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Although sensory processing is pivotal to nearly every theory of emotion, the
evaluation of the visual input as ‘emotional’ (e.g. a smile as signalling happi-
ness) has been traditionally assumed to take place in supramodal ‘limbic’ brain
regions. Accordingly, subcortical structures of ancient evolutionary origin that
receive direct input from the retina, such as the superior colliculus (SC), are tra-
ditionally conceptualized as passive relay centres. However, mounting
evidence suggests that the SC is endowed with the necessary infrastructure
and computational capabilities for the innate recognition and initial categoriz-
ation of emotionally salient features from retinal information. Here, we built a
neurobiologically inspired convolutional deep neural network (DNN) model
that approximates physiological, anatomical and connectional properties of
the retino-collicular circuit. This enabled us to characterize and isolate the
initial computations and discriminations that the DNN model of the SC can
perform on facial expressions, based uniquely on the information it directly
receives from the virtual retina. Trained to discriminate facial expressions of
basic emotions, our model matches human error patterns and above chance,
yet suboptimal, classification accuracy analogous to that reported in patients
with V1 damage, who rely on retino-collicular pathways for non-conscious
vision of emotional attributes. When presented with gratings of different
spatial frequencies and orientations never ‘seen’ before, the SC model exhibits
spontaneous tuning to low spatial frequencies and reduced orientation dis-
crimination, as can be expected from the prevalence of the magnocellular
(M) over parvocellular (P) projections. Likewise, face manipulation that
biases processing towards the M or P pathway affects expression recognition
in the SCmodel accordingly, an effect that dovetails with variations of activity
in the human SC purposely measured with ultra-high field functional mag-
netic resonance imaging. Lastly, the DNN generates saliency maps and
extracts visual features, demonstrating that certain face parts, like the mouth
or the eyes, provide higher discriminative information than other parts as a
function of emotional expressions like happiness and sadness. The present
findings support the contention that the SC possesses the necessary infrastruc-
ture to analyse the visual features that define facial emotional stimuli also
without additional processing stages in the visual cortex or in ‘limbic’ areas.

This article is part of the theme issue ‘Cracking the laugh code: laughter
through the lens of biology, psychology, and neuroscience’.
1. Introduction
Human and non-human primates excel in decoding emotional facial expressions,
an ability fundamental for effective social interactions and linked to situations
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ancestrally relevant for survival [1–3]. This quick categoriz-
ation of facial expressions relies heavily on distinctive and
innate visual features that represent salient cues and guide
attention. For example, we interpret lifted corners of the
mouth as a smile, which communicates amusement, affiliation
and bonding motivation. Fear is conveyed by the exposure of
eye whites and indicates environmental danger, while sadness
is channelled through angulate eyebrows and lowered lip
corners [4–7].

Although sensory processing is pivotal to nearly every
theory of emotion, the evaluation of the visual input as
‘emotional’ has been traditionally assumed to take place in
supramodal brain regions, downstream to early areas directly
involved in the initial analysis of sensory input [8–10]. For
example, recognition of smiling and laughter engages the preg-
enual sectors of the anterior cingulate cortex [11,12]. Detection
of danger and fearful expressions involves the amygdala,
which also responds to other negative expressions such as sad-
ness and anger [13–15]. According to this prevalent view,
enhanced activity in the visual cortex to affective stimuli has
often been interpreted as consequential, rather than integral,
to initial emotional appraisal [16]. Additionally, subcortical
structures receiving direct input from the retina, such as the
superior colliculus (SC), the lateral geniculate nucleus or the
pulvinar (pulv), are traditionally conceptualized as passive
relay centres that transmit visual information, void of emotion-
al meaning, to the visual cortex or other ‘emotional’ structures
that conduct a value-based appraisal [17].

Recent literature challenges this traditional account and
reveals a role for subcortical visual structures in more complex
analyses of retinal input than previously believed [18]. Specifi-
cally, the SC, a laminated structure located astride the dorsal
surface of the midbrain, seems endowed with the necessary
infrastructure and computational capabilities for the innate rec-
ognition and initial categorization of emotionally salient
features from retinal information [19–22]. First, response selec-
tivity in the SC to face-like patterns or to stimuli evolutionary
relevant for survival (e.g. prey, predators, food) occurs as
early as 50 ms after the stimulus onset [23–25]. For comparison,
the human amygdala’s shortest responses to facial expressions
have been reported at about 70 ms, while emotional modu-
lation of V1/V2 activity peaks at 80 ms [26]. Second,
experimental interferencewith V1 activity (e.g. visualmasking,
flash suppression, transcranial magnetic stimulation), or its
permanent damage in patients with V1 lesion and cortical
blindness, does not abolish non-conscious emotion recognition
(affective blindsight) [27–30]. Affective blindsight patients
tested across different studies attain on average 70% expression
discrimination accuracy in 2-alternatives forced choice tasks
(2-AFC; chance level = 50%), compared to nearly perfect accu-
racy in healthy observers under the same conditions, or greater
than 80%proficiency in 6- or 7-AFC (chance level = 14%). These
behavioural findings are complemented by neuroimaging
experiments demonstrating that V1-independent encoding of
emotional expressions is associated with selective activity in
extra-geniculate pathways, of which the SC is the first and
primary recipient of retinal information [31–36]. Third, the
necessary contribution of the SC in the initial evaluation
of facial expressions is also suggested by the consequences of
manipulating low-level image features towards properties to
which the SC is tuned to respond. These consequences are
inherited from the nature of its retinal input, which arises pri-
marily from the magnocellular (M) (and koniocellular—K)
pathway, compared to little or no projections from the parvo-
cellular (P) pathway. The M pathway is largely insensitive to
colour, has a high sensitivity to minor luminance differences,
and can resolve low spatial frequencies (LSFs). By contrast,
the P pathway is attuned to colour in the green-to-red range
and can resolve higher spatial frequencies [37]. Accordingly,
neuroimaging evidence indicates that activity in the SC and
structures receiving its ascending projections is constrained
when faces are psychophysically biased towards low-level
properties engaging the M pathway, such as small luminance
variations, medium or long wavelengths and LSFs [38–42].

