
07 January 2023

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Polynomial-Size Models to Minimize Total Completion Time in a Parallel Batching Environment

Publisher:

Published version:

DOI:10.1016/j.ifacol.2022.10.030

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Juan Antonio De La Puente

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1878323 since 2023-01-06T15:04:26Z

Polynomial-Size Models to Minimize Total
Completion Time in a Parallel Batching

Environment

Alessandro Druetto ∗ Andrea Grosso ∗

∗ Dipartimento di Informatica, Università di Torino,
Via Pessinetto 12, 10149 Torino, Italy

(e-mail: alessandro.druetto@unito.it, andrea.grosso@unito.it)

Abstract: We present a new integer linear formulation for the problem of minimizing the
total completion time on a single parallel-batching machine. The new formulation is strong, in
the sense that it delivers a sharp lower bound, and compact, i.e. polynomial in size, contrasted
to recent successful models for the same problem that have exponential size and require to
be handled by column generation. The new model is promising: combined with a rounding
procedure, it allows to deliver good solutions with small, certified optimality gaps for instances
with up to 50 jobs, and we believe it is susceptible of further improvements.

Copyright ©2022, IFAC (International Federation of Automatic Control). Hosting by Elsevier
Ltd. All rights reserved.

Keywords: Operations Research, Scheduling Algorithms, Parallel Batching, Total Completion
Time, Arc-Flow Models

1. INTRODUCTION

We consider the single-machine scheduling problem where
a job set N = {1, 2, . . . , n} is given in order to be processed
on a parallel batching machine with limited capacity. The
jobs must be partitioned into batches and arranged into a
batch sequence S = (B1, B2, . . . , Bt) such that the sum of
all jobs’ completion times f(S) =

∑
j∈N Cj is as small as

possible. Such objective is interesting since, being directly
related to the mean total completion time 1

n

∑
j Cj , its

minimization improves the system’s responsiveness.

In the parallel batch environment that is considered, all
the jobs in the same batch Bk are processed in parallel
and all share the batch completion time CBk

: Cj = CBk

for all j ∈ Bk. Each job j ∈ N has a given processing
time pj and a size sj . The machine has a given positive
capacity b. The longest job in a batch Bk determines the
batch processing time, i.e. the whole batch has a duration
of pBk

= max{pj : j ∈ Bk} during which all its jobs are
processed; the total size of the jobs in a batch cannot
exceed the machine capacity b > 0:

∑
j∈Bk

sj ≤ b. In
the classical three-fields notation the problem is denoted
1|p-batch, sj |

∑
j Cj .

Parallel batching problems often arise in the management
of furnaces-like facilities, notably in the semiconductor
industry (Mathirajan and Sivakumar, 2006; Mönch et al.,
2011). For a comprehensive survey, from an algorithmic
point of view, a valid reference is still Potts and Kovalyov
(2000). In the last decade the literature about batching
problems offers plenty of works, but with such a number
of very specific variants and technological constraints that
making up a coherent survey is a very difficult task.

Makespan minimization on one or more machines seems
to be best studied variant in parallel batching models;
total completion time models occupy a somehow smaller
niche. The 1|p-batch, sj |

∑
j Cj problem has been first

tackled in Uzsoy (1994), where it is recognized as NP-hard
and a first exact branch-and-bound algorithm is sketched.
In (Azizoglu and Webster, 2000) the more general weighted
total flow time problem, 1|p-batch, sj |

∑
j wjCj , is solved

by branch and bound, for instances with up to 25 jobs.
A metaheuristic approach, via ant-colony optimization, is
proposed in Parsa et al. (2016).

In recently proposed, so-called arc-flow models, the struc-
ture of a batch sequence is encoded as a flow configuration
on a suitable type network. An original arc-flow ILP model
is proposed by (Trindade et al., 2021) for makespan min-
imization, leading to excellent computational results on
very large instances. In Alfieri et al. (2019, 2021) a different
arc-flow model is proposed for the 1|p-batch, sj |

∑
j Cj

problem, leading to exact solution of 40-jobs instances
and heuristic solution of 100-jobs instances. The size of
such model is exponential in the number of jobs, and
column generation techniques are necessary to solve it.
In Druetto and Grosso (2022) this approach is extended
to the aforementioned weighted case.

