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Immobilization in diabetic rats results in altered glucose
tolerance
A model of reduced locomotion/activity in diabetes
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Abstract

Aims Type 2 Diabetes Mellitus affects more than 350 million people worldwide. This metabolic disorder is
characterized by insulin resistance, B-cell dysfunction and elevated hepatic glucose output. Patients with diabetes are
hospitalized frequently (3-fold greater) and with longer admissions (30% longer) than the non-diabetic subjects. The
aim of the present study was to investigate the impact of bed rest on the metabolic changes in type 2 diabetes
mellitus, with particular interest in skeletal muscle mass and function and metabolism.

Methods and results 13wk old male Zucker diabetic fatty (ZDF) rats were randomly divided into two groups: control
(ZDF-Con) and cage-immobilized animals (ZDF-Cage) for 28 consecutive days in a space-restricted cage. The Area
Under the Curve (AUC) values for plasma glucose concentration in ZDF-Cage rats were significantly increased
(approximately 4-fold as compared with ZDF-Con rats). GLUT4 gene expression in red soleus muscle of ZDF-Cage
animals was reduced 2.5-fold in comparison with ZDF—Con rats. Although no apparent changes were observed either
in fasting plasma glucose or insulin levels, a trend towards an increase in the HOMA-IR index and decreased levels of
plasma adiponectin (-30%) were observed in ZDF-Cage animals. Moreover, ZDF-Cage rats did not lose muscle mass
and force but performed a reduced total physical activity level (-22%).

Conclusions The present study results suggests that 28 days of immobilization (in a space-restriction model)
significantly impaired glucose tolerance with concomitant reduced plasmatic adiponectin levels and GLUT4 expression

in soleus muscle of type 2 diabetic rats.
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Introduction than the primary disorder [6]. Side effects of reduced
physical activity can lead to paralysis, joint stiffness and
pain, with protective limitations of motion and mental
disorders and main metabolic alterations such as insulin
resistance, thromboembolic disease, disuse
osteoporosis, respiratory and musculoskeletal
complications [7]. Excessive loss of muscle mass is a poor
prognostic indicator, resulting in longer hospitalization
and recovery time, impairing the efficacy of many
different therapeutic treatments, as well as health
increasing care cost and and decreasing patient’s quality
of life.

Although bed rest was a common therapeutic
intervention in chronically ill patients providing beneficial
effects by procuring patient comfort and contributing to
recovery, in the past 50 years it has become apparent
that the effects of bed rest may be harmful [1,2]. Even
though the practice is still commonly used for an array of
conditions, randomized clinical trials failed to show bed
rest as an effective treatment for any illness [3]. During
prolonged bed rest (due to aging, recovery from injuries,
sepsis or other pathological conditions) skeletal muscle
undergoes severe loss which results in decreased
physical performance [4,5]. From a clinical point of view,
complications arising from immobilization or physical
inactivity might worsen primary disease or trauma and
might become the most relevant problem to treat rather

Type 2 Diabetes Mellitus (T2DM) is a metabolic
disorder characterized by insulin resistance, p-cell
dysfunction, and elevated hepatic glucose output that
affect more than 350 million people worldwide [8,9].
Decreased muscle strength, lower muscle quality, and
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accelerated loss of muscle mass, especially in the lower
extremities, have been documented in up to 70% adult
diabetic patients [6]. Particularly, older patients with
diabetes are a high risk of future mobility disability and
loss of independence [10,11]. Although comorbidities
(such as cardiovascular disease, obesity, vision loss,
obesity, arthritis) are important factors in the
development of physical disability in diabetic patients
(partially explaining the risk of severe walking limitation
[12]), evidence is emerging that part of the mobility
reduction process is mainly due to a direct effect of
diabetes on skeletal muscle [13,14]. This period of
prolonged disuse or bed represents an additional
problem in diabetic patients, affecting their quality of
life.

Immobilization methods in rodents are mainly
confined to casting [15,16] or suspension of extremities
[17]. Each procedure has specific advantages and
strengths which encourage its wuse, as well as
disadvantages which limit data interpretation and differ
each other in terms of the degree of reproduced
inactivity [18] and distinct protein degradation profiles
induced [19]. In this regard, in a previous study we have
described a new disuse-induced muscle wasting animal
model based on cage volume reduction, able to induce
loss of muscle mass and strength in healthy animals [20].
This model reflects, in a much better way, what is
encountered in human subjects in bed rest associated,
for instance, with hospitalization.

