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A B S T R A C T   

The adoption of new sensors for crop monitoring is leading to the acquisition of large amounts of data, which 
usually are not directly usable for agricultural applications. The 3D point cloud maps of fields and parcels, 
generated from remotely sensed data, are examples of such big data, which require the development of specific 
algorithms for their processing and interpretation, with the final aim to obtain valuable information about crop 
status. 

This manuscript presents an innovative 3D point cloud processing algorithm for vine row detection and 
localisation within vineyard maps, based on the detection of key points and a density-based clustering approach. 
Vine row localisation is a crucial phase in the interpretation of the complex and huge 3D point clouds of agri-
cultural environments, which makes it possible to move the focus from a macro level (parcel and plot scale) to a 
micro level (plants, fruits and branches). The algorithm outputs fully describe the spatial location of each vine 
row within the whole 3D model of the agricultural environment by a set of key points and an interpolating curve. 
The algorithm is specifically conceived to be robust and: (i) independent of the adopted airborne sensor used to 
acquire the in-field data (not requiring a model with colour or spectral information); (ii) able to manage vine-
yards with any vine row layout or orientation (such as curvilinear) and (iii) not hindered by the occurrence of 
missing plants. The experimental results, obtained by processing the models of seven case study parcels, proved 
the algorithm’s reliability and accuracy: the automatic vine row detection was found to be 100% in accordance 
with the manual one; and the obtained localisation indices showed an average error of 12 cm and standard 
deviation of 10 cm, which is fully compatible with the considered agricultural applications. In addition, the 
algorithm outputs can be profitably exploited for enhanced path planning of autonomous agricultural machines 
adopted for in-field operations.   

1. Introduction 

Unmanned Ground Vehicles (UGVs) and Unmanned Aerial Vehicles 
(UAVs), also named drones, are assuming a key role in the modern 
farming approach known as Agriculture 4.0 (Michels et al., 2020; 
Mammarella et al., 2022a). Indeed, the drones capability to autono-
mously perform in-field operations is being profitably exploited in many 
agricultural scenarios (Peng and Vougioukas, 2020; Thompson and 
Puntel, 2020). The agricultural tasks that currently benefit, or might 
benefit in the near future, from the adoption of autonomous ground and 
aerial drones can be grouped into two main categories: crop monitoring 

tasks and in-field operations. Remote sensing and proximal/close range 
sensing by UGVs and UAVs have already proved their effectiveness in 
many applications, such as canopy vigour assessment (Campos et al., 
2019; Comba et al., 2021a; Feng et al., 2020), nitrogen estimation 
(Colorado et al., 2020), plants high-throughput phenotyping traits 
evaluation (Sun et al, 2020; Xie and Yang, 2020), crop mapping (Pri-
micerio et al. 2017; Mazzia et al., 2020), and disease or stresses detec-
tion (Kerkech et al., 2020; Guidoni et al., 2021; Comba et al., 2021b). 
Concerning in-field operations, valuable solutions based on robotic 
drones involve transplanting and seedling (Nagasaka et al., 2009), 
pruning and thinning (Zahid et al., 2020), weed control (McAllister 
et al., 2019), and harvesting (Bechar and Vigneault, 2017). 
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The effectiveness of the adoption of drones for precision agriculture 
applications is strictly related to the proper knowledge of the working 
scenarios, in terms of both spatial layout (Chen et al., 2020; Gao et al., 
2020) and crops status and needs. Indeed, the joint contribution of such 
information allows to reach the target and/or to properly modulate 
agronomical operations in a timely fashion (Gil et al., 2013), ensuring, at 
the same time, the required safety (Wang et al., 2020). In this context, to 
properly achieve the tasks, the accurate and reliable path planning and 
control strategies of the drones are thus essential (Dusadeerungsikul and 
Nof, 2019; Khajepour et al., 2020), which involve crucial information 
such as parcel boundaries and crop location (Graf Plessen and Bem-
porad, 2017; Li et al., 2020). 

Sensors that are able to provide 3D models of the agricultural envi-
ronment can lead to favourable improvements in the description of the 
complex scenarios in which the drones operate (Chakraborty et al., 
2019; Comba et al., 2019). Some examples of enhanced spatial infor-
mation derived from 3D models regard fruit position for automatic 
harvesting (Kang and Chen, 2020; Wu et al., 2020), canopy shape and 
size for variable spraying (Llorens et al., 2011; Grella et al., 2022), 
branches location for automatic pruning (Cuevas-Velasquez et al., 
2020), and crop location for accurate path planning (Jurado et al., 2020; 
Malavazi et al., 2018). Such 3D models are usually in the form of a point 
cloud, which is a set of unordered points in the 3D space. A 3D point 
cloud can be derived by using Structure from Motion (SfM) algorithms 
(Gené-Mola et al., 2020), Light Detection and Ranging systems (LiDAR) 
(Blanquart et al., 2020), or depth cameras (Condotta et al., 2020). 
However, specific algorithms have to be developed to properly extract 
valuable crop information from raw 3D models (Escolà et al., 2017; Sanz 
et al., 2018), also exploiting artificial intelligence tools (Zhang et al., 
2021). In this process, an essential phase of the processing algorithms is 
usually the semantic interpretation and segmentation of the 3D point 
clouds, which assign each point to different portions of the whole model. 
Indeed, many applicative examples of semantic interpretation of 3D 
point cloud for agricultural purposes can be found in literature, aimed at 
detecting portion of the model representing leaves, branches, fruits, 
buds, and other elements (Díaz et al., 2018; Mortensen et al., 2018; Zhou 

et al., 2019; Zeng et al., 2020; Comba et al., 2020a). These 3D point 
cloud algorithms have been usually developed to process a single tree, or 
portion of a crop, at a time (Comba et al., 2020b; Gené-Mola et al., 2020; 
Zhang et al., 2021). In order to fully automate the 3D point cloud pro-
cessing, the automatic detection of the crop (e.g. row, plant, trees, etc.) 
from the 3D model of the whole considered agricultural environment is 
thus required. This is a crucial phase in the interpretation of the complex 
and huge 3D point clouds of the agricultural environments, which fo-
cuses from a macro level (parcel and plot scale) to a micro level (plants, 
fruits, branches). 