From a practical point of view, it can be appealing to get
rid of the technicalities that arise in column generation.
We present the first strong Integer Linear Programming
(ILP) model for problem 1|p-batch, sj |

∑
j Cj which is also

“compact” in size, i.e. with a number of variables and
constraints bounded by a polynomial in the number of
jobs. The continuous relaxation of such model delivers a
sharp lower bound, competitive with the bounds provided

by the column generation techniques of (Alfieri et al.,
2021). Combined with a variable rounding heuristic it
can generate very good solutions with certified optimality
gaps for instances with up to 50 jobs. Although this
performance is still behind that of column generation,
the compact model is extremely promising, and sifting
procedures (currently under development) are expected to
further enlarge the size of solvable instances.

The paper is organized as follows. In Section 2 we develop
arc-flow models for 1|p-batch, sj |

∑
j Cj ; in Section 3 we

illustrate heuristic procedures based on variable rounding,
and in Section 4 we discuss testing and computational
results for the given models and procedures. Conclusions
and directions for future research are drawn in Section 5.

2. ARC-FLOW MODELS

An ILP model for this problem, as given by Parsa et al.
(2016) is the following, where variable xij = 1 iff job
i is scheduled in the j-th batch. Variables Cj and ci
represent the completion times of the j-th batch and of
job i, respectively. Variable Pj represents the processing
time of the j-th batch.

minimize
n∑

i=1

ci (1)

subject to
n∑

j=1

xij = 1 i = 1, . . . , n (2)

n∑
i=1

sixij ≤ C j = 1, . . . , n (3)

Pj ≥ xijpi i = 1, . . . , n, j = 1, . . . , n (4)

C1 ≥ P1 (5)

Cj ≥ Cj−1 + Pj j = 2, . . . , n (6)

ci ≥ Cj −M (1− xij) i = 1, . . . , n, j = 1, . . . , n (7)

Pj , Cj , ci ≥ 0 i = 1, . . . , n, j = 1, . . . , n (8)

xij ∈ {0, 1} i = 1, . . . , n, j = 1, . . . , n (9)

The total completion time is expressed by (1). Constraint
set (2) ensures that each job is assigned exactly to one
batch and, since all the jobs assigned to a batch cannot
exceed the batch capacity, constraint set (3) has to be
defined. Constraint set (4) represents the fact that the
processing time of a batch is the maximum processing time
of all the contained jobs. The completion time for the first
batch is simply its processing time since it is the first to
be processed by the machine, as stated in constraint (5).
Constraint set (6), instead, ensures that completion time
for all the other batches is evaluated as the sum of its
processing time and the completion time of the precedent
batch. Constraint set (7) specifies that the completion time
of a job must be the completion time of the corresponding
batch (the constant M must be very large). Model (1)–
(9) is known to be very weak. A state-of-the-art solver
like CPLEX can waste hours over 15-jobs instances, with
optimality gaps at the root branching node of 100%.

2.1 Arc-flow models

Arc-flow model for parallel batching problems are a recent
development where batch schedules are mapped on flow
configurations on a suitable network. In Trindade et al.
(2021) an arc-flow model for minimizing makespan in a
single parallel-batching machine is proposed, with very
good results. In Alfieri et al. (2019, 2021) an arc-flow
model is proposed for the 1|p-batch, sj |

∑
j Cj problem,

leading to handle 100-jobs instances. This arc-flow model
is exponential in size and must be handled via column
generation techniques; here we develop, from the same
modeling ideas, arc-flow models whose size is polynomial
in the number on jobs n.

V 1 2 3 4 5 6 7 8 9 10 11

B1,4 = {5, 6, 8}

B4,7 = {3, 4, 10}

B7,9 = {1, 2}

B9,11 = {7, 9}

N = {1, 2, . . . , 10} =⇒ V = {1, 2, . . . , 11}
PS = [(1, 4), (4, 7), (7, 9), (9, 11)]

S = (B1,4, B4,7, B7,9, B9,11)

c1,4 = pB1,4(10− 1 + 1) = 10pB1,4

c4,7 = pB4,7
(10− 4 + 1) = 7pB4,7

c7,9 = pB7,9
(10− 7 + 1)pB79

= 4pB7,9

c9,11 = pB9,11(10− 9 + 1) = 2pB9,11

f(S) =|B1,4|pB1,4+

|B4,7|(pB1,4
+ pB4,7

)+

|B7,9|(pB1,4
+ pB4,7

+ pB7,9
)+

|B9,11|(pB1,4
+ pB4,7

+ pB7,9
+ pB9,11

) =

=10pB1,4 + 7pB4,7 + 4pB7,9 + 2pB9,11 = c(PS).