Taking all this into consideration, our interest was
addressed to analyse the influence of muscle disuse on
the cellular and metabolic processes involved in the
aetiology and evolution of T2DM. In this regard, in order
to determine whether prolonged inactivity is a high-risk
behaviour for diabetic patients [6,9], we aimed to
reproduce, in an experimental animal model, the
pathological condition of a patient affected by T2DM
subjected to bed rest or reduced daily ambulatory
activity for long-term period, which we induced by the
cage immobilization model. The experimental model of
“bed rest” used in this study (which has been previously
published [20]) represents muscle unloading,
gravitational load differences due to postural change (i.e.

standing versus lying down). Specifically, this study was
designed to assess the contribution of reduced
ambulatory activity to: 1) skeletal muscle integrity and
functionality, and Il) whole body glucose metabolism and
insulin sensitivity in skeletal muscle in an experimental
rodent model of T2DM.

Experimental
Animals

The study was performed on 13 weeks-old male
Zucker Diabetic Fatty (fa/fa) (ZDF) rats from Charles River
Laboratory (Germany). Animals were housed in individual
cages on a regular dark-light cycle (light from 8:00 am to
8:00 pm) at a constant temperature of 222C to 249C and
humidity (40%), with free access to food and water
throughout the experimental period of 28 days. After an
acclimation period of one week prior to the beginning of
the experiment, ZDF rats were allocated into two
experimental groups (n=6 each): control (ZDF-Con) and
immobilized (ZDF-Cage) [20] (Figure 1). The immobilized
animals were kept for 28 consecutive days in a reduced
cage (Tecniplast 2150), the space is restricted to 12 cm x
12 cm x 8 cm (approximately an 80% reduction of the
total standard cage volume) [20]. ZDF-Con rats were
used as diabetic untreated control (non-immobilized) not
submitted to any immobilization procedure for the entire
period of the experiment. Body weight, food and water
intake were recorded daily (Figure 2). All the animals
were fed the AINM93M maintenance diet (Abbott
Nutrition Laboratories, Granada), whose formulation
consists of 71.15 % carbohydrate, 12.79 % protein and
3.50 % fat [21]. All animal manipulations were made in
accordance with the European Community guidelines for
the use of laboratory animals. They were cared for in
compliance with the Policy on Humane Care and Use of
Laboratory Animals (ILAR 2011) and in accordance with
the ethical standards laid down in the 1964 Declaration
of Helsinki and its later amendments. The experimental
protocol was approved by the Ethical Committee of the
University of Barcelona (CEEA 313/14).
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FIGURE 1. Timeline of the experimental design.

After an acclimation period of 1 week prior to the beginning of the experiment, ZDF rats were allocated into 2 experimental groups (n=6 each)
according to their initial body weight. All animals were fed ad libitum with AINM93M diet. The cage immobilized (ZDF-Cage) animals were kept for
28 consecutive days in a reduced volume cage (80% reduction versus the total volume of a standard cage). The non-immobilized control animals
(ZDF-Con) were kept for the entire period of the experiment in a standard cage and they were not subjected to any treatment. Grip force test was
performed once a week. In order to minimize the influence of the fasting on the final body weight, body composition and physical activity data
collected during the last experimental day, the OGTT was performed 4 days prior to euthanasia. Rats were daily monitored and cleaned. All the
experimental groups were euthanatized on day 28.
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FIGURE 2. Time course of body weight growth and daily food intake in immobilized ZDF rats.

The graphs show the average growth rate and the daily food ingested of control and immobilized ZDF rats during the experiment. Lean ZDF
littermate controls: ZLC; non-immobilized control animals: ZDF-Con; and cage immobilized animals: ZDF-Cage. Body weight and food intake were
expressed as mean value of six animals, bars: SEM. The formula used to calculate the food intake was (total food ingested each day / 100g body

weight (BW).

A) Data were analysed by a Linear Mixed Model, being Diabetic phenotype (D) a crossed between-subjects factor, and time (T) the
within-subjects factor (repeated measures). Restricted Maximum Likelihood (REML) method was used to fit the model. According to
Akaike Information Criterion (AIC) and Schwarz Bayesian Information Criterion (BIC), Huynh-Feldt structure was finally chosen for the
variable Body weight (T p=0.000; TxD p= 0.000); Factorial Analytical of First Degree structure was finally chosen for the variable Food

Intake (D p=0.001; T p=0.081; TxD p=0.000).

B) Data were analysed by a Linear Mixed Model, being Immobilization (1) a crossed between-subjects factor, and time (T) the within-
subjects factor (repeated measures). Restricted Maximum Likelihood (REML) method was used to fit the model. According to the values
of Akaike Information Criterion (AIC) and Schwarz Bayesian Information Criterion (BIC), First Order Autoregressive was finally chosen as
the covariance matrix structure for the variable Body weight (I p=0.758; T p=0.002; IxT p=0.000); First Order Factor Analytic for the

variable Food Intake (I p=0.235; T p=0.000; IXT p=0.000).
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Euthanasia
An OGTT was performed 4 days prior to

Rats were euthanasied at day 28. Prior to
euthanasia rats were weighed and anesthetized (3:1
mixture of ketamine (Imalgene®) and xylazine
(Rompun®)). Blood was collected from the aorta and
post-prandial plasma separated by centrifugation at
3,500g for 10 min at 4°C and stored at -802C. Muscles
and other tissues were rapidly excised, weighed and
frozen in liquid nitrogen. All tissues were stored at -80°C
until analysis.

