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CONVERGENCE RATE TO EQUILIBRIUM FOR COLLISIONLESS TRANSPORT

EQUATIONS WITH DIFFUSE BOUNDARY OPERATORS: A NEW TAUBERIAN

APPROACH

B. LODS AND M. MOKHTAR-KHARROUBI

Abstract. This paper provides a new tauberian approach to the study of quantitative time asymp-

totics of collisionless transport semigroups with general diffuse boundary operators. We obtain

an (almost) optimal algebraic rate of convergence to equilibrium under very general assumptions

on the initial datum and the boundary operator. The rate is prescribed by the maximal gain of

integrability that the boundary operator is able to induce. The proof relies on a representation of

the collisionless transport semigroups by a (kind of) Dyson-Phillips series and on a fine analysis

of the trace on the imaginary axis of Laplace transform of remainders (of large order) of this se-

ries. Our construction is systematic and is based on various preliminary results of independent

interest.
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1. Introduction

We consider here the time asymptotics for collisionless kinetic equations of the form

∂tf(x, v, t) + v · ∇xf(x, v, t) = 0, (x, v) ∈ Ω× V, t > 0 (1.1a)

with initial data

f(x, v, 0) = f0(x, v), (x, v) ∈ Ω× V, (1.1b)

under diffuse boundary

f|Γ−
= H(f|Γ+

), (1.1c)

where Ω is a bounded open subset of Rd and V is a given closed subset of Rd (see Assumptions
1.1 for major details),

Γ± = {(x, v) ∈ ∂Ω× V ; ±v · n(x) > 0}
(n(x) being the outward unit normal at x ∈ ∂Ω) and H is a linear boundary operator relating
the outgoing and incoming fluxes f|Γ+

and f|Γ−
and is bounded on the trace spaces

L1
± = L1(Γ± ; |v · n(x)|π(dx)⊗m(dv)) = L1(Γ±,dµ±(x, v))

where π denotes the Lebesgue surface measure on ∂Ω and m is a Borel measure on the set of
velocities (see Assumptions 1.1 hereafter). The boundary operator

H : L1
+ → L1

−

is nonnegative and stochastic, i.e.
∫

Γ−

Hψ dµ− =

∫

Γ+

ψ dµ+, ∀ψ ∈ L1(Γ+,dµ+) (1.2)

so that (1.1) is governed by a stochastic C0-semigroup (UH(t))t>0 on L1(Ω× V , dx⊗m(dv))
with generator TH.

In a previous contribution [26], a systematic study of (1.1) for general partly diffuse boundary
operators H have been performed providing a general theory on the existence of an invariant den-
sity and its asymptotic stability (i.e. convergence to equilibrium), see also earlier one-dimensional
results [28]. However, the question of the rate of convergence to equilibrium has been left open
by our contribution [26] and is the main concern of the present paper.
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1.1. Our contribution in a nutshell. The main question addressed in this paper is then the
following:

Question A. Determine a general class C ⊂ L1(Ω × V ) of initial datum f and a general rate
function r : R

+ → R
+ such that

‖UH(t)f − ̺fΨH‖L1(Ω×V ) = O(r(t)) as t→ 0+ for any f ∈ C (1.3)

where ΨH is the unique invariant density of TH with unit mass (see the subsequent Theorem 1.4),

̺f =

∫

Ω×V
f(x, v)dx⊗m(dv), f ∈ L1(Ω× V )

and limt→0 r(t) = 0.

We answer this question here by considering only diffuse boundary operators for which, typ-
ically,

Hψ(x, v) =

∫

v′·n(x)>0
k(x, v, v′)ψ(x, v′) |v′ · n(x)|m(dv′), (x, v) ∈ Γ− (1.4)

where, ∫

v·n(x)<0
k(x, v, v′)|v · n(x)|m(dv) = 1, (x, v′) ∈ Γ+ . (1.5)

We do not consider the case where the velocities are bounded away from zero which deserves
a separate analysis, mainly because in this case (UH(t))t>0 exhibits a spectral gap and the con-
vergence to equilibrium is exponential [22]. Let us describe more precisely our mathematical
framework and the set of assumptions we adopt throughout the paper. First, the general assump-
tions on the phase space are the following

Assumption 1.1. The phase space Ω× V is such that

(1) Ω ⊂ R
d (d > 2) is an open and bounded subset with C1 boundary ∂Ω.

(2) V ⊂ R
d is the support of a nonnegative Borel measure m which is orthogonally invariant

(i.e. invariant under the action of the orthogonal group of matrices in R
d).

(3) 0 ∈ V , m({0}) = 0 and m (V ∩B(0, r)) > 0 for any r > 0 where B(0, r) = {v ∈
R
d , |v| < r}.

We denote by

X0 := L1(Ω× V , dx⊗m(dv))

endowed with its usual norm ‖ · ‖X0 . More generally, for any s > 0, we set

Xs := L1(Ω× V , max(1, |v|−s)dx⊗m(dv))

with norm ‖ · ‖Xs .

Notice that the above Assumption (3) is necessary to ensure that the transport operator TH
has at least the whole imaginary axis in its spectrum (see Theorem 4.6 for a precise statement).

With respect to our previous contribution [26], as already mentioned, we do not consider
abstract and general boundary operators here but focus our attention on the specific case of
a diffuse boundary operator satisfying the following assumption where we define, for λ ∈ C,
Reλ > 0 the following bounded operator

{
Mλ : L1

− −→ L1
+

u 7−→ Mλu(x, v) = e−λ τ−(x,v)u(x− τ−(x, v)v, v), (x, v) ∈ Γ+ ;
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where τ−(x, v) := inf{ s > 0 ; x+ sv /∈ Ω} for any (x, v) ∈ Γ+ (see Section 2.2 for more details
on the travel time).

Assumption 1.2. The boundary operator H : L1
+ → L1

− is a bounded and stochastic operator of

the form (1.4) which satisfies the following

1) There exists some n ∈ N (where N is the set of nonnegative integers N = {0, 1, . . .}) such that

H ∈ B(L1
+,Y

−
n+1)

where, for any s > 0, we define

Y
±
s := {g ∈ L1

± ;

∫

Γ±

max(1, |v|−s)|g(x, v)|dµ+(x, v) <∞}.

We will set

NH := sup{k ∈ N ; H ∈ B(L1
+,Y

−
k+1)}. (1.6)

and assume that NH <∞ in all the paper.

2) The operator HM0H ∈ B(L1
+, L

1
−) is weakly compact.

3) M0H is irreducible.

4) There exist p ∈ N and C > 0 such that
∫

R

‖(Mε+iηH)
p‖B(L1

+) dη 6 C ∀ε > 0. (1.7)

We will give later in Section 6 practical criteria ensuring this set of assumptions to be met
resorting notably to our previous contribution [26] (see also Section 1.3 in this Introduction for
some earlier considerations about Assumptions 1.2).

By means of a new and robust tauberian approach, we can answer Question A. The main
contribution of this work is summarized in the following

Theorem 1.3. Under Assumptions 1.1–1.2, for any f ∈ XNH+1 there exist a constant Cf > 0 and

Θf ∈ C0(R,X0) ∩ L1(R,X0)

such that

‖UH(t)f − ̺fΨH‖
X0

6
Cf

(1 + t)NH
ε(t) ∀t > 0 (1.8)

where

ε(t) =
1

1 + t
+

∥∥∥∥
∫ ∞

−∞
exp (iη t)Θf (η)dη

∥∥∥∥
X0

∀t > 0

is such that limt→∞ ε(t) = 0. If we assume moreover that there is C(p) > 0 and β > 0 such that
∫

|η|>R
‖(MiηH)

p‖B(L1
+) dη 6

C(p)

Rβ
, ∀R > 0 (1.9)

then, there is some positive constantK > 0 depending only on β and C(p) such that
∥∥∥∥
∫ ∞

−∞
exp (iη t)Θf (η)dη

∥∥∥∥
X0

6 K
(
ωf

(π
t

)) β
β+1 ∀t > 1 (1.10)

where ωf : R
+ → R

+ denotes the minimal modulus of continuity of the uniformly continuous

mapping Θf .
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Our main Theorem provides therefore an explicit rate of convergence of the type

‖UH(t)f − ̺fΨH‖
X0

= O(t−NH). (1.11)

It is important to point out that this rate of convergence is therefore prescribed by the maximal
gain of integrability H is able to provide (corresponding to the parameter NH) and therefore is
governed by the action of the boundary operator H on small velocities. This important feature
of collisionless transport equation is fully exploited in the companion paper [22] where, in the
case of velocity bounded away from zero, the rate of convergence turns out to be exponential.

The above explicit rate (1.11) can actually be strengthened into the semi-explicit

‖UH(t)f − ̺fΨH‖
X0

= o(t−NH).

We wish to insist here on the fact that the rate of convergence given in (1.8) is optimal in the

sense that the error function ε(t) is the exact correction to the rate (1 + t)−NH . Of course, this
correction is only semi-explicit and to derive a more explicit rate, one needs to precisely deter-
minate the rate of convergence to zero (granted by Riemann-Lebesgue Theorem) of the Fourier
transform

t > 0 7−→
∫ ∞

−∞
exp (iη t)Θf (η)dη ∈ X0

where Θf (·) is defined as the NH-derivative of some suitable boundary function (see (1.17) for
a precise definition). The second part of the Theorem, stated as (1.10) is a first step towards
this direction. The additional assumption (1.9) is easy to check in practice (see Section 6 where
actually Assumption 1.2 4) is deduced from (1.9)). We point out also the following:

a) We assumed for simplicity that NH is finite but, of course, if NH = ∞, then the above result
remains valid and the rate of convergence we obtain then is of the type

‖UH(t)f − ̺fΨH‖X0 = O

(
(1 + t)−k

)
∀f ∈ Xk+1 ,

for any k > 0. It is an interesting open problem to determine whether this convergence can
be upgraded to some (stretched) exponential convergence if f ∈ ⋂k Xk (for instance, if the
support of f is away from 0).

b) If the decay at infinity of the mapping λ 7→ (MλH)
p ∈ B(L1

+) is such that (1.9) is valid for
any β > 0 large enough (up to change p), then the overall decay of ε(t) is as close as desired
from the one of

t 7→ ωf

(π
t

)
.

This is the case for instance when H is associated to the Maxwellian boundary condition of
Example 1.6 hereafter.

c) Providing explicit estimates of the modulus of continuity ωf is an open problem. Some rea-
sonable conjecture about this is given at the end of the paper (see Section 5.3).

The existence and uniqueness of the equilibrium density ΨH as well as some qualitative con-
vergence result has been obtained in a systematic way in [26]. Namely, under Assumption 1.2,
one can deduce directly the following from [26, Theorem 6.5 and Section 7] and [25]:

Theorem 1.4. Under Assumption 1.2, the operator (TH,D(TH)) defined by

D(TH) =
{
f ∈ X0 ; v · ∇xψ ∈ X0 ; f|Γ±

∈ L1
± H f|Γ+

= f|Γ−

}
,

THf = −v · ∇xf, f ∈ D(TH)
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is the generator of a stochastic C0-semigroup (UH(t))t>0. Moreover, (UH(t))t>0 is irreducible and

has a unique invariant density ΨH ∈ D(TH) with

ΨH(x, v) > 0 for a. e. (x, v) ∈ Ω× R
d, ‖ΨH‖X0 = 1

and Ker(TH) = Span(ΨH). Moreover,

lim
t→∞

‖UH(t)f − Pf‖
X0

= 0, ∀f ∈ X0 (1.12)

where P denotes the ergodic projection

Pf = ̺f ΨH, with ̺f =

∫

Ω×Rd

f(x, v)dx⊗m(dv), f ∈ X0.

Besides partial results in [26, Section 7], the strong convergence (1.12) has been obtained
recently in our previous (unpublished) contribution [25]. In that paper, we first proved a general
qualitative (without rate) convergence to equilibrium for (1.1) under Assumptions 1.1–1.2 via
a Tauberian argument using Ingham’s theorem. Moreover, we also addressed Question A and
notably derived suboptimal rates of convergence to equilibrium for solutions to (1.1) under mild
assumptions on the initial datum f thanks to recent quantified versions of Ingham’s theorem
[14]. Typically, with respect to Theorem 1.3, the rate obtained in [25] were of the form

‖UH(t)f − ̺fΨH‖X0
= O

(
t−

NH
2

)

for f ∈ XNH+1. The present paper is a significant improvement of the results of [25] which
do not longer use quantified versions of Ingham’s theorem and strenghten in an almost optimal
way the rate of convergence. We anticipate already that the tool which allows us to get rid of
Ingham’s theorem is the use of a suitable representation of the solutions to (1.1) combined with
a tauberian approach. As far as we know, our construction is new and appears here for the first
time.

1.2. Related literature. Besides its fundamental role in the study of the Boltzmann equation
with boundary conditions [15, 17, 9], the mathematical interest towards relaxation to equilibrium
for collisionless equations is relatively recent in kinetic theory starting maybe with numerical
evidences obtained in [31]. A precise description of the relevance of the question as well as very
interesting results have been obtained then in [1]. We mention also the important contributions
[20, 21] which obtain seemingly optimal rate of convergence when the spatial domain is a ball.
For transport equations in a slab geometry, a Tauberian approach based upon Ingham’s theorem
has been introduced in [29]. Such an approach was then generalized to more general geometry
(in higher dimension) and improved in our aforementioned unpublished manuscript [25]. The
two very recentworks [6, 7] provide (nearly optimal) convergence rate for general domainsΩ in a
L1-setting. All these works are dealing with partially diffuse boundary operator of Maxwell-type
for which

Hϕ(x, v) = α(x)ϕ(x, v − (v · n(x))n(x))

+
(1− α(x))

γ(x)
Mθ(x)(v)

∫

v′·n(x)>0
ϕ(x, v′)|v′ · n(x)|m(dv′) (1.13)

where, as above Mθ(x) is a Maxwellian distribution given (see example ) for which the temper-

ature θ(x) depends (continuously) on x ∈ ∂Ω and γ(x) is a normalization factor ensuring H to
be stochastic. A nearly optimal rate of convergence for the boundary condition (1.13) in dimen-
sion d = 2, 3 has been obtained recently in [6] thanks to a clever use of Harris’s subgeometrical
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convergence theorem for Markov processes. A related probabilistic approach, based on coupling,
has been addressed in [7] in dimension d > 2 whenever θ(x) = θ is constant and in both these
works, the rate of convergence is nearly optimal and given by

O

(
(log(1 + t))d+1

td

)
as t→ ∞.

For such a model, with the notations of our Theorem 1.3,

NH = d− 1

which suggests that our optimal correction ε(t) is at least of the order ε(t) = (log(1+t))d+1

t . Let
us finally mention the very recent contribution [18] which closely follows the approach of [6]
and provides a L1−L∞ framework for solutions to (1.1) with exponential moments and obtain a
rate of convergence similar to that of [6] in the case of diffuse boundary operator of Maxwell-type
as considered here.

Let us point out here that, even if the rate obtained in [6, 7, 18] are slightly better than the
one obtained here, our contribution is not really comparable to those

(1) First, we deal here with different kind of boundary conditions (in any dimension d > 1)
and, even if we restrict ourselves to diffuse boundary condition, the structure of the kernel
k(x, v, v′) is much more general than the Maxwellian case (1.13). Notice in particular
that our assumptions on the boundary operator H are relatively easy to check and quite
general. On this aspect, our result can be seen as a systematic treatment of Question A for

general diffusive boundary conditions. Let us mention here that, even though the approach
of [6, 7] is robust enough to be applied to more general boundary conditions than the
Maxwellian one, such an approach requires the construction of some pointwise lower
bounds for the solution to (1.1) whichwould differ from one boundary operator to another
and, as such, some specific work has to be done for each given boundary condition.

(2) Second, the mathematical tools used in the present paper are completely new and dif-
ferent from those of the associated literature. In particular, since the analysis of [6, 7]
is based upon a clever modification of Harris’s convergence theorem, it is specifically
tailored to deal with the L1 (or measure) functional framework 1. Our approach on the
contrary, though it uses in some places some specific features of the L1 setting, is defi-
nitely robust enough to be applied to a more general functional framework. In particular,
it can be suitably modified to be applied (under suitable ad hoc assumptions on the bound-
ary operatorH) to some (weighted) L2 or L∞ settings which are particularly relevant for
the study of the linearized Boltzmann equation with Maxwell-like boundary condition.

(3) Our theory fully exploits the structure of equation (1.1), but we point out that our con-
struction can be adapted to the study of collisional equations (see [23] for neutron trans-
port equation on the torus or [24] for the spatially homogeneous linear Boltzmann equa-
tion with soft potentials) and we believe that it is virtually adaptable to other perturba-
tive contexts using the representation of solution to linear collisional kinetic equation as
a Dyson-Phillips series.

We insist here again on the fact that the rate derived in (1.8) is exact. Even if we derived, up
to now, only suboptimal explicit convergence rate, the only restriction to get an optimal rate

1or more generally, to abstract state spaces where the norm is additive on the positive cone
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lies in the difficulty we encountered in estimating accurately the decay to zero of the mapping
t > 0 7→

∫∞
−∞ exp (iη t)Θf (η)dη ∈ X0.

1.3. Practical examples. A few remarks are in order about our set of Assumptions:

• First, we gave in our previous contribution [26, Theorem 5.1] a precise definition of a
general class of boundary operator for which HM0H is weakly-compact. This class of
operators was defined in [26] as the class of regular diffuse boundary operators and we
will simply say here that H is diffuse.

• Moreover, a practical criterion ensuring the above property 3) to occur is also given in
[26]. In practice, as observed already, the typical operator we have in mind is given by
(1.4). Under some strong positivity assumption on k(·, ·, ·), one can show that M0H is
irreducible (see [26, Section 4]).

• Webelieve thatAssumption 4) ismet for any regular diffuse boundary operators. We have
been able to prove the result with ℓ = 2 for a slightly more restrictive class of boundary
operators (see Proposition 6.12) whenever m(dv) is absolutely continuous with respect
to the Lebesgue measure on R

d.

We refer to Section 6 for more details on this set of assumptions and only provide here a brief
list of examples covered by those assumptions and which are particularly relevant as models of
boundary interactions in the kinetic theory of gas (see [10]).

Example 1.5 (Generalized Maxwell-type). The most typical example corresponds to a general-

ized Maxwell-type diffuse operator for which

k(x, v, v′) = γ−1(x)G(x, v)

where G : ∂Ω× V → R
+ is a measurable and nonnegative mapping such that

(i) G(x, ·) is radially symmetric for π-almost every x ∈ ∂Ω;
(ii) G(·, v) ∈ L∞(∂Ω) for almost every v ∈ V ;

(iii) The mapping x ∈ ∂Ω 7→ γ(x) is continuous and bounded away from zero where

γ(x) :=

∫

Γ−(x)
G(x, v)|v · n(x)|m(dv) ∀x ∈ ∂Ω, (1.14)

i.e. there exist γ0 > 0 such that γ(x) > γ0 for π-almost every x ∈ ∂Ω.

Example 1.6 (Maxwell diffuse boundary condition). A particularly relevant example is a spe-
cial case of the previous one for which,m(dv) = dv andG is a given Maxwellian with temperature

θ(x), i.e.

G(x, v) = Mθ(x)(v), Mθ(v) = (2πθ)−d/2 exp

(
−|v|2

2θ

)
, x ∈ ∂Ω, v ∈ R

d.

Then,

γ(x) = κd

√
θ(x)

∫

Rd

|w|M1(w)dw, x ∈ ∂Ω

for some positive constant κd depending only on the dimension. The above assumption (iii) asserts
that the temperature mapping x ∈ ∂Ω 7→ θ(x) is bounded away from zero and continuous.
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1.4. Method of proof. For the sake of clarity and in order to help the reading of the paper, we
give here an idea of the main steps of the proof of Theorem 1.3. The main ideas behind the proof
can be summarized in the next three steps:

Step 1) We exploit an explicit representation of the semigroup (UH(t))t>0 obtained recently in
[3]. With this representation, similar to the Dyson-Phillips series for additive perturba-
tive semigroup theory, the semigroup is expressed as a suitable strongly convergence
series

UH(t)f =
∞∑

k=0

Uk(t)f, f ∈ X0, t > 0 (1.15)

where the family of operators {Uk(t)}k>0 is defined inductively. Typically, (U0(t))t>0
denotes the semigroup generated by T0 (corresponding to absorbing boundary condi-
tion H ≡ 0) whereas, for any k ∈ N, Uk(t)f denotes the solution to (1.1) after having
experienced k rebounds with the boundary.

Step 2) Precise estimates of the decay of each terms Uk(t)f (for given k ∈ N) are obtained by
suitably investigating the influence of the boundary operator for small and large veloci-
ties. We in particular show that, if f ∈ XNH+1 then

∥∥∥∥∥

n∑

k=0

Uk(t)f

∥∥∥∥∥
X0

= O(t−NH−1) as t→ ∞

for any n ∈ N. See Lemma 3.7 and Proposition 3.8 for more precise statements.
Step 3) We these two first points, to investigate the decay of UH(t)(I − P), we only need to

understand that of some suitable remainder of the series (1.15), say

Sn(t)f =
∞∑

k=n+1

Uk(t)f.

Notice that investigating Sn(t) (I− P) f amounts to study carefully Sn(t)f for some
function f with zero mean, i.e. such that

̺f :=

∫

Ω×V
f(x, v)dx⊗m(dv) = 0.

This is the most technical part of the paper. It requires a careful study of the spectral
properties of TH andM0H and some tools from Fourier-Laplace analysis. More precisely,
while the two previous points can be seen as a semigroup approach to Question A, this
third step is rather a resolvent approach since we deduce the properties of the remainder

∞∑

k=n+1

Uk(t)f

from the careful study of its Laplace transform which is related to the resolvent of TH.
This is

Let us describe with more details this third step. The resolvent of TH can be written, for λ ∈ C+

as

R(λ,TH)f = R(λ,T0)f +

∞∑

k=0

ΞλH (MλH)
k
Gλf
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for some suitable operators Ξλ,Mλ and Gλ described in Section 2.4. Then, for a given n ∈ N, we
can show that the remainder Sn(t) admits, as a Laplace transform,

∫ ∞

0
exp (−λt)Sn(t)fdt =

∞∑

k=n

ΞλH (MλH)
k
Gλf = Υ(λ)f, Reλ > 0.

Using properties of the inverse Laplace transform [2], we can describe then entirely Sn(t)f in
terms of Υn(λ)f , namely

Sn(t)f =
exp(εt)

2π
lim
ℓ→∞

∫ ℓ

−ℓ
exp (iηt)Υn(ε+ iη)fdη, ∀f ∈ X0

for any t > 0, ε > 0. Of course, to hope deducing a decay of Sn(t)f for large t, the positive
exponential is a dramatic obstacle. This enforces to deduce a second representation formula for
Sn(t)f where the inverse Laplace transform is derived on the imaginary axis, i.e. for λ = iη,
η ∈ R.