Fig. 1. Example of mapping between batch sequences and
paths on a graph. The path PS shown corresponds to
a batch sequence where the job set N is partitioned
into B14, B47, B79, B9,11. The cost of PS equals the
total completion time for the batch sequence S. The
arc-flow model should determine the arcs in the path
and how the jobs must be partitioned over the arcs.

We recall the key modeling idea for arc-flow represen-
tations of 1|p-batch, sj |

∑
j Cj from Alfieri et al. (2019,

2021). Consider a graph G(V,A) with node and arc sets
V = {1, 2, . . . , n+ 1} ,
A = {(i, k) : i, k ∈ V ; i < k} . (10)

The structure of a batch sequence S can be mapped onto
a path PS from node 1 to node n+ 1 in the graph G:

• each arc (i, k) ∈ PS corresponds to a batch Bik — we
label the batch with the arc tail and head — in the
sequence where exactly k − i jobs are processed; by
suitably partitioning the job set N on the arcs of PS ,
such that |Bik| = k − i and

∑
j∈Bik

sj ≤ b, the path
PS correctly represents a feasible batch sequence;

• by assigning to each arc (i, k) in PS the cost
cik = pBik

(n− i+ 1) = max{pj : j ∈ Bik}(n− i+ 1),

the total completion time of the batch sequence S
equals the computed cost of path PS :

f(S) =
∑
j∈N

Cj =
∑

(i,k)∈PS

cik = c(PS).

We omit a detailed proof for the sake of conciseness, but
refer to Alfieri et al. (2021) for the proof of a very similar
result. Figure 1 conveys the idea.

2.2 A polynomial-size flow-based model

In this section, we formulate an ILP model that calls for
finding a minimum-cost path PS from node 1 to n+ 1 on
graph G, partitioning jobs on the arcs of PS .

minimize
∑

(i,k)∈A

(n− i+ 1)πik (11)

subject to

∑
(i,k)∈A

xik −
∑

(k,i)∈A

xki =

1 i = 1

0 i = 2, . . . , n

−1 i = n+ 1

(12)

∑
(i,k)∈A

yikj = 1 ∀j ∈ N (13)

n∑
j=1

sjyikj ≤ bxik ∀(i, k) ∈ A (14)

n∑
j=1

yikj = (k − i)xik ∀(i, k) ∈ A (15)

πik ≥ pjyikj ∀j ∈ N, (i, k) ∈ A (16)

πik ≥ 0 ∀(i, k) ∈ A (17)

xikt, yjikt ∈ {0, 1} ∀j ∈ N, (i, k) ∈ A (18)

Each decision variables xik will be set to 1 if arc (i, k)
belongs to PS ; constraints (12) are flow conservation
constraints, with a unit flow routed from node 1 to node
n+1; we note that this is the classical ILP formulation of a
path construction problem. Each decision variable yikj =
1 if job j is scheduled in the batch Bik corresponding
to arc (i, k). Constraints (13) require that each job is
assigned to an arc/batch, constraints (14) limits the total
size packed into a batch, and constraints (15) enforce
the correct cardinality of a batch. Variable πik is set
by constraints (16) to the processing time of the longest
job in the batch. The total completion time is expressed
by (11), multiplying processing times πik for the number
of still-to-be-scheduled jobs in advance, since completion
time of each job j is the processing time of the batch it
is currently scheduled in, plus the processing time of all
previous batches.

2.3 A stronger model

Model (11)–(18) requires O(n3) variables and constraints.
It is a reasonably compact ILP, but computational expe-
rience shows that it still has severe limitations; although
the lower bound delivered by the continuous relaxation
of (11)–(18) is much higher than the one computed on (1)–
(9), the optimality gap is still large, and CPLEX cannot

solve (11)–(18) on large instances. A stronger arc-flow
model can be developed at the cost of using a larger (but
still polynomial) number of variables. Let T = {pj : j ∈
N} the set of all processing times listed in the considered
problem instance. The ILP model still calls for finding a
minimum cost path PS from node 1 to node n+1; we use
a larger set of decision variables xikt, where xikt = 1 iff
an arc (i, k) is in the paths and the corresponding batch
Bik has processing time pBik

= t ∈ T . Another set of
decision variables yjikt is defined, with yjikt = 1 iff job j is
in the batch Bik and the latter has batch processing time
pBik

= t.