Oral glucose tolerance test (OGTT)

euthanasia in order to minimize the influence of the
fasting on the final body weight, body composition and
physical activity data, collected during the last
experimental day. Animals were fasted overnight (12
hours) with access to water ad libitum. Blood from non-
anaesthetized rats was collected in heparinised wells
from a cut in the distal extreme of the tail in order to
assess plasmatic fasting levels of glucose and insulin. To
reduce the chance of infection, a topical germicide
(BETADINE solution) was applied to the tail following
blood collection. Blood collection (0.2 mL) was obtained
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15, 30, 60 and 120 min after the glucose solution
administration (1g/kg rat) by gavage. Glucose levels were
measured by the Glucometer (Accutrend, GCT, Roche
Mannheim, Germany). The animal was placed in its cage
in fasting condition during the time within each
evaluation. Blood was centrifuged at 13,000g for 30 sec
and plasma stored at -802C. The results of the test were
analysed by calculating the Area Under the Curve (AUC)
for plasma glucose concentration (expressed as mg/dL)
by the “incremental area” method, in which the baseline
measures are subtracted from all subsequent readings
before calculating the AUC [22].

Biochemical parameters

Blood samples were collected from the heart of
anaesthetized animals by cardiac puncture. Fasting
plasma insulin levels were determined using the
ultrasensitive rat insulin Elisa Assay Kit (Biorbyt orb
54819, Bionova, Spain). In order to estimate the insulin
sensitivity in ZDF rats, the widely used HOMA-IR index
was calculated according to the formula: [insulin
(uunits/mL) x glucose (mmol/L)]/22.5 [23,24]. Plasma
triglycerides levels were established by the system
Metrolab 2300 using a spectrophotometer method.
Plasma levels of interleukin-6 (IL-6) (Diaclone,
670010192, Bionova, Spain), serum amyloid A (SAA)
(Cusabio, csb-E08590u, Bionova, Spain) and adiponectin
(Cusabio csb-E0727ir, Bionova, Spain) were quantified by
ELISA test according to the manufacturer’s protocol.

Physical activity

Physical activity was assessed during the last
24h before the euthanasia of the animals using the IR
ACTIMETER System and ACTITRAK software (Panlab-
Harvard Apparatus, Spain). This system uses activity
sensors that translate individual changes in the infrared
pattern caused by movements of the rats into arbitrary
activity counts (automated system). In order to carry out
the measurements, animals remained in their home cage
with free access to food and water, and a frame
containing an infrared beam system was placed on the
outside of the cage. Data were collected for a total
period of 24h separated into 12h periods. This software
enables the user to analyze the general activity of each
animal individually through some parameters like:
locomotors activity (i.e. movements with displacement;
number of movements/second), fast/slow stereotypes
(i.e. movements without displacement: eat/clean;
number of movements/second), distance travelled into
the zone during the interval (cm), time involved in fast
and slow movements and resting (without displacement,
i.e. eating, sleeping, cleaning; expressed as a percentage
of the total), maximum, minimum and mean speed and
total activity (number of movements/second) [25].

Grip strength

Skeletal muscle force in rats was quantified by
the grip-strength test once a week. The grip strength
device (Panlab-Harvard Apparatus, Spain) comprised a
pull bar connected to an isometric force transducer
(dynamometer). Basically, the apparatus was positioned
horizontally and the rats were held by the tail and
lowered towards the device. The animals were allowed
to grasp the pull bar by their forelimbs and were then
pulled backward in the horizontal plane. The force
applied to the bar just before the animals lost grip was
recorded as the peak tension. At least three
measurements were taken per rat on both baseline and
test days, and the results were averaged for analysis. This
force was measured in grams/grams initial body weight
[26].

Fiber cross sectional area (CSA)

After the euthanasia, the soleus muscles were
rapidly excised and quickly frozen in liquid-nitrogen
cooled isopentane, maintaining the correct orientation
to allow cross section. 10 BIm of transverse sections from
the mid-belly of the muscles were cut on a cryostat at -
20°C. The slides obtained were stained by haematoxylin-
eosin staining protocol, mounted with permount
mounting media (Fisher, USA) and photographed at 10x
magnification. Fiber CSA was determined on randomly
chosen 100 individual fibers per animal by the ImageJ
software [27] and expressed in pixels. Differences in
absolute values are due to changes in photo
magnification and/or resolution. Both variables,
however, were maintained fixed within each experiment.