This manuscript presents a 3D point cloud processing algorithm for 
vine row detection and localisation within vineyard maps, based on the 
detection of key points and a density-based clustering approach. The 
proposed method is completely new, and no methodologies for this 
specific objective have been previously proposed in literature. The al-
gorithm provides as an output an ordered set of key points in a 3D co-
ordinate system representing the canopy’s central points (which 
includes the two vine row end points) and a curve representing the 
spatial layout of each vine row in the map. The peculiarities of the 
vineyard scenarios, such as curvilinear vine rows, missing plants or 
diseased vines (which are reflected in the 3D points clouds of the re-
gion), require specific solutions and prevent the adoption of already 
available methodologies (e.g. Ester et al., 1996 in Matlab®; Weinmann 
et al., 2015). 

The unsupervised detection of each single vine row within a whole 
vineyard model is essential not only to enable the automatic application 
of further specific processing algorithms at plant scale, but also for in- 
field path planning purposes. Indeed, the information provided by the 
proposed algorithm can be exploited in automated 3D path planning, 
which is a key task for the automation and optimisation of drone op-
erations in the field (Mammarella et al., 2020). By overcoming 2D path 
planning algorithms, 3D path planning fully exploits the terrain’s and 
environmental characteristics (Jin and Tang, 2011; Hameed et al., 2016; 
Mammarella et al., 2022a, 2022b). 

This manuscript is structured as follows: Section 2 describes the 
experimental field and the acquisition campaigns; Section 3 presents the 

Notation table 

B x,y cylindrical regions of point cloud S{Main}
1 , centred in [xy]⊤

and with vertical axis 
B

′

x,y(ϑ) section of cylindrical region B x,y at angle ϑ 

c{RF}
j j-th canopy central point, with cj ∈ V m represented in the 

{RF}Reference Frame 
C comprehensive set of canopy centre points c 
dv(x,y) local inter row width in [xy]⊤

Dy(B
′

x,y, s) normalised frequencies distribution histogram of points 

pi ∈ B
′

x,y along the y{Loc} axis 

E
[h]
j subset of points cj within an elliptic region of interest at 

algorithm iteration [h]
Er ordered set of key points e representing vine row r 
{e0, enr} key-points couple representing vine row r ends 
e[h] enhanced key point e defined at algorithm iteration [h]
g generic point of the 3D point cloud S1 
[h] Clustering algorithm iteration 
[k] Key point detection algorithm iteration 
lr number of centre points representing r-th vine row 
nC overall number of detected central points of set C 

nV overall number of detected vine rows 
nr number of key-points representing the r-th vine row, 

provided by the algorithm 

mr number of reference points manually defined for the r-th 
vine row 

O{Main}
Loc origin of local reference frame {Loc} in reference frame 

{Main}
pi projection of key-point ei on the 
rB radius of the cylindrical subset B x,y 

RLoc
Main rotation matrix from {Loc} to {Main} reference frame 

S{Main}
1 3D point cloud model represented in the reference frame 

{Main} 
s bin of Dyhistogram 
Sy set of all the histogram bins 
t distance threshold between key points 
v̂j j-th local maximum of the density histogram Dy 

V r r-th cluster of central points representing vine rows r-th 
V [h] cluster of central points V at clustering algorithm 

iteration [h]
x{RF} x axis of the {RF} Reference Frame 
y{RF} y axis of the {RF} Reference Frame 
z{RF} z axis of the {RF} Reference Frame 

Greek letters 
ϑv(x,y) angle defining the local vine row direction in [xy]⊤

ϑ⊥v angle defining the local vine row perpendicular direction 
δs bin width of histogram Dy  
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Fig. 1. 3D point clouds of the seven parcels considered as a case study, located in Serralunga d’Alba - Italy (a) and in Barolo - Italy (b).  
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innovative algorithm for the vine rows localisation and clustering; the 
results are presented and discussed in Section 4, while the conclusions 
are reported in Section 5. 

2. Case study and data acquisition 

In this work, a set of seven parcels, three of which located in Serra-
lunga d’Alba and four in Barolo (Piedmont, Northwestern Italy), was 
considered as a case study and was modelled by dense 3D point clouds. 
The considered parcels have extensions ranging from 0.17 to 0.71 ha, 
covering an overall surface of about 3.4 ha, and they are characterised 
by a sloped land conformation. Six parcels (named A, B, D, E, F and G) 
are cultivated with the Nebbiolo vine variety and one parcel (named C) 
is cultivated with the Moscato vine variety (Fig. 1), using a vertical shoot 
position trellis system. The parcels consist of 21, 33, 13, 35, 21, 16 and 
16 vine rows, respectively. The space between the vine plants and the 
inter-row space was about 0.9 m and 2.5 m in all the considered parcels. 

The 3D point clouds were obtained by using the Agisoft Photoscan® 
software (2020, St. Petersburg, Russia), which is based on the SfM al-
gorithms, and by processing the UAV-based aerial images. The seven 
point clouds are made by 2.4 up to 10.2 million points and were saved in 
individual.las files with sizes ranging from about 44 Mb to 185 Mb, 
respectively. The mean density of the generated 3D point clouds was 
about 1450 points per m2 of the map surface. A Parrot Sequoia® mul-
tispectral camera (Parrot©, 2018, Paris, France) was used to acquire the 
aerial images with a resolution of 1280 × 960 pixels. The UAV flights 
occurred in Serralunga d’Alba and in Barolo in 2018 and 2019 respec-
tively. The height of the UAV flight was maintained close to 35 m with 
respect to the terrain by planning a set of waypoints, which were defined 
on the basis of the vineyards geographic information system map with 
the drone mission planning and flight control software (UgCS, 2021). A 
forward and side overlap greater than 80% was guaranteed between 
adjacent images to help the images alignment process. Prior to the 
alignment of the images, a radiometric calibration was performed on the 

images by using the reference images of a Micasense calibrated reflec-
tance panel (Seattle, Washington, USA), which were acquired before and 
after each UAV flight. 

It should be noted that the obtained 3D point clouds of the vineyards 
used in this study had neither colour nor spectral information, so that 
only the spatial information provided by each point was exploited by the 
proposed processing method. This approach was introduced to make the 
proposed processing algorithm unaffected by the type of airborne sensor 
or by the spectral difference that could characterise different vineyard 
environments during the growing season. 