A first mathematical difficulty occurs here since Υn(ε + iη)f is not even defined for ε = 0.
We need therefore to build, for suitable class of functions f , the boundary trace ofΥn(λ)f along
the imaginary axis. This is the most technical part of the present work which will result in the
following

Theorem 1.7. Let f ∈ XNH+1 be such that

̺f =

∫

Ω×V
f(x, v)dx⊗m(dv) = 0. (1.16)

Then, for any n > 0 the limit

lim
ε→0+

Υn(ε+ iη)f,

exists in CNH

0 (R,X0). Its limit is denoted Ψn(η)f . Moreover, for n large enough (explicit), the
mappings

η ∈ R 7−→ dk

dηk
Ψn(η)f ∈ X0, 0 6 k 6 NH

are integrable.

Here above, for any Banach space (X, ‖ · ‖X) and any k ∈ N, we set

C k
0 (R,X) =

{
h : R 7→ X ; of class C k over R

and such that lim
|η|→∞

∥∥∥∥
dj

dηj
h(η)

∥∥∥∥
X

= 0 ∀j 6 k

}

andwe endowC k
0 (R,X)with the norm ‖h‖L∞(X) := supη max06j6k ‖ dj

dηj
h(η)‖X whichmakes

it a Banach space.

Remark 1.8. We point out here that we cannot expect a higher regularity for the mappingΨn(η)f ;
the mapping Υn(ε + iη)f is not differentiable NH + 1 times because Mε+iηH is differentiable k-
times if and only ifH ∈ B(L1

+,Y
−
k+1). Therefore, by definition ofNH, η 7→ Mε+iηH ∈ B(L1

+,X0)
is differentiable exactly NH times and so is η 7→ Υn(ε+ iη)f ∈ X0.
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With this boundary function, one can prove the second representation formula (see Theorem
5.8)

Sn(t)f =
1

2π

∫ ∞

−∞
exp (iη t)Ψn(η)f dη , ∀t > 0

for any f ∈ XNH+1 satisfying (5.10).
Recall that the condition ̺f = 0 is equivalent to the condition Pf = 0, i.e. the above is

somehow a representation formula for Sn(t)(I − P)f . With this last representation formula,
one easily get convinced that, if one can prove that the mapping

η ∈ R 7−→ Ψn(η)f ∈ X0

belongs to CNH

0 (R), then by integration by parts, we can expect

Sn(t)f =

(
i

t

)NH
∫ ∞

−∞
exp (iη t)

dNH

dηNH
Ψn(η)f

dη

2π
, t > 0.

This provides at least a decay like Sn(t)f = O(t−NH). This decay is actually strengthened into

Sn(t)f = o(t−NH)

by a simple use of Riemann-Lebesgue Theorem using that the mapping

η ∈ R 7−→ dNH

dηNH
Ψn(η)f

is integrable over R. One sees here that this is exactly the contents of Theorem 1.3 where clearly

Θf (η) =
dNH

dηNH
Ψn(η)f (1.17)

for a suitably large choice of the parameter n (related to p in (1.7)). We point out here that we
cannot expect a higher regularity for the mapping Ψn(η)f .

Let us comment very briefly on the technical points behind the proof of Theorem 1.7. To study
Υn(λ) along the imaginary axis, we observe first that

rσ (MλH) < 1 Reλ > 0 but 1 is a (simple) eigenvalue of M0H.

It turns out that λ 7→ MλH ∈ B(L1
+) extends to the imaginary axis with

rσ (MiηH) < 1 (η 6= 0);

(see Proposition 4.3). It follows that

lim
ε→0+

Υn(ε+ iη)f exists (η 6= 0)

and the convergence is locally uniform in η 6= 0. Because rσ (M0H) = 1, the treatment of the
case η = 0 is very involved and the various technical results of Section 5 are devoted to this
delicate point. In particular, by exploiting the fact that near λ = 0, the eigenvalue of MλH

of maximum modulus is algebraically simple (converging to 1 as λ → 0, see Proposition 4.7),
and analyzing the corresponding spectral projection, we can show the existence of the boundary
function for all the various operators involved in Υn(ε + iη)f under the assumption (5.10) (see
Lemma 4.10) where the convergence is uniform with respect to η ∈ R.
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To prove then the smoothness of the boundary functionΨn(·)f , we need an alternative repre-
sentation ofΥn(λ) since it appears out of reach to compute the derivatives of

∑∞
k=n (MλH)

k
Gλf

at λ = 0 still because of the fact that rσ(M0H) = 1. It is easy to see that

Υn(λ) = R(λ, TH)−R(λ,T0)−
n∑

k=0

Ξλ (MλH)
k
Gλ

and the smoothness is then obtained through the well-known identity for derivatives of the
resolvent

dk

dλk
R(λ,TH) = (−1)k k!R(λ,TH )k+1, Reλ > 0.

Finally, the last technical point is to show that the NH-th derivative of the boundary function
is integrable. This point is the crucial one where Assumption 1.2 (4) is fully exploited. See
Theorem 5.8 for details. All these results yield then to the decay rate (1.8). Then, the more precise
investigation of the correction ε(t) and its link with the modulus of continuity ofΘf is deduced
by a simple adaptation of considerations linking the fractional regularity of functions with the
decay of its Fourier coefficients [16]. This gives then (1.10) under the additional assumption (1.9).

As mentioned earlier, proving that Assumption 1.2 4) is met for a large class of diffuse bound-
ary operators is a highly technical task and we devote Section 6 to this. The results of Section 6
are also related to a general change of variable formula transferring integrals in velocities into
integrals over ∂Ω which has its own interest. It clarifies several computations scattered in the
literature [15, 17] and will be a fundamental tool for the analysis in the companion paper [22].

1.5. Organization of the paper. In Section 2, we introduce the functional setting and notations
used in the rest of the paper and recall several known results mainly from our previous contri-
bution [26]. The representation of the semigroup (UH(t))t>0 is discussed in Section 3.1 together

with the decay rate of the iterates Uk(t), settling the above Steps 1) and 2) of our approach.
Section 4 is devoted to the fine analysis of the resolvent R(1,MλH) which is well-defined for
Reλ > 0 but needs to be carefully extended to the imaginary axis λ = iη, η ∈ R. This sec-
tion is the most technical one of the paper and we have to deal separately with the case η 6= 0
and η = 0.S uch an extension is a cornerstone in the construction of the boundary function
limε→0+ Υn(ε + iη,TH)f (for suitable f ) which is performed in Section 5. In this Section, we
also establish the suitable representation formula for Sn(t) thanks to the inverse Laplace trans-
form (Section 5.1) and we provide the full proof of Theorem 1.3. In Section 6, we provide practical
criteria ensuring Assumptions 1.2 to be met. It contains several results we believe to be of inde-
pendent interest. We also illustrate how the examples described here above in Section 1.3 are
covered by our results.

Acknowledgements. BL gratefully acknowledges the financial support from the Italian Min-
istry of Education, University and Research (MIUR), “Dipartimenti di Eccellenza” grant 2018-2022.
Part of this research was performed while the second author was visiting the “Laboratoire de
Mathématiques CNRS UMR 6623” at Université de Franche-Comté in February 2020. He wishes
to express his gratitude for the financial support and warm hospitality offered by this Institution.
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2. Reminders of known results

2.1. Functional setting. We introduce the partial Sobolev space

W1 = {ψ ∈ X0 ; v · ∇xψ ∈ X0}.
It is known [11, 12] that any ψ ∈W1 admits traces ψ|Γ±

on Γ± such that

ψ|Γ±
∈ L1

loc(Γ± ; dµ±(x, v))

where

dµ±(x, v) = |v · n(x)|π(dx)⊗m(dv),

denotes the "natural" measure on Γ±.Notice that, since dµ+ and dµ− share the same expression,
we will often simply denote it by

dµ(x, v) = |v · n(x)|π(dx)⊗m(dv),

the fact that it acts on Γ− or Γ+ being clear from the context. Note that

∂Ω× V := Γ− ∪ Γ+ ∪ Γ0,

where

Γ0 := {(x, v) ∈ ∂Ω× V ; v · n(x) = 0}.
We introduce the set

W =
{
ψ ∈W1 ; ψ|Γ±

∈ L1
±

}
.

One can show [11, 12] that

W =
{
ψ ∈W1 ; ψ|Γ+

∈ L1
+

}
=
{
ψ ∈W1 ; ψ|Γ−

∈ L1
−

}
.

Then, the trace operators B±:
{
B± : W1 ⊂ X0 → L1

loc(Γ± ; dµ±)

ψ 7−→ B±ψ = ψ|Γ±
,

are such that B±(W ) ⊆ L1
±. Let us define the maximal transport operator Tmax as follows:

{
Tmax : D(Tmax) ⊂ X0 → X0

ψ 7−→ Tmaxψ(x, v) = −v · ∇xψ(x, v),

with domainD(Tmax) =W1. Now, for any bounded boundary operator H ∈ B(L1
+, L

1
−), define

TH as

THϕ = Tmaxϕ for any ϕ ∈ D(TH),

where

D(TH) = {ψ ∈W ; ψ|Γ−
= H(ψ|Γ+

)}.
In particular, the transport operator with absorbing conditions (i.e. corresponding toH = 0) will
be denoted by T0.

Definition 2.1. For any s > 0, we define the function spaces

Y
±
s = L1(Γ± ,max(1, |v|−s)dµ±)

with the norm

‖u‖
Y
±
s
=

∫

Γ±

|u(x, v)| max(1, |v|−s)dµ±(x, v).
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In the same way, for any s > 0, we introduce

Xs = L1(Ω × V ,max(1, |v|−s)dx⊗m(dv))

with norm ‖f‖Xs := ‖ max(1, |v|−s)f‖X0 , f ∈ Xs.

Remark 2.2. Of course, for any s > 0, Y±
s is continuously and densely embedded in L1

±. In the

same way, Xs is continuously and densely embedded in X0. Introduce, for any s ∈ N, the function

̟s(v) = max(1, |v|−s), v ∈ V.

One will identify, without ambiguity, ̟s with the multiplication operator acting on L1
± or on X0,

e.g. {
̟s : X0 −→ X0

f 7−→ ̟sf(x, v) = ̟s(v)f, (x, v) ∈ Ω× V.

Then, one sees that

Y
±
s = {f ∈ L1

± ; ̟sf ∈ L1
±}, Xs = {f ∈ X0 ; ̟sf ∈ X0}.

2.2. Travel time and integration formula. Let us now introduce the travel time of particles
in Ω (with the notations of [5]), defined as:

Definition 2.3. For any (x, v) ∈ Ω× V, define

t±(x, v) = inf{ s > 0 ; x± sv /∈ Ω}.
To avoid confusion, we will set τ±(x, v) := t±(x, v) if (x, v) ∈ ∂Ω × V.

With the notations of [17], t− is the backward exit time tb. From a heuristic perspective,
t−(x, v) is the time needed by a particle having the position x ∈ Ω and the velocity −v ∈ V
to reach the boundary ∂Ω. One can prove [33, Lemma 1.5] that t±(·, ·) is measurable on Ω× V .
Moreover τ±(x, v) = 0 for any (x, v) ∈ Γ± whereas τ∓(x, v) > 0 on Γ±. It holds

(x, v) ∈ Γ± ⇐⇒ ∃y ∈ Ω with t±(y, v) <∞ and x = y ± t±(y, v)v.

In that case, τ∓(x, v) = t+(y, v) + t−(y, v). Notice also that,

t±(x, v)|v| = t± (x, ω) , ∀(x, v) ∈ Ω× V, v 6= 0, ω = |v|−1 v ∈ S
d−1. (2.1)

We have the following integration formulae from [5].

Proposition 2.4. For any h ∈ X0, it holds
∫

Ω×V
h(x, v)dx ⊗m(dv) =

∫

Γ±

dµ±(z, v)

∫ τ∓(z,v)

0
h (z ∓ sv, v) ds, (2.2)

and for any ψ ∈ L1(Γ−,dµ−),∫

Γ−

ψ(z, v)dµ−(z, v) =

∫

Γ+

ψ(x− τ−(x, v)v, v)dµ+(x, v). (2.3)

Remark 2.5. Notice that, because µ−(Γ0) = µ+(Γ0) = 0, we can extend the above identity (2.3)
as follows: for any ψ ∈ L1(Γ− ∪ Γ0,dµ−) it holds∫

Γ−∪Γ0

ψ(z, v)dµ−(z, v) =

∫

Γ+∪Γ0

ψ(x− τ−(x, v)v, v)dµ+(x, v). (2.4)
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2.3. Decay of the semigroup assiociated to absorbing boundary conditions. We end this
sectionwith a decay property of the semigroup (U0(t))t>0 on the hierarchy of spacesXk (k ∈ N):

Lemma 2.6. Given k ∈ N and f ∈ Xk, one has

‖U0(t)f‖X0
6
Dk

tk
‖f‖Xk

, ∀t > 0.

Proof. Let f ∈ Xk and t > 0 be fixed. For simplicity, we introduce g(x, v) = |v|−k|f(x, v)|,
(x, v) ∈ Ω× V and denote by g̃ the extension by zero of g to Rd × V. One has then

‖U0(t)f‖X0 =

∫

Ω×V
|v|kg(x− tv, v)1t<t−(x,v)dxm(dv)

For a given x ∈ Ω, one has
∫

V
|v|kg(x− tv, v)1t<t−(x,v)m(dv) 6

∫

V
|v|k g̃(x− tv, v)m(dv).

Recalling that t > 0, x ∈ Ω are fixed, we denote by m#,(t,x)(dy) the image measure of m(dv)

through the transform v ∈ V 7→ y = x− tv ∈ R
d and deduce

∫

V
|v|kg(x− tv, v)1t<t−(x,v)m(dv) 6

∫

Rd

( |x− y|
t

)k

g̃

(
y,
x− y

t

)
m#,(t,x)(dy)

6
Dk

tk

∫

Rd

g̃

(
y,
x− y

t

)
m#,(t,x)(dy).

Therefore,

‖U0(t)f‖X0 6
Dk

tk

∫

Rd

dx

∫

Rd

g̃

(
y,
x− y

t

)
m#,(t,x)(dy).

By definition ofm#,(t,x)(dy), we can performe back the change of variable y 7→ v = x−y
t to get

‖U0(t)f‖X0 6
Dk

tk

∫

V
m(dv)

∫

Rd

g̃(x− tv, v)dx.

Now, given v ∈ V , we perform the change of variable x ∈ R
d 7→ z = x− tv ∈ R

d to get

‖U0(t)f‖X0 6
Dk

tk

∫

Rd×V
g(z, v)dzm(dv) =

Dk

tk
‖g‖X0

which gives the result. �

We complement the above with the following technical property

Lemma 2.7. For any k > 0 and f ∈ Xk+1,
∫ ∞

0
‖U0(t)f‖Xk

dt 6 D‖f‖Xk+1
and

∫ ∞

0
tk ‖U0(t)f‖X0

dt 6
(2D)k+1

k + 1
‖f‖Xk+1

.

Proof. We prove the result for k = 0. Assume f ∈ X1. Using (2.2) one computes for any t > 0,

‖U0(t)f‖X0 =

∫

Γ−

dµ−(z, v)

∫ τ+(z,v)

0
|[U0(t)f ] (z + sv, v)| ds

=

∫

Γ−

dµ−(z, v)

∫ τ+(z,v)

0
1[0,t−(z+sv,v)](t) |f(z + (s− t)v, v)| ds



16 B. LODS AND M. MOKHTAR-KHARROUBI

Since t−(z + sv, v) = s for any (z, v) ∈ Γ−, we deduce that

|U0(t)f‖X0 =

∫

Γ−

dµ−(z, v)

∫ τ+(z,v)

0
1[0,s](t) |f(z − (t− s)v, v)| ds. (2.5)

Integrating this identity and using Fubini’s Theorem repeatedly yields
∫ ∞

0
‖U0(t)f‖X0dt =

∫

Γ−

dµ−(z, v)

∫ τ+(z,v)

0
ds

∫ s

0
|f(z − (t− s)v, v)| dt

=

∫

Γ−

dµ−(z, v)

∫ τ+(z,v)

0
ds

∫ s

0
|f(z − τv, v)|dτ

=

∫

Γ−

dµ−(z, v)

∫ τ+(z,v)

0
|f(z − τv, v)|dτ

∫ τ−(z,v)

t
ds

i.e. ∫ ∞

0
‖U0(t)f‖X0dt 6

∫

Γ−

τ+(z, v)dµ−(z, v)

∫ τ+(z,v)

0
|f(z − τv, v)|dτ.

Because τ+(z, v) 6 D/|v|, we see using again (2.2) that
∫ ∞

0
‖U0(t)f‖X0dt 6 D

∫

Ω×V
|v|−1 |f(x, v)|dxm(dv) 6 D‖f‖X1 .

This proves the result for k = 0. Given now k > 1, because the multiplication operator̟k and
U0(t) commute (t > 0), one has

‖U0(t)f‖Xk
= ‖U0(t) (̟kf) ‖X0

which allows to apply the result obtained so far to̟kf ∈ X1 and to conclude in the general case.
Let us now focus on the second estimate. One sees also from (2.5) that
∫ ∞

0
tk‖U0(f)f‖X0dt =

∫ ∞

0
tkdt

∫

Γ−

dµ−(z, v)

∫ τ+(z,v)

0
1[0,s](t) |f(z − (t− s)v, v)| ds

=

∫

Γ−

dµ−(z, v)

∫ τ+(z,v)

0
|f(z − τv, v)|dτ

∫ τ−(z,v)

τ
(s+ τ)k ds

6
1

k + 1

∫

Γ−

dµ−(z, v)

∫ τ+(z,v)

0
(τ+(z, v) + τ)k+1 |f(z − τv, v)|dτ

6
2k+1

k + 1

∫

Γ−

τ+(z, v)
k+1dµ−(z, v)

∫ τ+

0
|f(z − τv, v)|dτ

and one concludes as previously since τ+(z, v) 6 D/|v|. �

2.4. About the resolvent of TH. For any λ ∈ C such that Reλ > 0, define




Mλ : L1
− −→ L1

+

Mλu(x, v) = u(x− τ−(x, v)v, v)e
−λτ−(x,v), (x, v) ∈ Γ+ u ∈ L1

− ;




Gλ : X0 −→ L1
+

Gλϕ(x, v) =

∫ τ−(x,v)

0
ϕ(x− sv, v)e−λsds, (x, v) ∈ Γ+ ϕ ∈ X0
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Rλ : X0 −→ X0

Rλϕ(x, v) =

∫ t−(x,v)

0
ϕ(x− tv, v)e−λtdt, (x, v) ∈ Ω× V ; ϕ ∈ X0

and



Ξλ : L1
− −→ X0

Ξλu(x, v) = u(x− t−(x, v)v, v)e
−λt−(x,v)

1{t−(x,v)<∞}, (x, v) ∈ Ω× V u ∈ L1
−;

where 1E denotes the characteristic function of the measurable set E. The interest of these
operators is related to the resolution of the boundary value problem:

{
(λ− Tmax)f = g,

B−f = u,
(2.6)

where λ > 0, g ∈ X0 and u is a given function over Γ−. Such a boundary value problem, with
u ∈ L1

− can be uniquely solved (see [5, Theorem 2.1])

Theorem 2.8. Given λ > 0, u ∈ L1
− and g ∈ X0, the function

f = Rλg + Ξλu

is the unique solution f ∈ D(Tmax) of the boundary value problem (2.6). Moreover, B+f ∈ L1
+

and

‖B+f‖L1
+
+ λ ‖f‖X0 6 ‖u‖L1

−
+ ‖g‖X0 .

Remark 2.9. Notice that Ξλ is a lifting operator which, to a given u ∈ L1
−, associates a function

f = Ξλu ∈ D(Tmax) whose trace on Γ− is exactly u. More precisely,

TmaxΞλu = λΞλu, B−Ξλu = u, B+Ξλu = Mλu, ∀u ∈ L1
−. (2.7)

Moreover, for any λ > 0, one sees with the choice u = 0 that Rλ coincides with R(λ,T0). The
above theorem also shows that, for any λ > 0

‖Ξλ‖B(L1
−,X0) 6 λ−1 and ‖Rλ‖B(X0) 6 λ−1. (2.8)

Moreover, one has the obvious estimates

‖Mλ‖B(L1
−,L1

+) 6 1, ‖Gλ‖B(X0,L1
+) 6 1

for any λ > 0.

We can complement the above result with the following whose proof can be extracted from
[26, Proposition 2.6]:

Proposition 2.10. For any λ ∈ C+ it holds

R(λ,TH) = Rλ + ΞλHR(1,MλH)Gλ = R(λ,T0) +

∞∑

n=0

ΞλH (MλH)
n
Gλ (2.9)

where the series converges in B(X0).

We make the following basic observation which will turn useful in the sequel
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Proposition 2.11. If f ∈ Xk+1, 0 6 k 6 NH, then

gλ := R(λ,TH)f ∈ Xk, ∀λ ∈ C+.

Moreover, if ̺f = 0 then ̺gλ = 0 for all λ ∈ C+.

Proof. Assume that ̺f = 0. The equation λ gλ − THgλ = f implies, after integration, that

λ

∫

Ω×V
gλ(x, v)dx⊗m(dv) =

∫

Ω×V
f(x, v)dx⊗m(dv) = 0.

Because λ 6= 0, one sees that ̺gλ = 0. �

2.5. Some auxiliary operators. For λ = 0, we can extend the definition of these operators
in an obvious way but not all the resulting operators are bounded in their respective spaces.
However, we see from the above integration formula (2.3), that

M0 ∈ B(L1
−, L

1
+) with ‖M0u‖L1

+
= ‖u‖L1

−
, ∀u ∈ L1

−.

In the same way, one deduces from (2.2) that for any nonnegative ϕ ∈ X0:
∫

Γ+

G0ϕ(x, v)dµ+(x, v) =

∫

Γ+

dµ+(x, v)

∫ τ−(x,v)

0
ϕ(x− sv, v)ds

=

∫

Ω×V
ϕ(x, v)dx⊗m(dv)

(2.10)

which proves that

G0 ∈ B(X0, L
1
+) with ‖G0ϕ‖L1

+
= ‖ϕ‖X0 , ∀ϕ ∈ X0.

Notice that, more generally, for any η ∈ R

Giη ∈ B(X0, L
1
+), Miη ∈ B(L1

−, L
1
+)

with
‖Giη‖B(X0,L1

+) 6 1, ‖Miη‖B(L1
−,L1

+) 6 1.