RNA isolation and RT-PCR

Total RNA from soleus muscle was extracted by
TriPureTM kit (Roche, Barcelona, Spain). Reverse
transcription (RT) reactions were prepared using First
Strand cDNA Synthesis Kit for RT-PCR (Roche, Barcelona,
Spain) following the manufacturer’s instructions. Analysis
of mRNA levels of the genes from the different
proteolytic systems was performed with primers
designed to detect GLUT4 gene products (Gene ID:
25139) (5’-GTTTCCAGCAGATCGGCTCTGA-3/; 5'-
GCAAGGACCAGTGTCCCAGTCA-3'). To avoid the
detection of possible contamination by genomic DNA,
primers were designed in different exons. The real-time
PCR was performed wusing a commercial kit
(LightCyclerTM 480 SYBR Green | Master, Roche,
Barcelona, Spain). The relative amount of all mRNA was
calculated using comparative CT method. 18S (Ribosomal
RNA) (5’-CGCAGAATTCCCACTCCCGACCC-3; 5-

CCCAAGCTCCAACTACGAGC-3’) and HMBs
(hydroxymethylbilane synthase) (5'-
TGCCAGAGAAAAGTGCCGTGGG-3’; 5'-
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TGCAAGCTCATCCAGCTTCCGT-3’) mRNA was used as the
invariant control for all studies. The efficiency of the PCR
was evaluated using a dilution bank of RNA dilutions
(ranging from 100 ng/BIL to 0.08 ng/AL), and determining
the slope of the regression between the resulting Cts and
the logarithm of the concentration: Efficiency (%) = 100
(10-1/m -1) “m” would be the slope. A slope around -3.3
indicates an efficient amplification.

Statistical analysis

To summarize and describe the results, average
(arithmetic mean) and standard error of the mean (SEM)
were calculated for each studied variable. Intergroup
differences were evaluated using Student’s t-test, and
linear mixed models. All the statistical analysis was
performed using SPSS (version 21).

Results and Discussion

Zucker diabetic rats were immobilized (ZDF-
Cage) for 28 consecutive days in a reduced cage
characterized by a reduction in the volume of 80% in
relation with standard cage (Figure 1).

As it can be seen in Table 1, both control and
immobilized ZDF animals showed similar initial body
weights. However, when compared with the non-diabetic
controls (ZLC), they are clearly hyperphagic (Table 1,
Figure 2) and show a significantly decreased energetic

TABLE 1 Body weight and food intake in immobilized ZDF rats.

efficiency. After 21 days of immobilization in the space-
restriction model, ZDF-Cage rats ate slightly less (-24%) in
comparison to the non-immobilized age-matched
littermates (Table 1 and Figure 2). It is known that a
period of bed rest leads to physical inactivity status with
an associated lower energy requirements [28].
Interestingly, immobilized animals were not losing
weight or showing any kind of wasting at the time of the
study (Table 1), and presumably were able to maintain
energy balance by eating slightly less. A reduction of food
intake was observed during the first three days of
restriction (Figure 2). This feeding behaviour was
previously observed in healthy rats immobilized in the
same model [20] representing a physiological response
to the new environmental stress at which apparently the
animals were submitted. The attenuated food intake
observed was not translated into a reduced energetic
efficiency (Table 1), being the blunted appetite a
compensatory response to the reduced total energy
intake associated with lower energy requirement due to
physical inactivity.

Insulin resistance is a characteristic feature of
T2DM patients and plays an essential role in the
pathogenesis of the disease [29]. It is well established
that decreased peripheral glucose transport and disposal
in muscles and fat, increased endogenous hepatic
glucose production together with inadequate inhibition
of lipolysis in fat depots are keys hallmarks of insulin
resistance [30].

Parameter zLc ZDF-Con ZDF-Cage
+
u(;gv)v 13460 336 £6.6 (6)* 356+ 8.4 (6)
FBW 378 £3.1(6)
+ *k +
28 days (g) 338+10.8 (6) 339+ 7.4 (6)
FOOD ingested
+ + ok k +
21 days (g) 417 £6.7 (6) 847 +£90.9 (6) 675 + 48.6 (6)
FOOD INTAKE 133+£2.2(6) e
+
21 days (g/IBW) 253 +30(6) 192 +17.2(6) #
ENERGETIC EFFICIENCY
=[(FBW-IBW)/g food 14.6 £0.7 (6) en
+ +
ingested] x100 2.0+0.7 (6) 0.3%2.2(6)
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In order to test the effects of reduced muscle
activity on glucose metabolism in diabetic animals,
fasting blood glucose and insulin levels along with blood
glucose Area Under the Curve (AUC) responses were
measured four days prior the euthanasia. As expected,
ZDF rats showed a clear glucose intolerance (as
compared with the non-diabetic controls (ZLC)) as shown
when examining OGTTs (Figure 3A). Concerning the
diabetic animals, a significant increase in blood glucose
concentration was found within 15 minutes after glucose
administration (1 g/kg, orally) in both experimental
groups. While the increased glycemia was gradually
diminished within 2 hours in ZDF-Con rats, the regulatory
capacity of blood glucose was significantly attenuated in
ZDF-Cage ones (Figure 3B). In the latter, glycemia values
did not return to baseline levels after 120 min from the
glucose load (Figure 3B). In parallel, the AUC values in
ZDF-Cage rats were significantly increased to
approximately 4-fold (p<0.001) whether compared with
ZDF-Con rat data (Figure 3D). ZDF diabetic animals, as
compared with the non-diabetic controls (ZLC), were
clearly hyperglycaemic, hypoinsulinemic and showed an
increased HOMA-IR together  with elevated
concentrations of circulating triglycerides (Table 2).
Concerning the diabetic groups, although no apparent
changes were observed either in fasting plasma glucose
and insulin levels (Table 2), there was a trend towards an
increase in the HOMA-IR index in immobilized animals,
suggesting their decreased insulin sensitivity (Table 2).

