa tinica que se retine en una
manada. El sistema permite solo dos posibles resultados finales, el estado libre de presas en el que ambos depredadores prosperan con sus
propias capacidades de carga, un equilibrio que siempre estd presente y la coexistencia, que no estd garantizada. Cuando surge, lo hace en
pareja, de las cuales un es un punto silla. Como resultado, el espacio de fases se divide en dos dominios de atraccién correspondientes a
estos dos equilibrios. Si la presa representa una plaga, este resultado proporcionaria una herramienta tedrica para su erradicacion, siempre
que se acompafie de alguna accién externa humana, como la fumigacion con insecticidas, que sin embargo puede administrarse de forma
suave, suficiente para empujar las trayectorias del sistema en el dominio de atraccion del punto libre de presas. Si en cambio se trata de una
especie a. Si en cambio se trata de una especie a preservar, se deben tomar las medidas correspondientes para mejorar su supervivencia,
como aumentar su reproductividad o disminuir la presion de los depredadores, de modo que el estado del sistema caiga en el dominio de
atraccion del equilibrio de coexistencia.

Palabras clave— Modelos Matematicos, Ecologia Matemdtica, Teoria de las Poblaciénes, Manadas, Dos-predatores-una-presa

INTRODUCTION wandering in the prairies in search for better feeding and
pastures. Modeling this specific feature has been addressed
in a number of papers, starting from (Ajraldi et al., 2011).

Herding has been a subject of recent researches also with si-

Several papers in the literature address the one-predator-
several-prey situation, for instance in trophic chains as in

(Baudrot et al., 2016a,b), where at times also the influence
of contaminants and diseases are discussed, (Baudrot et al.,
2018; Sieber et al., 2014).

Populations gathering in herds are well-known in nature.
Herbivores usually have this habit and retain it also while

tuations envisaging a disease affecting some population in
the system, (Belvisi and Venturino, 2013; Cagliero and Ven-
turino, 2016; Kooi and Venturino, 2016). In other contexts
several investigations have dealt with different and even ge-
neric response functions (Gonzalez-Olivares et al., 2022; Vil-
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ches et al., 2018) or have studied herding populations diffu-
sion in space (Souna et al., 2020; Jiang and Tang, 2019). One
of the results that most distiguishes these models from the
classical ones is in (Melchionda et al., 2018), where tristabi-
lity is discovered to take place in two competing populations,
allowing the simultaneous thriving of both, in contrast to the
classical result that for such a system competitive exclusion
must occur.

In this paper we continue the study of prey gathered in
herds. We keep on using a particular form of the response
function, namely the square root function, but it should be
remarked that the latter is just a particular instance, a more
general formulation has been introduced in (Bulai and Ventu-
rino, 2017; Djilali, 2019) leading perhaps to a slightly more
difficult analysis, without however any significant change in
the results. Here, in particular we assume that, if their num-
bers are large enough, prey can respond to predators’ attacks
by some form of retaliation, thereby reducing the chance of
being hunted. The main idea is exposed in (Acotto and Ven-
turino, 2022) and has further been explored in the parallel
paper (Bondi et al., 2022). In the present situation we intro-
duce a different ecological situation than those considered in
the previous two investigations.

The paper is organized as follows. We describe the model
construction in the next section and turn to its analysis in the
subsequent section. A final discussion concludes the paper.

MODEL SETUP

We consider a prey population N that gather together.
Herding facilitates the possible predators’ X capturing of
the prey on the boundary of the herd, expressed mathema-
tically by the function A(N,X). This is simply modeled via a
square root function, assimilating the herd shape to a circle,
although more general exponents other than 1/2 can be ta-
ken, as discussed in (Bulai and Venturino, 2017), to account
for more complicated domains, without any substantial chan-
ges in the results. Thus % has the form

h(N,X) =aV/NX.