3. 3D point cloud processing method 

The developed algorithm, which automatically detects and localises 
each single vine row within the 3D point clouds of the vineyards, has two 
main outputs: (i) an ordered set of key points representing the canopy’s 
central points in a 3D coordinates system (which includes the two vine 
row end points) and (ii) a curve representing the spatial layout of each 
vine row in the map. The vine rows detected within the 3D point cloud 
are automatically sorted and numbered (from southwest to northeast), 
and the algorithm also provides their length, altitude difference and 
average orientation with respect to the west to east direction. 

The algorithm, which is based on a sequence of operations sketched 
in the flowchart in Fig. 2, can be divided into three main phases: (1) the 
detection of a set of points representing the centre of the vine canopies, 
(2) the clustering of the central points in groups, each one representing a 
single vine row, and, finally, (3) the sorting and refinement procedure to 
define a set of ordered key points, essential to determine the curves 
describing the location of each vine row. The specific peculiarities that 
characterise the 3D point clouds of the vineyards, which prevent the 
adoption of already available processing algorithms, are discussed in 
detail in each processing phase, together with the innovative solutions 
that have been envisioned. Please note that, in the here presented new 
point cloud processing method, some specific steps of the algorithm 

Fig. 2. Flow chart of the developed point cloud processing settlement. Operations and outputs defined in Comba et al. (2018), exploited in the proposed new method, 
has been highlighted in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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presented in Comba et al. (2018) (the aim of which is the detection of 
parcel boundaries) have been exploited. These processing steps are 
represented by the two green highlighted blocks of the flowchart in 
Fig. 2. 

3.1. Central points detection 

The first phase of the algorithm is the detection of a set of points cj, 
representing the canopy central points of the vine rows, which is ob-
tained by processing the raw dense 3D point cloud of the vineyard. This 

first step allows the main information of the canopy, required in the 
second and third steps, to be extracted from the raw 3D point cloud. In 
addition, this processing phase reduces the amount of model instances to 
be processed in the subsequent steps and, thus, speeds up the second and 
third computing phases. This processing phase, named Step 1, is repre-
sented in the left part of the flowchart in Fig. 2. The central points were 
detected by processing several subsets of the whole vineyard 3D model, 
which were defined by a scanning approach (also called mobile window 
approach). This approach, firstly introduced in Comba et al. (2018), in 
this work has been significantly updated as described below. 

Fig. 3. (a) Cylindrical subset B {Main}
xb ,yb

(green dots) of the 3D point cloud S{Main}
1 (grey dots) represented in the Main Reference Frame {Main}; (b) enlargement of the 

subset B {Loc}
xb ,yb 

(green dots) represented in the Local Reference Frame {Loc} (with origin in O{Main}
Loc =

[
xb, yb, zb

]⊤
= [200,130,35]⊤ m) and subset B

′

xb ,yb
(ϑ⊥v) (red 

dots), determined with ϑ⊥v = 1.1π; (c) projection of subset B
′

xb ,yb
(ϑ⊥v) on the yz{Loc} plane (as in Comba at al., 2018); (d) normalised frequencies distribution 

histogram Dy(B
′

xb ,yb
, s) (blue line) with detected local maxima v̂j (green line); (e) detected central points c{Main}

j (green line) of the canopy in the original 3D point 

cloud S{Main}
1 (grey dots) and the entire set of central points of canopy C (blue dots). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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In Comba et al. (2018), with the aim to identify the vineyard parcels 
boundaries, the raw 3D point cloud (S{Main}

1 ) was scanned with a mobile 
window by selecting different cylindrical regions (named B x,y), centred 
in [xy]⊤ and with radius rB . The scanning procedure proceeds with a 
vineyard likelihood test, which is performed on each cylindrical region 
B x,y and provides the following outputs: (1) the angles ϑv and ϑ⊥v, 
which identify the parallel and perpendicular direction with respect to 
the local vine row orientation, (2) the local inter row distance d and (3) 
the subset section B

′

xb ,yb
(ϑ⊥v). With the term local, the centre of the 

cylindrical region B was here considered. For a complete discussion 
about this procedure, please refer to Comba et al. (2018). In Fig. 2, this 
processing phase is represented by the two green highlighted blocks of 
the flowchart, and its outputs are exploited in some specific subsequent 
phases, as represented by the green arrows. An example of the outputs of 
this procedure is reported in Fig. 3a-3c. In particular, the cylindrical 
region B xb ,yb (centred at 

[
xb, yb

]⊤
= [200,130]⊤ m with a radius rB = 5 

m), is highlighted in Fig. 3a (green dots) within the surrounding 3D 
model (grey dots) and enlarged in Fig. 3b. Also, the subset B

′

xb ,yb
(ϑ⊥v)

was reported in Fig. 3b (red dots), which was selected by using the angle 
value ϑ⊥v = 1.1π. The angle ϑ is measured anticlockwise from the x{Main}

axis on the horizontal xy{Main} plane. 
In the processing algorithm presented in this work, subset sections 

B
′

x,y(ϑ⊥v) are here exploited in a new way by detecting the canopy 
central points c. In particular, this was performed computing and ana-
lysing the density distribution of the points p within section B

′

x,y(ϑ⊥v)

which, for definition, intersects several vine rows. Indeed, the angle ϑ⊥v 

used for section B
′

x,y(ϑ⊥v) detection, represents the perpendicular di-
rection with respect to the local vine row orientation. To detect the 
central points c, a Local Reference Frame {Loc} was introduced, whose 
origin is located in O{Main}

Loc =
[
xb, yb, zb

]⊤ (centre of the cylindrical re-
gion) and with the x{Loc} and y{Loc} axes parallel and perpendicular to the 
vine row respectively. The coordinate zb was chosen to be equal to the 
local elevation of the digital terrain model. The density of the 3D point 
subset was thus assessed by computing the normalised frequencies dis-
tribution histogram of the points g along the y{Loc} axis. 