Since the major manifestation of insulin resistance is a
reduced stimulated glucose disposal by skeletal muscle,
we focused our attention on the effects of the
immobilization on glucose transport in unloaded soleus
muscle of diabetic rats. It has been previously
demonstrated that insulin- and contraction-stimulated
glucose uptake decreases in atrophic soleus muscle of
tail-suspended rats [31]. Insulin resistance in skeletal
muscle was due to the attenuated expression level of the
glucose transport GLUT4 with or without insulin-
stimulation, decreased GLUT4 activity or impaired GLUT4
translocation to sarcolemma [31]. Since the reduced
GLUT4 content in immobilized muscle likely contributes
to the deleterious impact on the altered glucose
metabolism of diabetic animals [32], the gene expression
of GLUT4 in the red soleus muscle was assessed by RT-
PCR analysis. As expected, diabetic animals showed
decreased GLUT4 expression compared with the non-
diabetic controls (ZLC) (Figure 4A). Cage-immobilized
animals resulted in 2.5-fold (p=0.05) decrease in GLUT4
gene expression in red soleus muscle compared with the
ZDF sedentary controls (Figure 4B). These reduced GLUT4
mRNA levels might result from both rapid repression of
the transcription of GLUT4 gene and an increased rate of
turnover of the GLUT4 mRNA by hormonal and nuclear
factors [33—35]. The above results suggest that the action
of insulin may be blunted in the cage-immobilized
animals (as shown by the glucose tolerance curves
(Figure 3)), this accounting for glucose intolerance.
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FIGURE 3. Oral Glucose Tolerance Test and area under the curve in immobilized ZDF rats.

Effect of stepwise increments in blood glucose concentrations on plasma glucose measurements in ZDF immobilized animals during an oral glucose
tolerance test (OGTT) performed 4 days prior the euthanasia. Lean ZDF littermate controls: ZLC; non-immobilized control animals: ZDF-Con; and
cage immobilized animals: ZDF-Cage. Graphic representation of OGTT values as incremental glycaemia values (mg/dl) obtained at each time point of
the curve. Glucose levels in blood were measured at different times: 0’, 15’, 30’, 60’ and 120’ after oral glucose solution (2g/kg rat) administration.
Each point represents a mean of observations in 6 rats. Each interval covers mean + SEM.
A) Data were analysed by a Linear Mixed Model, being (D) Diabetic Phenotype a crossed between-subjects factor, and time (T) the
within-subjects factor (repeated measures). Restricted Maximum Likelihood (REML) method was used to fit the model. According to
Akaike Information Criterion (AIC) and Schwarz Bayesian Information Criterion (BIC), Identity Scale was finally chosen for the variable
glycaemia (D p=0.006; T p=0.001; DXT p=0.000).
B) Data were analysed by a Linear Mixed Model, being Immobilization (I) a crossed between-subjects factor, and time (T) the within-
subjects factor (repeated measures). Restricted Maximum Likelihood (REML) method was used to fit the model. According to the values
of Akaike Information Criterion (AIC) and Schwarz Bayesian Information Criterion (BIC), Scaled Identity was finally chosen as the
covariance matrix structure for the variable glycaemia (I p=0.000; T p=0.000; IXT p=0.000).
C) and D) Incremental area under the curve of plasma incremental glycaemia values. Each bar represents a mean of observations in 6
rats. The line above each bar is the SEM. Values that were found to be significantly different by Student’s t-test between the lean ZDF
littermate controls (ZLC) and ZDF-Con (A) or ZDF-Con and ZDF-Cage group (C) are indicated by, **p<0.01, ***p<0.001.
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TABLE 2. Circulating parameters in immobilized ZDF rats.