Here, specifically, two predators P and Q are present in the
environment, and hunt the prey. The two predators are as-
sumed to have also other food sources, and thereby do not
explicitly compete with each other, only “mildly” through
sharing the common prey N. Following the ideas of (Acot-
to and Venturino, 2022), the predators’ attacks are reduced
if the prey population attains a sufficiently large size. There-
fore to model the functional response, we need a decreasing
function of N, that vanishes in the limit when N tends to infi-
nity. Thus, the function A(N,X) should be a kind of modified
Holling type IT (HTII) response function, and thus must be
modified as follows

(D
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These considerations lead to the system
apr P\ epapy/NP
P p(1- Ly eraNe
ar " Hp) T T bpN @
d N
dQ :,,LQQ<1*2>+M,
dt Hp 1+boN
aN _ N(] _ﬁ)_ap\/ﬁp _apVNQ
a N Hy/) 14bpN 1+bgN’

The first two equations for the predators are similar, contai-
ning a logistic term expressing the availability of other re-
sources, and the benefit from hunting the prey N, scaled via
suitable conversions coefficients ep and e, where the fun-
ctional response of type (1) has been employed. The third
equation for the prey N also has a logistic growth rate, but the
additional terms express the harm suffered by the predators’
attacks. All the parameters are assumed to be nonnegative, in
particular the reproduction rates np and ng are here strictly
positive:

np >0, ng > 0. 3

Table 1 lists all the model parameters and their interpretation.

Parameter Interpretation
Hp predator P carrying capacity
Hop predator Q carrying capacity
Hy prey N carrying capacity
np predator P reproduction rate
ng predator Q reproduction rate
ny prey N reproduction rate
ep predator P conversion coefficient
eo predator Q conversion coefficient
ap predator P hunting rate
ap predator Q hunting rate
bp predator P handling time
bo predator Q handling time

TABLE 1: PARAMETER INTERPRETATION FOR MODEL (2).

THE SYSTEM BEHAVIOR

We study here the dynamics of (2), focusing on its possible
equilibria. The analysis will assess their feasibility and local
stability.

Equilibria feasibility

The equilibrium equations obtained from (2) are highly
nonlinear, but in some simple instances, analytic expressions
for the equilibrium population values can be obtained. There
are eight possible combinations, if we concentrate on the two
alternatives that a population may or may not be present in
the environment. All of them are at least conditionally admis-
sible, as we will see below. This essentially follows from the
assumption that the predators are generalist, which prevents
the rejection of the points containing only such populations
in the absence of their prey N based on the fact that for spe-
cialist predators this is their only food source.
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Equilibria with just one population

Easily, the points Ey = (0,0,0), Ey = (0,0,Hy), Eg =
(0,Hp,0) and Ep = (Hp,0,0) are seen to be unconditionally
feasible.

Equilibria with just two populations

The same results as for the single population points hold
also for the prey-free point Epg = (Hp,Hgp,0).

The other equilibria with two populations are more invol-
ved. But the symmetrical nature of the system (2) in terms of
the two predators, allows us to investigate only one of them,
as for the other one the results will follow by a simple change
in the subscript.

Prey-one-predator equilibrium Egy = (0, é*,ﬁ*)

We thus investigate the point with P =0, Q # 0, N # 0.
From the last two equilibrium equations of (2), we obtain the
nonlinear system

H, eopapVN
B(N) = dy(N) = 75("9+71Q+QbQN)’ @)
n N
W(N) = Wo(N) = %\/N(l—H—N)(l—FbQN).

The possible solution of this system will be investigated geo-
metrically, as the intersections of the two curves ®(N) and
Y(N). The height of these points therefore provide the pre-
dators equilibrium value é*,Nwhile the abscissae those of N *
so that the point Egy = (0,Q*,N*) is known.

The function ®(N) is defined over the whole positive 1i-
ne, with height at the origin given by Hy and a horizontal
asymptote at the same level, in view of the following result

{i _ g+
A%I:o ®(N)=H,,
the asymptote being approached from above. Evaluating its
derivative, we find

HQeQaQ(l — bQN)
2ngV/N(1 +bgN)?
where the denominator is aways positive. To assess the sign

of ®'(N) we just need to study the one of the numerator
which is positive for N < 7. Thus for 0 < N < - the

function @(N) is increasing, and conversely decreasmg in
N > b . The maximum is thus attained at the point

o= 5 (5e)|

In view of the above findings, it is apparent that near the ori-
gin ®(N) is concave, because