To be able to provide a rigorous definition of the operators Ξ0 and R0 we need the following
The interest of the above boundary spaces lies in the following (see [26, Lemma 2.8] where (2.12)
is proven for k = 1 but readily extends to k ∈ N):

Lemma 2.12. For any u ∈ Y
−
1 one has Ξ0u ∈ X0 with

‖Ξ0u‖X0 =

∫

Γ−

u(x, v)τ+(x, v)dµ+(x, v) 6 D‖u‖
Y
−
1
, ∀u ∈ Y

−
1 (2.11)

where we recall that D is the diameter of Ω. Moreover, given k > 1, if u ∈ Y
−
k then M0u ∈ Y

+
k

and Ξ0u ∈ Xk−1 with

‖M0u‖Y+
k
= ‖u‖

Y
−
k

and ‖Ξ0u‖Xk−1
6 D‖u‖

Y
−
k

(2.12)

If f ∈ X1 then G0f ∈ Y
+
1 and R0f ∈ D(T0) ⊂ X and T0R0f = −f .

Remark 2.13. We wish to emphasise here that, if H satisfies assumptions 1.2 1), then

ΨH ∈ Xn ∀n 6 NH

Indeed, recall from [26, Proposition 4.2], that ΨH = Ξ0H ϕ̄ where ϕ̄ ∈ L1
+ is such that

M0Hϕ̄ = ϕ̄.
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From Assumption 1.2 1), Hϕ̄ ∈ Y
−
n+1 and from (2.12), ϕ̄ ∈ Y

−
n+1 and ΨH ∈ Xn.

An immediate but fundamental consequence of the above Lemma is the following which will
be used repeatedly in the sequel:

Corollary 2.14. It holds

M0H ∈ B(L1
+,Y

+
NH+1), Ξ0H ∈ B(L1

+,XNH
) (2.13)

In particular, for any f ∈ L1
+ and any ε > 0, the mapping

η ∈ R 7−→ Ξε+iηHf ∈ X0

is of class CNH with
∥∥∥∥
dk

dηk
Ξε+iηHf

∥∥∥∥
X0

6 Dk ‖Ξ0H‖B(L1
+,Xk)

‖f‖L1
+

k ∈ {0, . . . , NH}.

Proof. The proof is a direct consequence of (2.12) which implies M0 ∈ B(Y−
k ,Y

+
k ) while Ξ0 ∈

B(Y−
k ,Xk−1) for any k > 1. Since H ∈ B(L1

+,Y
−
NH+1), we get (2.13). One checks then in a

straightforward way that, for any k 6 NH,

dk

dηk
Ξε+iηHf = (−it−)k Ξε+iηHf

where (−it−)k is the multiplication operator by the measure mapping (x, v) ∈ Ω × V 7→
(−it−(x, v))k . This gives directly the result since

∣∣∣(−it−(x, v))k
∣∣∣ 6 Dk̟k(v) for any (x, v) ∈

Ω× V and

‖Ξε+iηH‖B(L1
+,Xk)

6 ‖M0H‖B(L1
+,Xk)

6 ‖Ξ0H‖B(L1
+,XNH

) ∀ε > 0, η ∈ R

as soon as k 6 NH. �

Remark 2.15. As observed in the Introduction, the fact that the maximal gain of integrability

for H is measured by NH is what make the above CNH the maximal regularity of the mapping
η 7→ Ξε+iηH ∈ B(L1

+,X0). One may wonder here if some additional assumption like

H ∈ B(L1
+,Y

−
NH+1+α), for some α ∈ (0, 1)

would induce some additional fractional derivative that could be exploited.

One has the following

Lemma 2.16. For any ε > 0, the mapping η ∈ R 7−→ Mε+iηH ∈ B(L1
+) is uniformly continuous

on R. Consequently,

lim
|η|→∞

‖(Mε+iηH)
p‖B(L1

+) = 0 ∀ε > 0 (2.14)

where p is defined through (1.7).

Proof. Let ε > 0 be fixed. Given η1, η2 ∈ R, one has

Mε+iη1H−Mε+iη2H = (exp (−iη1τ−)− exp (−iη2τ−))MεH

so that, because the mapping t 7→ eit ∈ C is 2-Lipschitz,

‖Mε+iη1Hϕ −Mε+iη2H‖B(L1
+) 6 2|η1 − η2| ‖τ−MεH‖B(L1

+) 6 2|η1 − η2| ‖τ−M0H‖B(L1
+) .
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Now, because H ∈ B(L1
+,Y

−
1 ) and τ−(x, v) 6 D/|v|, one sees that

‖τ−M0H‖B(L1
+) 6 D ‖M0H‖B(L1

+,Y+
1 ) 6 D‖M0‖B(Y−

1 ,Y+
1 )‖H‖B(L1

+,Y−
1 ).

Thus,
‖Mε+iη1Hϕ−Mε+iη2H‖B(L1

+) 6 2D|η1 − η2|‖H‖B(L1
+ ,Y−

1 )

which proves that the mapping η ∈ R 7→ Mε+iηH ∈ B(L1
+) is uniformly continuous on R.

We deduce then (2.14) from the uniform continuity and the integrability at infinity ensured by
(1.7). �

3. About Dyson-Phillips representation

3.1. First definitions. We recall here a useful representation of the semigroupUH(t) as a kind of
Dyson-Phillips expansion series introduced in [3]. We recall the definition of the C0-semigroup
generated by T0 :

U0(t)f(x, v) = f(x− tv, v)1{t<t−(x,v)}, f ∈ X0, t > 0.

We begin with the following definition where D0 = {f ∈ D(Tmax) ; B−f = 0 = B+f} and
U0(t) = U0(t) (t > 0):

Definition 3.1. Let t > 0, k > 1 and f ∈ D0 be given. For (x, v) ∈ Ω × V with t−(x, v) < t,
there exists a unique y ∈ ∂Ω with (y, v) ∈ Γ− and a unique 0 < s < min(t, τ+(y, v)) such that

x = y + sv and then one sets

[Uk(t)f ](x, v) =
[
HB+Uk−1(t− s)f

]
(y, v),

We set [Uk(t)f ](x, v) = 0 if t−(x, v) > t and Uk(0)f = 0.

Remark 3.2. Clearly, for (x, v) ∈ Ω × V with t−(x, v) < t, the unique (y, v) ∈ Γ− and s ∈
(0,min(t, τ+(y, v)) such that x = y + sv are

y = x− t−(x, v)v, s = t−(x, v)

so that the above definition reads

[Uk(t)f ](x, v) =
[
H(B+Uk−1(t− s)f

]
(x− sv, v)

∣∣∣∣
s=t−(x,v)

.

For a diffuse boundary operator H the expression ofUn(t) is fully explicit, namely

Lemma 3.3. If H is given by (1.4), then, for any n ∈ N and any (x, v) ∈ Ω× V , it holds

[Un(t)f ] (x, v) =∫

Γ+(y0)
k(y0, v, v0)|v0 · n(y0)|m(dv0)

∫

Γ+(y1)
k(y1, v0, v1)|v1 · n(y1)|m(dv1) . . .

∫

Γ+(yn−2)
k(yn−2, vn−3, vn−2) |vn−2 · n(yn−2)|m(dvn−2)×

×
∫

At(x,v,v0,...,vn−2)
k(yn−1, vn−2, vn−1| |vn−1 · n(yn−1)|

× f

(
yn−1 −

[
t− t−(x, v) −

n−2∑

k=0

τ−(yk, vk)

]
vn−1, vn−1

)
m(dvn−1) , (3.1)
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for any f ∈ D0 where

y0 = x− t−(x, v)v, yk+1 = yk − τ−(yk, vk)vk, k = 0, . . . , n− 2.

and,

At(x, v, v0, . . . , vn−2)

=

{
vn−1 ∈ Γ+(yn−1) ;

n−2∑

k=0

τ−(yk, vk) < t− t−(x, v) <

n−1∑

k=0

τ−(yk, vk)

}
.

Proof. The proof is by direct inspection. For instance, it is easy to see that, given f ∈ D0 and
t > t−(x, v), one has

[U1(t)f ] (x, v) =

∫

Γ+(y0)
k(y0, v, v0)f(y0 − (t− t−(x, v))v0, v0)

× 1{t−(x,v)<t<t−(x,v)+τ−(y0,v0)}|v0 · n(y0)|m(dv0),

and

[U2(t)f ] (x, v) =

∫

Γ+(y0)
k(y0, v, v0)|v0 · n(y0)|m(dv0)

∫

Γ+(y1)
k(y1, v0, v1)f(y1 − (t− t−(x, v)− τ−(y0, v0))v1, v1)

× 1{t−(x,v)+τ−(y0,v0)<t<t−(x,v)+τ−(y0,v0)+τ−(y1,v1)}|v1 · n(y1)|m(dv1).

The proof for n > 3 is then easily deduced by induction. �

One has then the following proven in [3] (see also [4, Appendix A and Theorem 3.8]):

Theorem 3.4. For any k > 1, f ∈ D0 one has Uk(t)f ∈ X0 for any t > 0 with

‖Uk(t)f‖X0 6 ‖f‖X0 .

In particular, Uk(t) can be extended to be a bounded linear operator, still denoted Uk(t) ∈ B(X0)
with

‖Uk(t)‖B(X0) 6 1 ∀t > 0, k > 1. (3.2)

Moreover, the following holds for any k > 1

(1) (Uk(t))t>0 is a strongly continuous family of B(X0).
(2) For any f ∈ X0 and any t, s > 0, it holds

Uk(t+ s)f =

k∑

j=0

Uj(t)Uk−j(s)f.

(3) For any f ∈ D0, the mapping t > 0 7→ Uk(t)f is differentiable with

d

dt
Uk(t)f = Uk(t)Tmaxf ∀t > 0.

(4) For any f ∈ D0, one has Uk(t)f ∈ D(Tmax) for all t > 0 with

TmaxUk(t)f = Uk(t)Tmaxf = Uk(t)T0f.
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(5) For any f ∈ D0 and any t > 0, the traces B±Uk(t)f ∈ L1
± and the mappings t > 0 7→

B±Uk(t)f ∈ L1
± are continuous. Moreover, for all f ∈ X and t > 0, one has

B±

∫ t

0
Uk(s)fds ∈ L1

± with B−

∫ t

0
Uk(s)fds = HB+

∫ t

0
Uk−1(s)fds.

(6) For any f ∈ D0, it holds

∫ t

0
‖B+Uk(s)f‖L1

+
ds 6

∫ t

0
‖B+Uk−1(s)f‖L1

+
ds, ∀t > 0.

(7) For any f ∈ X0 and λ > 0, setting

Lk(λ)f =

∫ ∞

0
exp(−λt)Uk(t)fdt

one has, for k > 1,

Lk(λ)f ∈ D(Tmax) with TmaxLk(λ)f = λLk(λ)f

and B±Lk(λ)f ∈ L1
± with

B−Lk(λ)f = HB+Lk−1(λ)f B+Lk(λ)f = (MλH)
kGλf.

(8) For any f ∈ X0, the series
∑∞

k=0Uk(t)f is strongly convergent and it holds

UH(t)f =

∞∑

k=0

Uk(t)f

Remark 3.5. One sees from the point (7) together with [26, Theorem 2.4] that, for any k > 1,

Lk(λ)f = ΞλHB
+Lk−1(λ)f.

Since L0(λ)f = Rλf we deduce that

L1(λ) = ΞλHB
+Rλ = ΞλHGλ,

and, since B+Ξλ = Mλ, one gets by induction that, for any k > 1,

Lk(λ) = ΞλH (MλH)
k−1

Gλ.

In particular, one sees that, in the representation series (2.9) that, for any n > 0

ΞλH (MλH)
n
Gλf =

∫ ∞

0
exp(−λ t)Un+1(t)fdt (3.3)

for any λ > 0 which is of course coherent with the above point (4).

3.2. Decay of the iterates. We extend the decay of the semigroup (U0(t)))t>0 obtained in

Lemma 2.6 to the iterates (Uk(t))t>0. To do so, we first observe that Assumption 1.2 1) im-
plies a nice behaviour of H for small velocities. More precisely, introducing for any δ > 0, the

operator H̃(δ) ∈ B(L1
+, L

1
−) given by

H̃(δ)ψ(x, v) = 1|v|6δHψ(x, v) ∀ψ ∈ L1
+, (x, v) ∈ Γ− (3.4)
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Then, for any ψ ∈ L1
+, one has

‖H̃(δ)ψ‖L1
−
=

∫

Γ−

1|v|6δ|Hψ(x, v)|dµ−(x, v)

6 δn+1

∫

Γ−

1|v|6δ|Hψ(x, v)||v|−(n+1)dµ−(x, v)

from which we deduce the estimate

‖H̃(δ)‖B(L1
+,L1

−) 6 ‖H‖B(L1
+,Y−

n+1)
δn+1 ∀n 6 NH. (3.5)

Having such a property in mind, we can deduce the decay ofUk(t) as t→ ∞ for any k ∈ N. For
the clarity of exposition, we give full details for the decay ofU1(t).

Lemma 3.6. Let k ∈ N and f ∈ Xk. Then, there exists some universal constantCk > 0 (depending
only on H, k andD but not on f ) such that

‖U1(t)f‖X0
6 Ck

(
t−(NH+1) + t−k

)
‖f‖Xk

, ∀t > 0

where NH is defined in Assumption 1.2.

Proof. The proof is based upon the decomposition of H for small and large velocities. Namely,
we introduce, for some δ > 0 to be determined, the splitting

H = H(δ) + H̃(δ)

where H̃(δ) is defined in (3.4) and

H(δ)ψ(x, v) = 1|v|>δHψ(x, v), ψ ∈ L1
+, (x, v) ∈ Γ−.

With such a splitting, one has of course,

U1(t) = U
(δ)
1 (t) + Ũ

(δ)
1 (t), t > 0, δ > 0

where U
(δ)
1 (t), Ũ

(δ)
1 (t) are constructed as in Definition 3.1 with H replaced respectively by H(δ)

and H̃(δ). Let now fix k > 1, f ∈ Xk, t > 0. One has

‖U1(t)f‖X0 6 ‖U (δ)
1 (t)f‖X0 + ‖Ũ (δ)

1 (t)f‖X0 6 ‖U (δ)
1 (t)f‖X0 + ‖H̃(δ)‖B(L1

+,L1
−)‖f‖X0

where we used (A.9). Using now (3.5), there is C (depending only on H) such that

‖U1(t)f‖X0 6 CδNH+1‖f‖X0 + ‖U (δ)
1 (t)f‖X0 ∀δ > 0. (3.6)

Let us focus then on the estimate for U
(δ)
1 (t)f . The crucial point is of course that U

(δ)
1 (t)f is

supported on Ω× {v ∈ V ; |v| > δ} and, on this set, τ−(·, ·) is uniformly bounded since

t−(x, v) 6
D

|v| 6
D

δ
∀(x, v) ∈ Ω× V, |v| > δ.

Let us then consider x ∈ Ω and |v| > δ and t > D
δ > t−(x, v). We recall (see Lemma 3.3) that

[
U

(δ)
1 (t)f

]
(x, v) = 1|v|>δ

∫

Γ+(y0)
k(y0, v, v0)f(y0 − (t− t−(x, v))v0, v0)

× 1{t−(x,v)<t<t−(x,v)+τ−(y0,v0)}|v0 · n(y0)|m(dv0).
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One sees that, for t > t−(x, v) and |v| > δ,

1{t−(x,v)<t<t−(x,v)+τ−(y0,v0)} 6= 0 ⇐⇒ τ−(y0, v0) > t− t−(x, v) > t− D

δ
.

Since moreover τ−(y0, v0) 6
D
|v0|

one deduces that

1{t−(x,v)<t<t−(x,v)+τ−(y0,v0)} 6= 0 =⇒ D

|v0|
> t− D

δ
.

Therefore,
∣∣∣
[
U

(δ)
1 (t)f

]
(x, v)

∣∣∣ 6 1|v|>δ

∫

Γ+(y0)
1|v0|6

D

t−D
δ

k(y0, v, v0)

× 1{t−(x,v)<t<t−(x,v)+τ−(y0,v0)} |f(y0 − (t− t−(x, v))v0, v0)| |v0 · n(y0)|m(dv0).

Introducing

g(z, w) = |w|−k |f(z, w)| , ∀(z, w) ∈ Ω× V

one deduces easily that, for any t > D
δ ,

∣∣∣
[
U

(δ)
1 (t)f

]
(x, v)

∣∣∣ 6 Dj

(
t− D

δ

)j
[
U

(δ)
1 (t)g

]
(x, v)

Therefore,
∥∥∥U (δ)

1 (t)f
∥∥∥
X0

6
Dj

(
t− D

δ

)j
∥∥∥U (δ)

1 (t)g
∥∥∥
X0

6
Dj

(
t− D

δ

)j ‖g‖X0
, ∀t > D

δ

where we used (3.2). Combining this with (3.6), and since max(‖f‖X0 , ‖g‖X0) 6 ‖f‖Xk
, one

deduces that

‖U1(t)f‖X0 6

(
CεNH+1 +

Dj

(
t− D

δ

)j

)
‖f‖Xk

, ∀t > D

δ
.

Choosing δ such that t = 2D
δ , we get the result. �

We generalise this to the other iterates

Lemma 3.7. Let k ∈ N and f ∈ Xk. Then, there exists some universal constantCk > 0 (depending
only on H, k andD but not on f ) such that, for any n > 1,

‖Un(t)f‖X0
6 Ck

(
(2n − 1)

(
n+ 1

t

)(NH+1)

+

(
n+ 1

t

)k
)

‖f‖Xk
, ∀t > 0

where NH is defined in Assumption 1.2.

Proof. The proof uses the same ideas introduced in the proof for n = 1. Given ε > 0, we still

introduce the splitting H = H̃(δ) + H(δ) . With the representation of H given by (1.4), it is clear
that



H̃(δ)ψ(x, v) =

∫

v′·n(x)>0
k̃(δ)(x, v, v′)ψ(x, v′) |v′ · n(x)|m(dv′),

H(δ)ψ(x, v) =

∫

v′·n(x)>0
k(δ)(x, v, v′)ψ(x, v′) |v′ · n(x)|m(dv′), ψ ∈ L1

+, (x, v) ∈ Γ−
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where

k̃(δ)(x, v, v′) = 1|v|6δk(x, v, v
′), k(δ)(x, v, v′) = 1|v|>δk(x, v, v

′),

and (x, v) ∈ Γ−, v
′ ∈ Γ+(x).

Since k(·, ·, ·) = k̃(δ)(·, ·, ·) + k(δ)(·, ·, ·), using the representation formula (3.1) one sees by a
simple combinatorial argument that, for n > 1, one can write

Un(t) = U (δ)
n (t) + Ũ (δ)

n (t)

where U
(δ)
n (t) is given by (3.1) with all kernels k(·, ·, ·) replaced with k(δ)(·, ·, ·) whereas the

reminder term Ũ
(δ)
n (t) is the some of 2n − 1 operators

Ũ (δ)
n (t) =

2n−1∑

j=1

V (j)
n (t)

where, for any j ∈ {1, . . . , 2n − 1}, V (j)
n (t) is defined by (3.1) with at least one kernel k̃(δ)(·, ·, ·).

Alternatively, this means that V
(j)
n (t) is defined as in Definition A.3 for a family of boundary

operators (H1, . . . ,Hn) where there is at least one i ∈ {1, . . . , n} such that Hi = H̃(δ) (the other

ones being indifferently H(δ) or H̃(δ)). Using Proposition A.6, one has then

‖V (j)
n (t)‖B(X0) 6 ‖H̃(δ)‖B(L1

+,L1
−).

Therefore ∥∥∥Ũ (δ)
n (t)f

∥∥∥
X0

6 (2n − 1) ‖H̃(δ)‖B(L1
+,L1

−)‖f‖X0

and

‖Un(t)f‖X0
6 ‖U (δ)

n (t)f‖X0 + C(2n − 1) δNH+1‖f‖X0 , t > 0, ε > 0 (3.7)

where we used (3.5). We focus now on the expression of U
(δ)
n (t)f . As before, U

(δ)
n (t)f is sup-

ported on Ω× {v ∈ V ; |v| > δ}. We have, from (3.1),

[
U (δ)

n (t)f
]
(x, v) =

1|v|>δ

∫

Γδ
+(y0)

k(y0, v, v0)|v0 · n(y0)|m(dv0)

∫

Γδ
+(y1)

k(y1, v0, v1)|v1 · n(y1)|m(dv1) . . .

∫

Γδ
+(yn−2)

k(yn−2, vn−3, vn−2) |vn−2 · n(yn−2)|m(dvn−2)×

×
∫

Aδ
t (x,v,v0,...,vn−2)

k(yn−1, vn−2, vn−1| |vn−1 · n(yn−1)|

× f

(
yn−1 −

[
t− t−(x, v) −

n−2∑

k=0

τ−(yk, vk)

]
vn−1, vn−1

)
m(dvn−1) , (3.8)

where y0 = x− t−(x, v)v, yk+1 = yk − τ−(yk, vk)vk (k = 0, . . . , n− 2),

Γδ
+(yk) = Γ+(yj) ∩ {v ∈ V ; |v| > δ}, k = 0, . . . , n− 2
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and,

Aδ
t (x, v, v0, . . . , vn−2)

=

{
vn−1 ∈ Γδ

+(yn−1) ;

n−2∑

k=0

τ−(yk, vk) < t− t−(x, v) <

n−1∑

k=0

τ−(yk, vk)

}
.

Notice that, since |v| > δ and |vk| > δ for any k = 0, . . . , n− 2, one has

t−(x, v) +

n−2∑

k=0

τ−(yk, vk) 6
nD

δ
.

Let us consider then t > nD
δ . One sees then that if vn−1 ∈ Aδ

t (x, v, v0, . . . , vn−2) then

D

|vn−1|
> τ−(yn−1, vn−1) > t−

(
t−(x, v) +

n−2∑

k=0

τ−(yk, vk)

)
> t− nD

δ

which implies

|vn−1| <
D

t− nD
δ

. (3.9)

As in the proof of Lemma 3.6, one introduce now

g(z, w) = |w|−k |f(z, w)| , (z, w) ∈ Ω× V

and sees then from (3.7),

∣∣∣
[
U (δ)

n (t)f
]
(x, v)

∣∣∣

6 1|v|>δ

∫

Γδ
+(y0)

k(y0, v, v0)|v0 · n(y0)|m(dv0)

∫

Γδ
+(y1)

k(y1, v0, v1)|v1 · n(y1)|m(dv1) . . .

∫

Γδ
+(yn−2)

k(yn−2, vn−3, vn−2) |vn−2 · n(yn−2)|m(dvn−2)×

×
∫

Aδ
t (x,v,v0,...,vn−2)

k(yn−1, vn−2, vn−1| |vn−1 · n(yn−1)|

× |vn−1|kg
(
yn−1 −

[
t− t−(x, v) −

n−2∑

k=0

τ−(yk, vk)

]
vn−1, vn−1

)
m(dvn−1) .