ZLC ZDF-Con ZDF-Cage
Biochemical Parameter
Glucose (mg/dL) 135£3.3(6) | 231487 (6)*** | 234+15.5 (6)
Insulin (ng/mL) 3.5£0.7(6) 1.4+0.4 (5) ** 1.8+0.2 (6)
HOMA-IR 11£02(6) | 184+42(5)** | 26.7+4.38(6)
Triglycerides (mg/dt) | 129%19-1(6) | 5001536 (5)%* | 258+ 36.2 (6) **

Adiponectin (pg/mL)

1349 + 118 (6)

1359 £ 175 (5)

947 + 108 (6) #

Inflammatory markers
SAA (ng/mL) 928 + 297 (6) 277 +124 (6) # 3831135 (5)
IL-6 (pg/mL) 91.2 +5.4(6) 92.2+5.9(5) 94.2+2.3(5)

Data are expressed as mean + SEM for the number of animals indicated in parentheses. Non-immobilized control animals: ZDF-Con; and cage
immobilized animals: ZDF-Cage. Fasting plasma insulin and glucose levels were measured 4 days before euthanasia and after a 12h fasting period.
Insulin sensitivity of individual animals was evaluated using the validated homeostasis model assessment (HOMA) index. The formula used was as
follows: [HOMA-IR] = fasting serum glucose (mg/dL)x fasting serum insulin (mM/mL)/405. Plasma insulin, adiponectin, IL-6 (Interleukin-6) and SAA
(Serum Amyloid A) were assessed by ELISA. Plasma triglycerides were measured by spectrophotometric systems. Values that were found to be
significantly different by Student’s t-test between the lean ZDF littermate controls (ZLC) and ZDF-Con (ZDF-Con column) or ZDF-Con and ZDF-Cage
groups (ZDF-Cage column) are indicated by *p<0.05, **p<0.01, # p<0.1.

FIGURE 4 GLUT4 in immobilized ZDF rats.

The average value of HMBs and 18S were used as invariant control for all studies. Columns: mean values of five animals; bars: SEM. Values that
were found to be significantly different by Student’s t-test between the lean ZDF littermate controls (ZLC) and ZDF-Con (A) or ZDF-Con and ZDF-
Cage group (C) are indicated by, *p<0.05.
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The obese phenotype of the ZDF model is due to
their defect in producing leptin. If leptin action is lacking,
hyperphagia causes disease of non-adipose tissues with
generalized steatosis, lipotoxicity, and lipoapoptosis [36].
Enlarged adipose tissue suffers from infiltration of
macrophages and therefore imbalance of pro-
inflammatory and anti-inflammatory factors (i.e. tumour
necrosis factor-B and IL-6) leading to inflammation,
impairment of insulin sensitivity and deregulation of lipid
metabolism [37,38]. Most of these adipokines (i.e. leptin,
cytokines, resistin and adiponectin and plasminogen
activator inhibitor-1) have been shown to inhibit
adipogenesis and thereby further promote adipose tissue
hypertrophy [39,40]. Increased reactive oxygen species
production from accumulated fats also leads to increased
oxidative stress in blood, dangerously affecting other
organs including the liver and skeletal muscle
[41]. Adiponectin acts as an insulin sensitizer in liver and
muscle and as an anti-atherogenic signal. A deficiency of
this adipokine induces obesity and decreases insulin-
regulated carbohydrate metabolism, thus leading to
insulin resistance. In fact, the blood level of adiponectin
falls in T2DM [42]. For this reason, we assessed the
inflammatory state of ZDF rats quantifying the plasmatic
concentration of some adipokines, namely IL-6 and SAA.
Interestingly, the decreased glucose uptake in the
immobilized group was associated with decreased levels
of plasma adiponectin (-30%, p<0.1) (Table 2). The
presence of lower levels of this cytokine confirmed the
worse insulin sensitivity observed in restrained ZDF rats.
However, no changes in IL-6 and SAA levels were
detected between ZDF-Cage and ZDF-Con rats (Table 2).
No changes were observed in either circulating
adiponectin, IL-6 or SAA in the diabetic animals as
compared with the non-diabetic controls (ZLC) (Table 2)

Perturbations of lipid metabolism in diabetic
ZDF rats is characterized by increased circulating
triglycerides (TG), higher levels of NEFA, and total
cholesterol  increases compared with  controls
[43]. Interestingly, immobilization significantly decreased
the concentration of circulating TG. Indeed, the high
triglyceridemia, characteristic of the animal model used
[44], was reduced by 48% (Table 2). This could be a
consequence of the inhibition of lipolysis promoted by
physical inactivity, as previously observed in human bed
rest studies [6]. The decrease of lipolysis results in less
uptake of fatty acids by the liver with a subsequent
reduction in the hepatic rate of triglyceride synthesis.