@' (N) =

lim @®'(N) =

+eo,
N—O0t

and it becomes convex for large values of N, indicating the
presence of an inflection point. To assess it better, we diffe-
rentiate once more,

egagHo(3N*by, — 6Nbg — 1)

e = 4ngNV/N(1+bgN)3
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Again, the denominator does not influence the sign of the se-
cond derivative. In the numerator the term 3N 2b2 6N bQ —1

is positive whenever N < N, o and N > N, q),,, Where NE o are

its zeros,

NE, = 3b2 [3bg /903 + 303 | = 3b2 [3b0 4260 V3]

that always exist as the discriminant of the corresponding
quadratic equation is always positive. Specifically,

N-

@,,=3bQ[3 23] <0, N =

% [3+2\f} 0.

In conclusion, ®(N ) is convex for 0 < N < N} o and it is
concave for N > N¢,,
Qualitatively, the behavior of ®(N) is shown in Figure 1.

> ~ ®» ©
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i
3
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o
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Figure 1: The function ®(N) for the parameter choice np = 0,4,
HQ =5, eg = 0,3, ag = 0,7, bQ = 0,2.

We now study the function W(N). It is defined for all N > 0

and

Iim W(N) = —oo.

A ()
Its zeros are located at the origin and at y; = Hy, while the
other vanishing point y, = —bél < 0 lies outside the relevant
domain of interest. On calculating its derivative, the denomi-
nator is found to be always positive,

5boN? —3N(boHy — 1) — Hy]

/ _ _”N[
¥ (N) N ZaQHN\/]V

and the sign of ¥'(N) depends just on the one of the nume-
rator, which is the quadratic function

q(N) = —5boN* +3N(bgHy — 1) + Hy.

Specifically W' (N) > 0 within the interval of the roots Néf/,
with

. 1

Ny =~ 50 3000Hy 1) - —\/9(1 —boHy)? +20boHy],
+ _ _ _

My =~ oy Blbotn —1 )+ /9(1 — boHy)? + 20boHy).

Note that they are always real, because ¢(0) = Hy > 0 and
g(N) is a concave parabola. Also, we have Ny, < 0 and Ny, >
0, in both cases bgHy > 1 and bpHy < 1. Thus W(N) is
increasing for 0 < N < N, and decreasing in [Ny, ), so
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that its maximum is located at the point (N, , ¥(Ny,)). We
study now the second derivative

—nN[ISbQN2 — 3N(bQHN - 1) +HN]

q]// N —
") 4agHyN~/N

i

where the denominator is once more always positive in the
domain of interest, N > 0. To assess convexity, we investigate
the sign of the numerator, which is positive in case

p(N) = 15bgN? — 3N (boHy — 1) + Hy < 0.
The roots of p(N) =0 are
1

N&, = —

v = 305 [3(boHy — 1)+ VA, (5)

where A is regarded as a function of bgHy:
A =9(boHy —1)* — 60bgHy = 9(boHy)* — 78boHy +9.

In turn A is a quadratic function in 6 = bpHy, with roots

1 1 1
5. — §[39i 1521 —81] = §[39j[ 1440] ~ §[39i37,95}

that are both positive. Thus A > 0 in both the following alter-
native cases:

O<bQHN< o_ :51 %0,127 bQHN> 5+:52%8,55.
With these restrictions this guarantees the existence of real
roots for the numerator of the second derivative of ¥, namely
Ng.

There are two cases:

s [fA<O, N\;,, and N@ are both complex, the quadratic
p(N) is always positive and thus ¥”(N) < 0 entailing
that the function W(N) is always concave for N > 0.

= Alternatively for A > 0, we may have either 0 < bpHy <
0 < lOI”bQHN>52>8.

Note that for boHy < 1, from (5) we find Nflf,, < 0, be-
cause A < 3(bgHy —1). In such case ¥ (N) < 0 outside
the interval [Ny, Ng], and in particular for all N > 0.
Hence in the domain of interest, ¥ is concave.

If instead bpHy > 1, again using (5) we have le,, >0,
once more because A < 3(bpHy —1). But this and A > 0
imply that boHy > 0, > 8, so that either

0<Ngy <8 <1, Nf»>8>8,
or, alternatively
Ngy > & > 8.