The cost cikt for an arc whose batch Bik has processing
time t is defined as

cikt = t(n− i+ 1).

The complete model can then be written as follows.

minimize
∑

(i,k)∈A
t∈T

ciktxikt (19)

subject to

∑
(i,k)∈A
t∈T

xikt −
∑

(k,i)∈A
t∈T

xkit =

1 i = 1

0 i = 2, . . . , n

−1 i = n+ 1

(20)

∑
(i,k)∈A
t∈T

yjikt = 1 ∀j ∈ N (21)

∑
j∈N

sjyjikt ≤ bxikt ∀(i, k) ∈ A, t ∈ T (22)∑
j∈N

yjikt ≤ (k − i)xikt ∀(i, k) ∈ A, t ∈ T (23)

yjikt ≤ xikt
∀j ∈ N, (i, k) ∈ A,
t ∈ T (24)

xikt, yjikt ∈ {0, 1} ∀j ∈ N, (i, k) ∈ A,
t ∈ T (25)

Objective function (19) requires to minimize the sum of
total completion time for all selected arcs. Constraints
in (20) represents a classical flow model with unitary flow,
from source 1 to destination n + 1, counting as positive
the flow to outgoing arcs and as negative the flow from
incoming arcs. Exact partitioning for all jobs is enforced
in (21), and capacity constraints (22) are defined for all
selected arcs.

The number of variables for this model grows theoretically
to O(n4), but the number of variables can be sensibly
trimmed since not all pairs i, k (i < k) can correspond
to a batch because of the machine capacity limit. Also,
constraints (24) can be used as lazy constraints, to be
dynamically separated when needed.

3. VARIABLE ROUNDING HEURISTIC

Once programs (11)–(18) or (19)–(25) has been solved, a
lower bound is available; a simple strategy for getting an
upper bound could be setting all variables back to the
binary type and solve the integer version of the problem
by branch and bound, truncating the process when a limit
on computation time is reached.

We also investigated a simple strategy based on rounding
fractional variables in order to generate feasible solutions
within shorter computation times. The value of such so-
lution is called VR-UB in the following. This approach
is inspired by Mourgaya and Vanderbeck (2007) where
rounding heuristics are applied to vehicle routing prob-
lems.

3.1 Variable Rounding for (19)–(25) model

Using a basic rounding approach, we build a partition
path by rounding flow values, starting from the source
and moving towards the sink node. The full procedure
is as follows (a detailed pseudocode is not included here
for the sake of conciseness and will be presented at the
conference).

• Given the optimal fractional flow on the problem, we
search for tuple (i, k, t) corresponding to arc (i, k)
with processing time t and maximal nonzero flow that
lies as near as possible to the source, and round its
flow value to 1. This corresponds to the fixing of a
variable xikt to 1.

• We search for all tuples (j, i, k, t) corresponding to
jobs j associated to the fixed arc (i, k) with processing
time t that present nonzero flow; potentially those
jobs can be more than the required k − i jobs to fill
the arc.

• Amongst all subsets of the jobs found in the previous
step, we select the best combination that can fit in a
batch, that is of length k− i, and with maximum flow
value amongst the sum of flow values for all included
jobs; those jobs will have their flow value rounded to
1. This corresponds to the fixing of some variables
yjikt to 1. This step is admittedly combinatorial, but
never involves more than a handful of jobs.

• The problem is optimized again to obtain new flow
values for the remaining arcs and jobs.

We then iterate this rounding step until an arc reaching
the sink node n + 1 is fixed, thus completing a feasible
solution.

3.2 Variable Rounding for (11)–(18) model

The underlying approach is similar to the one implemented
for the other model: we build a partition path by rounding
flow values, starting from the source and moving towards
the sink node. Difference between this procedure and the
one described for (19)–(25) model are as follows.

Since variables relative to arcs and jobs does not depend
on a specific processing time, we have to fix the variable
xik that corresponds to the arc (i, k) with maximal nonzero
flow to 1, search for its associated jobs j with nonzero flow,
select some of them with the same criteria as before, and
fix those variables yikj to 1.