Dy

(
B

’
x,y, s

)
= card{g = [x, y, z]⊤ ∈ B

’
x,y(ϑ⊥v) : |y − s|

<
δs

2
}⋅card

(
B

’
x,y(ϑ⊥v)

)− 1
(1) 

with s ∈ Sy = { − rB , − rB + δs, − rB +2δs,⋯, 0,⋯, rB }, where Sy is 
the set of all the histogram bins and δs is the bins width. In Fig. 3c and 
3d, the sample subset of points B

′

xb ,yb
(ϑ⊥v) and its normalised fre-

quencies distribution histogram are represented. More in detail, the 
position of c{Loc}

j was determined by detecting the local maxima ̂vj in the 
density histogram Dy(B

′

x,y, s), as: 

c{Loc}
j =

[
0, v̂j, 0

]⊤ (2) 

The central points c{Loc}
j of the canopy are here represented in the 

Local Cartesian Reference Frame {Loc}, and their absolute position in 
the Main Reference Frame {Main} was simply retrieved as follows. 

c{Main}
j =

⎡

⎣
xj
yj
zj

⎤

⎦ = RLoc
Main⋅c{Loc}

j + O{Main}
Loc

=

⎡

⎣
cosϑ⊥v − sinϑ⊥v 0
sinϑ⊥v cosϑ⊥v 0

0 0 1

⎤

⎦⋅

⎡

⎣
0
v̂j
0

⎤

⎦+

⎡

⎣
xb
yb
zb

⎤

⎦ (3)  

where RLoc
Main is the rotation matrix from {Loc} to {Main} and O{Main}

Loc is the 
{Loc} origin, expressed in the {Main} coordinates. For example, the 
detected local maxima v̂j in the density histogram Dy(B

′

x,y, s) are re-

ported in green in Fig. 3d, while the detected vine row centres c{Main}
j are 

highlighted in green in Fig. 3e. In the example of Fig. 3, four local 
maxima v̂1 = − 3.45, v̂2 = − 0.90, v̂3 = 1.65 and v̂4 = 4.25 were 
detected, which led to the four canopy central points c{Main}

1 =

[203.13, 128.55, 35.03]⊤, c{Main}
2 = [200.82, 129.62, 35.08]⊤, c{Main}

3 =

[198.50, 130.69, 35.09]⊤ and c{Main}
4 = [196.14, 131.78, 35.07]⊤

metres. 
By applying the procedure described above to an entire 3D point 

cloud, a set of central points C =
{
cj, j = 1,⋯, nC

}
of all the vineyard 

canopies can be obtained, where nC is the overall number of computed 
central points. To simplify the discussion of the next steps of the algo-
rithm, the projection of the central points C on the 2D plane z{Main} = 0 
will be considered, as shown in Fig. 3e with blue dots. All the results can 
be reported in the original 3D system by restoring the DTM, considering 
the local terrain elevation as the z coordinate of the points. The results 
obtained by processing the entire 3D point cloud S1 of Fig. 1a are re-
ported in Fig. 4. 

The set of canopy central points C obtained by the proposed new 
method, together with the additional information regarding the vine-
yards local features provided by Comba et al. (2018) (the local vine row 
direction ϑv(x, y) and of the local inter row spacing dv(x,y), which can be 
properly organised in maps) will be used in the following algorithm 
phases, called Step 2 and Step 3 (Fig. 2). 

3.2. Density-based central points clustering 

The obtained set C of the canopy central points is, in this phase, still 
unordered and unclustered. Indeed, the central points provided by the 
previous processing phase are not associated to any specific vine row 
and their position within the vine row is not related to their generation 
order. To detect the location of each vine row, a clustering and sorting 
procedure of the central points is thus required. The output of this sec-
ond phase of the algorithm is indeed a set of point clusters V r, with r =

1,⋯,nV , and where nV is the number of the detected vine rows. This 
processing phase, named Step 2, is represented in the central part of the 
flowchart in Fig. 2. It should be noted that the points within set C , 
representing a single vine row, are characterised by a particular spatial 
layout that has a predominant dimension (vine row length) with respect 
to the inter-group distance (here represented by the inter-row path 
width). However, the occurrence of missing and/or diseased plants leads 
to vine row interruptions that, in some cases, can be more extended than 
the inter-row path dimension. Indeed, considering an inter-row path 
ranging between 2 and 3 m and with a vine plants distance ranging from 
0.9 to 1.2 m, as shown in Fig. 5a, the occurrence of two consecutive 
missing and/or diseased plants can lead to the absence of key points in a 
portion of the vine row longer than the inter-row path; this causes all the 
available 3D point cloud clustering methods (such as fuzzy clustering, 
partitioning methods, hierarchical clustering or standard density-based 
algorithms), to fail (Biosca and Lerma, 2008; Chen et al., 2022; Li et al, 
2022). 

The proposed enhanced density-based clustering approach performs 
an iterative clustering procedure which defines small subsets of points 
representing portions of vine rows, and merging them sequentially when 
specific criteria are fulfilled. Considering the algorithm iteration [h], a 
subset E [h]

j of points centred in cj and within an elliptic Region of Interest 
(ROI) was defined as. 
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Fig. 4. (a) the set of canopy centre points C , (c) the map of the local vine row direction ϑv(x, y) and (e) the map of the local inter row spacing dv(x, y), obtained by 
processing the entire point cloud S1 of Fig. 1a, and their enlargements (b), (d) and (f), respectively. Variables ϑv and dvare outputs defined in Comba et al. (2018). 

E
[h]
j =

{

[x, y, z]⊤ ∈ C
{Main}

|

(
x⋅cosϑv + y⋅sinϑv − xj

)2

3⋅dv
+

(
− x⋅sinϑv + y⋅cosϑv − yj

)2

0.5⋅dv
≤ 1

}

(4)   
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where 
(

xj, yj

)
are the coordinates of the central point cj, while dv and 

ϑvare the local inter-row width and vine row orientation in 
(

xj, yj

)
. The 

values of dv and ϑv parameters, which are outputs of the method pre-
sented in Comba et al. (2018), have been derived from specific maps. In 
Fig. 4b and 4c, the sample maps of the local vine row direction ϑv(x, y)
and the local inter row spacing dv(x, y), obtained by processing the entire 
point cloud S1, are reported. Alternatively, the neighbourhood E [h]

j can 
also be defined as. 