To better understand principles of emotion recognition, it is
therefore of the utmost interest to characterize and isolate the
initial computations and discriminations that the SC can
perform on facial expressions, based uniquely on the infor-
mation it directly receives from the retinal ganglion cells. Yet
this evidence remains elusive owing to methodological limit-
ations in animal neurophysiology and human neuroimaging.
A promising new framework to explore these questions and
complement neurophysiological investigation is emerging
from the interaction between artificial intelligence and
neuroscience [43–46]. Deep neural networks (DNNs) are com-
putational models that potentially bridge the gap between
cognitive functions and neurobiology. In fact, DNNs approxi-
mate how complex information-processing functions, such as
visual recognition and categorization, may be carried out by
biological neural networks. They consist of many processing
units akin to neurons, arranged in interconnected layers
analogous to brain areas, and with connections defined by
weights that mimic the integration and activation properties
of synapses [43,47–49]. DNNs learn through training to per-
form real-world tasks that essentially consist of mapping
input patterns (e.g. raw images) to output classifications (e.g.
sorting natural images according to categories like faces,
objects and animals).

Current DNN models of the primary visual system attain
human-like performance, predict representational transform-
ations and reflect organizing principles of the primate vision
(e.g. fine-to-coarse retinotopy, hierarchy, increasing perceptual
invariance) [44,48,50]. However, these applications have been
essentially grounded on models of the ventral cortical stream,
starting from V1 and progressing to the temporal lobe, and
there is no attempt to implement the architecture and con-
straints of the extra-geniculate visual system [51]. Here, we
built a neurobiologically inspired convolutional DNN that
approximates physiological, anatomical and connectional
properties of the retino-collicular circuit. The DNN model
incorporates a description of retinal output to the SC from
different classes of ganglion cells forming the M, P and K
channels, their relative proportions and terminal sites to the
three different layers composing the superficial SC, as well as
the internal architecture and weighted inter-layer connections
[21,52,53]. Moreover, the model generates saliency maps
whose function is to select conspicuous image locations for
attentional selection and further analyses [54,55].

Trained to discriminate facial expressions of basic
emotions and then asked to classify neutral, happy and sad
expressions, our model reproduces above chance, yet subop-
timal, classification accuracy, analogous to that reported in
patients with V1 damage, hence matching human error pat-
terns from V1-independent vision. When presented with
gratings of different spatial frequencies and orientations
never ‘seen’ before, the SC model exhibits spontaneous
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Figure 1. General overview of the model. In the upper left corner, an anatomical diagram of the SC, viewed from a coronal section, highlights the relevant
superficial layers that have been modelled with corresponding layers in the DNN. Stage 1: input stimuli are colour-transformed and processed. Each one of
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guide attention to select image regions for further analysis. Stage 3: after the final SC layer, the network uses a global averaging stage before a classification layer,
while the saliency masks are integrated and contribute to generate the final output of the network.
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tuning to LSFs and reduced orientation discrimination, as can
be expected from the prevalence of the M (and K) projections
over the P channel. This response pattern is not found when
the same stimuli are presented to DNNs that instead repro-
duce geniculo-striate (V1) architecture, which has a more
balanced input from M and P channels. Likewise, face
manipulation that biases processing towards the M or P
pathway affects expression recognition in the SC model
accordingly, an effect that dovetails with variations of activity
in the human SC purposely measured with ultra-high field
functional magnetic resonance imaging (fMRI). Lastly, differ-
ential extraction of salient face features as a function of the
expressions arguably reflects functions and properties that
indwell the retino-collicular pathway, as currently reported
in human and non-human primates.
2. Methods
(a) Model overview
The model uses goal-oriented supervised DNN with an overall
architecture designed to match the neurophysiological and struc-
tural characteristics of the retino-collicular network. At its core,
the model is composed of three main stages (figure 1).

First, we designed a front-end that reproduces retinal func-
tions and differentiates among encoding properties of the P, M
and K pathways that originate from different classes of retinal
ganglion cells [56,57]. Each channel analyses the visual input
in parallel and approximates the physiological characteristics
of P, M and K pathways in terms of colour opponency,
spatial frequency sensitivity, receptive field dimensions and
centre/surround relationships.

Second, the model reproduces the circuit-level architecture
of the superficial SC, with three sequential computational
blocks of interconnected layers, analogous to the three strata
of the SC that receive direct retinal input: upper stratum gri-
seum superficiale (uSGS), lower stratum griseum superficiale
(lSGS) and stratum opticum (SO) [52]. The information compos-
ing the input tensor of a particular layer derives from two main
sources: (i) the proportional connections that each SC stratum
receives from retinal P, M and K channels; and (ii) the output
resulting from the computations performed in the preceding
layer. Each layer performs several operations on the input,
such as filtering and convolution through distinct kernels, pool-
ing, in which the responses of nearby units are aggregated, and
normalization. Also, each layer incorporates a saliency module
that builds up a topographical map to prioritize processing of
conspicuous regions in the visual image that should be ana-
lysed in more detail. The output of one stage of operations is
a nonlinear combination of the input received and is then
passed on to the next layer.