4. COMPUTATIONAL RESULTS

Very few heuristics and/or relaxations are available in
literature for 1|p-batch, sj |

∑
j Cj , among them are both

a relaxation and a greedy heuristic (Uzsoy, 1994; Azizoglu
and Webster, 2000) in the context of a branch and bound

algorithm for 1|p-batch, sj |
∑

j Cj . Such procedures are
labeled AW-LB and AW-UB respectively.

The following naming convention is valid for all tables, for
the results of both models. All gaps in the following tables
are evaluated by the relative difference between upper
bound and lower bound, using the following formula.

Gap =
UB − LB

UB

Gap values for the AW-UB procedure by Azizoglu and
Webster (2000) are evaluated using AW-LB as the lower
bound.

The values for the lower bound obtained by solving the
continuous relaxation of the problem are denoted by
CR-LB, and with BB-UB we refer to the upper bound found
by running the integer version of the problem. The gap
values in this case are evaluated using the best continuous
lower bound returned by the solver after its termination
(optimum found, or computation time limit reached).
Time limit for the solver is set to 600 seconds.

The values for the upper bound obtained by Variable
Rounding, as described in Section 3, are denoted by VR-UB.
The gap values in this case are evaluated using CR-LB as
the lower bound.

4.1 Testing environment

All the tests ran in a Linux environment with Intel
Core i7-6500U CPU @ 2.50GHz processor; all algorithms
(AW-LB, AW-UB and VR-UB) have been implemented in
Python 3.6; the LP-ILP solver used was CPLEX 12.8.

A number of test instances were generated following the
de-facto standard for this type of parallel batching prob-
lems.

• The processing times pj were randomly drawn from
the uniform discrete distribution [1, 100].

• The machine capacity was fixed to b = 10.
• The job sizes sj were randomly drawn from four

possible uniform discrete distributions, labeled by σ:
σ1 : sj ∈ [1, 10] σ3 : sj ∈ [3, 10]

σ2 : sj ∈ [2, 8] σ4 : sj ∈ [1, 5] .

A batch with 10 instances for each σ class was gen-
erated, considering an increasing number of jobs n ∈
[10, 20, 30, 40, 50]. The following tables report average val-
ues evaluated over all (n, σ) combinations.

4.2 Results for model (11)–(18)

Table 1 contains the average number of nodes opened
during evaluation of BB-UB by the solver, and the number
of optima found, all within the 600 seconds threshold.

Unfortunately, performance of this model is poor: the
branch and bound requires to explore a lot of nodes, and
even with only 20 jobs the solver cannot find even an
optimal result for all instances.

Comparison between upper bounds, in Table 2, confirms
the poor performance of this model. Although the lower

Table 1. Number of opened branch and bound
nodes and optima found for model (11)–(18).

Param Avg Nodes # Opt

n σ BB-UB BB-UB

10 σ1 7472 10
σ2 22256 10
σ3 3892 10
σ4 5440 10

20 σ1 148518 0
σ2 613856 0
σ3 930158 0
σ4 102653 0

bound CR-LB is very fast to execute, even with 20 jobs
where in less than one second the result is found, the
integer optimum BB-UB is very hard to find. After the
entire allotted time limit of 600 seconds, the gap obtained
by the solver is, in the majority of the cases, even worse
than the gap obtained using the Azizoglu and Webster
(2000) polynomial bounds.

Since the quality of the lower bound CR-LB is bad, even the
Variable Rounding upper bound VR-UB is of poor quality.
Here, even for 10 jobs the obtained gap is worse than the
gap obtained with the aforementioned polynomial bounds.

Table 2. Comparison of bounds quality and
execution times for model (11)–(18).

Param Avg Times (s) Avg Gaps

n σ CR-LB BB-UB VR-UB AW-UB BB-UB VR-UB

10 σ1 0.02 3.27 0.02 0.37 0.00 0.67
σ2 0.01 3.14 0.01 0.26 0.00 0.48
σ3 0.01 0.72 0.01 0.22 0.00 0.36
σ4 0.03 3.60 0.02 0.37 0.00 0.70

20 σ1 0.30 600.00 0.61 0.33 0.46 0.70
σ2 0.20 600.00 0.19 0.26 0.32 0.59
σ3 0.18 600.00 0.11 0.21 0.16 0.44
σ4 0.31 600.00 1.07 0.37 0.57 0.81

We decided to test this model only for instances with 10
and 20 jobs, given these performances.