Therefore, from (3.9),

∣∣∣
[
U (δ)

n f
]
(x, v)

∣∣∣ 6
(

D

t− nD
δ

)k [
U (δ)

n (t)g
]
(x, v) t >

nD

δ
.

Consequently

∥∥∥U (δ)
n (t)f

∥∥∥
X0

6
Dk

(
t− nD

δ

)k
∥∥∥U (δ)

n (t)g
∥∥∥
X0

6
Dk

(
t− nD

δ

)k ‖g‖X0 , t >
nD

δ
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thanks to (3.2). Combining this with (3.7) we finally obtain

‖Un(t)f‖X0
6

Dk

(
t− nD

δ

)k ‖g‖X0 +C(2n − 1) δNH+1‖f‖X0 , t >
nD

δ
.

Picking now δ > 0 such that t = (n+1)D
δ we get the result since both ‖g‖X0 and ‖f‖X0 are

smaller than ‖f‖Xk
. �

We deduce directly from Lemmas 2.6 and 3.7 the following

Proposition 3.8. Assume that

f ∈ XNH+1

then, for any n > 1, there exists Cn > 0 such that
∥∥∥∥∥

n∑

k=0

Uk(t)f

∥∥∥∥∥
X0

6 Cn t
−(NH+1) ‖f‖

XNH+1
∀t > 0. (3.10)

3.3. Representation formulae for remainder terms. Introducing

Sn(t) := UH(t)−
n∑

k=0

Uk(t), n > 1, t > 0

one has the following

Proposition 3.9. For any n ∈ N, n > p where p defined through (1.7). Then, for any f ∈ X0, one

has

Sn(t)f =
exp(εt)

2π
lim
ℓ→∞

∫ ℓ

−ℓ
exp (iηt)Υn(ε+ iη)fdη, ∀f ∈ X0 (3.11)

for any t > 0, ε > 0.

Proof. One notices that, for any n > 0 and any f ∈ X0, it holds

∫ ∞

0
exp (−λt)Sn(t)fdt =

∞∑

k=n

∫ ∞

0
exp (−λt)Uk+1(t)fdt

=
∞∑

k=n

ΞλH (MλH)
k Gλf = Υn(λ)f, Reλ > 0

where we used (3.3) together with the fact that, for Reλ > 0, ‖MλH‖B(L1
+) < 1. Since moreover,

for any f ∈ X0, the mapping t > 0 7→ Sn(t)f is continuous and bounded, with Sn(0)f = 0,
one applies the complex Laplace inversion formula [2, Theorem 4.2.21] to deduce

Sn(t)f =
exp(εt)

2π
lim
L→∞

1

2L

∫ L

−L
dℓ

∫ ℓ

−ℓ
exp (iηt)Υn(ε+ iη)fdη, ∀f ∈ X0 (3.12)

for any t > 0, ε > 0, i.e. Sn(t)f is the Cesarò limit of the family
(∫ ℓ

−ℓ
exp (iηt)Υn(ε+ iη)fdη

)

ℓ

.
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Let us prove it is actually a classical limit. Fix ε > 0 and f ∈ X0. Arguing as in (5.17),

‖Υn(ε+ iη)‖B(X0,Xk)
6 ‖Ξ0‖B(Y−

k
,Xk)

‖H‖B(L1
+ ,Y−

k
) ‖(Mε+iηH)

n‖B(L1
+)

‖R(1,Mε+iηH)‖B(L1
+) ‖Gε+iη‖B(X0,L1

+)

Since, for any ε > 0,

‖R(1,Mε+iηH)‖B(L1
+) 6 ‖R(1,MεH)‖B(L1

+)

while supη ‖Gε+iη‖B(X0,L1
+) 6 1 we deduce that there exists Cε > 0 such that

‖Υn(ε+ iη)‖B(X0,Xk)
6 Cε ‖(Mε+iηH)

n‖B(L1
+) , ∀η ∈ R.

For n > p, one has ‖(Mε+iηH)
n‖B(L1

+) 6 ‖(Mε+iηH)
p‖B(L1

+), we deduce from (1.7) that there

isMε > 0 such that
∫ ∞

−∞
‖Υn(ε+ iη)‖B(X0,Xk)

dη 6Mε, ∀ε > 0.

This of course implies that
∫ ∞

−∞
‖exp ((ε+ iη)t)Υn(ε+ iη)‖B(X0,Xk)

dη 6Mε exp(εt), ∀ε > 0.

In particular, for any f ∈ X0, the limit

lim
ℓ→∞

1

2π

∫ ℓ

−ℓ
exp ((ε+ iη)t) Υn(ε+ iη)fdη

exists in Xk . Since its Cesarò limit is Sn(t)f , we deduce the result. �

Remark 3.10. It appears that the convergence actually holds in operator norm, i.e. the integral

exp(εt)

2π
lim
ℓ→∞

∫ ℓ

−ℓ
exp (iηt)Υn(ε+ iη)dη

converges to Sn(t) in B(X0,Xk) as ℓ→ ∞. As a consequence, under Assumption 1.2, one sees that

Sn(t) is a compact operator for n large enough.

It is clear that, from the above representation formula, no decay of Sn(t) can be expected
because of the growing function exp(εt). As said already in the Introduction, we will need
therefore to derive a second representation formula showing that (3.12) actually holds for ε = 0.
Of course, to do so, we need first to suitably define the trace of Υn(λ) on the imaginary axis, i.e.
to define properly the limit as ε → 0+ of Υ(ε + iη)f for suitable f . This will require several
preliminary definitions and regularity estimates of the various operators defining Υn(ε+ iη).

4. General regularity and spectral results

This section is devoted to the core technical results which will allow to define the boundary
function of the mapping λ ∈ C+ 7−→ Υn(λ) ∈ B(X0).

We first start with the convergence of the various operatorsMλ,Ξλ and Gλ. The proof of this
result is postponed to the Appendix A
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Proposition 4.1. For any f ∈ X0, the limit

lim
ε→0+

‖Gε+iηf − Giηf‖L1
+
= 0 (4.1)

uniformly with respect to η ∈ R with

lim
|η|→∞

sup
ε∈[0,1]

‖Gε+iηf‖L1
+
= 0. (4.2)

Moreover, for any η ∈ R and any k ∈ N,

‖Mδ+iη −Miη‖B(Y−
k+1,Yk)

6 δ D, ‖Ξε+iη − Ξiη‖B(Y−
k+1,Xk)

6 εD (4.3)

where D is the diameter of Ω. Consequently, for any k 6 NH where NH is defined in (1.6)

‖Mδ+iηH−MiηH‖B(L1
+,Y+

k ) 6 δ D ‖H‖B(L1
+,Y−

k+1)

and ‖Ξε+iηH− ΞiηH‖B(L1
+,Xk)

6 εD ‖H‖B(L1
+ ,Y−

k+1)
∀η ∈ R. (4.4)

Moreover, for any j ∈ N, one has

lim
δ→0

∥∥∥(Mε+iηH)
j − (MiηH)

j
∥∥∥

B(L1
+)

= 0 (4.5)

uniformly with respect to η ∈ R.

Remark 4.2. An important consequence of the above Proposition 4.1 is that the holomorphic func-

tions

λ ∈ C+ 7→ MλH ∈ B(L1
+) and λ ∈ C+ 7→ ΞλH ∈ B(L1

+,X0)

can be extended to continuous functions on C+. Moreover, one easily deduces that
∫ ∞

−∞
‖(MiηH)

p‖B(L1
+) dη <∞

where p > 0 is defined through (1.7).

4.1. Spectral properties of MλH along the imaginary axis. We study here more carefully
the properties ofMiηH for η ∈ R.

Proposition 4.3. For any λ ∈ C \ {0} with Reλ > 0,

rσ(MλH) < 1.

Proof. Wegive the proof only forReλ = 0, the caseReλ > 0 being similar. Since |MiηHψ(x, v)| =
|M0Hψ(x, v)| for any ψ ∈ L1

+, (x, v) ∈ Γ+, η ∈ R, one sees that

MiηH ∈ B(L1
+) with |MiηH| 6 M0H

where |MiηH| denotes the absolute value operator of MiηH (see [13]). The operatorM0H being
power compact, the same holds for |MiηH| by a domination argument so that

ress(|MiηH|) = 0

where ress(·) denotes the essential spectral radius. We prove that rσ(|MiηH|) < 1 by contra-
diction: assume, on the contrary, rσ(|MiηH|) = 1 > ress(|MiηH|) = 0, then rσ(|MiηH|) is
an isolated eigenvalue of |MiηH| with finite algebraic multiplicity and also an eigenvalue of the
dual operator, associated to a nonnegative eigenfunction. From the fact that |MiηH| 6 M0Hwith
|MiηH| 6= M0H, one can invoke [27, Theorem 4.3] to get that

rσ(|MiηH|) < rσ(M0H) = 1
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which is a contradiction. Therefore, rσ(|MiηH|) < 1 and, since rσ(MiηH) 6 rσ(|MiηH|), the
conclusion holds true. �

We deduce the following

Corollary 4.4. For any η0 ∈ R \ {0}, there is 0 < δ < 1
2 |η0| such that

lim
ε→0+

sup
|η−η0|<δ

∥∥∥∥R(1,Mε+iηH)−R(1,MiηH)

∥∥∥∥
B(L1

+)

= 0.

Proof. Notice that, if 0 < δ < |η0|
2 then, η 6= 0 whenever |η− η0| < δ. Without loss of generality,

we can assume η0 > 0. From Proposition 4.3, there is ̺ ∈ (0, 1) such that rσ(Miη0H) < ̺ < 1.
In particular, there is ℓ ∈ N such that

∥∥∥(Miη0H)
ℓ
∥∥∥

1
ℓ

B(L1
+)
< ̺ < 1.

SinceMiηH converges toMiη0H in operator norm as η → η0, there is δ <
η0
2 such that

∥∥∥(MiηH)
ℓ
∥∥∥

B(L1
+)
< ̺ℓ ∀η ∈ (η0 − δ, η0 + δ).

Because of Eq. (4.5), there is ε0 > 0 small enough, such that, for any 0 < ε < ε0 we also have
∥∥∥(Mε+iηH)

ℓ
∥∥∥

B(L1
+)
< ̺ℓ ∀η ∈ (η0 − δ, η0 + δ).

One has then

R(1,Mε+iηH) =

∞∑

n=0

(Mε+iηH)
n =

∞∑

k=0

ℓ−1∑

j=0

(Mε+iηH)
kℓ+j

and, similarly

R(1,MiηH) =
∞∑

k=0

ℓ−1∑

j=0

(MiηH)
kℓ+j ∀η ∈ (η0 − δ0, η0 + δ0).

Therefore,

R(1,Mε+iηH)−R(1,MiηH) =
∞∑

k=0

ℓ−1∑

j=0

[
(Mε+iηH)

kℓ+j − (MiηH)
kℓ+j

]

for any ε ∈ (0, ε0), η ∈ (η0 − δ0, η0 + δ0). Using again (4.5), each term of the series converges
to 0 as η → 0 uniformly with respect to η ∈ (η0 − δ0, η0 + δ0). To prove the result, it is enough
therefore to show that the remainder of the series can be made arbitrarily small in operator norm
uniformly on (η0 − δ0, η0 + δ0). Since, for any k, j > 0

∥∥∥(Mε+iηH)
kℓ+j

∥∥∥
B(L1

+)
6

∥∥∥(Mε+iηH)
kℓ
∥∥∥

B(L1
+)

6

∥∥∥(Mε+iηH)
ℓ
∥∥∥
k

B(L1
+)

6 ̺kℓ

for any ε ∈ [0, ε0), we get that, for any n > 0

sup
|η−η0|<δ0

sup
ε∈(0,ε0)

∞∑

k=n

ℓ−1∑

j=0

∥∥∥(Mε+iηH)
kℓ+j − (MiηH)

kℓ+j
∥∥∥

B(L1
+)

6 2ℓ
∞∑

k=n

̺ℓ k

which tends to 0 as n→ ∞. This combined with the term-by-term convergence of the series as
ε→ 0 gives the result. �
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4.2. First consequence on the spectrum of TH. We recall the following result (see [32, Theo-
rem 1.1.(c)]):

Theorem 4.5. Under Assumption 1.1 3), S(T0) = {λ ∈ C ; Reλ 6 0}.
We first deduce from this property of T0 the following:

Theorem 4.6. If H ∈ B(L1
+, L

1
−) satisfies Assumption 1.2 then iR ⊂ S(TH).

Proof. According to Theorem 4.5, it holds

lim
ε→0+

‖R(ε+ iη,T0)‖B(X0)
= +∞, ∀η ∈ R. (4.6)

From Proposition 4.3 and Banach-Steinhaus Theorem [8, Theorem 2.2, p. 32], for any η 6= 0,

lim sup
ε→0+

‖R(1,Mε+iηH)‖B(L1
+) <∞.

Since, under (1.6), the range of H is included in Y
−
1 and ‖Ξ0u‖X0 6 ‖u‖

Y
−
1
for any u ∈ Y

−
1 (see

Lemma 2.12), one has

sup
ε>0,η∈R

‖Ξε+iηH‖B(L1
+,X0) <∞.

Moreover supε>0,η∈R ‖Gε+iη‖B(X0,L1
+) <∞ we get that, for any η ∈ R, η 6= 0, it holds:

lim sup
ε→0+

‖Ξε+iηHR(1,Mε+iηH)Gε+iη‖B(X0)
<∞.

This, together with (4.6) and (2.9) proves that, for any η ∈ R, η 6= 0, it holds

lim sup
ε→0+

‖R(ε+ iη,TH)‖B(X0)
= ∞,

whence iη ∈ S(TH) for any η 6= 0. Recalling that 0 ∈ Sp(TH) we get the conclusion. �

4.3. Spectral properties of MλH in the vicinity of λ = 0. We recall that, being M0H sto-
chastic and irreducible, the spectral radius rσ(M0H) = 1 is an algebraically simple and isolated
eigenvalue of M0H and there exists 0 < r < 1 such that

S(M0H) \ {1} ⊂ {z ∈ C ; |z| < r}
and there is a normalised and positive eigenfunction ϕ0 such that

M0Hϕ0 = 1,

∫

Γ+

ϕ0 dµ+ = 1.

BecauseM0H is stochastic, the dual operator (M0H)
⋆ (inL∞(Γ+,dµ+)) admits the eigenfunction

ϕ⋆
0 = 1Γ+

associated to the algebraically simple eigenvalue 1. The spectral projection ofM0H associated to
the eigenvalue 1 is then defined as

P(0) =
1

2iπ

∮

{|z−1|=r0}
R(z,M0H)dz

where r0 > 0 is chosen so that {z ∈ C ; |z − 1| = r0} ⊂ {z ∈ C ; |z| > r}. Such a spectral
structure is somehow inherited byMλH for λ small enough:
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Proposition 4.7. For any λ ∈ C+ the spectrum ofMλH is given by

S(MλH) = {0} ∪ {νj(λ) ; j ∈ Nλ ⊂ N}
where, Nλ is a (possibly finite) subset of N and, for each j ∈ Nλ, νj(λ) is an isolated eigenvalue

of MλH of finite algebraic multiplicities and 0 being the only possible accumulation point of the

sequence {νj(λ)}j∈Nλ
. Moreover,

|νj(λ)| < 1 for any j ∈ Nλ, λ 6= 0.

Finally, there exists δ0 > 0 such that, for any |λ| 6 δ0, λ ∈ C+,

S(MλH) ∩ {z ∈ C ; |z − 1| < ε} = {ν(λ)}
where ν(λ) is an algebraically simple eigenvalue ofMλH such that

lim
λ→0

ν(λ) = 1

and there exist an eigenfunction ϕλ ofMλH and an eigenfunction ϕ⋆
λ of (MλH)

⋆ associated to ν(λ)
such that

lim
λ→0

‖ϕ(λ)− ϕ0‖L1
+
= 0, lim

λ→0
‖ϕ⋆

λ − ϕ⋆
0‖L∞(Γ+,dµ+) = 0.

Proof. Since
∣∣∣(MλH)

2
∣∣∣ 6 (M0H)

2, one has that (MλH)
2 is weakly compact and the structure of

S(MλH) follows. The fact that all eigenvalues have modulus less than one comes from Proposi-
tion 4.3. This gives the first part of the Proposition. For the second part, becauseMλH converges
in operator norm towards M0H as λ → 0 (λ ∈ C+), it follows from general results about the
separation of the spectrum [19, Theorem 3.16, p.212] that, for |λ| < δ0 small enough, the curve
{z ∈ C ; |z − 1| = r0} is separating the spectrumS(MλH) into two disjoint parts, say

S(MλH) = Sin(MλH) ∪Sext(MλH)

whereSin(MλH) ⊂ {z ∈ C ; |z− 1| < r0} andSext(MλH) ⊂ {z ∈ C ; |z− 1| > r0}.Moreover,
the spectral projection ofMλH associated toSin(MλH), defined as,

P(λ) =
1

2iπ

∮

{|z−1|=r0}
R(z,MλH)dz, (4.7)

is converging in operator norm to P(0) as λ → 0 (Reλ > 0) so that, in particular, up to reduce
again δ0,

dim(Range(P(λ))) = dim(Range(P(0))) = 1, |λ| < δ0,Reλ > 0.

This shows that

Sin(MλH) = S(MλH) ∩ {z ∈ C ; |z − 1| < ε} = {ν(λ)}, |λ| < δ0,Reλ > 0,

where ν(λ) is a algebraically simple eigenvalue of MλH. Notice that, clearly

lim
λ→0

ν(λ) = 1 (Reλ > 0).

In the same way, defining

P(λ)⋆ =
1

2iπ

∮

{|z−1|=r0}
R(z, (MλH)

⋆)dz, |λ| 6 δ0,Reλ > 0

it holds that

lim
λ→0

‖P(λ)⋆ − P(0)⋆‖B(L∞(Γ+,dµ+)) = 0.



DIFFUSE BOUNDARY CONDITIONS 33

Set
ϕλ := P(λ)ϕ0, λ ∈ C+.

Since ϕλ converges to P(0)ϕ0 = ϕ0 6= 0, we get that ϕλ 6= 0 for λ small enough and, since ν(λ)
is algebraically simple, ϕ(λ) is an eigenfunction of MλH for |λ| small enough. In the same way,
for |λ| small enough,

ϕ⋆
λ := P(λ)⋆ϕ⋆

0 −→ P(0)⋆ϕ⋆
0 = 1

as λ→ 0 and ϕ⋆
λ is an eigenfunction of (MλH)

⋆ associated to the eigenvalue ν(λ). �

From now, we define δ > 0 small enough, so that the rectangle

Cδ := {λ ∈ C ; 0 6 Reλ 6 δ , |Imλ| 6 δ} ⊂ {λ ∈ C ; |λ| < δ0} ,
where δ0 is introduced in the previous Proposition 4.7.

Lemma 4.8. The mapping

λ ∈ Cδ 7−→ P(λ) ∈ B(L1
+)

is differentiable with

P′(0) = − 1

2iπ

∮

{|z−1|=r0}
R(z,M0H)(τ−M0H)R(z,M0H)dz.

More generally, for any η ∈ (−δ, δ),
d

dη
P(iη) = − 1

2iπ

∮

{|z−1|=r0}
R(z,MiηH)

(
d

dη
MiηH

)
R(z,MiηH)dz.

Proof. The only difficulty is to prove the differentiability on the imaginary axis. As soon as
z /∈ S (MλH) for any λ ∈ Cδ, one has

d

dλ
R(z,MλH) = −R(z,MλH)

(
d

dλ
MλH

)
R(z,MλH),

so that

d

dλ
P(λ) = − 1

2iπ

∮

{|z−1|=r0}
R(z,MλH)

(
d

dλ
MλH

)
R(z,MλH)dz ∀λ ∈ Cδ

and, since limλ→0
d
dλ (MλH) = − limλ→0 (τ−MλH) = −τ−M0H we easily get the differentiabil-

ity in 0. The same computations also give

d

dη
P(ε+iη) = − 1

2iπ

∮

{|z−1|=r0}
R(z,Mε+iη)

(
d

dη
Mε+iηH

)
R(z,Mε+iηH)dz, ∀η ∈ R\{0}.

Using now Prop. 5.4 which asserts that d
dηMε+iηH converges to d

dηMiηH as ε → 0+ uniformly

with respect to η, we deduce the second part of the Lemma. �

We can complement the above result with the following:

Lemma 4.9. With the notations of Proposition 4.7, the function λ ∈ Cδ 7→ ν(λ) ∈ C is differen-

tiable with derivative ν ′(λ) such that the limit

ν ′(0) = lim
λ→0

ν ′(λ)

exists and is given by

ν ′(0) = −
∫

Γ+

τ−(x, v)ϕ0(x, v)dµ+(x, v) < 0.
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Proof. Recall that we introduced in the proof of Proposition 4.7 the functions

ϕλ = P(λ)ϕ0, ϕ⋆
λ = P(λ)⋆ϕ⋆

0, λ ∈ Cδ

which are such that limλ→0 ϕλ = ϕ0 and limλ→0 ϕ
⋆
λ = ϕ⋆

0 = 1Γ+ . Introducing the duality

bracket 〈·, ·〉 between L1
+ and its dual (L1

+)
⋆ = L∞(Γ+,dµ+), we have in particular

lim
λ→0

〈ϕλ, ϕ
⋆
λ〉 = 〈ϕ0, ϕ

⋆
0〉 =

∫

Γ+

ϕ0dµ+ = 1.

Moreover, the mappings λ ∈ Cδ 7→ ϕλ ∈ L1
+ and λ ∈ Cδ 7→ ϕ⋆

λ ∈ (L1
+)

⋆ are differentiable with

d

dλ
ϕλ =

d

dλ
P(λ)ϕ0,

d

dλ
ϕ⋆
λ =

d

dλ
P(λ)⋆ϕ⋆

0.

Since

MλHϕλ = ν(λ)ϕλ

so that 〈MλHϕλ, ϕ
⋆
λ〉 = ν(λ)〈ϕλ, ϕ

⋆
λ〉, we deduce first that λ ∈ Cδ 7→ ν(λ) is differentiable, and

differentiating the above identity yields

d

dλ
(MλHϕλ) = ν ′(λ)ϕλ + ν(λ)

d

dλ
ϕλ.

Computing the derivatives and multiplying with ϕ⋆
λ and integrating over Γ+ we get

〈
(

d
dλMλH

)
ϕλ +MλH

d
dλϕλ, ϕ

⋆
λ〉 = ν ′(λ)〈ϕλ, ϕ

⋆
λ〉+ ν(λ)〈 d

dλϕλ, ϕ
⋆
λ〉.