Third, the representations that are learned by the SC are pro-
cessed and forwarded to an objective function that specifies the
goal of the system, in our case a discriminative classification of
emotional facial expressions. During training, the strength of
connections between units is learned by the system based on
experience rather than handcrafted by the researcher. The behav-
iour of the system (i.e. the accuracy in sorting facial categories) is
the joint product of the architecture, objective function, learning
rule specified. Accuracy is in fact a metric that shows how correct
the model was during classification, defined as the proportion of
correct predictions.
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(b) Stage 1: retinal output to the superficial layers of
the superior colliculus

More than 20 morphologically distinct retinal ganglion cells have
been reported and classically grouped in three distinct parallel
channels—called P, M and K in primates—based on morphologi-
cal, physiological and neurochemical distinctions [58–64]. In the
present model, visual stimuli are initially processed in parallel
by distinct functions that reproduce the encoding properties of P,
M and K channels based on neurophysiological evidence. Specifi-
cally, the functions reproduce two distinct dimensions: (i)
responses in the chromatic space; and (ii) inhibitory/excitatory
spatial properties (figure 2). First, the input image is encoded in
a typical long (L), medium (M) and short (S) wavelength (or red,
green and blue—RGB) additive chromatic representation trans-
formed into a colour-opponent space with three orthogonal
cardinal axes: luminance, green/red and blue/yellow. After the
chromatic space transformation, each P, M and K function is
weighted to reproduce the chromatic opponency of each ganglion
cell class: a dominant red/green response for the P channel (i.e.
L−M), a mostly achromatic luminance response lacking colour
opponency for the M channel (i.e. L +M), and a dominant blue/
yellow response for the K channel (i.e. S− (L +M)) [56,65].

The second part of the P, M and K functions involves
the mathematical characterization of the spatial and feature-
processing properties distinctive for the three ganglion classes.
Compared to P neurons, M cells have higher contrast sensitivity,
lower spatial frequency selectivity, larger receptive fields and
nonlinear neural summation at higher spatial frequencies
[61,66–71]. K neurons form a more heterogeneous class that
share with M and P cells common principles of centre/surround
organization but have distinctive response properties in acuity
and contrast sensitivity [72]. Major differences are concerned
with details of their receptive field structure and firing character-
istics, with K cells displaying blue-on receptive fields and linear
as well as nonlinear summation over their receptive field.
Difference ofGaussian functions (DoG) is an establishedmethod
formodelling receptive fields and the centre/surround relationships
in retinal ganglion cells with a mathematically separable and easily
computable approximation to the Laplacian of a Gaussian [73,74].
Moreover, it has the desirable property of expressing themain recep-
tive field parameters simply as excitatory and inhibitory terms
directly related to the underlying physiology.

The excitatory (e) and inhibitory (i) parameters of the
DoG functions, expressed in degrees of visual angle, are as
follows: P: se ¼ 0:12�,si ¼ 0:56�, M: se ¼ 0:18�, si ¼ 0:77� and
K: se ¼ 0:31�, si ¼ 0:91� [67,75].

With our stimulus dimensions and retinal set-up, one
degree of visual angle equals 5.33 pixels, which, therefore, trans-
lates the above parameters into: P: se ¼ 0:64px, si ¼ 2:98px, M:
se ¼ 0:96px, si ¼ 4:10px and K: se ¼ 1:65px, si ¼ 4:85px.

The P, M and K channels do not project uniformly to the
different superficial strata of the SC. Overall, most retinal
output to the superficial SC originates from M and K channels
with a ratio of about 1.5 : 1, and only sparse projections come
from the P channel [63,72,76,77]. Concerning intra-layer differen-
tiation, the K channel projects more to the uSGS than to the lSGS,
while M channels terminate chiefly in lSGS [52]. Each P, M and K
tensor has been convolved with a kernel K :R3 ! RN , in which
the dimension N, of each feature map tensor derived from P, M
and K functions has been weighted proportionally to reproduce
the specific retinal output to different SC layers. Formally, the
input tensor i to layer l is given by

il ¼ ol�1 k Kpl �P k Kml �M k Kkl �K, ð2:1Þ

where o is the output tensor of layer l − 1, while || and * are the
concatenation and convolution operation. Kpl, Kml,Kkl represent
the kernels of layer l with which the P, M and K tensors are,
respectively, convolved (denoted with the p, m and k subindices
in the equation) (figure 1, stage 1).
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(c) Stage 2: layer structure and interconnections
In this stage, we modelled the structural and inter-layer connec-
tional architecture of the superficial SC as a convolutional
DNN taking its inputs from the retina. Our approach includes
multiple information paths inside each layer to reflect the com-
plex nonlinear and non-sequential configuration of neuronal
connections in the SC. This principled perspective can be accom-
plished by choosing among a variety of convolutional layer
designs that incorporate the controlled branching of information
paths. For example, residual networks (ResNets) adopt parallel
convolutions with different receptive fields [78] and skip con-
nections that allow identity mappings [79]. However, simply
skipping connections has inherent drawbacks, among which
the inability of residual blocks to force the gradient through the
network weights during the training phase. This phenomenon
commonly leads to under-learning, with just a few blocks in
the network learning useful representations [80].

To derive more robust and flexible nonlinear functions, we,
therefore, opted for FractalNet blocks among the available archi-
tectures that incorporate controlled branching of information
paths [81]. As it happens, FractalNet possesses the following
desirable properties. First, it has a modular convolutional archi-
tecture that does not rely on explicit residual connections, but
nevertheless allows for a principled way to incorporate many
paths in each modelled layer. Second, FractalNet blocks prolifer-
ate information paths in a symmetrically repeating architectural
pattern, and the creation of multiple paths for the flow of infor-
mation enables a form of deep regularization. Third, FractalNets
are built on an expansion rule that creates truncated fractals with
the form of parallel interconnected branches with a different
number of convolutional layers, which allows the existence of
multiple shortcut paths for flexible information flow. Formally:

FCþ1(z) ¼ [(FC � FC)(z)]� [K � z], ð2:2Þ
whereC stands for the branch or column index of the truncated frac-
tal in theFractalNet blockFC, � and� correspond to the composition
and join operation, respectively. In a FractalNet, the initial basic
block F1(z) is a single convolution operation (K � z) between a
kernelKwith a tensor z, which serve as the basis for the composition
of the block. The number of convolutional layers on any given
branch in the FractalNet block depends on the column index, with
their number given by 2C�1. In our model, every SC layer is mod-
elled by a fractal block with C ¼ 2; i.e. with just two parallel
columns, allowing alternative data paths in each layer, and with
rectified linear unit (ReLU) as activation function (figure 3).