4.3 Results for model (19)–(25).

Table 3 contains the average number of nodes opened
during evaluation of BB-UB by the solver, and the number
of optima found, all within the 600 seconds threshold.

The performance of this model is way better than the
previous: the branch and bound requires to explore a very
small number of nodes. For 10 jobs, in fact, the entire
problem is solved in the root node, in the majority of the
cases.

However, since the model is heavier than the previous one,
even the computation of the root node is intensive. As we
can see for 50 jobs, for the hardest distribution σ4 the
solver uses the entirety of its 600 seconds allotted time
only for the root node evaluation.

Comparison between upper bounds, in Table 4, shows the
interesting performance of this model. The lower bound
CR-LB is slightly slower to execute than in the previous

Table 3. Number of opened branch and bound
nodes and optima found for model (19)–(25).

Param Avg Nodes # Opt

n σ BB-UB BB-UB

10 σ1 0 10
σ2 0 10
σ3 1 10
σ4 0 10

20 σ1 753 10
σ2 1036 10
σ3 783 10
σ4 442 10

30 σ1 648 7
σ2 6071 7
σ3 1846 10
σ4 143 2

40 σ1 188 1
σ2 138 1
σ3 5189 3
σ4 2 0

50 σ1 136 1
σ2 642 1
σ3 4752 4
σ4 0 0

case, but in return we have a way better Variable Rounding
upper bound VR-UB in all cases, having a gap lower than
0.10 and performing way better than the gap evaluated
with the Azizoglu and Webster (2000) polynomial bounds.
When the upper bound BB-UB starts breaking the 600
seconds threshold in its evaluation, for 40 and 50 jobs, the
gap evaluated by VR-UB is very competitive in comparison,
even surpassing the branch and bound for distribution σ4

that is known to be hard. It is worth noting that the time
required for the Variable Rounding upper bound is way
lower than the branch and bound one, with an order of
magnitude very similar to the continuous lower bound.

Increasing the number of jobs for the instances, it is clear
that VR-UB will be even better in time performance than
BB-UB, and will always retain its good gap quality.

5. CONCLUSIONS

Our analysis over two arc-flow models for the par-
allel batching problem 1|p-batch, sj |

∑
j Cj shows that

model (19)–(25) is capable to deliver a good continuous
relaxation lower bound CR-LB and a good Variable Round-
ing upper bound VR-UB, leading to excellent performance
in gap quality within an acceptable amount of time.

In Table 5 we compared the lower bound CR-LB ob-
tained with the best performing model, (19)–(25), with the
current state-of-the-art lower bound known in literature,
CG-LB obtained by Alfieri et al. (2021). The comparison
ratio is evaluated by dividing the two lower bounds.

Ratio =
CR-LB
CG-LB

The higher this fraction is, the better model (19)–(25)
performs.

Table 4. Comparison of bounds quality and
execution times for model (19)–(25).

Param Avg Times (s) Avg Gaps

n σ CR-LB BB-UB VR-UB AW-UB BB-UB VR-UB

10 σ1 0.04 0.12 0.02 0.37 0.00 0.04
σ2 0.02 0.12 0.01 0.26 0.00 0.05
σ3 0.01 0.07 0.01 0.22 0.00 0.04
σ4 0.06 0.14 0.01 0.37 0.00 0.02

20 σ1 0.93 41.26 1.04 0.33 0.00 0.09
σ2 0.57 14.03 0.57 0.26 0.00 0.07
σ3 0.33 4.38 0.29 0.21 0.00 0.04
σ4 1.60 100.97 1.51 0.37 0.00 0.04

30 σ1 4.94 238.89 8.44 0.32 0.01 0.08
σ2 2.71 231.89 3.92 0.28 0.00 0.06
σ3 1.58 19.91 1.71 0.22 0.00 0.03
σ4 9.03 516.16 13.43 0.34 0.05 0.06

40 σ1 24.64 576.59 55.11 0.37 0.06 0.08
σ2 16.58 567.71 48.09 0.27 0.05 0.09
σ3 8.12 531.04 14.13 0.24 0.01 0.07
σ4 43.00 600.00 81.08 0.29 0.11 0.05

50 σ1 63.40 583.14 123.19 0.35 0.09 0.07
σ2 26.33 591.03 37.28 0.24 0.01 0.07
σ3 15.49 367.34 11.06 0.19 0.00 0.03
σ4 74.65 600.00 213.89 0.27 0.16 0.05

Table 5. Comparison between lower bound
CR-LB obtained by the (19)–(25) model, and
lower bound CG-LB obtained by the column
generation approach described in Alfieri et al.