E
[h]
j =

{

[x, y, z]⊤ ∈ C {Locj} |
x2

3⋅dv
+

y2

0.5⋅dv
≤ 1

}

(5)  

if the Local Reference Frame 
{

Locj
}

(defined with its origin in cj and 

with axes x{Locj} and y{Locj} tangent and perpendicular to the local vine 
row orientation ϑv, respectively) is considered. An example of the points 
E

[h]
j selected with the elliptic ROI is represented in Fig. 5a, while its 

enlargement is reported in Fig. 5b. 
Then, depending on the status of points belonging to E [h]

j , four sce-
narios of cluster assignment can occur. In the first scenario (case A), 
when the points within E [h]

j do not belong to any previously defined vine 

Fig. 5. (a) the entire set of the canopy central points C (grey dots) in the Local Reference Frame 
{

Locj
}
, and an example of the elliptic ROI (grey area) that is used to 

select the neighbouring points E j (black dots) of cj (blue dot); (b) enlargement of subplot (a), with the highlighted major (green line) and minor (red line) semi axes 
of the ROI; Case A (c), Case B (d) and Case C (e) scenarios of the clustering process. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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row cluster V [h− 1]
r , a new cluster V [h]

r+1 = E
[h]
j is defined. In the second 

scenario (case B), at least one point within the subset E [h]
j belongs to a 

single, already defined cluster V [h− 1]
r and, thus, E

[h]
j and V [h− 1]

r are 

merged forming the (updated) cluster V [h]
r = V [h− 1]

r ∪ E
[h]
j . The third 

scenario (case C) is an extension of case B and occurs when some (or 
even all) the points within E [h]

j belong to more than one cluster, such as 

V [h− 1]
r and V [h− 1]

s . In this case, all the clusters are merged with the 
oldest one, together with E

[h]
j , updating V [h− 1]

r as V [h]
r = V [h− 1]

r ∪

V [h− 1]
s ∪ E

[h]
j and discharging the cluster V [h− 1]

s . Please note that the 
merging procedure performed in clustering cases B and C leads to 
growing clusters, which are no more bounded by an elliptic ROI. The 
fourth scenario (case D) concerns a subset E

[h]
j with all the points 

belonging to a single, already defined cluster V [h− 1]
r : in this case, no 

operations are performed. The iterative procedure is repeated until at 
each central point c a subset E has been assigned for the proper clus-
tering task. A graphical representation of three sample clustering iter-
ations (belonging to cases A, B and C, respectively), is reported in Fig. 5. 

The elliptic ROI was introduced to improve standard density-based 
clustering approaches, which exploit circular/spherical ROIs. Indeed, 

in order to avoid obtaining clusters with multiple vine rows, the 
maximum value of the circular ROI radius is limited to a fraction of the 
inter-row path dimensions. In this way, however, a single vine row could 
be wrongly represented by many clusters, if missing and/or diseased 
plants occur. The length of the major semi axis of the ROI allows thus to 
overcome this limit. 

Please note that, during the initial phase of the clustering process 
(when cases A are more frequent than cases C), the number of overall 
clusters V can exceed the number of vine rows nV to be detected. This 
trend is reversed during the second part of the clustering process, when 
the number of clusters V decreases (as cases C is more frequent than 
cases A and B), finally settling to the detected vine rows number nV . 

3.3. Vine rows key points detection and ordering 

With the final aim of defining a continuous curve representing the 
spatial location of a single vine row, the central points in the cluster V r 

have to be refined. Indeed, no methods exist that can interpolate a set of 
unordered points in the space, which can be generated by a not injective 
function (de Boor, 1978; Kong et al., 2021). This is the case of central 
points representing vine rows with any layout within a map (e.g. 
curvilinear). A viable solution to this problem can be the adoption of 

Fig. 6. (a) the set V r of the canopy central points representing the vine row r = 16 (red dots), the randomly selected first key point cj = e0 (blue dot), and the Local 
Reference Frame {Loc0}; (b) sample of new key points ek+1 (green dots) detection along the positive direction of axis x{Lock} by using the distance threshold t = 2 m 
(grey area); (c) results of the completed refining and sorting procedure with the detection of vine row end point e− 6 and (d) final key-points numbering E16 =

{e1, e2, ⋯, e47}. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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recent approaches for interpolating an ordered set of points within the 
space, which requires the central points to be ordered (D’Errico, 2021). 
In addition, the general vine row layout prevents the application of a 
simple ordering procedure of the central points based on a single di-
rection (such as along the x or y axes of the main reference frame). 

A refinement of the central points c ∈ V r is introduced in this last 
phase of the algorithm in order to obtain a set of key points e ∈ Er that 
are ordered, less dense and more equally spaced along the vine row. This 
processing phase, named Step 3, is represented by the right part of the 
flowchart in Fig. 2. The proposed procedure is based on the following 
idea: one central point cj is randomly selected from V r and then, 
starting from it, the vine row is scanned towards the two end points. 
More in detail, the developed algorithm is as follows:  

k = 0 
Randomly selection of the first key point.ek = cj 

REPEAT: 
Detection of new key point ek+1 as. 
e{Lock}

k+1 = arg min
c∈V m

‖c− ek‖2>t

x>0

‖c − ek‖2 

k = k + 1 
UNTIL:.{c ∈ V m : ‖c − ek‖2 > t ∨ x > 0} = ∅ 
Detection of vine row end point ek+1 as. 
e{Lock}

k+1 = arg max
c∈V m

x>0

‖c − ek‖2 

k = 0 
Repeat: 
Detection of new key point ek− 1 as. 
e{Lock}

k− 1 = arg min
c∈V m

‖c− ek‖2>t

x<0

‖c − ek‖2 

k = k − 1 
Until:.{c ∈ V m : ‖c − ek‖2 > t ∨ x < 0} = ∅ 
Detection of vine row end point ek− 1 as. 
e{Lock}

k− 1 = arg max
c∈V m

x<0

‖c − ek‖2 

End  

An example of this task applied to vine row 16 is reported in Fig. 6. The 
threshold t was introduced to avoid the selection of a new key point 
ek+1too close to ek and its value was set to 2 m to guarantee the gener-
ation of key points with a density compatible with the proper description 
of a vine row with a general layout (also curvilinear). Indeed, this value 
is usually much lower than the inter-pole distance in trellis systems, 
which limits the vine row curvature. At each iteration of the algorithm 
[k], the minimisation problem is solved considering the central point c ∈

V m represented in the Local Reference Frame {Lock}, introduced and 
defined in section 3.2, with origin in key point ek. This allows to simply 
define the two direction of scan of the cluster V m towards the two vine 
row end points by introducing the conditions x{Lock} > 0 and x{Lock} < 0, 
respectively. The algorithm is thus iterated until the two end points of 
the vine row V m are detected, that happens when, at the generic iter-
ation [k],no points c can be found outside the radial threshold distance t.
In this case, the threshold check is omitted and the farthest point c from 
ek is selected as the end point of the vine row. When both the end points 
have been detected, the scanning procedure is then considered complete 
(Fig. 6c). The output of this processing phase for the vine row ris thus an 
ordered set of nr key-points Er = {e1, e2, ⋯, enr}, with e1 and enr being 
the two ends of the vine row. An example of the result of this processing 
phase, applied to sample vine row 16, can be seen in Fig. 6d. 