In both cases, it turns out that ¥ (N) > 0 for Ng,, <N <
Ny, which implies that W(N) is convex in the same
interval [N\;,/,N\;,,], and concave for 0 < N < Ny, as

well as for N > N;r,,,.

These possible inflection points lie in the first quadrant
only if the condition ¥(Ng,,) > 0 is satisfied.

The equilibrium Egy is therefore a possible intersection
of ®(N) and W(N) in the first quadrant. Now, in view of the
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above analysis, this is not always guaranteed, as it is clear
from Figure 2. It is also apparent that the two intersections,
giving a pair of equilibria, occur via a saddle-node bifurca-
tion.

A sufficient condition for the existence of such points is
obtained when the maximum value of ¥ (N) exceeds the va-
lue of ®(N) for the corresponding abscissa. Obviously, the
latter is located at the zero Ny, of W'(N) and thus the suffi-
cient condition reads

D(Ng,) > P(N). (6)

. .
F=Phi(N) F=Phi(N) |
--=--F=HN |

FePsi(N) |

.
F=Phi(N) |
9F [====F=HN

F=Psi(N)

= === F=HN
F=Psi(N) |

Figure 2: Graph of the functions ¥(N) and ®(N) with the
parameters ag = 0,7, bg = 0,2, eg = 0,3, ny = 0,5, np = 0,4,
Hp = 5. Left to right, Hy = 25, Hy = 38,6 and Hy = 40.

Equilibrium with the other predator absent (P*,0,N*)

As stated above, thisN case can be investigated in the same
way as for Egy = (0, Q*,N*), by suitably changing the no-
tation. The sufficient condition (6) would be replaced by an
analogous statement, where ®(N) and ¥(N) would be meant
to be the functions ®p(N) and ¥p(N) with an obvious chan-
ge of notation in (4).

Coexistence equilibrium

We study this equilibrium E* = Epgy = (P*,0*,N*) by
solving two of the equilibrium equations and substituting into
the remaining one. From the first two equilibrium equations

we find
H, N
p_tr (, ,erarVN
np 1+bpN

and

H eoapVN
Y
(%) 1+bQN

Substitution into the equilibrium equation for N we obtain
the equation
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delta(N,aQ)

0 500 1000 1500
N

Figure 3: The figure shows the behavior of 3(N) as a function of
ap € [0,1,0,9], where all other parameters are given in (8).

where

B(N) = nyN <1—5> )

N
_aP\/NHP[nP(l +bpN) + epap\/N|
np(1+bpN)?
_agV/NHglng(1+boN) +egagv/N]
nQ(1+bQN)2 '

The function B(N) is explored numerically for the assess-
ment of its possible zeros. For this task we use the following
set of parameters:

ny =03, np=04, nyp=03, Hp=150, (8)
Hp=1200, Hy=1500, ep=08, ep=09,
ap=08, ap=02, bp=04 by=0,1.

Figure 3 contains the plots of B(N) for nine choices of the
parameter ag, the predator Q hunting rate, in the interval
[0,1,0,9], while all the remaining ones are taken from (8).
Similarly in Figure 4 the varying parameter, in the same in-
terval, is ny, the prey N birth rate. Finally in Figure 5 we let
ng, the predator Q birth rate, change. These three parameters
have been selected because they appear to be the most impor-
tant ones to influence the behavior of B (N). Further, in all ca-
ses, it is seen that the number of the nontrivial roots changes,
it may be zero, or up to two. Therefore the coexistence equi-
librium is not guaranteed always to exist. Also, whenever it
arises, it does it in pairs, through a saddle-node bifurcation.