The join operation is implemented as a layer performing
element-wise averaging of multiple branches output, either
with partial outputs along the block, or as a final operation
joining all the column tensors at the end of the block.

To warrant the creation of relevant internal subnetworks
with variable depths and discourage co-adaptation of sub-
paths, FractalNet is trained with a regularization technique
called drop-path. Drop-path prevents co-adaptation of parallel
paths by randomly removing branches during each training iter-
ation, as if that path were not a part of the network architecture.
This is analogous to the way the dropout method removes regu-
lar neuronal units on standard feed-forward networks [82]. It
allows for a variable set of architectural information paths to
follow during training, while making the complete trained struc-
ture available at inference time. Drop-path guarantees that at
least one path from input to output exists at each training iter-
ation. It alternates between two sampling strategies: a local
one, where branches are probabilistically dropped at each join
layer, and a global approach, in which a single column is left
standing between the input and output of the block, incentivizing
the development of independent predictors.

Lastly, neurons in the superficial layers of the SC have been
recently reported to encode a topographic saliency map of the
visual scene that is unlikely to derive from the fronto-parietal
cortex or pulv [54,83]. The function of the saliency map is to
guide spatial attention for selection and further processing of
the most informative image parts. Computational saliency mod-
ules have been previously built from architectures inspired by
cortical organization, but never adapted or integrated with
representations generated by a DNN of the SC [84,85]. To incor-
porate this function in our model, we modified a modular
network architecture originally designed as an attention mechan-
ism in fine-grained recognition [84]. Briefly, the architecture of
our saliency modules consists of three main components:
(i) the first component processes the feature maps generated at
each SC layer and defines relevant spatial locations; (ii) the
second component puts in competition for saliency different
spatial locations within each map and generates a hypothesis
based on saliency information; and (iii) the third one combines
all feature maps fed in a bottom-up manner and generates a
summary confidence score for each attentional block.

This process is applied to each of the three layers corresponding
to the three SC strata. Then, the model learns to correct the initial
predictions capitalizing on information from the SC layer modules.
Finally, the module represents a complete account of bottom-up
saliency processing endowedwith internal dynamics, which gener-
ates attentional guidance to the most informative image locations
(see the electronic supplementary material for details).

(d) Stage 3: representation integration and emotion
categorization

In typical CNN designs, the feature map tensor resulting from
the last convolutional layer is transformed into a vector and its
elements connected to fully connected layers, which ultimately
serves as a classifier readout. This strategy has proven effective
from a purely engineering perspective, but the solution creates
an unnatural division of the model, because the convolutional
layers are conceived purely as feature extractors that are concep-
tually separated from a subsequent classification stage. One
additional problem concerns the interpretability and traceability
of the decision information that propagates backwardly during
training, because the fully connected layers at the classification
stage essentially act as an inscrutable black box.

To circumvent these limitations and preserve an unbroken
flow of information, which is more conducive for neurological
modelling, we propose to modify the canonical CNN approach.
The key change consists in the generation of one feature map
after the last SC layer for each categorical classification, on
which global average pooling is then performed. This operation
combines all activations within each feature map and produces a
scalar score per category next forwarded to a softmax layer that
yields a classification probabilistic vector onet [86]. This procedure
preserves a natural flow of information across the whole model
and promotes a continuous correspondence between the emer-
gent representations in the SC layers and the emotional
category each facial expression is supposed to belong to.

To obtain the final classification readout, the preliminary net-
work prediction onet is merged with the averaged output from
the S saliency modules, i.e. the saliency prediction vectors
ol : l [ {1, . . . ,S}, by means of a weighted sum, where a weighting
parameter v denotes the contribution of the main network
classification onet:

outputnet ¼ vonet þ (1� v)
jSj

X

l[1...S

ol: ð2:3Þ
(e) Implementation details
The model has been implemented in TENSORFLOW 1.13.1 and
KERAS 2.2.4 deep learning frameworks trained in a Linux PC
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with a Nvidia RTX 2070 GPU. From the comprehensive image
dataset, the emotional categories of happiness, sadness and neu-
trality were selected, and the resulting dataset was divided into
training and test datasets consisting of 20 689 and 750 images,
respectively. The model was trained for 100 epochs with a
batch size of 48 face images. Adam was used as a gradient des-
cent optimization algorithm, and categorical cross entropy as a
loss function [87]. Our model is initialized with a learning rate
of 0.001, which is optimized by Adam during the learning pro-
cedure (see the electronic supplementary material, table S1 for
the complete list of tensor dimensions and connections, and
table S2 for model hyperparameters).
( f ) Model training and testing
(i) Image dataset and validation
An image web search engine was automatically queried with a
sequential permutation of elements from a set of selected
emotional terms with modifiers such as ethnicity, gender and
age. Examples of the composite search strings are: ‘happy old
man’, ‘crying child’ and ‘inexpressive white woman’. The result-
ing images were then processed by a face detection and selection
algorithm. The automatic procedure centred the face and set the
geometric boundaries of the image according to a pre-defined
calculated field of view of 24°, while discarding the images
that did not present at least one face. The pre-processed images
were then thoroughly reviewed manually by researchers and
the relevant ones carefully classified into one out of five
pre-defined discrete categories facial expressions displaying hap-
piness, sadness, anger, fear and emotional neutrality (26 914 total
images, happiness: 16264, fear: 2531, anger: 2944, neutral: 2427,
sadness: 2748). This approach enabled us to acquire a wide
range of facial expressions with more variability, ethnicity diver-
sification and ecological validity than a standardized dataset
typically depicting front-view Caucasian faces.