Finally, a unique id number is assigned to each detected vine row 
within a parcel. Once the ordered set of key points E is defined for each 
vine row, the curve γ(t) interpolating them can be retrieved by the 
distance-based interpolation function developed by D’Errico (2021) and 
implemented in Matlab (Fig. 7). Further outputs of the algorithm are the 
individual vine row length, average orientation angle, and altitude 

difference. The points spatial coordinates are represented both in the 
local and WGS84 reference frames. 

3.4. Algorithm performance indices 

To assess and quantify the performance of the proposed vineyard 3D 
point cloud processing method, two families of indices were defined: the 
first group aimed at properly quantifying the performance of vine rows 
detection (indices 1, 2 and 3) and the second at evaluating the accuracy 
of the vine rows localisation (indices 4, 5 and 6). The indices definitions 

Fig. 7. Exemplificative algorithm output: ordered set of the key-points E = {e1,

e2, ⋯, e4} (blue dots), with the two vine row end-points e1 and e4, and the 
interpolating curve γ(t) (blue line), representing the spatial layout of the vine 
row. For the algorithm performance assessment: projection e* of the key-points 
e on the reference vine row location (green line) defined by the manually 
generated reference key points p (green dots). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 1 
Definitions of performance indices used for algorithm accuracy assessment.   

Index name Definition 

Detection 
indices 

1. Good detection Percentage of properly detected vine rows 
with respect to the overall number of vine 
rows in the case study 

2. Extra detection Percentage of wrongly detected vine rows 
with respect to the number of real vine 
rows 

3. Missed detection Percentage of not detected vine rows with 
respect to the number of real vine rows 

Localisation 
indices 

4. Euclidean 
distances between 
end points (DEP) 

Average Euclidean distances between each 
automatically detected end-point (e.g. e1) 
and manual reference one (e.g. e*

1): 

DEP =
1
2
∑

(i,j)∈{(1,1),(nk ,mk)}
‖ei − e*

j ‖2 

5. Euclidean 
distances of key 
points (DEK) 

Average distance of all automatically 
detected key points and the manual 
reference line: 

DEK =
1
nr

∑nr

i=1
‖ei − pi‖2where nk is the 

number of points defining vine row r and pi 

is the projection of ei on the manual 
reference line (Fig. 7) 

6. Curves 
overlapping factor 
(COF) 

Ratio of the area Ar of the region delimited 
by algorithms γr and manual lines γ*

r , and 
the manually detected vine row length ( 
Fig. 7): 

COF =
Ar

∑mr − 1
i=1 ‖e*

i+1 − e*
i ‖2  
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are detailly reported in Table 1. For indices computation, a set of line 
class objects was manually drawn by using the QGIS software, each one 
aligned with a single vine row to be considered as reference detection 
and localisation of vine rows (ground truth). The procedure, which was 
performed on a plan view of the 3D point cloud, provided the latitude 
and longitude coordinates of each manually drawn point (e*

1, e*
2,⋯, e*

mr
) 

defining the line object. The altitude of each point was then retrieved by 
the local digital terrain model (DTM), which was provided by Agisoft 
Photoscan® software. Please note that the quantity of points repre-
senting the location of the r-th vine row provided by the algorithm (nr) 
and by the manual procedure (mr) may differ. As an additional refer-
ence, in Parcel F, the position of all the vine rows end points (e*

1 and e*
m) 

Table 2 
Algorithm output: location and information of each vine row of parcel F.  

Vine 
row 
ID 

Length 
[m] 

Average 
orientation 
from 
E-W direction 
[deg] 

Elevation 
difference 
[m] 

End points locations [x, y, z] 
in {Main,C}[m, m, m] 

End points locations [lat, lon, alt] 
in {WGS84}[deg, deg, meter] 

Total number of 
enhanced key- 
points, card (Er)