Using that d
dλMλH = −τ−MλH whereas

〈MλH
d
dλϕλ, ϕ

⋆
λ〉 = 〈 d

dλϕλ, (MλH)
⋆ϕ⋆

λ〉 = ν(λ)〈 d
dλϕλ, ϕ

⋆
λ〉

we obtain

−〈τ−MλHϕλ, ϕ
⋆
λ〉+ ν(λ)〈 d

dλϕλ, ϕ
⋆
λ〉 = ν ′(λ)〈〈ϕλ, ϕ

⋆
λ〉+ ν(λ)〈 d

dλϕλ, ϕ
⋆
λ〉.

Thus

−〈τ−MλHϕλ, ϕ
⋆
λ〉 = ν ′(λ)〈ϕλ, ϕ

⋆
λ〉, ∀λ ∈ Cδ.

Letting λ→ 0, we get that

lim
λ→0

ν ′(λ) = −〈τ−M0Hϕ0, ϕ
⋆
0〉

which is the desired result since M0Hϕ0 = ϕ0. �

4.4. Boundary functions for R(λ,T0) and R(λ,TH). We have now all the tools at hands to
define the traces of the functions λ ∈ C+ 7→ R(λ,T0)f ∈ X0 and λ ∈ C+ 7→ R(λ,TH)f
along the imaginary axis. We will distinguish between the two cases η 6= 0 and η = 0. For
the latter case, the technical difficulty is tremendously increased due to the fact that 1 lies in the
spectrum of M0H and we will resort to the careful study of the spectral properties of MλH for

λ ∈ C+ with |λ| small. To handle this case, we will need the additional assumption that f has
zero mean ̺f = 0 (see (5.10)) together with a slight additional integrability f ∈ X1. Notice that
the constraint (5.10) exactly means that Pf = 0 (where P is the spectral projection associated to
the (dominant) zero eigenvalue of TH) or equivalently, f = (I− P)f .

For such a case, the assumption (5.10) that f has zero mean will be fully exploited. Related to
this assumption (5.10), we introduce

X
0
k := {f ∈ Xk ; ̺f = 0}, k ∈ N.
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which is a closed subspace of Xk. Notice that, endowed with the Xk-norm, X0
k is a Banach space.

Since ∫

Ω×V
UH(t)fdx⊗m(dv) =

∫

Ω×V
fdx⊗m(dv), ∀t > 0, f ∈ X0

one has ∫

Ω×V
R(λ,TH)fdx⊗m(dv) =

∫

Ω×V

(∫ ∞

0
e−λ tUH(t)fdt

)
dx⊗m(dv)

=
1

λ

∫

Ω×V
fdx⊗m(dv), ∀λ ∈ C+

and therefore the resolvent and all its iteratesR(λ,TH)
k leave X0

0 invariant (k > 0).
An important consequence of the spectral result stated in Prop. 4.7 is the following

Lemma 4.10. For any f ∈ X
0
1 the limit

lim
ε→0+

R(1,Mε+iηH)Gε+iηf = Φ(η)f

exists in X0 where

Φ(η)f :=

{
R(1,MiηH)Giηf if η 6= 0

R (1,M0H (I− P(0)))G0f − 1
ν′(0) [P

′(0)G0f + P(0)G′
0f)] if η = 0

(4.8)

Moreover, the convergence is uniform on any compact subset of R.

Proof. Let f ∈ X1 be fixed with ̺f = 0. For any ε > 0, η ∈ R, one writes

R(1,Mε+iηH)Gε+iηf = R(1,Mε+iηH(I− P(ε+ iη)))Gε+iηf

+R(1,Mε+iηHP(ε + iη))Gε+iηf

since P(λ) commutes withMλH. Notice that, with the notations of Proposition 4.7,

S (Mε+iηH [I− P(ε+ iη)]) ⊂ {z ∈ C ; |z| < r}
so that

rσ (Mε+iηH(I− P(ε+ iη))) 6 r < 1.

One has then, for r < r′ < r0

I− P(ε+ iη)) =
1

2iπ

∮

{|z|=r′}
R(z,Mε+iηH)dz

so that limε→0+ I− P(ε + iη)) = I− P(iη)) in B(L1
+) uniformly with respect to |η| < δ.

Consequently,

lim
ε→0+

sup
|η|6δ

‖R(1,Mε+iηH(I− P(ε+ iη)))Giηf −R(1,MiηH(I − P(iη)))Giηf‖L1
+
= 0. (4.9)

On the other hand,

R(1,Mε+iηHP(ε+ iη))Gε+iηf =
1

1− ν(ε+ iη)
P(ε+ iη)Gε+iηf

so that

lim
ε→0+

R(1,Mε+iηHP(ε+ iη))Gε+iηf =
1

1− ν(iη)
P(iη)Giηf, ∀η 6= 0
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where the limit is meant in L1
+ and we used the continuity of λ ∈ Cδ 7→ ν(λ). Whenever η = 0,

we have

R(1,MεHP(ε))Gεf =
1

1− ν(ε)
P(ε)Gεf =

ε

1− ν(ε)

P(ε)Gεf − P(0)G0f

ε

where we used the fact that, since ̺f = 0 and G0 is stochastic, one has
∫

Γ+

G0fdµ+ = 0 so P(0)G0f = 0.

As already seen, the derivative G′(0)f exists since f ∈ X1 and therefore, by virtue of Lemma 4.8,

lim
ε→0+

P(ε)Gεf − P(0)G0f

ε
= P′(0)G0f + P(0)G′

0f.

According to Lemma 4.9,

lim
ε→0+

ε

1− ν(ε)
= − 1

ν ′(0)
> 0

so that

lim
ε→0+

R(1,MεHP(ε))Gεf = − 1

ν ′(0)

[
P′(0)G0f + P(0)G′

0f
]
.

Finally, we obtain that limε→0+ R(1,MεH)Gεf exists in L1
+ and is given by

R(1,M0H(I− P(0)))G0f − 1

ν ′(0)

[
P′(0)G0f + P(0)G′

0f
]
.

This proves the convergence. Let us prove that the convergence is uniform with respect to |η| 6
δ. According to (4.9), we only need to prove that the convergence

lim
ε→0+

R(1,Mε+iηHP(ε + iη))Gε+iηf

towards

F (η) =

{
R(1,MiηHP(iη))Giηf if η 6= 0

− 1
ν′(0) [P

′(0)G0f + P(0)G′
0f)] if η = 0.

is uniform with respect to |η| < δ.We argue by contradiction, assuming that there exist c > 0, a
sequence (εn)n ⊂ (0,∞) converging to 0 and a sequence (ηn)n ⊂ (−δ, δ) such that

‖R(1,Mεn+iηnHP(εn + iηn))Gεn+iηnf − F (ηn)‖L1
+
> c > 0. (4.10)

Up to considering a subsequence, if necessary, we can assume without loss of generality that
limn ηn = η0 with |η0| 6 δ. First, one sees that then η0 = 0 since the convergence ofR(1,Mε+iηHP(ε+
iη)Gε+iηf to F (η) is actually uniform in any neighbourhood around η0 6= 0 (see (??)). Because
η0 = 0, defining λn := εn + iηn, n ∈ N, the sequence (λn)n ⊂ Cδ is converging to 0. Now, as
before,

R(1,MλnHPλn)Gλnf =
λn

1− ν(λn)

P(λn)Gλnf − P(0)G0f

λn
, n ∈ N

with

lim
n→∞

λn
1− ν(λn)

= − 1

ν ′(0)
, lim

n→∞

P(λn)Gλnf − P(0)G0f

λn
=
[
P′(0)G0f + P(0)G′

0f
]
.
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Therefore,

lim
n→∞

R(1,MλnHP(λn))Gλnf = − 1

ν ′(0)

[
P′(0)G0f + P(0)G′

0f
]
.

One also has

F (ηn) = R(1,MiηnHP(iηn))Giηnf =
iηn

1− ν(iηn)

P(iηn)Giηnf − P(0)G0f

iηn
, n ∈ N

so that F (iηn) has the same limit − 1
ν′(0) [P

′(0)G0f + P(0)G′
0f ] as n → ∞. This contradicts

(4.10). �

One deduce from this the following

Proposition 4.11. For any f ∈ X
0
0,

Ξε+iηHR(1,Mε+iηH)Giηf ∈ Xk ∀k ∈ {0, . . . , NH}
and, for any k 6 NH,

lim
ε→0+

Ξε+iηHR(1,Mε+iηH)Giηf = ΞiηHΦ(η)f (4.11)

where the convergence is meant in C0(R,Xk).

Proof. The first part of the result is clear from the regularising properties of Ξε+iηH. Let us focus
on the proof of (4.11) and let us fix f ∈ X0 satisfying (5.10) and k ∈ {0, . . . , NH}. Let [a, b] be a
compact subset of R. Using (4.4) in Proposition 4.1 we see that

sup
η∈[a,b]

‖Ξε+iηHR(1,Mε+iηH)Giηf − ΞiηHΦ(η)f‖Xk

6 εD‖H‖B(L1
+,Y−

k+1)
sup

η∈[a,b]
‖R(1,Mε+iηH)Giηf‖Xk

+ ‖Ξ0‖B(Y−
k+1,Xk)

‖H‖B(L1
+,Y−

k+1)
sup

η∈[a,b]
‖R(1,Mε+iηH)Giηf − ΞiηHΦ(η)f‖Xk

(4.12)

where we used that supη∈R ‖ΞiηH‖B(L1
+,Xk)

6 ‖Ξ0‖B(Y−
k+1,Xk)

‖H‖B(L1
+,Y−

k+1)
. From Corollary

4.10 one concludes that supε∈(0,1) supη∈[a,b] ‖R(1,Mε+iηH)Giηf‖Xk
is finite while the last term

in (4.12) converges to 0 as ε→ 0+. This shows that

lim
ε→0+

sup
η∈[a,b]

‖Ξε+iηHR(1,Mε+iηH)Giηf − ΞiηHΦ(η)f‖Xk
= 0.

Let us then focus on |η| > R, R > 0 arbitrary. We already saw that

sup
ε∈[0,1]

sup
|η|>R

‖Ξε+iηHR(1,Mε+iηH)‖B(L1
+,Xk)

<∞,

which, combined with (4.2) in Prop. 4.1, gives

lim
|η|→∞

sup
ε∈[0,1]

‖Ξε+iηHR(1,Mε+iηH)Gε+iηf‖Xk
= 0

and this implies clearly the result. �

Regarding the behaviour ofR(ε+ iη,T0)f , one has
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Proposition 4.12. For any f ∈ X0 and ε > 0, the mapping

η ∈ R 7−→ R(ε+ iη,T0)f ∈ X0

belongs to C k
0 (R,X0) for any k ∈ N.

Moreover, given k ∈ N, for any f ∈ Xk+1,

lim
ε→0+

R(ε+ iη,T0)f

exists in C0(R,Xk). Its limit is denoted R(iη,T0)f.

Proof. We begin with the first part of the Proposition. Recalling that

R(ε+ iη,T0)f =

∫ ∞

0
e−iηtε−εtU0(t)fdt

with t ∈ R 7→ e−εtU0(t)f ∈ X0 Bochner integrable one deduces from Riemann-Lebesgue
Theorem that

lim
|η|→∞

‖R(ε+ iη,T0)f‖X0
= 0.

Given k ∈ N, because

dk

dηk
R(ε+ iη,T0)f = (−i)k

∫ ∞

0
tke−iηte−εtU0(t)f dt

the exact same argument shows that

lim
|η|→∞

∥∥∥∥
dk

dηk
R(ε+ iη,T0)f

∥∥∥∥
X0

= 0

which proves that η ∈ R 7→ R(ε + iη,T0)f belongs to C k
0 (R,X0). Let us focus now on the

limit for ε→ 0+. Given f ∈ Xk+1, we deduce from Lemma 2.7 and the dominated convergence
theorem that

lim
ε→0+

R(ε+ iη,T0)f = lim
ε→0+

∫ ∞

0
e−iηte−εtU0(t)fdt =

∫ ∞

0
e−iηtU0(f)fdt

exists in Xk . The limit is of course denotedR(iη,T0) and one has

‖R(ε+ iη,T0)f −R(iη,T0)f‖Xk
6

∫ ∞

0

∣∣e−εt − 1
∣∣ ‖U0(t)f‖Xk

dt ∀η ∈ R, ε > 0.

Thus

lim
ε→0+

sup
η∈R

‖R(ε+ iη,T0)f −R(iη,T0)f‖Xk
= 0 (4.13)

still using the fact that t 7→ ‖U0(t)f‖Xk
is integrable over [0,∞) and the dominated convergence

theorem. �

Remark 4.13. One deduces from the above Proposition and Banach-Steinhaus Theorem [8, Theo-
rem 2.2, p. 32] that

Ck := sup
{
‖R(ε+ iη,T0)‖B(Xk+1,Xk)

; ε ∈ (0, 1] ; η ∈ R

}
<∞ ∀k ∈ N. (4.14)
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Corollary 4.14. Given k ∈ N, if

g : λ ∈ C+ 7−→ g(λ) ∈ Xk+1

is a continuous mapping such that

lim
|η|→∞

‖g(ε + iη)‖Xk+1
= 0 ∀ε > 0

while the limit

g̃(η) := lim
ε→0+

g(ε+ iη)

exists in Xk+1 uniformly with respect to η ∈ R, then

lim
ε→0+

R(ε+ iη,T0)g(ε + iη) = R(iη,T0)g̃(η)

in C0(R,Xk).

Proof. Since the convergence (4.13) holds for any f ∈ Xk+1, the convergence is of course uniform
on any compact subset of Xk+1. Since by assumption the mapping g̃ : η ∈ R 7→ g̃(η) ∈ X0

belongs to C0(R,Xk+1), the set

{g̃(η) ; η ∈ R} is a compact subset of Xk+1.

Thus
sup
ε→0+

sup
η∈R

‖R(ε+ iη,T0)g̃(η)−R(iη,T0)g̃(η)‖Xk
= 0

Now, noticing that, for any ε ∈ (0, 1], it holds

‖R(ε+ iη,T0)g(ε + iη)−R(iη,T0)g̃(η)‖Xk
6 ‖R(ε+ iη,T0) (g(ε+ iη)− g̃(η))‖

Xk

+ ‖R(ε+ iη,T0)g̃(η) −R(iη,T0)g̃(η)‖Xk

Ck ‖g(ε+ iη)− g̃(η)‖
Xk+1

+ ‖R(ε+ iη,T0)g̃(η)−R(iη,T0)g̃(η)‖Xk

where Ck is defined in (4.14), we deduce easily that

lim
ε→0+

sup
η∈R

‖R(ε+ iη,T0)g(ε + iη)−R(iη,T0)g̃(η)‖Xk
= 0

which proves the result. �

The convergence established in Prop. 4.12 extends to derivatives ofR(ε+ iη,T0)f

Lemma 4.15. Given k ∈ N and f ∈ Xk+1. It holds

lim
ε→0+

sup
η∈R

∥∥∥∥
dk

dηk
R(ε+ iη,T0)f − dk

dηk
R(iη,T0)f

∥∥∥∥
X0

= 0.

Consequently, the mapping

η ∈ R 7−→ R(iη,T0)f ∈ X0

belongs to C k
0 (R,X0).

Proof. As already established

dk

dηk
R(ε+ iη,T0)f = (−i)k

∫ ∞

0
e−iηte−εtU0(t)fdt

and, since

R(iη,T0)f =

∫ ∞

0
e−iηtU0(t)fdt
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one sees easily that, if f ∈ Xk+1,

dk

dηk
R(iη,T0)f = (−i)k

∫ ∞

0
e−iηttkU0(t)fdt

is well-defined in X0 thanks to Lemma 2.7. One concludes then exactly as in Prop. 4.12. �

Recalling that

R(ε+ iη,TH) = R(ε+ iη,T0) + Ξε+iηHR(1,Mε+iηH)Gε+iη

the previous results allows to prove the following

Proposition 4.16. For any k ∈ N, k 6 NH and any f ∈ X
0
k+1 the limit

lim
ε→0+

R(ε+ iη,TH)f

exists in C0(R,Xk). We denote by R(iη,TH)f the limit.

Proof. Using the above splitting R(ε + iη,TH) = R(ε + iη,T0) + Ξε+iηHR(1,Mε+iηH)Gε+iη,
Prop. 4.12 shows the convergence of the first term and (4.11) gives the one of the second one.
This proves the result with

R(iη,TH)f = R(iη,T0)f + ΞiηHΦ(η)f

and of course the mapping η ∈ R 7→ R(iη,TH)f belongs to C0(R,Xk). �

Remark 4.17. Notice that

R(ε+ iη,TH) ∈ B(Xk+1,Xk) ∀ε > 0, η ∈ R

and one sees from Prop. 4.16 that R(iη,TH) ∈ B(X0
k+1,Xk) with, thanks to Banach-Steinhaus

Theorem,

sup
{
‖R(ε+ iη,TH)‖B(X0

k+1,Xk)
; ε ∈ (0, 1] ; η ∈ R

}
:= Ck <∞

for any k ∈ {0, . . . , NH} .Notice also that one cannot hope to go beyond the threshold value k = NH

since ΞiηH maps L1
+ in XNH

but not in XNH+1.

As it was the case forR(ε+iη,T0), the above convergence extends to derivatives. The crucial
observation is the following general property of the resolvent

dk

dλk
R(λ,TH) = (−1)kk!R(λ,TH)

k+1, λ ∈ C+.

One has then the key technical result

Proposition 4.18. Assume that H satisfies assumptions 1.2 and let f ∈ X
0
NH+1. Then,

lim
ε→0+

[R(ε+ iη,TH)]
k f := [R(iη,TH]

k f in C0

(
R,XNH−(k−1)

)

holds for any k ∈ {0, . . . , NH + 1}.
Proof. The proof is made by induction over k ∈ N, k 6 NH + 1 For k = 1, the result holds true
by Proposition 4.16. Let k ∈ N, k 6 NH and assume the result to be true for any j ∈ {1, . . . , k}.
Let us prove the result is still true for k + 1. One recalls that

R(ε+ iη,TH) = R(ε+ iη,T0) + Υ0(ε+ iη)
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where Υ0(λ) = ΞλHR(1,MλH)Gλ. One has

[R(ε+ iη,TH)]
k+1 f = R(ε+ iη,T0) [R(ε+ iη,TH)]

k f

+Υ0(ε+ iη) [R(ε+ iη,TH)]
k f. (4.15)

On the one hand, our induction hypothesis implies that limε→0+ [R(ε+ iη,TH]
k f = [R(iη,TH)]

k f
in C0(R,XNH+1−k). Thanks to Corollary 4.14, we deduce that

lim
ε→0+

R(ε+ iη,T0) [R(ε+ iη,TH)]
k f = R(iη,T0) [R(iη,TH)]

k f in C0(R,XNH−k).

(4.16)
On the other hand, from the induction hypothesis

lim
|η|→∞

‖ [R(iη,TH]
k f‖XNH+1−k

= 0

which implies in particular that

lim
|η|→∞

‖ [R(iη,TH]
k f‖X0 = 0.

Since moreover [R(iη,TH]
k f ∈ X

0
0 and

sup
η∈R

‖ΞiηHΦ(η)‖B(X0
0,XNH−k)

<∞

where Φ(η)f is defined in Lemma 4.10, one sees that

lim
|η|→∞

∥∥∥ΞiηHΦ(η) [R(iη,TH]
k f
∥∥∥
XNH−k

= 0.

Now, to prove that

lim
ε→0

Υ0(ε+ iη) [R(ε+ iη,TH)]
k f = ΞiηHΦ(η) [R(iη,TH)]

k f

in C0(R,XNH−k), one argues along the exact same lines as those used to prove (4.16) since, ac-
cording to (4.11),

lim
ε→0

sup
η∈R

‖Υ0(ε+ iη)g − ΞiηHΦ(η)g‖XNH−k
= 0, ∀g ∈ X

0
0

one can resume the argument of Corollary 4.14 to deduce that, for any continuous mapping
g : λ ∈ C+ 7−→ g(λ) ∈ X

0
0 such that

lim
|η|→∞

‖g(ε + iη)‖X0 = 0 ∀ε > 0 and g̃(η) := lim
ε→0+

g(ε + iη)

exists in X
0
0 uniformly with respect to η ∈ R, it holds

lim
ε→0

sup
η∈R

‖Υ0(ε+ iη)g(ε + iη)− ΞiηHΦ(η)g̃(η)‖XNH−k
= 0.

Applying this with g(ε+ iη) = [R(ε+ iη,TH)]
k f and g̃(iη) = [R(iη,TH)]

k f we deduce that

lim
ε→0

Υ0(ε+ iη) [R(ε+ iη,TH)]
k f = ΞiηHΦ(η) [R(iη,TH]

k f in C0(R,XNH−k)

which, combined with (4.16) and (4.15) achieves the induction. �

A fundamental consequence of the previous Proposition is
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Corollary 4.19. Assume that H satisfies assumptions 1.2. For any f ∈ X
0
NH+1, the mapping

η ∈ R 7−→ R(iη,TH)f

defined in Proposition 4.16 belongs to CNH

0 (R,X0) and the convergence

lim
ε→0+

R(ε+ iη,TH)f = R(iη,THf)

holds in CNH

0 (R,X0).

Proof. Let f ∈ X
0
NH+1 be fixed. Since, for any k ∈ {1, . . . , NH} and any ε > 0, η ∈ R,

dk

dηk
R(ε+ iη,TH)f = (−i)kk! [R(ε+ iη,TH)]

k+1 f

the result follows directly from Proposition 4.18 where the derivatives ofR(iη,TH)f are defined
by

dk

dηk
R(iη,TH)f = (−i)kk! [R(iη,TH)]

k+1 f

for any k ∈ {0, . . . ,NH}. �

5. Definition and regularity of the boundary function of Υn(λ)

This section is devoted to the construction of the trace along the imaginary axis, that is when
λ = iη, η ∈ R, of

Υn(λ)f = ΞλH (MλH)
nR(1,MλH)Gλf, λ ∈ C,Reλ > 0, n ∈ N

for a suitable class of function f. The crucial observation here is the following alternative repre-
sentation of Υn(λ)f which can also be written as

Υn(λ) = R(λ,TH)−R(λ,T0)−
n∑

k=0

ΞλH (MλH)
k
Gλ, λ ∈ C+ (5.1)

as can easily be seen from the fact that

R(λ,TH) = R(λ,T0) +

∞∑

k=0

ΞλH (MλH)
k
Gλ.