To validate the image dataset, 207 subjects (mean age 27
years, s.d. = 9.22 years) were presented with a pseudo-random
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selection of 100 images balanced across emotional categories and
asked to classify the stimuli in a 5-AFCwithout time limit. The pro-
tocol was programmed in PSYCHOPY v. 3.1.2 [88] and executed via the
online experimental platform Pavlovia (https://pavlovia.org/).
Average recognition accuracy was 0.77 (s.d. = 0.082). Overall, the
consistency between intended expressions (i.e. as classified from
web search and further scrutinized by the experimenters) and
judged expressions (i.e. from test participants) was significant
(Cohen K= 0.72; s.d. = 0.103). The extensive image dataset enabled
system training and testing in quasi-naturalistic context with
images in awide range of real lighting conditions and without con-
trolled backgrounds, thus composing multidimensional data that
approximate real-life environments.

(ii) Recognition accuracy and generalization across datasets
After training, the accuracy of the retino-collicular network in
the emotion categorization task was also tested with a different
and independently validated dataset of facial expressions:
the Karolinska Directed Emotional Faces (KDEF) [89]. This
approach enabled us to assess the generalizability of our
model’s recognition accuracy over a broad and novel image
context. Moreover, the co-registration property of the KDEF rep-
resents an opportunity to estimate average parameters of interest
and nicely complements the variability of our own dataset with a
standard and carefully controlled setup.

The KDEF is composed of 4900 pictures of facial expressions
from 70 subjects displaying seven emotional categories from five
different viewing angles. From the different angles, we selected
the subset of front-facing images, for a total of 420 instances
(140 images per each category: happiness, neutral and sadness).

(iii) Spontaneous emergence of spatial frequency tuning and
orientation sensitivity

Here, we exploited the fact that the M, P and K pathways engage
the SC differentially compared to V1 and ventral stream cortices.
Consequently, SC’s responses are tuned to different ranges of
spatial frequencies and orientation discriminations that preferen-
tially reflect the M pathway properties. In comparison, the
geniculo-striate system has a more balanced contribution from
M and P pathways and can, therefore, process more efficiently
visual features analysed by either channel. If the retino-SC net-
work is analogous to the real brain, then it should exhibit the
same tuning properties, while differing from those displayed
by DNNs that mimic the geniculo-striate system [90–92].

First, we analysedwhether selective tuning to LSFand reduced
orientation sensitivity emerge spontaneously as a function of the
DNN architecture and without training the model for these
specific properties. We presented the model with gratings of vary-
ing spatial frequencies and orientations never displayed during the
learning phase, while activations of the last convolutional layers
were recorded (spatial frequencies: from 0.16 cycles per degree
to 2.19, at 0.053 steps; orientations: from 0°—vertical—to 90°—
horizontal—, at 3° steps clockwise). Next, we investigated the
responses to the same gratings presented to two additional DNN
models, AlexNet and VGG19, designed and validated to approxi-
mate the biological structure and response properties of the
geniculo-striate (V1) system [90–92]. The three DNNs were
compared using representational similarity analysis, in which
each model representations are compared at the level of the
dissimilarity structure of their response patterns [93].

(iv) Face manipulation towards magnocellular and parvocellular
channel properties

Impact on DNN recognition accuracy. Electrophysiological and
fMRI studies in both healthy and V1-damaged patients consist-
ently found a greater signal in the SC and connected structures
(e.g. pulv and amygdala) to LSF (M-biased) than to high spatial
frequency (HSF) faces (P-biased) [26,38,40]. To examine how
spatial frequency manipulation impacts on emotion recognition
in the DNN model, we filtered the KDEF faces with a Butter-
worth filter using a high-pass cut-off of 24 cycles per image for
HSF (0.188 cycles per pixel or one cycle per degree), and a
low-pass cut-off of six cycles per image for LSF stimuli
(0.047 cycles per pixel or 0.25 cycles per degree), according to
human literature parameters.

Impact on fMRI activity in the human SC. A complementary
method to engage preferentially the M or P processing involves
adjusting the luminance and colour of image stimuli. M-biased
stimuli consist of achromatic/heteroluminant faces (i.e. greyscale
and low-luminance contrast), whereas P-biased stimuli are hetero-
chromatic/isoluminant images created by converting greyscale
faces to individually calibrated isoluminant intensities of red and
green [94,95].M-biased faces have been proven to affect behaviour-
al tasks engaging the SC (e.g. saccade frequency and latency) as
well as reflexive amygdala responses to facial expressions [96,97],
consistent with the notion of a subcortical pathway to the amyg-
dala that facilitates rapid, but coarse, emotional processing [13].
Unlike spatial frequency manipulation, fMRI activity in the
human SC to M- and P-biased faces derived from luminance and
colour manipulation has never been studied directly.

To this end, fMRI response in the SC of two participants was
acquired in an ultra-high field 7 T scanner while viewing, in a
multiple block design, M- and P-biased neutral and fearful facial
expressions from theKDEF dataset (see the electronic supplementary
material for details).Z-scores of bloodoxygen level-dependent beta in
the SC for the experimental conditions were compared with robust
Bayesian parameter estimation (RBPE) to yield the complete distri-
bution of parameter values and estimate the posterior probability
that these activities are credibly different [98].