1F  118.56 16  38.49 e1 = [33.97, 373.70, 36.42]⊤e58 =

[147.55, 407.43, 40.83]⊤
e1 = [44.61503179, 7.924851157, 465.16]⊤e58 =

[44.61533532, 7.926282013, 469.56]⊤
58 

2F  118.84 17  38.92 e1 = [32.85, 376.42, 36.66]⊤e60 =

[146.77, 409.93, 41.21]⊤
e1 = [44.61505626, 7.924837047, 465.40]⊤e60 =

[44.61535782, 7.926272187, 469.94]⊤
60 

3F  118.55 17.27  39.17 e1 = [32.28, 379.04, 36.71]⊤e58 =

[145.98, 412.39, 41.48]⊤
e1 = [44.61507984, 7.924829865, 465.45]⊤e58 =

[44.61537995, 7.926262234, 470.22]⊤
58 

4F  118.34 17.52  39.48 e1 = [31.79, 381.52, 36.86]⊤e60 =

[145.28, 414.87, 41.75]⊤
e1 = [44.61510215, 7.924823691, 465.60]⊤e60 =

[44.61540227, 7.926253415, 470.49]⊤
60 

5F  118.43 17.65  39.74 e1 = [31.27, 383.99, 37.10]⊤e61 =

[144.87, 417.32, 42.00]⊤
e1 = [44.61512438, 7.924817140, 465.84]⊤e61 =

[44.61542431, 7.926248249, 470.74]⊤
61 

6F  117.78 17.36  40.02 e1 = [31.11, 386.77, 37.41]⊤e60 =

[144.15, 419.66, 42.32]⊤
e1 = [44.61514939, 7.924815123, 466.15]⊤e60 =

[44.61544537, 7.926239179, 471.06]⊤
60 

7F  117.81 17.48  40.37 e1 = [30.30, 389.43, 37.79]⊤e60 =

[143.48, 421.90, 42.58]⊤
e1 = [44.61517333, 7.924804918, 466.53]⊤e60 =

[44.61546552, 7.926230738, 471.32]⊤
60 

8F  117.62 16.40  40.67 e1 = [30.02, 392.23, 38.23]⊤e60 =

[142.98, 424.82, 42.96]⊤
e1 = [44.61519852, 7.924801390, 466.97]⊤e60 =

[44.61549180, 7.926224438, 471.70]⊤
60 

9F  117.26 16.61  41.08 e1 = [29.53, 394.85, 38.67]⊤e60 =

[142.22, 426.98, 43.25]⊤
e1 = [44.61522210, 7.924795216, 467.41]⊤e60 =

[44.61551123, 7.926214864, 471.99]⊤
60 

10F  117.21 16.91  41.47 e1 = [29.25, 397.69, 39.08]⊤e59 =

[141.85, 429.89, 43.65]⊤
e1 = [44.61524765, 7.924791687, 467.82]⊤e59 =

[44.61553742, 7.926210202, 472.39]⊤
59 

11F  116.97 16.50  41.83 e1 = [28.73, 400.11, 39.34]⊤e59 =

[141.16, 432.10, 43.95]⊤
e1 = [44.61526943, 7.924785136, 468.08]⊤e59 =

[44.61555731, 7.926201509, 472.69]⊤
59 

12F  116.92 16.46  42.15 e1 = [28.04, 402.95, 39.70]⊤e60 =

[140.60, 434.30, 44.21]⊤
e1 = [44.61529498, 7.924776442, 468.44]⊤e60 =

[44.61557710, 7.926194454, 472.95]⊤
60 

13F  116.17 15.74  42.55 e1 = [27.85, 405.56, 40.10]⊤e59 =

[139.67, 436.75, 44.63]⊤
e1 = [44.61531847, 7.924774048, 468.84]⊤e59 =

[44.61559915, 7.926182737, 473.37]⊤
59 

14F  116.25 18.38  42.92 e1 = [27.46, 408.01, 40.44]⊤e58 =

[139.28, 439.36, 45.09]⊤
e1 = [44.61534052, 7.924769134, 469.18]⊤e58 =

[44.61562263, 7.926177824, 473.83]⊤
58 

15F  79.60 17.70  44.18 e1 = [62.08, 418.65, 41.32]⊤e41 =

[138.23, 441.72, 45.67]⊤
e1 = [44.61543627, 7.925205269, 470.06]⊤e41 =

[44.61564387, 7.926164596, 474.41]⊤
41 

16F  78.91 17.56  44.61 e1 = [62.21, 421.12, 41.49]⊤e41 =

[137.83, 443.59, 45.82]⊤
e1 = [44.61545849, 7.925206906, 470.23]⊤e41 =

[44.61566069, 7.926159556, 474.56]⊤
41  

Fig. 8. 2D (a) and 3D (b) graphical representations of the algorithm output obtained by processing parcel F (Fig. 1b).  

A. Biglia et al.                                                                                                                                                                                                                                   



Computers and Electronics in Agriculture 199 (2022) 107166

12

were acquired in the field by the S900A Stonex GNSS (Stonex, 2021) 
with centimetre accuracy. 

4. Results and discussion 

The detailed results obtained by processing the point cloud of Parcel 
F (Fig. 1b) are organised in Table 2, while their graphical representation 
is reported in Fig. 8. Each detected vine row within a parcel is assigned a 
unique id number, ordered with respect to the southeast-northwest di-
rection. Further outputs of the algorithm are the individual vine row 
length and average orientation angle, altitude difference, and the spatial 
coordinates of the points representing the two end points (e1 and enr ) of 
the vine row both in the local and WGS84 reference frames. In addition, 
the table also provides the total number of enhanced key-points Er used 
to define the curve γr, representing the spatial layout of each vine row. In 
Appendix A, the algorithm outputs obtained by processing the other six 
considered parcels are reported for completeness. 

Regarding the algorithm performances in detecting the vine rows, 
the obtained results showed a Good detection index of 100%, and both 
Extra detection and Missed detection indices equal to 0%. This is related to 
the fact that all 155 vine rows within the seven considered parcels were 
properly detected and no vine rows were wrongly found. These three 
performance indices of detection (indices 1, 2 and 3 of Table 1) were 
computed by comparing the algorithm output with a visual inspection of 
the considered point clouds and an in-field survey. 

Concerning the accuracy of the vine row localisation, the three 
indices Euclidean Distances between End Points (DEP) (index 4), Euclidean 

Distances of Enhanced Key-points (DEK) (index 5) and Curves Overlapping 
Factor (COF) (index 6) were computed for every detected vine row 
(Appendix B). The histograms of the obtained values are reported in 
Fig. 9 and their average and standard deviation, grouped by processed 
parcels as well as the overall vine rows, are reported in Table 3. The 
average DEP index of each considered parcel varied between 0.07 
(Parcel A) and 0.17 (Parcel D) meters, with standard deviations of 0.04 
and 0.14, respectively. Considering the entire processed dataset, the 
average DEP index was 0.12 m with a standard deviation of 0.10 m. The 
obtained values of DEP index proved that the algorithm is able to 
properly detect the end points of the vine rows in an automatic way from 

Fig. 9. Histograms of obtained DEP (a), DEK (b) and COF (c) localisation indices of vine row, grouped by parcels. Average and standard deviations of the distri-
butions are reported in Table 3. 

Table 3 
Average and standard deviation of obtained localisation indices of vine row 
grouped by parcels and, in the last row, of the whole case study.   