We already investigated the existence and regularity of the traces on the imaginary axis of the
first two terms in (5.1) so we just need to focus on the properties of the finite sum

sn(λ) :=

n∑

p=0

ΞλH (MλH)
p
Gλ, λ ∈ C+. (5.2)

The differentiability of the various involved (single) operators is summarized in the following
whose proof is easy and postponed to Appendix A. In the sequel, the notion of differentiability

of functions h : λ ∈ C+ 7→ h(λ) ∈ Y (where Y is a given Banach space) is the usual one but

we have to emphasize the fact that limits are always meant in C+
2

2This means for instance that, if λ0 ∈ C+, h is differentiable means that it is holomorphic in a neighborhoud of

λ0 whereas, for λ0 = iη0, η0 ∈ R, the differentiability at λ0 of h at means that there exists h′(λ0) ∈ Y such that

lim
λ→λ0

λ∈C+

∥

∥

∥

∥

h(λ)− h(λ0)

λ− λ0
− h

′(λ0)

∥

∥

∥

∥

Y

= 0
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Proposition 5.1. We have the following general differentiability properties:

(1) For any k > 1 and any f ∈ Xk , the limit

lim
λ→0

dk

dλk
Gλf = (−1)kG0(t

k
+f)

exists in L1
+ and

sup
λ∈C+

∥∥∥∥
dj

dλj
Gλf

∥∥∥∥
L1
+

6 Dj‖f‖Xj
6 Dj‖f‖Xk

, ∀j ∈ {0, . . . , k}. (5.3)

(2) For any k 6 NH∥∥∥∥
dk

dηk
Mε+iηH− dk

dηk
MiηH

∥∥∥∥
B(L1

+)

6 εD ‖H‖B(L1
+,Y−

k+1)
∀η ∈ R, ε > 0. (5.4)

Remark 5.2. Notice that the above expression of
dj

dλj
Gλf shows that, for f ∈ Xj ,

dj

dλj
Gλf = (−1)jGλ

[
tj+f

]
(5.5)

where tj+ denotes the multiplication operator by the function (x, v) 7→ tj+(x, v).

As a consequence

Corollary 5.3. For any k ∈ N such that H ∈ B(L1
+,Y

−
k+1) (i.e. k 6 NH), the function

λ = ε+ iη ∈ C+ 7−→ dj

dηj
MλH ∈ B(L1

+), 0 6 j 6 k

can be extended to a continuous functions on C+. In particular, the mapping

η ∈ R 7−→ MiηH ∈ B(L1
+) is of class CNH (5.6)

with bounded derivatives up to order NH. In the same way, the function

λ = ε+ iη ∈ C+ 7−→ dj

dηj
ΞλH ∈ B(L1

+,X0), 0 6 j 6 k

can be extended to a continuous functions on C+ and the mapping

η ∈ R 7−→ ΞiηH ∈ B(L1
+) is of class CNH (5.7)

with bounded derivatives up to order NH.

Moreover, for any ϕ ∈ Y
−
1 , the limit limλ→0

d

dλ
Mλϕ exists in L1

+. In particular,

lim
λ→0

d

dλ
MλH = −τ−M0H

exists in B(L1
+) where, as before, we use the same symbol τ− for the measurable function τ−(·, ·)

and the multiplication operator by that function and we recall that limits are meant in C+, i.e.

lim
λ→0

{. . .} = lim
λ→0
λ∈C+

{. . .}.

where ‖ · ‖Y is the norm on Y .
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We refer to Appendix A for the full proof of Proposition 5.1 as well as that of Corollary 5.3.
All the above results allow to prove the regularity the finite sum sn(λ) defined by (5.2)

Proposition 5.4. For any f ∈ XNH+1, the mapping

η ∈ R 7−→ sn(ε+ iη)f ∈ X0 belongs to CNH

0 (R,X0)

for any ε > 0 with

lim
|η|→∞

sup
ε∈(0,1]

∥∥∥∥
dk

dηk
sn(ε+ iη)f

∥∥∥∥
X0

= 0 (5.8)

for any k ∈ {0, . . . , NH}. In particular

lim
ε→0+

sup
η∈R

‖sn(ε+ iη)f − sn(iη)f‖X0
= 0.

Proof. Let n ∈ N be fixed. For simplicity of notations, for any p ∈ {0, . . . , n}, we define
Lp(λ) = (MλH)

p , λ ∈ C+

and denotes its derivatives of order j by L
(j)
p (λ). Computing derivatives with Leibniz rule we

get, for any k ∈ N

dk

dλk
sn(λ)f =

n∑

p=0

k∑

ℓ=0

(
k
ℓ

)(
dk−ℓ

dλk−ℓ
ΞλH

)
dℓ

dλℓ
[Lp(λ)Gλf ]

=

n∑

p=0

k∑

ℓ=0

ℓ∑

j=0

(
ℓ
j

)(
k
ℓ

)(
dk−ℓ

dλk−ℓ
ΞλH

)
L(j)p (λ)

dℓ−j

dλℓ−j
[Gλf ]

Now, as observed (see the proofs of Proposition 5.1 and Corollary 5.3), for any j

dj

dλj
Ξλ = (−1)jtj−Ξλ,

dj

dλj
Gλf = (−1)jGλ

(
tj+f

)

where tj± denote here the multiplication operator by t±(x, v)
j . Therefore

dk

dλk
sn(λ)f =

n∑

p=0

k∑

ℓ=0

ℓ∑

j=0

(
ℓ
j

)(
k
ℓ

)
(−1)k−jtk−ℓ

− ΞλHL
(j)
p (λ)Gλ

[
tℓ−j
+ f

]
. (5.9)

If f ∈ Xk , then t
ℓ−j
+ f ∈ X0 and L

(j)
p (λ)Gλ

[
tℓ−j
+ f

]
∈ L1

− so that (see Eqs. (5.6)–(5.7))

HL(j)p (λ)Gλ

[
tℓ−j
+ f

]
∈ Y

−
NH+1 and ΞλHL

(j)
p (λ)Gλ

[
tℓ−j
+ f

]
∈ XNH

.

Then, if k 6 NH,

tℓ−j
− ΞλHL

(j)
p (λ)Gλ

[
tℓ−j
+ f

]
∈ X0

for all ℓ ∈ {0, . . . , k}, j ∈ {0, . . . , ℓ}. This easily proves that the mapping

λ ∈ C+ 7−→ sn(λ)f ∈ X0

is of class CNH with

sup
λ∈C+

∥∥∥∥
dk

dλk
sn(λ)f

∥∥∥∥
X0

6 Ck‖f‖XNH+1
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for some positive Ck > 0 depending only on k ∈ {0, . . . , NH}. Let us now prove (5.8) which

will also prove the fact that the mapping η 7→ sn(ε + iη)f belongs to CNH

0 (R,X0). The proof
of (5.8) follows exactly the lines of Proposition 4.11. Indeed, for any k 6 NH, p ∈ {0, . . . , n},
ℓ ∈ {0, . . . , k} and j ∈ {0, . . . , ℓ}, one easily see that, for any R > 0,

sup
ε∈[0,1]

sup
|η|>R

∥∥∥tk−ℓ
− Ξε+iηHL

(j)
p (ε+ iη)

∥∥∥
B(L1

+,X0)
6 sup

ε∈[0,1]
sup
|η|>R

∥∥∥Ξε+iηHL
(j)
p (ε+ iη)

∥∥∥
B(L1

+,Xk)

6 ‖Ξ0‖B(Y−
k+1,Xk)

‖H‖B(L1
+ ,Y−

k+1)
sup
|η|>R

‖L(j)p (iη)‖B(L1
+ ,Xk)

.

Now, one can prove that that there is Ck > 0 such that

sup
|η|>R

‖L(j)p (iη)‖B(L1
+ ,Xk)

6 Ck <∞

(see Lemma A.2 in Appendix A) from which

sup
ε∈[0,1]

sup
|η|>R

∥∥∥tk−ℓ
− Ξε+iηHL

(j)
p (ε+ iη)

∥∥∥
B(L1

+,X0)
<∞.

Combining thiswith (4.2) in Prop. 4.1 and the representation (5.9) proves (5.8). The fact that sn(ε+

iη)f converges to sn(iη)f in CNH

0 (R,X0) is then deduced from (5.9) and the limits established
in Proposition 4.1. �

We have all the tools to prove the first part of Theorem 1.7 in the Introduction.

Theorem 5.5. Let f ∈ XNH+1 be such that

̺f =

∫

Ω×V
f(x, v)dx⊗m(dv) = 0. (5.10)

Then, for any n > 0 the limit

lim
ε→0+

Υn(ε+ iη)f,

exists in CNH

0 (R,X0). Its limit is denoted Ψn(η)f .

Proof. We know from Corollary 4.19 that

lim
ε→0+

R(ε+ iη,TH)f = R(iη,TH)f

holds in CNH

0 (R,X0). In the same way, Lemma 4.15 shows that

lim
ε→0+

R(ε+ iη,T0)f = R(iη,T0)f

holds in CNH

0 (R,X0). Since one sees easily from Prop. 5.4 that

lim
ε→0+

sn(ε+ iη)f = sn(iη)f in CNH

0 (R,X0)

we get the result from the representation (5.1). �

Remark 5.6. Notice that, using the representation

Υn(ε+ iη)f = Ξε+iηH (Mε+iηH)
nR(1,Mε+iηH)Gε+iη, ε > 0, η ∈ R

together with Lemma 4.10, it is easy to see, by uniqueness of the limit, that

Ψn(η)f = ΞiηH (MiηH)
n
Φ(η)f, ∀η ∈ R. (5.11)
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where Φ(η)f is defined in (4.8).

In the following, we show also that, if n is large enough, the boundary function is also inte-
grable.

Lemma 5.7. Assume that n > 2NHp (with p defined in (1.7)) and f ∈ X
0
NH+1. Then, the derivatives

of the trace function

η ∈ R 7→ Ψn(η)f ∈ X0

are integrable with moreover
∫

R

∥∥∥∥
dk

dηk
Ψn(η)f

∥∥∥∥
X0

dη <∞ ∀k ∈ {0, . . . , NH}.

Proof. We use here the representation of the boundary functionΨn(η)f in (5.11). We recall that,
for |η| > R, it holds Φn(η)f = R(1,MiηH)Giηf and

Ψn(η)f = Υn(iη)f = ΞiηH (MiηH)
nR(1,MiηH)Giηf

where we can write

R(1,MiηH) =

∞∑

m=0

p−1∑

r=0

(MiηH)
mp+r

where R > 0 is chosen such that ‖(MiηH)
p‖B(L1

+) 6
1
2 for |η| > R. Introducing, as in the proof

of Proposition 5.4,

Lk(λ) = (MλH)
k , λ ∈ C+ ; k ∈ N

one has then

Ψn(η)f =

∞∑

m=0

p−1∑

r=0

ΞiηHLmp+r+n(iη)Giηf

Exactly as in Proposition 5.4, Eq. (5.9), we have,

dk

dηk
Ψn(η)f =

∞∑

m=0

p−1∑

r=0

k∑

ℓ=0

ℓ∑

j=0

(
ℓ
j

)(
k
ℓ

)
(−i)k−jtk−ℓ

− ΞiηHL
(j)
mp+r+n(iη)Giη

[
tℓ−j
+ f

]

Recall now that, for any ℓ− j 6 k 6 NH,

sup
|η|>R

∥∥∥Giη

[
tℓ−j
+ f

]∥∥∥
L1
+

6 ‖f‖XNH+1

and ∥∥∥tk−ℓ
− ΞiηH

∥∥∥
B(L1

+)
6 ‖Ξ0‖B(Y−

k ,Xk)
‖H‖B(L1

+,Y−
k )

from which
∥∥∥∥
dk

dηk
Ψn(η)f

∥∥∥∥
X0

6 Ck‖f‖XNH+1

∞∑

m=0

p−1∑

r=0

k∑

j=0

∥∥∥L(j)mp+r+n(iη)
∥∥∥

B(L1
+)
, ∀|η| > R. (5.12)

We chose now n > 2kp and use inequality (A.4) in Lemma A.2 to deduce that, for any m >

0, r > 0 and j ∈ {0, . . . , k}, there is Ck > 0 such that
∥∥∥L(j)mp+r+n(iη)

∥∥∥
B(L1

+)
6 Ck ((m+ 1)p+ n)k

∥∥∥L⌊mp+r+n

2k
⌋(iη)

∥∥∥
B(L1

+)
.
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Then, since n > 2kp, one has ⌊mp+r+n
2k

⌋ > p+ ⌊m
2k
⌋p so that

∥∥∥L(j)mp+r+n(iη)
∥∥∥

B(L1
+)

6 Ck‖Lp(iη)‖B(L1
+) ((m+ 1)p+ n)k

∥∥∥L⌊ m

2k
⌋p(iη)

∥∥∥
B(L1

+)

6 Ck‖Lp(iη)‖B(L1
+) ((m+ 1)p+ n)k 2

−⌊ m

2k
⌋

where we recall that ‖Lp(iη)‖B(L1
+) 6

1
2 for any |η| > R. Since

∞∑

m=0

p−1∑

r=0

k∑

j=0

((m+ 1)p+ n)k 2
−⌊ m

2k
⌋
6 p(k + 1)

∞∑

m=0

((m+ 1)p+ n)k 2
−⌊ m

2k
⌋
<∞

we deduce from (5.12) that there is a positive constant βk > 0 such that
∥∥∥∥
dk

dηk
Ψn(η)f

∥∥∥∥
X0

6 βk‖f‖XNH+1
‖Lp(iη)‖B(L1

+) ∀|η| > R. (5.13)

Using (1.7) once again, we deduce the result. �

5.1. A second representation of the remainder terms. Theorem 5.5 allows to establish the
following new representation of Sn(t) where we recall that Sn(t) = UH(t) −

∑n
k=0Uk(t) has

been defined in Proposition 3.8.

Theorem 5.8. For any n > p where p is defined through (1.7) and any f ∈ XNH+1 satisfying

(5.10), one has

Sn(t)f = lim
ℓ→∞

1

2π

∫ ℓ

−ℓ
exp (iηt)Ψn(η)fdη =

1

2π

∫ ∞

−∞
exp (iηt)Ψn(η)fdη, ∀t > 0

(5.14)
where the convergence holds in X0. Consequently, for any n > 2NHp and any f ∈ X

0
NH+1,

Sn(t)f =

(
− i
t

)NH
∫ ∞

−∞
exp (iηt)

dNH

dηNH
Ψn(η)f

dη

2π
(5.15)

holds true for any t > 0 where the convergence of the integral holds in X0.

Proof. We first deduce from the uniform convergence obtained in Theorem 5.5 that, for any ℓ > 0
and any f ∈ XNH+1 and any t > 0

lim
ε→0+

1

2π

∫ ℓ

−ℓ
exp ((ε+ iη)t)Υn(ε+ iη)fdη =

1

2π

∫ ℓ

−ℓ
exp (iηt)Ψn(η)fdη (5.16)

where the convergence occurs in X0.
For any η 6= 0, one has Ψn(η)f = ΞiηH (MiηH)

nR(1,MiηH)Giηf so that

‖Ψn(η)f‖X0 6 ‖Ξ0‖B(Y−
1 ,X0)

‖H‖B(L1
+ ,Y−

1 ) ‖(MiηH)
n‖B(L1

+)

‖R(1,MiηH)‖B(L1
+) ‖Giη‖B(X1,L1

+)‖f‖X1

6 ‖Ξ0‖B(Y−
1 ,X0)

‖H‖B(L1
+,Y−

1 ) ‖(MiηH)
n‖B(L1

+) ‖R(1,MiηH)‖B(L1
+) ‖f‖X1 (5.17)

where we used that |Ξiη| 6 Ξ0, ‖Giη‖B(X0,L1
+) 6 ‖G0‖B(X0,L1

+) 6 1 and ‖MiηH‖B(L1
+) 6 1.

Recall (see Lemma 2.16) that we can find R > 0 large enough such that

‖(MiηH)
p‖B(L1

+) 6
1

2
, ∀|η| > R.
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Arguing exactly as in Corollary 4.4, one proves easily that, for |η| > R,

R(1,MiηH) =

∞∑

m=0

p−1∑

j=0

(MiηH)
mp+j

from which

‖R(1,MiηH)‖B(L1
+) 6 p

∞∑

m=0

‖ (MiηH)
p ‖mB(L1

+) =
p

1− ‖(MiηH)
p‖B(L1

+)

6 2p

Combining this with (5.17), one gets

‖Ψn(η)f‖X0 6 2p‖Ξ0‖B(Y−
1 ,X0)

‖H‖B(L1
+ ,Y−

1 ) ‖(MiηH)
n‖B(L1

+) ‖f‖X1 , |η| > R.

Moreover, for n > p, ‖ (MiηH)
n ‖B(L1

+) 6 ‖ (MiηH)
p ‖B(L1

+) so that, there exists C > 0 such

that
‖Ψn(η)f‖X0 6 C‖ (MiηH)

p ‖B(L1
+)‖f‖X1 |η| > R, n > p.

The same exact reasoning shows that, actually,

sup
ε∈(0,1)

‖ exp ((ε+ iη)t) Υn(ε+ iη)f‖X0 6 C exp(t) ‖(MiηH)
p‖B(L1

+) ‖f‖X1

for any |η| > R and any n > p. Since the mapping |η| > R 7−→ ‖(MiηH)
p‖B(L1

+) is integrable

thanks to (1.7), we deduce, from the dominated convergence theorem that

lim
ε→0+

∫

|η|>R
exp ((ε+ iη)t)Υn(ε+ iη)fdη =

∫

|η|>R
exp(iηt)Ψn(η)fdη

where the convergence holds in X0. This proves (5.14) according to the representation formula
(3.12). The proof of (5.15) is then deduced easily after NH integration by parts, using Lemma
5.7. �

5.2. Decay rate: proof of Theorem 1.3. We can prove our main result stated in the Introduc-
tion

Proof of Theorem 1.3. Let us fix f ∈ XNH+1. To prove the result, we can assume without loss of
generality that ̺f = 0, i.e f ∈ X

0
NH+1. Of course, the term Θf (·) in Theorem 1.3 is given by

Θf (η) =
dNH

dηNH
Ψn(η)f ∈ X0, η ∈ R

for some suitable choice of n ∈ N. Recall first that, for any n ∈ N and any t > 0

UH(t)f =

∞∑

k=0

Uk(t)f =

n∑

k=0

Uk(t) + Sn(t)f

where, according to Proposition 3.8,
∥∥∥∥∥

n∑

k=0

Uk(t)f

∥∥∥∥∥
X0

6 Cn(1 + t)−NH−1, ∀t > 0

for some positive constant Cn depending on n and f (but not on t). Choosing now n > 2NHp

and using (5.15), one obtains

‖UH(t)f‖X0
6 Cn(1 + t)−NH−1 + t−NHFn(t)
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where

Fn(t) =

∥∥∥∥
(−i)NH

2π

∫ ∞

−∞
exp (iηt)

dNH

dηNH
Ψn(η)fdη

∥∥∥∥
X0

is such that limt→∞Fn(t) = 0 according to Riemann-Lebesgue Theorem (recall the mapping

η 7→ dNH

dηNH
Ψn(η)f ∈ X0 is integrable over R according to Lemma 5.7). This proves the first part

of the result. Let us now prove the second part of it and assume that (1.9) holds true, i.e.
∫

|η|>R
‖(MiηH)

p‖B(L1
+) dη 6

C(p)

Rβ
, ∀R > 0

for some C(p) > 0.We already observed that the mapping

Θf : η ∈ R 7−→ dNH

dηNH
Ψn(η)f ∈ X0

belongs to C0(R,X0) so is uniformly continuous. This allows to define a (minimal) modulus of
continuity

ωf (s) := sup
{
‖Θf (η1)−Θf (η2)‖X0

; η1, η2 ∈ R, |η1 − η2| 6 s
}
, s > 0.

The estimate then comes from some standard reasoning about Fourier transform (see for instance
[16, Theorem 3.3.9 (b), p. 196] for similar considerations for the decay of Fourier coefficients of
Hölder function). Namely, introducing the Fourier transform of the (Bochner integrable) function
Θf as

Θ̂f (t) =

∫

R

exp(iηt)Θf (η)dη ∈ X0, t > 0

one has then, since eiπ = −1 = exp(iπt/t), t > 0,

Θ̂f (t) = −
∫

R

exp
(
iηt+ i

π

t
t
)
Θf (η)dη = −

∫

R

exp (iyt)Θf

(
y − π

t

)
dy

which gives, taking the mean of both the expressions of Θ̂f (t),

Θ̂f (t) =
1

2

∫

R

exp (iηt)
(
Θf (η)−Θf

(
η − π

t

))
dη.

Consequently, if one assumes that R > 2π,
∥∥∥Θ̂f (t)

∥∥∥
X0

6
1

2

∫

|η|6R

∥∥∥Θf (η)−Θf

(
η − π

t

)∥∥∥
X0

dη +

∫

|η|>R
2

‖Θf (η)‖X0
dη

where we used that {η ∈ R ; |η + π
t | > R} ⊂ {η ∈ R ; |η| > R − π} ⊂ {η ∈ R ; |η| > R

2 }
since t > 1, R − π > R

2 . Therefore, using the modulus of continuity ωf and the additional
assumption (1.9), we deduce that

∥∥∥Θ̂f (t)
∥∥∥
X0

6 2Rωf

(π
t

)
+

∫

|η|>R
2

‖Θf (η)‖X0
dη

6 2Rωf

(π
t

)
+ 2βC(p)R−β‖f‖XNH+1

, ∀R > 2π, t > 1.

(5.18)
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Optimising then the parameterR, i.e. choosing

R =

(
2β−1β C(p)‖f‖XNH+1

ωf

(
π
t

)
) 1

β+1

(up to work with t > t0 > 1 to ensure that R > 2π), we obtain the desired estimate. �

Remark 5.9. Notice that, if (1.9) holds true for any β > 0 large enough, then one sees that the

decay rate of Θ̂f (t) can be estimated as

‖Θ̂f (t)‖X0 = O

(
ωf

(π
t

))α

for any α ∈ (0, 1). This means that the decay rate of ‖Θ̂f (t)‖X0 can be made as close as possible

(without reaching it) to that of t 7→ ωf

(
π
t

)
.

5.3. Comments and conjecture. On the basis of the second part of Theorem 1.3, a careful
study of the modulus of continuity ωf (·) of the mapping

η ∈ R 7−→ Θf (η) =
dNH

dηNH
Ψn(η)f ∈ X0

where Ψn(η)f = ΞiηH [MiηH]
n
Φ(η)f (with Φ(η)f defined in (4.8)) would be fundamental to

make more explicit our main rate of convergence

‖UH(t)f − ̺fΨH‖
X0

6
Cf

(1 + t)NH
ε(t) ∀t > 0.