Diabetic animals showed reduced individual
muscle masses (including heart) as compared with the
non-diabetic controls (ZLC) (Table 3). Immobilization did
not result in any changes in tissue or organ weights when
comparing the two diabetic groups, with the exception of
an increase in the weight of brown adipose tissue (BAT),
as shown in Table 3. BAT is a key tissue for energy
expenditure via fat and glucose oxidation for
thermogenesis. The increased BAT mass of the
immobilized ZDF rats represents an index of an enhanced
body’s heat production under disuse condition. In fact,

during unloading it was found an increased sympathetic
nervous system tonus that supports the notion that non-
shivering thermogenesis is chronically stimulated under
this catabolic state [45].

Our next objective was to analyse whether
disuse-induced muscle atrophy aggravated the catabolic
state induced by the diabetic phenotype. Unexpectedly,
28 days of immobilization in the space-restricted cage
did not alter the muscle mass in diabetic animals. Indeed,
no changes in muscle weights were recorded in ZDF-Cage
rats versus the ZDF-Con group (Table 3). This is in
contrast to the muscle atrophy observed in soleus
muscle (-13%) of healthy rats immobilized in the space-
restriction model after the same period of disuse [20].

Muscle mass is a function of the size and
number of muscle fibers. A marked increase in the
intramuscular connective tissue, as a result of the
myofibrils loss, could compensate a loss of muscle fibers
resulting in no changes in muscle weight, that
contributes to deterioration of the functionality and of
the biomechanical properties was reported in
immobilized skeletal muscle [46,47]. Therefore, we
decided to examine whether some differences were
present in fiber size between immobilized and free-
moving animals. Interestingly, mean muscle fiber size
from soleus muscle cross-sections of ZDF-Cage animals
was significantly lower (20%; p<0.05) than the non-
immobilized diabetic ones (Figure 5B).

Muscle fiber atrophy typically lead to a
decreased strength, functional capacity and ultimately
increased mortality in patients with T2DM [48-50]. For
this reason, we measured muscle strength by means of
grip force evaluation. The diabetic groups showed
decreased grip force, as compared with the non-diabetic
controls (ZLC) (Table 4). ZDF-Cage rats did not show any
decrease in muscle force, as compared with the non-
immobilized controls (Table 4).

Indeed, an additional experiment designed to
measure the physical performance was performed. Using
the Actimeter device we were able to translate individual
changes into an infrared pattern caused by movements
of the animals into arbitrary activity counts (see the
Experimental section for more details). As previously
reported by our group, the outputs generated by the
system are directly correlated with changes in body
weight and muscle mass loss of the animal [51]. Control
diabetic rats showed the same activity as the non-
diabetic controls (ZLC) (Table 5). Interestingly, in spite of
the lack of muscle weight loss, total physical activity was
significantly reduced (22%, p<0.05) in cage-restricted
animals in the 24 hour-period before their sacrifice, as
compared with the control diabetic ones (Table 5), as
confirmed by lower number of stereotyped movements
(-54%, p<0.01) and total travelled distance performed (-
35%, p<0.05). Resting time of ZDF-Cage animals was also
increased (+4%, p<0.05), while the time involved in
different type of movements was decreased.

In summary, diabetic rats immobilized for 28
days in the space restriction model do not develop
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muscle mass loss, in spite of impaired physical activity.  mRNA muscle expression. In conclusion, altogether the
The cage-immobilized animals show glucose intolerance  results presented here clearly emphasize the importance
and increased insulin resistance as suggested by reduced  of studying bed rest in different pathological conditions
plasmatic adiponectin levels and a decrease in GLUT4 and, therefore, future studies should be encouraged.

TABLE 3 Tissue and muscle weights in immobilized ZDF rats.

ZLC ZDF-Con ZDF-Cage
Organs
KIDNEY 839 +20.6 (6) 1049 + 63.7 (6) 951 + 44.3 (6)
SPLEEN 198 + 2.5 (6) 172 +3.6 (6) 167 +3.1(6)
LIVER 4418 + 342 (6) 5932 + 388 (6) 5953 + 249 (6)
CARCASS 97942 + 1215 (6) 72081 + 1181 (6) 72430 £ 659 (6)
HEART 363.2+13.3(6) 300+ 5.8 (6)** 301+5.2(6)
Skeletal muscle
GSN 611 +12.3 (6) 335+ 10.5 (6)*** 347 £ 5.4 (6)
EDL 54.9+1.6 (6) 30.2 £ 1.0 (6)*** 32.240.7 (6)
TIB 213+5.2 (6) 115+ 2.5 (6)*** 120+2.7 (6)
SOoL 52.6 £ 1.5 (6) 32.9+0.9 (6)*** 34.3+0.8(6)
Adipose Tissue
WATd 1364 £ 70.5 (6) 3286 +113.2 (6)* 3308 + 98.0 (6)
WATe 1225 + 86.3 (6) 2044 + 103 (6) *** 1865 * 63.1 (6)
BAT 141 + 4.1(5) 173+8.9 (6) * 231+ 15.5 (6)**