(v) Other sources of image perturbation
It is commonly held that biological vision exhibits robustness and
generalizability that is lacking in artificial neural networks. For
example, image perturbation with the addition of uniform noise or
salt-and-pepper (S&P) noise affects object recognition in an artificial
neural network farmore than inhumanobservers [99,100].However,
there is no evidence on how these types of imageperturbations inter-
ferewith theencodingproperties of anetworkdesigned to reproduce
the architecture of the retino-collicular system.

To explore these dimensions, the pattern of response in the
DNN model was also tested with controlled image noise. The
KDEF dataset was processed using a varied set of additive
Gaussian noise with progressively larger standard deviations
(from 5 to 75 s.d.). Values from a random Gaussian distribution
have been added to the original images, with the additional noise
approximating the effect of diverse random processes that occur
in nature. Stimuli were also manipulated with a S&P degradation,
which is a variable granular perturbation of the image pixels in
the formof sudden impulses that lead the affected pixel to themaxi-
mum or minimum value of the image range. The stimuli were
processed with different amounts of S&P noise, from 0.5% up to
10% of the total image pixels.

(vi) Feature extraction and saliency maps
Occlusion technique. In the real world, occlusion of facial parts is
common and often arises from clothing or movements. It is well
established that certain face parts, like the eyes or themouth, provide
higher discriminative information and saliency than other parts,
such as chin, nose or ears when it comes to discriminating emotions
[101]. Moreover, the face cues associated with better emotion
recognition may vary depending on the specific expressions.

We implemented facial occlusion to investigate which facial
parts are preferentially exploited by the model and compared

https://pavlovia.org/
https://pavlovia.org/
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the network performance with evidence on human observers.
The occlusion sensitivity analysis consists of the systematic occlu-
sion of limited portions of the input image with a grey patch and
then relates the classification accuracy to the region of the face
that has been removed [102].

Bubbles technique. The ‘Bubbles’ technique essentially
addresses the same question of the occlusion to reveal local
expression-driven features important to distinguishing facial
expressions, but the approach is reversed [5]. In this case, only lim-
ited portions of the face are revealed, by adding to the image
random Gaussian windows with an iterative procedure, which is
similar to viewing facial expressions through a cardboard poked
with random little holes. The method is self-tuned, meaning that
it adjusts the number of Gaussian bubbles in each iteration to
keep a balance between acceptable accuracy and relative difficulty
for the model across trials that compose the procedure.

We used a bubble sizewith a standard deviation of 7% of stimu-
lus size, which translates to s ¼ 1:68� ¼ 8:96px, and 500 iterations
per stimulus. Our Bubbles implementation was applied to the
front-view KDEF faces. To summarize results in compact and easily
accessible format, the averaged results were projected on the aver-
aged KDEF (AKDEF) dataset, which is the average face image of
the spatially registeredKDEFdataset [103]. See figure 4 for examples.
3. Results
(a) Learning performance, recognition accuracy,

precision and sensitivity
Figure 4 shows the learning trajectory of the network model
expressed through the evolution of overall accuracy and the
minimization of loss values across 100 training epochs,
where loss is defined as the value returned by the cost func-
tion of the network to be minimized during training. After
training, accuracy in categorizing previously unseen happy,
sad and neutral faces in the test dataset was above chance
level (71%; chance = 33%). For comparison, recognition accu-
racy in healthy human observers confronted with similar
facial expressions is typically between 80% and 90%, even
though tasks are usually more demanding, with forced-
choice alternatives varying between 6- and 7-AFC across
‘basic emotions’ (chance level between 16.6% and 14.3%)
(electronic supplementary material, tables S3 and S4)
[104–108]. Notably, the model’s accuracy, as emerging from
its architecture, matches the one reported in patients with
V1 damage who rely on extra-geniculate and retino-collicular
pathways and attain recognition accuracy of around
70% [109–114].

The confusion matrices in figure 4c,d report a detailed
description of categorization accuracy and errors for two
different test datasets as a function of the three expressions.
Measures of ‘precision’ and ‘sensitivity’ offer additional
insights into the model’s performance. Formally, model pre-
cision indicates the ratio of true positives over true plus
false positives. Precision answers the following question:
among facial expressions that the model categorizes as
happy (or sad or neutral), how many faces are truly happy
(or sad or neutral)? Sensitivity (or ‘recall’ in machine learning
literature) is defined as the ratio of true positives over true
positives plus false negatives. Sensitivity addresses this ques-
tion: among all happy (or sad or neutral) facial expressions,
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how many instances have been correctly classified as happy
(or sad or neural)? Finally, the F1 score is calculated as the
harmonic mean between precision and sensitivity, thus
summarizing these two measures with a single scalar.

When tested with our dataset, the model’s precision was
higher for happy (78%) and neutral (77%) expressions than
for sad expressions (63%). Likewise, sensitivity shows a
higher value for happy expressions (94%), followed by sad
(73%) and neutral faces (49%) (F1 scores: happy = 0.86,
neutral = 0.60, sad = 0.68). Therefore, like human observers,
happiness was recognized more easily than other emotional
expressions [115,116]. Finally, when the model was asked
to discriminate KDEF faces, precision was 95% for happy
faces, 92% for sad and 58% for neural expressions, whereas
sensitivity was 99% and 98% for happy and sad expressions,
respectively, but fell below chance for sadness (24%), (F1
scores: happy = 0.97, neutral = 0.73, sad = 0.38).
(b) Emergence of spatial frequency tuning, orientation
sensitivity and comparison with V1 models

The response patterns to a range of spatial frequencies and
orientations in the SC model were qualitatively different to
those emerging in V1 models, which in turn did not differ
from each other.