We actually are able to evaluate the modulus of continuity of the bounded and uniformly contin-
uous mapping

χ : η ∈ R 7−→ dNH

dηNH
ΞiηH ∈ B(L1

+,X0) (5.19)

(see Remark 5.10) and we conjecture that it also the modulus of continuity of Θf (·). Namely,

ωf (s) 6 C0 ω(s) + C1s ∀s > 0 (5.20)

for some positive C0, C1 > 0 where ω(·) is the (minimal) modulus of continuity of χ.
We point out that this is indeed the case on R \ (−δ, δ), δ > 0. However, the general strat-

egy of this paper seems to be such that we cannot deal with the modulus of continuity in the
neighborhoud of the origin of a derivative of order NH.

Remark 5.10. The interest of the above conjecture is of course that investigating the modulus of
continuity of χ is technically much simpler. In particular, under the additional assumption that

there exists α ∈ (0, 1) such that

H ∈ B(L1
+,Y

−
NH+1+α) (5.21)

then, one can prove that the modulus of continuity ω(·) of χ is such that

ω(s) 6 c1|s|
kH

1−α+kH , ∀s > 0

for some c1 > 0 and where kH is defined as

kH := max{s > 0 ; lim sup
ε→0+

ε−s
∥∥∥H̃(ε)

∥∥∥
B(L1

+,L1
−)
<∞}
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with H̃(ε) = 1|v|<εH defined in (3.5). In this case, if the conjecture (5.20) is correct, the rate of
convergence in Theorem 1.3 would be upgraded in

‖UH(t)f − ̺fΨH‖X0
= O

(
t
−NH−

βkH
(1+β)(1−α+kH)

)
, ∀f ∈ XNH+1 (5.22)

In particular, for the model described in Example 1.6, since β can be chosen arbitrarily and (5.21)
holds for any α ∈ (0, 1), the rate of convergence would be

‖UH(t)f − ̺fΨH‖X0
= O

(
t−d+δ

)
, ∀f ∈ Xd

for any δ > 0 (see Section 6.3 for details).

6. About Assumptions 1.2

We recall here that, in our previous contribution [26], we introduced a general class of diffuse
boundary operators that we called regular and proved in [26, Theorem 5.1], that, if H is a regular
and stochastic diffuse boundary operator, then

HM0H ∈ B(L1
+, L

1
−) is weakly-compact,

i.e. Assumption 1.2 2) is met. We also provided in [26] practical criteria ensuring that M0H is
irreducible, satisfying then Assumption 1.2 3). Point 1) of Assumption 1.2 is of course something
that has to be computed for each specific boundary operatorH. We focus on this Section on some
practical criteria yielding to Assumption 1.2 4).

6.1. Some useful change of variables. We establish now a fundamental change of variable
formula which has its own interest. A systematic use of such a change of variable will be made
in the companion paper [22]. We begin with the following technical lemma:

Lemma 6.1. Let x ∈ ∂Ω be fixed. We denote by Bd−1 the closed unit ball of R
d−1 and define

p : z ∈ Bd−1 7−→ p(z) = x− τ−(x, σ(z))σ(z) ∈ ∂Ω

where

σ(z) = (σ1(z), . . . , σd(z)) =
(
z1, . . . , zd−1,

√
1− |z|2

)
∈ S

d−1, z ∈ Bd−1.

Defining

Ox := {z ∈ Bd−1 ; σ(z) · n(x) > 0 ; σ(z) · n(p(z)) < 0} ,
it holds that p is differentiable on Ox and

det

((〈
∂p(z)

∂zi
,
∂p(z)

∂zj

〉)

16i,j6d−1

)
=

(
τ−(x, σ(z))

d−1

(σ(z) · n(p(z))) σd(z)

)2

∀z ∈ Ox.

Proof. The fact that p(·) is differentiable on Ox is a consequence of [26, Lemma A.4]. We re-

call in particular here that the set Γ̂+(x) = {ω ∈ S
d−1 ; (x, ω) ∈ Γ+ and ξ(x, ω) = (x −

τ−(x, ω)ω, ω) ∈ Γ−} is an open subset of {ω ∈ S
d−1 ; (x, ω) ∈ Γ+} and τ−(x, ·) is differen-

tiable on Γ̂+(x) with

∂ωτ−(x, ω) =
τ−(x, ω)

w · n(ξ(x, ω))n(ξs(x, ω)), ω ∈ Γ̂+(x), (6.1)
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where ξs(x, ω) = x− τ−(x, ω)ω. Since, for any z ∈ Ox, p(z) = ξs(x, σ(z)), this translates in a
straightforward way to the differentiability of p. Moreover, one deduces from (6.1) that

∂ip(z) = − (∇ωτ−(x, σ(z)) · ∂iσ(z)) σ(z) − τ−(x, σ(z))∂iσ(z)

= − τ−(x, σ(z))

σ(z) · n(p(z)) [(n(p(z)) · ∂iσ(z)) σ(z) + (n(p(z)) · σ(z)) ∂iσ(z)] ,

where we denote for simplicity ∂i =
∂
∂zi

. We therefore get

〈∂ip(z) ; ∂jp(z)〉 =
(

τ−(x, σ(z))

σ(z) · n(p(z))

)2(
(n(p(z)) · ∂iσ(z)) (n(p(z)) · ∂jσ(z))

+ (n(p(z)) · σ(z))2 (∂iσ(z) · ∂jσ(z))
)
.

Let us fix z ∈ Ox. We denote by P(z) the matrix whose entries are Pij(z) = 〈∂ip(z) ; ∂jp(z)〉,
1 6 i, j 6 d− 1. Using that

∂iσ(z) · ∂jσ(z) = δij +
zizj
σ2d(z)

,

where σd(z) is the last component of σ(z), i.e. σd(z) =
√

1− |z|2, one sees that

Pij(z) = τ2−(x, σ(z))

[
δij +

zizj
σ2d(z)

+
1

(σ(z) · n(p(z)))2 (n(p(z)) · ∂iσ(z)) (n(p(z)) · ∂jσ(z))
]
.

For simplicity, we will simply denote by n the unit vector n(p(z)) and σ = σ(z). Introducing
the vectors u, p ∈ R

d−1 whose components are

ui :=
n · ∂iσ
σ · n , pi :=

zi
σd
, i = 1, . . . , d− 1

we have Pij(z) = τ−(x, σ)
2 [δij + pipj + uiuj ] so that

det (P(z)) = (τ−(x, σ))
2(d−1) det (Id−1 + p⊗ p+ u⊗ u) .

Recall that, for any invertible matrixA and any vectors x,y ∈ R
d−1, then

det (A+ x⊗ y) = det(A)
(
1 + 〈y,A−1x〉

)
. (6.2)

We apply this identity first by consideringA = Id−1 + p⊗ p and get

det (P(z)) = (τ−(x, σ))
2(d−1) det(A)

(
1 + 〈u,A−1u〉

)
.

To compute det(A), one uses again (6.2) to deduce

det(A) = 1 + 〈p, p〉 = 1 +
|z|2
σ2d

= σ−2
d .

One also can compute in a direct way the inverse ofA given byA−1 = Id−1− 1
1+|p|2

p⊗ p from

which

〈u,A−1u〉 = |u|2 − 〈p, u〉2
1 + |p|2 .

This results in

det (P(z)) = (τ−(x, σ))
2(d−1)

(
1 + |u|2 − 〈p, u〉2

1 + |p|2
)
. (6.3)
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Let us make this more explicit. One easily checks that

ui =
1

σ · n

(
ni −

nd
σd
zi

)
and 〈p, u〉 = 1

(σ · n)σd

d−1∑

i=1

(
nizi −

nd
σd
z2i

)
.

Noticing that
∑d−1

i=1 nizi = (σ · n)− σdnd, it holds

〈p, u〉 = 1

(σ · n)σd

(
σ · n− σdnd −

nd
σd

|z|2
)

=
1

σ2d

(
σd −

nd
σ · n

)
,

where we use again that σ2d + |z|2 = 1. Since one also has

|u|2 = 1

(σ · n)2
d−1∑

i=1

(
ni −

nd
σd
zi

)2

=
1

σ2d(σ · n)2
d−1∑

i=1

(σdni − zind)
2 ,

we get easily after expanding the square and using that
∑d−1

i=1 n
2
i = 1− n2d,

|u|2 = 1

σ2d(σ · n)2
(
σ2d + n2d − 2(σ · n)σdnd

)
.

One finally obtains, using (6.3),

det (P(z)) =
τ−(x, σ)

2(d−1)

σ2d

(
1 +

1

σ2d(σ · n)2
(
σ2d + n2d − 2(σ · n)σdnd

)
− 1

σ2d

(
σd −

nd
σ · n

)2)

and little algebra gives

det (P(z)) =
τ−(x, σ)

2(d−1)

σ2d(σ · n)2
which is the desired result. �

We complement the above with the following

Lemma 6.2. For any x ∈ ∂Ω, introduce

Gx := {ω ∈ S
d−1 ; (x, ω) ∈ Γ+ ; ω · n(x− τ−(x, ω)ω) = 0}.

Then,

|Gx| = 0,

where here | · | denotes the Lebesgue surface measure over Sd−1. Moreover, with the notations of

Lemma 6.1, the set

Gx =
{
z ∈ Bd−1 ; σ(z) = (z,

√
1− |z|2) ∈ Gx

}

has zero Lebesgue measure (in R
d−1).

Proof. The proof is based on Sard’s Theorem. Let x ∈ ∂Ω be fixed. Introducing the function

Ψ : y ∈ ∂Ω \ {x} 7−→ Ψ(y) =
x− y

|x− y| ,

it holds that Ψ is a C 1 function. For any ω ∈ S
d−1 setting yω = x− τ−(x, ω)ω ∈ ∂Ω, one has

ω = Ψ(yω).

Let us prove that Gx is included in the set of critical values of Ψ. To do this, we show that, if
ω ∈ Gx, then yω is a critical point ofΨ, i.e. the differential dΨ(yω) is not injective. Since actually
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Ψ is defined and smooth on R
d \ {x}, its differential on ∂Ω \ {x} is nothing but the restriction

of its differential on R
d \ {x} on the tangent hyperplane to ∂Ω, i.e., for any y ∈ ∂Ω \ {x}, one

has

dΨ(y) : h ∈ Ty 7−→ − 1

|x− y|Pzy(h),

where Ty is the tangent space of ∂Ω at y ∈ ∂Ω\{x}, zy = x−y
|x−y| and, for any z ∈ R

d,Pz denotes

the orthogonal projection onto the hyperplane orthogonal to z,

Pzh = h⊥z := h− 〈h, z̄〉 z̄, z̄ =
z

|z| ∈ S
d−1, h ∈ R

d.

Now, one notices that

ω ∈ Gx =⇒ ω · n(yω) = 0, ω = Ψ(yω).

In particular, one has ω ∈ Tyω and Pzyω (ω) = 0 since zyω = x−yω
|x−yω|

= ω. In particular, dΨ(yω)

is not injective (ω 6= 0 belongs to its kernel). We proved that, if ω ∈ Gx, then it is a critical value
of Ψ and Sard’s Theorem implies in particular that the measure of Gx is zero.

Now, to prove thatGx is also of zero measure, one simply notices thatGx is the image of Gx

through the smooth function

P : ω ∈ S
d−1 \ {wd = 0} 7−→ P(ω) = (ω1, . . . , ωd−1) ∈ Bd−1.

In particular, from the first part of the lemma, Gx is included in the set of critical values of the
smooth function P ◦Ψ, and we conclude again with Sard’s Theorem. �

Lemma 6.3. Assume that ∂Ω satisfies Assumption 1.1. For any x ∈ ∂Ω, we set

S+(x) =
{
σ ∈ S

d−1 ; σ · n(x) > 0
}
.

Then, for any nonnegative measurable mapping g : S
d−1 7→ R, one has,

∫

S+(x)
g(σ) |σ · n(x)|dσ =

∫

∂Ω
g

(
x− y

|x− y|

)
J (x, y)π(dy),

and

J (x, y) = 1Σ+(x)(y)
|(x− y) · n(x)|

|x− y|d+1
|(x− y) · n(y)|, ∀y ∈ Σ+(x) (6.4)

with

Σ+(x) = {y ∈ ∂Ω : ]x, y[ ⊂ Ω ; (x− y) · n(x) > 0 ; n(x− y) · n(y) < 0}
where ]x, y[ = {tx+ (1− t)y ; 0 < t < 1} is the open segment joining x and y 3.

In particular, for any nonnegative measurable G : ∂Ω → R and any measurable ϕ : R+ → C,

we have∫

S+(x)
|σ · n(x)| ϕ(τ−(x, σ))G(x − τ−(x, σ)σ)dσ =

∫

Σ+(x)
G(y)ϕ(|x − y|)J (x, y)π(dy).

(6.5)

3Observe that, if Ω is convex, then

Σ+(x) = {y ∈ ∂Ω ; (x− y) · n(x) > 0 and (x− y) · n(y) < 0}

and ∂Ω =
⋃

x∈∂Ω Σ+(x) whereas, if Ω is not convex
⋃

x∈∂Ω Σ+(x) 6= ∂Ω.
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Proof. Let now x ∈ ∂Ω be given. We can assume without generality that the system of coordi-
nates in R

d is such that n(x) = (0, . . . , 1). For a given f : S+(x) → R
+, it holds

∫

S+(x)
f(σ)dσ =

∫

Bd−1

f(z,
√

1− |z|2) dz√
1− |z|2

,

where Bd−1 = {z ∈ R
d−1 ; |z| < 1}. Moreover, according to Lemma 6.2,

∫

S+(x)
f(σ)dσ =

∫

S+(x)\Gx

f(σ)dσ,

while ∫

Bd−1

f(z,
√

1− |z|2) dz√
1− |z|2

=

∫

Bd−1\Gx

f(z,
√

1− |z|2) dz√
1− |z|2

.

Then, for the special choice of f(σ) = g(σ) |σ · n(x)|, we get
∫

S+(x)
|σ · n(x)| g(σ)dσ =

∫

Bd−1

g(σ(z)))1Bd−1\Gx
(z)dz (6.6)

with σ(z) = (z1, . . . , zd−1,
√

1− |z|2) for |z| < 1.
Notice that, with the notations of Lemma 6.1, one has Bd−1 \ Gx = Ox. Still using the

notations of Lemma 6.1, we introduce the mapping

p : z ∈ Ox 7→ y = p(z) = x− τ−(x, σ(z))σ(z)

which is such that p(Ox) = Σ+(x). With this change of variable, notice that

τ−(x, σ(z)) = |x− y|,
since σ(z) ∈ S

d−1, and therefore

σ(z) =
x− p(z)

τ−(x, σ(z))
=

x− y

|x− y| .

According to [30, Lemma 5.2.11 & Theorem 5.2.16, pp. 128-131], from this parametrization, the
Lebesgue surface measure π(dy) on ∂Ω is given by

π(dy) =

√√√√det

((〈
∂p(z)

∂zi
,
∂p(z)

∂zj

〉)

16i,j6d−1

)
dz1 . . . dzd−1 =

√
det(P(z))dz,

from which we deduce directly that
∫

Bd−1

1Bd−1\Gx
(z)g(σ(z))dz =

∫

∂Ω
g

(
x− y

|x− y|

)
J (x, y)π(dy),

where

J (x, y) =
1√

det(P(z))
1Ox(z)

has to be expressed in terms of x and y. Using Lemma 6.1, one has

J (x, y) =

∣∣∣∣
(σ(z) · n(p(z)))σd(z)

τ−(x, σ(z))d−1

∣∣∣∣ 1Ox(z)

with, as mentioned, τ−(x, σ(z)) = |x− y|, p(z) = y and σ(z) = x−y
|x−y| . Notice that

σd(z) = σ(z) · n(z) = (x− y)

|x− y| · n(x)
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which gives the desired expression (6.4) ofJ (x, y). Now, if g(σ) = ϕ(τ−(x, σ))G(x−τ−(x, σ)σ),
we get (6.5). �

We end this section with a useful technical result.

Lemma 6.4. Assume that ∂Ω satisfies Assumption 1.1. Then

lim
δ→0+

sup
y∈∂Ω

∫

|x−y|6δ
J (x, y)π(dx) = 0.

Proof. First, one notices that the straightforward estimate

J (x, y) 6 |x− y|1−d (6.7)

is not strong enough to derive the result (see the subsequent Lemma 6.5 for more details on this
point). We need to proceed in a different way. Observe that, thanks to Remark ??, for any y ∈ ∂Ω,
it holds ∫

|x−y|6δ
J (x, y)π(dx) =

∫

|x−y|6δ
J (y, x)π(dx) =

∫

S+(y)
1(0,δ](τ−(y, σ))dσ,

where we used Lemma 6.3 with the functions ϕ(r) = 1[0,δ](r) and G ≡ 1. Clearly, for any fixed

y ∈ ∂Ω

lim
δ→0+

∫

S+(y)
1(0,δ](τ−(y, σ))dσ = 0 (6.8)

according to the dominated convergence theorem, so one needs to check that the convergence
(6.8) is uniform with respect to y ∈ ∂Ω. Assume it is not the case so that there exist c > 0, a
sequence {yn}n ⊂ ∂Ω and a sequence (δn)n ⊂ (0,∞) converging to 0 such that

∫

S+(yn)
1(0,δn](τ−(yn, σ))dσ > c ∀n ∈ N.

First, one deduces from Fatou’s lemma that

0 < c 6 lim sup
n

∫

Sd−1

1S+(yn)(σ)1(0,δn ](τ−(yn, σ))dσ

6

∫

Sd−1

lim sup
n

1S+(yn)(σ)1(0,δn ](τ−(yn, σ))dσ. (6.9)

Of course, there is no loss of generality in assuming that {yn}n converges to some y ∈ ∂Ω. Now,
∂Ω being of class C 1, it holds that limn n(yn) = n(y) and therefore there is n0 ∈ N such that

S+(y) ⊂ S+(yn) ∀n > n0.

Moreover, for σ ∈ S+(y), τ+(y, σ) > 0, and, since τ+ is lower-semicontinuous on ∂Ω × V (see
[33, Lemma 1.5]), it holds that

lim inf
n→∞

τ−(yn, σ) > τ−(y, σ) > 0 ∀σ ∈ S+(y).

As a consequence, one has

lim sup
n→∞

1(0,δ](τ−(yn, σ)) = 0 ∀σ ∈ S+(y).

Since {σ ∈ S
d−1 ; σ · n(x) = 0} is a subset of Sd−1 of zero Lebesgue measure, we see that

lim sup
n

1S+(yn)(σ)1(0,δ](τ−(yn, σ)) = 0
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for almost every σ ∈ S
d−1 which contradicts (6.9). This proves the result. �

Whenever the boundary ∂Ω is more regular than merely C 1 one can strengthen the estimate
(6.7). Namely, one has the following result (see [17, Lemma 2] for a similar result for ∂Ω of class
C 2)

Lemma 6.5. Assume that ∂Ω is of class C 1,α, α ∈ (0, 1) then, there exists a positive constant

CΩ > 0 such that

|(x− y) · n(x)| 6 CΩ |x− y|1+α, ∀x, y ∈ ∂Ω.

Consequently, with the notations of Lemma 6.3, there is a positive constant C > 0 such that

J (x, y) 6
C

|x− y|d−1−2α
, ∀x, y ∈ ∂Ω, x 6= y.

Proof. The intuition behind the estimate is that, from the smoothness of ∂Ω, for any x 6= y ∈ ∂Ω,
if ex(y) =

x−y
|x−y| denotes the unit vector with direction x− y, then

lim
y→x

ex(y) · n(x) = 0,

since ex(y) tends to be tangent to ∂Ω. Then (x − y) · n(x) is of the order |x − y|1+α for
x ≃ y. Let us make this rigorous. For a given x ∈ ∂Ω, one can find a local parametrization of a
neighbourhoodOx ⊂ ∂Ω, containing x as

Ox = {(u,Φ(u)) ; u ∈ U} ,
where U is an open subset of Rd−1 and Φ : U → Ox is a C 1,α-diffeomorphism. Denoting
by | · | the euclidian norm of Rd−1 and by ∇Φ the gradient of Φ (in R

d−1), we get, with x =
(u0,Φ(u0)) ∈ ∂Ω,

n(x) =
1√

1 + |∇Φ(u0)|2
(∇Φ(u0),−1) ,

so that

(x− y) · n(x) = 1√
1 + |∇Φ(u0)|2

(
〈u− u0 ; ∇Φ(u0)〉d−1 − (Φ(u)− Φ(u0))

)
,

where 〈·, ·〉d−1 is the inner product in R
d−1. Since,

Φ(u)− Φ(u0) =

∫ 1

0
〈u− u0,∇Φ(tu+ (1− t)u0)〉d−1dt

= 〈u− u0 ; ∇Φ(u0)〉d−1 + 〈u− u0,

∫ 1

0
(∇Φ(tu+ (1− t)u0)−∇Φ(u0)) dt〉d−1 ,

we see that

|Φ(u)− Φ(u0 − 〈u− u0 ; ∇Φ(u0)〉d−1| 6 |u− u0|
∫ 1

0
|∇Φ(tu+ (1− t)u0)−∇Φ(u0)|dt .

Since∇Φ ∈ C 0,α, denoting by

CΦ = sup
u1,u2∈U

|∇Φ(u1)−∇Φ(u2)|
|u1 − u2|α
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the Hölder semi-norm of ∇Φ, we get

|Φ(u)− Φ(u0 − 〈u− u0 ; ∇Φ(u0)〉d−1| 6 CΦ|u−u0|1+α

∫ 1

0
tαdt =

CΦ

α+ 1
|u−u0|1+α, u ∈ U.

We deduce then that

|(x− y) · n(x)| 6 CΦ

α+ 1
|u− u0|1+α

6
CΦ

α+ 1
|x− y|1+α, for u ≃ u0.

Since ∂Ω is compact and Ω bounded, this easily yields the conclusion. Now, from (6.4), we get

J (x, y) 6 C2
Ω|x− y|d−1−2α ∀y ∈ Γ+(x),

which achieves the proof. �

Remark 6.6. The above result is still true for ∂Ω of class C 2 which would correspond to α = 1. In
such a case, one has

|(x− y) · n(x)| 6 CΩ|x− y|2, x, y ∈ ∂Ω

and

J (x, y) 6 C2
Ω|x− y|d−3, ∀y ∈ Γ+(x).

Notice in particular, that, in such a case one has J (x, y) 6 C2
ΩD

3−d for d = 2, 3, i.e. J is bounded.

In such a case, applying Lemma 6.3 withϕ = 1, one sees that in dimension d = 2, 3, the boundedness
of J (x, y) implies the existence of a positive constant C > 0 such that

∫

S+(x)
G(x− τ−(x, σ)σ) |σ · n(x)|dσ 6 C

∫

Σ+(x)
G(y)π(dy) ∀G > 0.

This easily allows us to recover [15, Lemma 2.3, Eq. (2.6)].