DEP [m] DEK [m] COF [m] 

Average Std Average Std Average Std 

Parcel A  0.07  0.04  0.05  0.02  0.05  0.02 
Parcel B  0.11  0.07  0.04  0.01  0.04  0.01 
Parcel C  0.07  0.10  0.04  0.01  0.03  0.01 
Parcel D  0.17  0.14  0.06  0.01  0.06  0.01 
Parcel E  0.16  0.13  0.04  0.01  0.04  0.01 
Parcel F  0.08  0.05  0.04  0.01  0.04  0.01 
Parcel F*  0.28  0.10     
Parcel G  0.11  0.07  0.04  0.01  0.04  0.01 
Overall  0.12  0.10  0.05  0.01  0.04  0.01  

* values evaluated using in-field GNSS system measurements. 
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a vineyard 3D point cloud. Please note that, for Parcel F, the DEP index 
was computed also by considering the points (e*

1 and e*
mF

) acquired by 
the GNNS. In this additional accuracy evaluation, obtained average DEP 
index was 0.28 cm. Such error is mainly due to the difference between 
the vine row end point definition, which is the canopy edge for the al-
gorithm and the pole trellis location for in field GNNS measurement. 
Considering the DEK index, the obtained average values of each parcel 
were in the range between 0.04 and 0.06 m with standard deviations of 
about 0.01. The average COF index of the parcels varied between 0.03 
and 0.06 m with standard deviations of about 0.01. Both the DEK and 
COF indices quantify the error between each vine row location, 
expressed by the algorithm key points and the manual ones. The ob-
tained values proved that the accuracy of the algorithm is high in 
detecting the vine rows location along their whole extensions. All the 
quality indices values, which are in the order of a few centimetres, show 
that the algorithm outputs, in term of vine row location, are compatible 
with the requirements of precision agriculture operations, such as UGV 
path planning and autonomous guidance (Donati et al., 2021). 

All the data processing has been performed on a 2.9 GHz 6-Core Intel 
Core i9, with 32 GB DDR4 RAM memory of 2400 MHz. The average 
computing time for processing a point cloud with a density of about 
1500 points/m2 and representing a 1 ha vineyard was about 90 min. 

5. Conclusions 

In this work, an innovative 3D point cloud processing algorithm for 
vine row detection and localisation within a vineyard map, based on the 
detection of key points and a density-based clustering approach, was 
presented. The algorithm provides as outputs, in a fully automated way, 
an information set which fully describes the spatial location of each vine 
row, even when not straight, within the whole 3D model of the agri-
cultural environment. This is a crucial phase in the interpretation of the 
complex and huge 3D point clouds of agricultural environments, 
focusing from a macro level (parcel and plot scale) to a micro level 
(plants, fruits, branches). 

The algorithm does not require colour or specific spectral vine in-
formation and is therefore independent of the adopted airborne sensor 
used to acquire the in-field data or imagery. In addition, the proposed 
approach proved to be robust to any occurrence of missing plants and 
any vine row layout and orientation, including curvilinear or not 
straight rows. 

The unsupervised detection of each single vine row within a whole 
vineyard model is essential not only for enabling the automatic appli-
cation of further specific processing algorithms at plant scale, but also 
for in-field path planning purposes. The information provided by the 
proposed algorithm can be exploited in automated 3D path planning, 
which is a key task for the automation and optimisation of UGV oper-
ations in the field (Mammarella et al., 2022b). Indeed, by overcoming 
2D path planning algorithms limits, 3D path planning fully exploits the 
terrain’s and environmental characteristics. 
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Llorens, J., Gil, E., Llop, J., Escolà, A., 2011. Ultrasonic and LiDAR sensors for electronic 
canopy characterization in vineyards: Advances to improve pesticide application 
methods. Sensors 11, 2177–2194. https://doi.org/10.3390/s110202177. 

Malavazi, F.B.P., Guyonneau, R., Fasquel, J.-B., Lagrange, S., Mercier, F., 2018. LiDAR- 
only based navigation algorithm for an autonomous agricultural robot. Comput. 
Electron. Agr. 154, 71–79. https://doi.org/10.1016/j.compag.2018.08.034. 

Mammarella, M., Comba, L., Biglia, A., Dabbene, F., Gay, P., 2020. Cooperative 
agricultural operations of aerial and ground unmanned vehicles. IEEE International 
Workshop on Metrology for Agriculture and Forestry, 224-229. 

Mammarella, M., Comba, L., Biglia, A., Dabbene, F., Gay, P., 2022a. Cooperation of 
unmanned systems for agricultural applications: A theoretical framework. Biosyst. 
Eng. In press. https://doi.org/10.1016/j.biosystemseng.2021.11.008. 

Mammarella, M., Comba, L., Biglia, A., Dabbene, F., Gay, P., 2022b. Cooperation of 
unmanned systems for agricultural applications: A case study in a vineyard. Biosyst. 
Eng. In press. https://doi.org/10.1016/j.biosystemseng.2021.12.010. 

Mazzia, V., Comba, L., Khaliq, A., Chiaberge, M., Gay, P., 2020. UAV and machine 
learning based refinement of a satellite-driven vegetation index for precision 
agriculture. Sensors 20, 2530–2546. https://doi.org/10.3390/s20092530. 

McAllister, W., Osipychev, D., Davisc, A., Chowdhary, G., 2019. Agbots: Weeding a field 
with a team of autonomous robots. Comput. Electron. Agr. 163, 104827. https://doi. 
org/10.1016/j.compag.2019.05.036. 

Michels, M., von Hobe, C.-F., Musshoff, O., 2020. A trans-theoretical model for the 
adoption of drones by large-scale German farmers. J. Rural Stud. 75, 80–88. https:// 
doi.org/10.1016/j.jrurstud.2020.01.005. 

Mortensen, A.K., Bender, A., Whelan, B., Barbour, M.M., Sukkarieh, S., Karstoft, H., et al., 
2018. Segmentation of lettuce in coloured 3D point clouds for fresh weight 
estimation. Comput. Electron. Agr. 154, 373–381. https://doi.org/10.1016/j. 
compag.2018.09.010. 

Nagasaka, Y., Saito, H., Tamaki, K., Seki, M., Kobayashi, K., Taniwaki, K., 2009. An 
autonomous rice transplanter guided by global positioning system and inertial 
measurement unit. J. Field Rob. 26, 537–548. https://doi.org/10.1002/rob.20294. 

Peng, C., Vougioukas, S.G., 2020. Deterministic predictive dynamic scheduling for crop- 
transport co-robots acting as harvesting aids. Comput. Electron. Agr. 178, 105702. 
https://doi.org/10.1016/j.compag.2020.105702. 

Primicerio, J., Caruso, G., Comba, L., Crisci, A., Gay, P., Guidoni, S., et al., 2017. 
Individual plant definition and missing plant characterization in vineyards from 
high-resolution UAV imagery. Eur. J. Rem Sens. 50, 179–186. https://doi.org/ 
10.1080/22797254.2017.1308234. 
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