Equilibria stability

To assess local stability, we need the Jacobian of (2):

Jip 0 Ji3
J=10 o D3],
J31 J3p J33
with
7 (1 2P) epapV/N
=n _— N —
1.1 P Hp 14+ bpN
epapP
Ji3=—F7—"+
2+/N(1+bpN)?

delta(N,nN)

0 500 1000 1500
N
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Figure 4: The figure shows the behavior of 3(N) as a function of

ny € [0,1,0,9], where all other parameters are given in (8).

delta(N,nQ)

0 500 1000 1500
N

Figure 5: The figure shows the behavior of B(N) as a function of

ng € [0,1,0,9], where all other parameters are given in (8).
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20, | coagVN
Hyp 1+bgN
I . €090
23 T
2v/N(1+bgN)?
ap\/N
1+bpN
aQ\/N
1+bgN
J (1 ZN) apP ClQQ
=n _— — —
BTN T HY) T 2N+ bpNY? 2yN(1+ boN)?
Because the equilibria with N = 0 will have a singularity
in the Jacobian, we will analyse them separately.

Jzﬂz =ng (1 —

J31=—

J3p=—

Equilibra with N # 0

At the point Ey = (0,0, Hy) the Jacobian becomes a lower
triangular matrix, with eigenvalues along the diagonal:

Epap\/HN ne + eQaQ\/HN ~0 —ny < 0
T+bpHy 1+boHy =

and unconditional instability follows from the positivity of
the first two.

For Epy = (P*,0,N*) one eigenvalue is immediately
known, as the Jacobian factorizes:

eQaQ\/IE

Jro=np+ —"——
2T L b

and this is enough to ensure once again unconditional insta-
bility. o
A similar result holds for Egy = (0,0*,N*), for which

epdp N*
1+ bpN*

and also this point is always unstable.
For coexistence E* = Epgy = (P*,Q*,N*), note the sim-
plifications:

Jig=np+

P* Q*
J1(EY) = —np—1. Jrr(E*) = —np—
1L1(E") P 22(E") ”QHQ7
apP*(1+2bpN*)
2N (1 + bpN*)?

To assess stability we apply the Routh-Hurwitz conditions.
The one on the trace gives

apP*(1+2bpN*)
2V/N*(1 4 bpN*)?

agQ"(1+2bpN")  N*

J3(E*) =

(lQQ*(l + 2bQN*)
2V/N*(1+boN*)?

<np— +ng—+ny—.
np nQH nNHN

©))

The sum of the principal minors of order two is

* * *
—ng— —np—J33(E*
H'"Hy " H; 33(E”)

M3 =np (10)

*

ap\/N* ePapP*
“"0us J33(EY)

14 bpN* 2\/N*(1 —I—pr*)z
anN* eQaQQ
1+boN* 2¢/N*(1+ boN*)?

n .
2N (1+boN*)2 " Hy
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We now evaluate the determinant:
det(J(E*)) = J 11
AIE) =mrgonopdia(EY) (D)
ngepasP*Q* npegagP*Q*

" 2Hp(1+bpN*)3  2Hp(1+boN*)3

to establish its positivity, giving the condition

npngP*Q* . ngepasP*Q*
———h3(E) > 12
HpH, 33(E°) 2Hg(1 + bpN*)3 (12)
npeQa2QP* o
2Hp(1+boN*)3

The last requirement for stability, which we leave in a synthe-
tic form, reads

tr(J(E*))M; < det(J(E™)). (13)
These conditions define a set in the parameter space that is
nonempty. This statement arises from the numerical simula-
tions, that indeed indicate that this point E* = Epgy can be
stably achieved, showing also that the feasibility conditions
discussed formerly are satisfied for some parameter choi-
ces. Figures 6-9 show the various possibilities, in terms of
the possible locations of the roots of the function B(N). In
particular note that whenever two such roots exist, one of
them (the smaller one) leads to an unstable coexistence equi-
librium, as it should be expected as the latter arises through
a saddle-node bifurcation as remarked earlier. For the same
reason we observe that in the top frame of Figure 9, when
both roots coalesce, the equilibrium that is generated is also
unstable.