As shown in figure 5a, tuning to LSF spontaneously
emerged in our artifical SC, as the DNN model could differ-
entiate proficiently among gratings with different ranges of
spatial frequencies, as long as they remained lower than
0.6 cycles per degree, but progressively reduced its discrimi-
natory capability at increasing spatial frequencies. Notably,
neuronal responses in the SC of non-human primates are
typically tuned to LSF (less than 1.5 cycles per degree, with
optimal responses at 0.56 cycles per degree) [117]. Likewise,
optimal parameters for detection of static stimuli in patients
with V1 damage lie in a similar range of LSF [118]. Both
models of the geniculo-striate system showed nearly perfect
responses, resolving gratings discrimination throughout the
whole range of spatial frequencies, as can be expected from
the integration of M and P channels in V1.

Concerning orientation, the SC model could spon-
taneously discriminate gratings that varied from 9° to 12°,
whereas both V1 models showed differential activations for
gratings with variations of 3° (figure 5b). These sensitivity
differences are in accordance with the orientation discrimi-
nation reported in blindsight patients, who differentiate
orientations varying of approximately 10°, as compared to
2–3° accuracy at the corresponding locations in the intact
visual field [119].
(c) Effects of face manipulation towards magnocellular
and parvicellular properties

(i) Impact on deep neural network recognition accuracy
In keeping with previous neuroimaging and electrophysio-
logical assays, LSF faces did not impact on the model’s
discrimination performance, which maintained above-chance
expression categorization and general accuracy almost identi-
cal to that yielded with unfiltered faces (68%). Conversely,
classification dropped down to almost chance level with HSF
faces (35%) (figure 6a).
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(ii) Functional magnetic resonance imaging activity in the
human superior colliculus

Signal intensity within the human SC of two subjects was
greater for M-biased than P-biased face stimuli, irrespective
of expressions (figure 6b–d). In keeping, the comparisons
with RBPE between the activity induced by M- and
P-biased stimuli revealed that the 95% highest density inter-
val (HDI) of posterior probability of this difference was
greater than 0 (mean difference = 0.66, 0.015 <HDI < 1.39)
(figure 6e). There was also a trend towards higher activity
for fearful than neutral expressions; however, the 95% HDI
did not fall outside zero (mean difference = 0.0857, −1.26 <
HDI < 1.6).
(d) Gaussian and salt-and-pepper noise
The performance of the SC model progressively deteriorated
as the input was degraded with the addition of Gaussian and
S&P noise (electronic supplementary material, figure S2).
Both image perturbations differentially affected discrimi-
nation of the three facial expressions. Recognition of sad
faces was the most impaired and dropped at chance with
the inclusion of Gaussian noise at approximately 15 s.d.s
and with 2% S&P noise. Recognition of happy expressions
was the least impaired, with a steep decrease of accuracy
slope that stabilized at 30 s.d.s of Gaussian noise and 5%
S&P noise. Lastly, the impact on sad expressions fell
midway, with almost a linear decrease in the recognition of
sad expressions with the progressive increase of image noise.
(e) Feature extraction and saliency maps
Expression discrimination from sparsely sampled faces, as
during occlusion or bubble presentation, can reveal the
spatial locations and therefore face features, that are more
salient and probably affect emotional categorization. Overall,
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results from the occlusion analysis and bubble method are
highly coherent with both datasets, thus documenting the
robustness and reliability of the model (figure 7).

Regarding happy expressions, recognition accuracy drops
drastically when the mouth is occluded, whereas the occlu-
sion of other face areas has minimal impact on the model’s
performance. Symmetrically, revealing the mouth region in
the bubble technique drives better discrimination per-
formance than exposure of other face parts. Human
psychophysics using the bubble technique have shown that
in tasks requiring discrimination between happy and neutral
facial expressions [120] or between all six basic emotional
expressions [121], the mouth region provides the most impor-
tant diagnostic information for the recognition of happy
faces. The assignment of faces to happiness in our model,
as well as in human observers, may also depend on appear-
ance changes in the eye region [122]. However, the relevance
of eyes in happy face recognition seems attributable to long-
range influences from the changes in the mouth region and
becomes informative only in specific tasks or when changes
in and around the mouth region are diminished [123].
The above pattern is almost inverted for sad expressions. In
fact, the view of the eyes and eyebrow region is most useful to
the model for correct categorization of faces as sad, while the
mouth becomes less salient. Neutral expressions fall midway,
with the strength and reliability of the association between
facial features and correct recognition depending more on a
global scan path that includes both mouth and eye regions.
Therefore, also in the present case our network model approxi-
mates the behavioural pattern of humans, who appear to
extract and use the same small set of localized information
specific to each expression for recognition [4,124,125].
4. Discussion
Compelling evidence is revealing a role of the SC in tasks and
behaviours usually ascribed to the cortex, such as building
multiple maps of the surrounding space, linking them to sal-
iency in relation to individual needs or modulating attention
and decision-making [19,21]. For example, orientation
response tuning suggests that the SC is involved in early
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stages of contour perception and figure-ground segmentation
and not simply in target selection for saccade generation.
Moreover, several types of neurons in the superficial layers
of macaque’s SC respond very poorly to simple visual
stimuli and their activation requires real objects or certain
two-dimensional patterns [126].