Data are expressed as mean + SEM for the number of animals indicated in parentheses. Non-immobilized control animals: ZDF-Con; and cage
immobilized animals: ZDF-Cage. Tissue and muscle weights are expressed as mg/100 g of initial body weight (IBW). GSN: gastrocnemius, EDL:
extensor digitorum longus; TIB: tibialis; SOL: soleus. WATd: dorsal white adipose tissue, WATe: epididymal white adipose tissue; BAT: brown
adipose tissue. Carcass weight (body without organs) is also expressed as mg/100 g of initial body weight (IBW). Values of bilateral tissues were
obtained from the average of the two components. Values that were found to be significantly different by Student’s t-test between the lean ZDF
littermate controls (ZLC) and ZDF-Con (ZDF-Con column) or ZDF-Con and ZDF-Cage groups (ZDF-Cage column) are indicated by *p<0.05, **p<0.01, #
p=0.1.
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TABLE 4. Effects of the immobilization on muscle strength in ZDF rats.

ZLC ZDF-Con ZDF-Cage
GRIP FORCE
day 0 4.0+0.1(6) 2.5+0.1(6)*** 2.4+0.1(6)
day 7 3.8+0.1(6) 2.5+0.1 (6)*** 2.3+0.1(6)
day 14 4.2+0.1(6) 2.8+0.1(6)*** 2.6 +£0.1(6)
day 28 5.0+0.1(5) 3.0+ 0.1 (6)*** 2.8+0.2 (6)

Data are expressed as mean + SEM for the number of animals indicated in parentheses. Non-immobilized control animals: ZDF-Con; and cage
immobilized animals: ZDF-Cage. Grip force of the forelimbs was measured once a week and expressed as g/g initial body weight. Values that were
found to be significantly different by Student’s t-test between the lean ZDF littermate controls (ZLC) and ZDF-Con (ZDF-Con column) or ZDF-Con and
ZDF-Cage groups (ZDF-Cage column) are indicated by ***p<0.001.

TABLE 5. Physical activity in immobilized ZDF rats

ZLC ZDF-Con ZDF-Cage

Physical Activity (24h)
TOTAL PHYSICAL
ACTIVITY 35212 + 3044 (6)
(activity units)
STEREOTYPED
MOVEMENTS
(number/second)
LOCOMOTOR
MOVEMENTS
(number/second)

32122 + 2675 (6) 24949 + 958 (6)*

4645 + 383 (6) 6611+ 821 (6) # 3018 + 306 (6) **

30567 + 2742 (6) 25512 + 1979 (6) 21931+ 706 (6)

MEAN VELOCITY

(cm/sec) 0.7+0.0 (6) 0.7+0.1(6)

0.5+0.04 (6)*

DISTANCE TRAVELED
(cm)

56943 + 3527 (6)

60470 + 8148 (6) 39170 + 3047 (6) *

Time (% of total 24h)

Resting time 79.9+1.3(6) 82.1+1.3(6) 85.3+0.5(6) *
Fast-movements time 3.6+0.3(6) 4.1+0.4(6) 29+0.1(6)*
Slow-movements time 16.5+ 1.0 (6) 13.8+0.9(6) # 11.8+0.4 (6) #

Data are expressed as mean + SEM for the number of animals indicated in parentheses. Non-immobilized control animals: ZDF-Con; and cage
immobilized animals: ZDF-Cage. Physical activity is expressed in activity units. Stereotyped movements include movements without displacement
(eating and cleaning movements); conversely, locomotor movements include movements with displacement. Mean velocity is expressed in cm/s.
Total distance traveled is expressed in cm. Time is expressed as the percentage of total time (24 h). The thresholds of time are the following: time
involving resting (sleeping, cleaning and eating time): [0-2] cm/s, time involving slow movements: cm/s and time involving fast movements: [>5]
cm/s. Values that were found to be significantly different by Student’s t-test between the lean ZDF littermate controls (ZLC) and ZDF-Con (ZDF-Con
column) or ZDF-Con and ZDF-Cage groups (ZDF-Cage column) are indicated by *p<0.05, **p<0.01, # p<0.1.
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FIGURE 5 Muscle fiber size in immobilized ZDF rats.

Muscle fiber cross-sectional area (pixels) of soleus muscle was determined on randomly chosen 100 individual fibers per animal by the Matic Image
Plus 2. Bars and segments represent the mean and SEM for each group (n=6). Non-immobilized control animals: ZDF-Con) and cage immobilized
animals: ZDF-Cage. Values that were found to be significantly different by Student’s t-test between the lean ZDF littermate controls (ZLC) and ZDF-
Con (A) or ZDF-Con and ZDF-Cage group (B) are indicated by by *p<0.05, ***p<0.001,
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