Equilibria with N = 0
Observing the dominant behavior of the system near Ej,
we have
dpP
S G B L
dl 1+bpN
~ P[np—i—epapf] ~npP > 0
d
40 _ nQQ(l _ 7)+€QGQ\/>Q’
Hyp 1+bgN
~ Q[l’lQ —l—eQaQ\F] ~noQ > 0,
dN _ N(l_ﬁ) apV/NP agV/NQ
ar " Hy/) 1+bpN  1+boN
~ VN[ny VN — (apP +agQ)],

and the consequence is unconditional instability due to the
signs of the right hand sides of the first two equations.
For Ep = (Hp,0,0), we find

dN N ap NP aQ Q
X (1 - v VIE . VNV
i HN) T+bpN  1+bon ~ VNIV

dt
—(ap(P—Hp)+apHp+ag(Q—Hp) +agHp)]
~ —\/N(apHp +aQHQ) <0,

so that along the N-axis the behavior is stable.
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Figure 6: Coexistence obtained with the following parameter
values: ny = 0,3, np = 0,4, ng = 0,3, Hp = 150, Hp = 1200,
Hy =1500,ep =0,8,e9 =0,9,ap =0,8,ap = 0,2, bp = 0,4,
bg = 0,1. The top frame corresponds to the initial condition near
the zero Nj g = 678,6517 of the function 8(N), which is seen to
give an unstable equilibrium; the bottom one to the initial
condition taken near the zero N, g = 1132,4, corresponding to a
stable coexistence equilibrium.
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Figure 7: Coexistence obtained with the following parameter
values: ny = 0,9, np = 0,4, ng = 0,3, Hp = 150, Hp = 1300,
Hy =1500,ep =0,8,e9 =0,9,ap =0,8,ap =09, bp = 0,4,
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bgp = 0,5. The top frame corresponds to the initial condition near
the zero Nj g = 258,6319 of the function (N), which is seen to

give an unstable equilibrium; the bottom one to the initial

condition taken near the zero N, g = 1416.4, corresponding to a

stable coexistence equilibrium.
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Figure 8: Coexistence obtained with the following parameter
values: ny = 0,9, np = 0,4, ng = 0,3, Hp = 150, Hp = 300,
Hy =1500,ep =0,8,e9 =0,9,ap =0,8,ap =09, bp = 0,4,
bp = 0,5. The top frame corresponds to the initial condition near
the zero Ny g = 97,9228 of the function B(N), which is seen to
give an unstable equilibrium; the bottom one to the initial
condition taken near the zero N, g = 1482,0, corresponding to a

stable coexistence equilibrium.
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Figure 9: Top frame. Coexistence obtained with the following
parameter values: ny = 0,3, np = 0,4, ng = 0,3, Hp = 150,
Hgp = 1200, Hy = 1500, ep = 0,8, eg = 0,9, ap = 0,8, ap = 0,445,
bp =0,4, bg = 0,2. In this case the function B(N) has just one
zero, Ny, 5= 948,2506, for which coexistence is unstable, the prey
drifting to negative values and vanishing in a finite time.
Bottom frame. Coexistence obtained with the following parameter
values: ny = 0,3, np = 0,4, ng = 0,3, Hp = 150, Hp = 1200,
HN = 1500, ep = 0,8, eQ = 0,9, ap = 0,8, LlQ = 078, bp = 0,4,
bp = 0,2. In this case the function 3(N) does not possess positive
zeros. Again, the corresponding coexistence equilibrium is not
attained.
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TABLE 2: FEASIBILITY OF ALL THE EQUILIBRIA OF THE

SYSTEM (2)
Equilibrium Feasibility conditions
Ep = (0,0,0) _
Ey =1(0,0,Hy) -
Ep = (0,Hp,0) -
Ep = (Hp,0,0) -
Egy = (0,0%,N") Do (N)NWp(N)
sufficient:
Po(Ngr) = Po(Ng)
Epy = (P*,0,N*) Dp(N)NPp(N)
sufficient:

q)P(N\JIC/) > lPP(AN$/)
EPQ: (HP7HQ70) -
E* =Epgy = (P*,Q",N")

Arising through
saddle-node bifurcation

The remaining minor of the Jacobian becomes a diagonal
matrix, as no mutual interactions of the two predators are
present:

f— I’lp( — I%Ti) 0
B 0 n ( — Q)
o Hy

giving the eigenvalues —np and ng > 0, thereby implying
unconditional instability.

For the point Eg = (0,Hp,0) a similar result would hold as
for Ep along the N axis. Again the submatrix of the Jacobian
is diagonal, with eigenvalues np > 0 and —ng, showing once
again instability.