(2021).

Param Avg Ratio

n σ CR-LB/CG-LB

10 σ1 0.98
σ2 0.96
σ3 0.97
σ4 0.99

20 σ1 0.95
σ2 0.96
σ3 0.98
σ4 0.99

30 σ1 0.96
σ2 0.97
σ3 0.98
σ4 0.99

40 σ1 0.97
σ2 0.96
σ3 0.97
σ4 0.99

50 σ1 0.97
σ2 0.97
σ3 0.99
σ4 0.99

As it can be seen, the quality of our lower bound CR-LB
is excellent, and stays tightly close to the state-of-the-
art lower bound delivered by column generation; espe-
cially for the hardest distribution σ4. Thus we claim that
model (19)–(25) is promising and deserves further study,
in order to improve its performances; in particular we are
studying sifting techniques for speeding up the solution of

the continuous relaxation, reducing as well the computa-
tional time required by the Variable Rounding heuristic.
Also, the extension to multiple parallel machines (identi-
cal or unrelated) variant of the problem would be easily
handled. Extension of this approach also to the weighted
total completion time case is under investigation.

REFERENCES

Alfieri, A., Druetto, A., Grosso, A., and Salassa, F.
(2019). Column generation for minimizing total com-
pletion time on a single machine with parallel batch-
ing. IFAC-PapersOnLine, 52(13), 969–974. doi:
10.1016/j.ifacol.2019.11.320. 9th IFAC Conference on
Manufacturing Modelling, Management and Control
MIM 2019.

Alfieri, A., Druetto, A., Grosso, A., and Salassa, F. (2021).
Column generation for minimizing total completion time
in a parallel-batching environment. Journal of Schedul-
ing, 24(6), 569–588. doi:10.1007/s10951-021-00703-9.

Azizoglu, M. and Webster, S. (2000). Scheduling a batch
processing machine with non-identical job sizes. Inter-
national Journal of Production Research, 38(10), 2173–
2184. doi:10.1080/00207540050028034.

Druetto, A. and Grosso, A. (2022). Column genera-
tion and rounding heuristics for minimizing the total
weighted completion time on a single batching machine.
Computers & Operations Research, 139(105639). doi:
10.1016/j.cor.2021.105639.

Mathirajan, M. and Sivakumar, A.I. (2006). A litera-
ture review, classification and simple meta-analysis on
scheduling of batch processors in semiconductor. The
International Journal of Advanced Manufacturing Tech-
nology, 29(9), 990–1001. doi:10.1007/s00170-005-2585-1.

Mourgaya, M. and Vanderbeck, F. (2007). Col-
umn generation based heuristic for tactical planning
in multi-period vehicle routing. European Journal
of Operational Research, 183(3), 1028–1041. doi:
10.1016/j.ejor.2006.02.030.

Mönch, L., Fowler, J.W., Dauzère-Pérès, S., Mason, S.J.,
and Rose, O. (2011). A survey of problems, solution
techniques, and future challenges in scheduling semicon-
ductor manufacturing operations. Journal of Schedul-
ing, 14(6), 583–599. doi:10.1007/s10951-010-0222-9.

Parsa, N.R., Karimi, B., and Husseini, S.M. (2016). Min-
imizing total flow time on a batch processing ma-
chine using a hybrid max–min ant system. Com-
puters & Industrial Engineering, 99, 372–381. doi:
10.1016/j.cie.2016.06.008.

Potts, C.N. and Kovalyov, M.Y. (2000). Scheduling
with batching: A review. European Journal of Oper-
ational Research, 120(2), 228–249. doi:10.1016/S0377-
2217(99)00153-8.

Trindade, R.S., de Araújo, O.C.B., and Fampa, M. (2021).
Arc-flow approach for single batch-processing machine
scheduling. Computers & Operations Research, 134,
105394. doi:10.1016/j.cor.2021.105394.

Uzsoy, R. (1994). Scheduling a single batch processing
machine with non-identical job sizes. International
Journal of Production Research, 32(7), 1615–1635. doi:
10.1080/00207549408957026.