Among the manifold functions the SC contributes to, it
seems to possess the necessary infrastructure to conduct a
value-based appraisal of emotional signals and then mediate
approach and avoidance behaviours accordingly. Characteriz-
ing the SC’s computational properties before further analyses
on incoming input occurs in other downstream structures is
paramount to gain an evolutionary understanding of the
visual brain. In fact, the functions and circuitry centred on
the SC are well conserved throughout vertebrates, predate
the evolution of neocortex, and appear early during phyloge-
netic as well as ontogenetic development. For example, the
SC is present in reptiles, birds and mammals, its neurogenesis
is complete at birth, and its connections laid down by the first
weeks of age [19,21,52]. However, its localization in the brain,
dimensions, and the difficulty to ‘isolate’ it from the influence
of other brain areas have limited our knowledge of its compu-
tational properties, especially in humans. In this context, a
DNN imitating the neurobiological constraints of the retino-
collicular system can swiftly provide a preliminary tool to per-
form ‘in silico neurophysiology’ [127], thereby promoting a
milestone to furthering neuroscience investigation in the
human and non-human primate brain.

Neural networks models offer a principled perspective to
specifying mechanistic hypotheses on how sensory and cogni-
tive functions may be carried out by real brains [100]. In fact,
DNNs have found their place in the plurality of models
available in neuroscience because they fulfil serval functions
exceedingly well [128]. First, DNNs make falsifiable pre-
dictions that can be compared to specific brain systems in
terms of detailed patterns of behaviours. This has led to the
development and optimization of experimental designs for
empirical inquiry in the real brain. Second, they contribute to
exploring and generating new hypotheses through proof-of-
principle demonstrations that create plausibility and motivate
further research, especially in the absence of a fully fledged
theory of how a cognitive function emerges from neural archi-
tectures. DNNs have made strides in elucidating principles of
development and organization in the primary (geniculo-
striate) cortical visual system, more specifically in the ventral
stream [48,51]. However, a circuit-level DNNmodel that repro-
duces the architecture and neurobiological constraints of the
retino-collicular system has never, to our knowledge, been
devised yet.

The present study marks a first step towards the investi-
gation with artificial neural networks of salient facial
features based on expression perception carried out uniquely
by the retino-collicular system. When the field of inquiry is in
its infancy, and the understanding of a biological phenom-
enon is limited, as in the present case, the equivalence
between DDNs and biological brains can be profitably under-
stood mainly in the context of the behavioural outcomes they
produce. Noteworthy, several similarities to human behav-
iour and primate neurophysiology emerged spontaneously
in our model, or arose simply as a consequence of the artifi-
cial network learning to perform the task, rather than the
modeller imposing parameters besides the neural architecture
and the objective goal [46,47].
First, the model matched expression recognition accuracy
of V1-damaged patients, who supposedly rely on the retino-
collicular system for stimulus encoding. Face categorization
was significantly lower than the one displayed by healthy
observers, but still above chance and in the predicted accu-
racy range, including a remarkable correspondence with
human data in the error patterns and confusion across
categories [38,109,110].

Second, tuning to LSF and orientation selectivity emerged
spontaneously in the model and were different from those
developed by established geniculo-striate networks presented
with the same gratings. The discrimination performances
were in accordance with psychophysical evidence in human
blindsight patients and are plausibly generated by the neuro-
physiological properties that the primate SC derives from the
prevalent M and K retinal input over the P pathway
[26,38,40]. This suggests that initial phases of facial encoding
may not depend on the development of specialized cortical
areas but seem to capitalize on phylogenetically ancient
visual structures already existing in new-born primates and
other lineages.

Third, the results on spontaneous tuning led to testing the
impact of different approaches to image manipulation that
can bias face processing towards M and P channel properties.
DNN recognition of M-biased faces filtered to display only
LSFs was not measurably altered compared to broad-band
images, whereas the classification of P-biased expressions
with HSF was almost at chance level. We also provide
proof-of-principle that alternative methods to engage the M
or P channels activate the human SC differentially in fMRI.
Future fMRI studies could determine whether this increased
SC activity to M-biased faces withstands larger samples
than our two subjects, and if an additive difference between
image manipulation and expressions emerges. In the interim,
these findings provide initial evidence that adjusting the
luminance and colour of image stimuli to unbalance M and
P processing impacts SC activity, as predicted by our model.

Fourth, we explored the effects of different sources of uni-
form image noise and the assignment of saliency to specific
image locations and facial features depending on emotional
expressions. Results show that the mouth region (and there-
fore the smile) is crucial for categorizing happy expressions,
and the eye area is most useful to recognize sadness [123].
These computations arguably reflect internal representational
transformations instantiated by the DNN that progressively
defines which features are more relevant to perform the task.

Clearly, the fact that our model of the retino-collicular
system seems capable of expression discrimination and pre-
dicts several patterns of human and primate behaviours
does not mean that other brain areas are not crucial for
emotional processing, or that the final encoding is not the
by-product of complex interaction at the system level [129].
The key issue is that the retino-collicular system can actively
instantiate early emotional evaluation and pass it on to these
other brain structures, contrary to the prevailing view [16].

Our circuit-level model of the retino-collicular system can
be used to delve more deeply into understanding the devel-
opment and organization of early visual processing for
facial expressions and other stimulus categories. In fact, mod-
elling can be heuristically influential and provide traction for
new empirical testing of V1-independent vision in human
and non-human primates. For example, responses to uniform
image noise, or perturbations to stimulus attributes in the
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neural network can be the testing ground for experiments in
humans and monkeys to sample new functional properties of
the SC. The network can be used to compute amaximally excit-
ing input image (MEI) that strongly activates specific layers or
neurons in the model. This MEI can then be presented to
humans or monkeys without V1, and the resulting neural
response measured [130]. If the deep network captures the
mapping from image features to neural response, the MEI
should also excite the biological neurons. On the other side,
histological and neurophysiological studies offer viable sup-
port to refine artificial models and interpret V1-independent
vision centred on the SC. These are outstanding research ques-
tions for neuroscientists interested in exploring how many
visual computations the retino-collicular system can account
for, based on a bottom-up approach.
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