However at the point Epg = (Hp,Hyp,0), these eigenvalues
are both negative, —np and —ngp, implying for this equili-
brium unconditional stability. The fact that these eigenvalues
are real prevents any possible occurrence of a Hopf bifurca-
tion at this point.

DISCUSSION

In the Tables 2 and 3 we summarize all the equilibria beha-
vior, giving their feasibility and stability conditions.

Ultimately, only two outcomes are possible. Either the
prey disappear, and the two predators thrive at their carrying
capacities, Epg, or the three populations coexist, Epgy. In the
former case the predators natural population levels Hp and
Hy are undisturbed since they are assumed not to interfere
with each other. Furthermore, in this situation no persistent
oscillations can arise. Thus the predators are always found
at a stable level, as this point is unconditionally feasible and
stable. Note also that this result implies that in the system
the predator populations are always present, independently
of what happens for the other possible equilibrium.

Coexistence is instead not guaranteed to arise. If it does,
its onset occurs through a saddle-node bifurcation, which
implies the simultaneous appearance of two such points, of
which the one with the lower level of prey N is unstable. This
saddle point partitions the phase space through a separating
surface, so that two domains of attractions exist, one being
the one of the prey-free equilibrium Epg and the other one of
the coexistence point E* = Epgy. Thus the ultimate behavior
of the system trajectories would in such case depend only on
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the present state of the system, i.e. the location of the initial
condition.

The result that equilibrium Epg is unconditionally stable,
coupled with the fact that two coexistence equilibria may ari-
se in pairs, of which one unstable and one stable, as discussed
above, indicates that in suitable circumstance bistability can
be obtained.

Indeed, Figures 6-9 show graphically this behavior. In
each case, for the same set of parameter values, the system
trajectories tend to different equilibria, the prey-free point
Epg in the top frame and coexistence Epgy in the bottom
one, just by changing the initial conditions, i.e. depending on
the domain of attraction of which point the current state of
the system is located. This result can suitably be exploited,
so that at last bistability may result to be a very much im-
portant tool for addressing two relevant ecological problems,
namely species eradication and preservation.

In case the prey is a nuisance, bistability could be exploited
for its eradication, simply by trying to push the state of the
system in the domain of attraction of the prey-free point Epg.
To achieve this task, two imporant remarks should be made.
First of all, such a “push” could be obtained by external, hu-
man driven means, such as insecticide spraying. Secondly,
the external measure should be exerted in an amount small
enough just to cross the separating surface, thereby also sa-
ving on costs.

If N is a species to be preserved instead, corresponding
measures for its survival should be taken, so that the state
of the system would be moved into the attraction domain of
the coexistence equilibrium. Enhancing the chances of the
species N to be preserved to survive could be achieved once
more by external means, such as fostering its reproductivity
or increasing its carrying capacity, or measures apt to reduce
the predators hunting pressure. In the last case, for instan-
ce, a “measured” culling could be decided to be undertaken,
sufficient enough to move the system trajectories into the co-
existence equilibrium domain of attraction, thereby allowing
the survival of the endangered species together with the two
generalist predators.

Note that in the above discussion, the role of the sepa-
rating surface is of paramount importance. However, where
this manifold lies is unknown. This is an important remark,
because knowing its location and the current state of the sys-
tem would allow to adequately estimate the effort to be taken
to move the system into the right attraction basin. Fortuna-
tely, to address and solve this problem, numerical schemes
based on reliable and up-to-dated state of the art algorithms
have been recently developed to numerically reconstruct in
an efficient, reliable and fast way the separatrix, (Cavoretto
et al., 2011, 2013, 2016a,b; De Rossi et al., 2018; Franco-
mano et al., 2016, 2017, 2018; Hilker et al., 2017).
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TABLE 3: STABILITY OF ALL THE EQUILIBRIA OF THE SYSTEM

().
Equilibria Stability conditions
Ey=(0,0,0) unstable
Ey =(0,0,Hy) unstable
Egp = (0,Hp,0) unstable
Ep = (Hp,0,0) unstable
Eon = (0,0%,N¥) unstable
Epy = (P*,0,N*) unstable
Epg = (HP,HQ,O) stable
E. = Epnu 9), (13), (12)
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