6.2. Practical criterion ensuring Assumption 1.2 4). We provide here some practical As-
sumptions under which (1.7) will hold. We recall first the following generalization of the polar
decomposition theorem (see [33, Lemma 6.13, p.113]):

Lemma 6.7. Let m0 be the image of the measure m under the transformation v ∈ R
d 7→ |v| ∈

[0,∞), i.e. m0(I) = m
(
{v ∈ R

d ; |v| ∈ I}
)
for any Borel subset I ⊂ R

+. Then, for any ψ ∈
L1(Rd,m) it holds

∫

Rd

ψ(v)m(dv) =
1

|Sd−1|

∫ ∞

0
m0(d̺)

∫

Sd−1

ψ(̺ σ)dσ

where dσ denotes the Lebesgue measure on S
d−1 with surface |Sd−1|.

We can deduce from the above change of variables the following useful expression forHMλH.
Recall that H is assumed to be given by (1.4)

Proposition 6.8. For any λ ∈ C+, it holds

HMλHϕ(x, v) =

∫

Γ+

Jλ(x, v, y, w)ϕ(y,w) |w · n(y)|m(dw)π(dy) (6.10)

where

Jλ(x, v, y, w) = J (x, y)

∫ ∞

0
̺k

(
x, v, ̺

x− y

|x− y|

)
×

× k

(
y, ̺

x− y

|x− y| , |w|
)
exp

(
−λ |x− y|

̺

)
m0(d̺)

|Sd−1| (6.11)
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for any (x, v) ∈ Γ−, (y,w) ∈ Γ+.

Proof. The proof follows by direct inspection. Indeed, for any ϕ ∈ L1
+ and (x, v) ∈ Γ−:

HMλHϕ(x, v) =

∫

Γ+(x)
exp(−λ τ−(x, v′))k(x, v, v′)|v′ · n(x)|m(dv′)

∫

w·n(x−τ−(x,v′)v′)>0
k(x−τ−(x, v′)v′, v′, w)ϕ(x−τ−(x, v′)v′, w)|w·n(x−τ−(x, v′)v′)|m(dw).

Then, using polar coordinates v′ = ̺ σ and the fact that τ−(x, v
′) = ̺−1τ−(x, σ), we can use

Proposition 6.3, Eq. (6.5) (with h(s) = exp(−λ ̺−1s)) and Lemma 6.7 to get

HMλHϕ(x, v) =
1

|Sd−1|

∫

Σ+(x)
J (x, y)π(dy)

∫

Γ+(y)
ϕ(y,w)|w · n(y)|m(dw)×

×
∫ ∞

0
̺k

(
x, v, ̺

x− y

|x − y|

)
exp

(
−λ |x− y|

̺

)
π(dy)k

(
y, ̺

x− y

|x− y| , |w|
)
m0(d̺)

which gives the result. �

Remark 6.9. In the special case of Example 1.5, one checks readily that

Jλ(x, v, y, w) = γ(x)−1G(x, v)J (x, y)

× γ−1(y)

∫ ∞

0
̺G(y, ̺) exp

(
−λ |x− y|

̺

)
m0(d̺)

|Sd−1|
for any (x, v) ∈ Γ−, y ∈ ∂Ω. In particular, Jλ(x, v, y, w) does not depend on w.

Thanks to this representation of HMλH, we can make the following set of assumptions ensur-
ing (1.7) to hold true.

Assumption 6.10. Let H ∈ B(L1
+, L

1
−) be given by (1.4) where the kernel k(x, v, v′) is nonnega-

tive, measurable and satisfies (1.5). Assume that m0 is given by 4

m0(d̺) = |Sd−1|̺d−1̟(̺)d̺

for some positive̟(̺) > 0 with

lim
̺→∞

̺d+2k

(
y, v, ̺

x− y

|x − y|

)
k

(
y, ̺

x− y

|x− y| , w
)
̟(̺) = 0, ∀(x, v) ∈ Γ−, (y,w) ∈ Γ+;

(6.12)

sup
(y,w)∈Γ+

σ∈Sd−1

∫ ∞

0
̺d+1

[
̺̟(̺) |∇2k(y, ̺σ,w)| + k(y, ̺σ,w)

(
̺
∣∣̟′(̺)

∣∣+̟(̺)
)]

d̺ <∞;

(6.13)
and

sup
x∈∂Ω

sup
(y,w)∈Γ+

σ∈Sd−1

∫ ∞

0
̺d+2̟(̺)k(y, ̺σ,w)d̺

∫

Γ−(x)
|∇3k(x, v, ̺σ)|µx(dv) <∞. (6.14)

4Notice that this amounts to a measure m which is absolutely continuous with respect to the Lebesgue measure

over Rd, namely m(dv) = ̟(|v|)dv.
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where we adopted the notations

∇2k(x, v, w) = ∇vk(x, v, w), ∇3k(x, v, w) = ∇wk(x, v, w),

for (x, v) ∈ Γ−, w ∈ Γ+(x).

We can then prove the following:

Lemma 6.11. Under Assumption 6.10 and if ∂Ω is of class C1,α with α > 1
2 , then for any λ ∈ C+,

λ 6= 0, it holds

sup
(y,w)∈Γ+

∫

Γ+

|Jλ(x, v, y, w)| dµ−(x, v) 6
C

|λ|

for some positive C > 0 depending only on k and ∂Ω.

Proof. From (6.11) and Lemma 6.5, one has for all (x, v) ∈ Γ−, (y,w) ∈ Γ+

|Jλ(x, v, y, w)| 6
CΩ

|x− y|d−1−2α

∣∣∣∣
∫ ∞

0
̺d k

(
x, v, ̺

x− y

|x − y|

)
×

× k

(
y, ̺

x− y

|x− y| , w
)
exp

(
−λ |x− y|

̺

)
̟(̺)d̺

∣∣∣∣.

for some positive constant CΩ. We observe that the last integral can be written as:

1

λ|x− y|

∫ ∞

0
̺d+2 k

(
x, v, ̺

x− y

|x− y|

)
k

(
y, ̺

x− y

|x− y| , w
)[

λ|x− y|
̺2

exp

(
−λ |x− y|

̺

)]

︸ ︷︷ ︸
= d

d̺
exp(−λ|x−y|̺−1)

̟(̺)d̺

which, after integration by parts and using (6.12), is equal to

− 1

λ|x− y|

∫ ∞

0
exp

(
−λ|x− y|̺−1

) d

d̺

[
̺d+2 k

(
x, v, ̺

x− y

|x − y|

)
k

(
y, ̺

x− y

|x− y| , |w|
)]

d̺.

This results in the following estimate for the kernel Jλ(x, v, y, w):

|Jλ(x, v, y, w)| 6
CΩ

|λ| |x− y|d−2α
|I(λ, x, y, v, w)|

with

I(λ, x, v, y, w) =

∫ ∞

0
exp

(
−λ|x− y|̺−1

) d

d̺

[
̺d+2 k

(
x, v, ̺

x− y

|x − y|

)
k

(
y, ̺

x− y

|x− y| , |w|
)]

d̺

for any λ 6= 0, (x, v) ∈ Γ−, (y,w) ∈ Γ+. Distributing the derivative with respect to ̺ thanks to
Leibniz rule, one writes

I(λ, x, v, y, w) =

4∑

j=1

Ij(λ, x, v, y, w)
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with




I1(λ, x, v, y, w) =

∫ ∞

0
σx,y · ∇2k (y, ̺σx,y, w) ̺

d+2̟(̺)k (x, v, ̺σx,y) exp
(
−λ|x− y|̺−1

)
d̺

I2(λ, x, v, y, w) =

∫ ∞

0
̺d+2̟(̺)σx,y · ∇3k (x, v, ̺σx,y) k (y, ̺σx,y, w) exp

(
−λ|x− y|̺−1

)
d̺

I3(λ, x, v, y, w) =

∫ ∞

0
̺d+2̟′(̺)k(x, v, ̺σx,y)k(y, ̺σx,y, w) exp

(
−λ|x− y|̺−1

)
d̺

I4(λ, x, v, y, w) = (d+ 2)

∫ ∞

0
̺d+1̟(̺)k(x, v, ̺σx,y)k(y, ̺σx,y, w) exp

(
−λ|x− y|̺−1

)
d̺

where we adopt the short-hand notation σx,y = x−y
|x−y| , (x 6= y). Using the normalisation condi-

tion (1.5), one has

∫

Γ−(x)
|I1(λ, x, v, y, w)| |v · n(x)|m(dv) 6

∫ ∞

0
̺d+2̟(̺) |σx,y · ∇2k (y, ̺σx,y, w)|d̺

6

∫ ∞

0
̺d+2̟(̺) |∇2k (y, ̺σx,y, w)| d̺.

Thus, assumption (6.13) yields

sup
(y,w)∈Γ+

∫

Γ−(x)
|I1(λ, x, v, y, w)| |v · n(x)|m(dv)| 6 C.

In the same way, one sees easily that (6.13) implies that

sup
(y,w)∈Γ+

∫

Γ−(x)
(|I3(λ, x, v, y, w)| + |I4(λ, x, v, y, w)|) |v · n(x)|m(dv) 6 C .

Finally, one checks easily that (6.14) implies

sup
x∈∂Ω

sup
(y,w)∈Γ+

∫

Γ−(x)
|I2(λ, x, v, y, w)| |v · n(x)|m(dv)| 6 C .

Combining all these estimates, we finally obtain that there exists some positive constant C such
that
∫

Γ−(x)
|Jλ(x, v, y, w)| |v · n(x)|m(dv) 6

C

|λ||x− y|d−2α
∀x ∈ ∂Ω, ∀(y,w) ∈ Γ+.

Since, for α > 1
2 ,

sup
y∈∂Ω

∫

∂Ω

π(dx)

|x− y|d−2α
<∞

we get the desired result. �

The above, combined with Proposition 6.8 yields the following
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Proposition 6.12. Assume that Assumption 6.10 are in force and ∂Ω is of class C1,α with α > 1
2 .

There exists a positive constant C such that

∥∥(MλH)
2
∥∥

B(L1
+)

6
C

|λ|
holds for any λ ∈ C+, λ 6= 0. In particular, (1.7) holds true with p = 4.

Proof. It is clear from Proposition 6.8 that, for any ψ ∈ L1
+,

‖(MλH)
2ψ‖L1

+
6 ‖Mλ‖B(L1

−,L1
+) ‖HMλHψ‖L1

−

6 ‖Mλ‖B(L1
−,L1

+)

∫

Γ+

|ψ(y,w)|dµ+(y,w)
∫

Γ−

|Jλ(x, v, y, w)| dµ−(x, v)

so that, using that ‖Mλ‖B(L1
−,L1

+) 6 1 we get

‖(MλH)
2ψ‖L1

+
6 sup

(y,w)∈Γ+

∫

Γ−

|Jλ(x, v, y, w)| dµ−(x, v)

and we conclude then with Lemma 6.11. Since then, for any ε > 0 and η > 0,
∥∥∥(Mε+iηH)

4
∥∥∥

B(L1
+)

6
C2

|ε+ iη|2
6

C2

|η|2

we deduce that

sup
ε>0

∫

|η|>1

∥∥∥(Mε+iηH)
4
∥∥∥

B(L1
+)

dη 6 C2

∫

|η|>1

dη

η2
<∞

which proves (1.7) with p = 4. �

6.3. Examples. We revisit here the examples of practical application in the kinetic theory of
gases introduced in the Introduction. We focus here on the case on which

V = R
d, m(dv) = dv

for simplicity but of course the case of measure m absolutely continuous with respect to the
Lebesgue measurem(dv) = ̟(|v|)dv is easily deduced from our analysis.

We give full details for the Example 1.6 in the Introduction which is the most studied model
in the framework we are dealing with here (see [1, 6, 18].

We recall that, here

k(x, v, v′) = γ−1(x)Mθ(x)(v)

with

Mθ(v) = (2πθ)−d/2 exp

(
−|v|2

2θ

)
, x ∈ ∂Ω, v ∈ R

d.

and

γ(x) = κd

√
θ(x)

∫

Rd

|w|M1(w)dw, x ∈ ∂Ω

for some positive constant κd depending only on the dimension ensuring in particular (1.5). We
assume here that the temperature mapping x ∈ ∂Ω 7→ θ(x) is bounded away from zero and
continuous and denote

θ0 := inf
x∈∂Ω

θ(x) > 0.



DIFFUSE BOUNDARY CONDITIONS 63

In this case, one sees that γ(x) > cd
√
θ0 for some explicit cd > 0 and

k(x, v, v′) 6 c−1
d Mθ0(v).

With this, it is easy to deduce that the boundary operator H associated to k(·, ·, ·) is dominated
by a rank-one operator on L1

+ and as such is a regular diffuse boundary operator (see [26, Remark
3.6]). In particular, from [26, Theorem 5.1],

HM0H ∈ B(L1
+, L

1
−) is weakly compact

which means that Assumption 1.2 2) is met. Moreover, since k(x, v, v′) > 0 for any (x, v) ∈ Γ+

and any v′ ∈ Γ−(x), we deduce from [26, Remark 4.5] that M0H is irreducible, i.e. Assumption
1.2 1) is met. For this model, recalling here that the measure m0 over R

+ is given by

m0(d̺) = |Sd−1|̺d−1d̺

we see easily thatk(x, v, v′) satisfy Assumptions 6.10 (with̟ ≡ 1). Indeed, notice thatk(x, v, v′)
is independent of v′ and depends only on |v| and we denote simply

k(x, v, v′) = G(x, |v|).
Then, (6.12) simply reads

lim
̺→∞

̺d+2G

(
y,

∣∣∣∣̺
x− y

|x− y|

∣∣∣∣
)

= lim
̺→∞

̺d+2G (y, ̺) = 0, ∀(x, v) ∈ Γ−, (y,w) ∈ Γ+

which obviously hold true since G(y, ̺) = 1

γ(y)(2πθ(y))
d
2
exp

(
− ̺2

2θ(y)

)
. In the same way, (6.13)

reads simply

sup
(y,w)∈Γ+

σ∈Sd−1

∫ ∞

0
̺d+1

[
̺2

θ(y)
G(y, ̺) +G(y, ̺)

]
d̺ <∞;

since ∇2k(y, v, w) = − v
θ(y)γ(y)Mθ(y)(v) = − v

θ(y)G(y, |v|). Since γ(y) and θ(·) are bounded
from below, the result follows easily. Finally, (6.14) is obviously satisfied since∇3k(x, v, w) = 0.
Therefore, Assumption 6.10 is met and one deduces from Proposition 6.12 that, if ∂Ω is of class
C1,α with α > 1

2 , then (1.7) holds true with p = 3 and Assumption 1.2 4) is met. Let us now
determineNH for which Assumption 1.2 is met. Direct computations show that, for any integer
k,

H ∈ B(L1
+,Y

−
k+1) ⇐⇒

∫ ∞

0
|v|−kMθ(x)(v)dv <∞ ∀x ∈ ∂Ω ⇐⇒ k < d, (6.15)

which means that NH = d − 1 (since NH needs to be an integer). Therefore, for this model, we
can reformulate Theorem 1.3 as follows, if ∂Ω is of class C1,α with α > 1

2 , then the following
holds: for any f ∈ Xd

‖UH(t)f − ̺fΨH‖
X0

= o

(
(1 + t)d−1

)
.

Of course, one can be more explicit about the form of o
(
(1 + t)d−1

)
and, in this case, one sees

also that (1.9) holds true for any choice of p and β > 0 since, according to Proposition 6.12, for
any n > 2

‖(MλH)
n‖B(L1

+) 6
Cn

|λ|n2
∀|λ| > 1.
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Therefore, with the notations of Theorem 1.3, the decay of
∥∥∥∥
∫ ∞

−∞
exp (iη t)Θf (η)dη

∥∥∥∥
X0

can be made as close as desired from
(
ωf

(
π
t

))
where ωf : R

+ → R
+ denotes the minimal

modulus of continuity of the uniformly continuous mapping Θf . Since moreover

H ∈ B(L1
+,Y

−
d+α) ∀α ∈ (0, 1)

thanks to (6.15), one sees that, if the conjecture (5.20) holds true, then one would have

‖UH(t)f − ̺fΨH‖
X0

= O

(
t−(d−δ)

)
, ∀f ∈ Xd, ∀δ > 0.

thanks to Remark 5.10.

We see that, here above, we fully exploit the fact that themodel in Example 1.6, the kernel was
radially symmetric with respect to v and did not depend on w. Such properties are still shared
by the Example 1.5 given in the Introduction and henceforth, it can be treated exactly along the
same lines as those described here (under ad hoc explicit condition ensuring Assumption 6.10 to
hold true). For such a model, one sees also thatNH is the maximal n ∈ N for which γ(n, d) <∞
where, for all s > 0,

γ(s, d) := sup
x∈∂Ω

γ−1(x)

∫

v·n(x)<0
|v|−s−1G(x, v)|v · n(x)|m(dv) ∈ (0,∞].

Clearly, the precise value of NH depends on the explicit expression of G.

Appendix A. Proof of several technical results

A.1. Fine properties of Gλ,MλH and ΞλH. We collect here all the technical details useful for
the proof of Proposition 4.1. The main step is the following which corresponds to Prop. 4.1 for
k = 0:

Lemma A.1. For any f ∈ X0, the limit

lim
ε→0+

‖Gε+iηf − Giηf‖L1
+
= 0 (A.1)

uniformly with respect to η ∈ R. For any η ∈ R, it holds

‖Mε+iη −Miη‖B(Y−
1 ,L1

+) 6 εD, ‖Ξε+iη − Ξiη‖B(Y−
1 ,X0)

6 εD (A.2)

where D is the diameter of Ω. Consequently,

‖Mε+iηH−MiηH‖B(L1
+) 6 εD ‖H‖B(L1

+,Y−
1 ) ∀η ∈ R (A.3)

and, ‖Ξε+iηH− ΞiηH‖B(L1
+,X0)

6 εD ‖H‖B(L1
+,Y−

1 ) for any η ∈ R.

Proof. Let us prove first (A.1). Given f ∈ X0 and (x, v) ∈ Ω× V ,

|Gε+iηf(x, v)− Giηf(x, v)| =
∣∣∣∣∣

∫ τ−(x,v)

0

(
e−ε t − 1

)
e−iη tf(x− tv, v)dt

∣∣∣∣∣

6

∫ τ−(x,v)

0

(
1− e−ε t

)
|f(x− tv, v)|dt,
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so that

sup
η∈R

‖Gε+iηf − Giηf‖L1
+
6

∫

Γ+

dµ+(x, v)

∫ τ−(x,v)

0

(
1− e−ε t

)
|f(x− tv, v)|dt.

Since 1 − e−ε t 6 1 for any ε > 0, t > 0, the dominated convergence theorem combined with
(2.10) gives the result. Let now consider (A.2) and (A.3). We give the proof forMiη, the proof for

Ξiη being exactly the same. Let η ∈ R be fixed. Let ϕ ∈ Y
−
1 be given and ε > 0. One has

‖Mε+iηϕ−Miηϕ‖L1
+
=

∫

Γ+

∣∣∣e−(ε+iη)τ−(x,v) − e−iητ−(x,v)
∣∣∣ |M0ϕ(x, v)|dµ+(x, v)

=

∫

Γ+

|exp(−ετ−(x, v)) − 1| |M0ϕ(x, v)|dµ+(x, v)

6 C0ε

∫

Γ+

τ−(x, v) |M0ϕ(x, v)|dµ+(x, v)

where C0 := sups>0
| exp(−s)−1|

s = 1. Now, because τ−(x, v) 6 D|v|−1 we get

‖Mε+iηϕ−Miηϕ‖L1
+
6 εD

∫

Γ+

|v|−1 |M0ϕ(x, v)|dµ+(x, v) = DC0ε‖M0ψ‖L1
+

where ψ(x, v) = |v|−1ϕ(x, v). Because ‖M0ψ‖L1
+
= ‖ψ‖L1

−
= ‖ϕ‖

Y
−
1
we obtain

‖Mε+iηϕ−Miηϕ‖L1
+
6 εD ‖ϕ‖

Y
−
1

which proves (A.2). Now, since Range(H) ⊂ Y
−
1 , one deduces (A.3) directly from (A.2). �

Proof of Proposition 4.1. Inequalities (4.3) and (4.4) are true for k = 0 (recall then that Y+
0 = L1

+

thanks to Lemma A.1. The proof for general k is exactly the same and is omitted here. Let us
focus on (4.5). The proof is done by induction on j ∈ N. For j = 1, the result is true, see (A.3).
Noticing that, for any j ∈ N

∥∥∥(Mε+iηH)
j+1 − (MiηH)

j+1
∥∥∥

B(L1
+)

6

∥∥∥(Mε+iηH)
j − (MiηH)

j
∥∥∥

B(L1
+)

‖Mε+iηH‖B(L1
+)

+
∥∥∥(MiηH)

j
∥∥∥

B(L1
+)

‖Mε+iηH−MiηH‖B(L1
+)

we easily get the result since ‖MiηH‖B(L1
+) 6 1. It remains only to prove (4.2), i.e.

lim
|η|→∞

sup
ε∈[0,1]

‖Gε+iηf‖L1
+
= 0.

The proof resorts from Riemann-Lebesgue Theorem, the only slightly delicate point being to
make the Riemann-Lebesgue argument uniform with respect to ε. We write

Gε+iηf(x, v) =

∫

R

e−iηshεx,v(s)ds,

hεx,v(s) = 1[0,t−(x,v)](s)f(x− sv, v)e−εs, s ∈ R, (x, v) ∈ Γ+.

Notice that, since∫

Γ+

dµ+(x, v)

∫

R

∣∣hεx,v(s)
∣∣ds 6

∫

Γ+

dµ+(x, v)

∫

R

∣∣h0x,v(s)
∣∣ ds = ‖f‖X0 <∞
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we deduce from Fubini’s Theorem that, for any ε > 0 and µ+-a. e. (x, v) ∈ Γ+, the mapping

s ∈ R 7−→ hεx,v(s)

belongs to L1(R). Thus, according to Riemman-Lebesgue Theorem,

lim
|η|→∞

Gε+iηf(x, v) = 0 for µ+-a. e. (x, v) ∈ Γ+

Actually, this convergence can be made uniform with respect to ε. Indeed, recalling the classical
proof of the Riemann-Lebesgue Theorem, we write

∫

R

e−iηshεx,v(s)ds = −
∫

R

e
−iη

(

s+ πη

|η|2

)

hεx,v(s)ds = −
∫

R

e−iηshεx,v

(
s− πη

|η|2
)
ds

where we used that e−iπ = −1. Thus,
∫

R

e−iηshεx,v(s)ds =
1

2

∫

R

e−iηs

[
hεx,v(s)− hεx,v

(
s− π η

|η|2
)]

ds

and

|Gε+iηf(x, v)| 6
1

2

∥∥∥∥h
ε
x,v(·)− hεx,v

(
· − πη

|η|2
)∥∥∥∥

L1(R)

.

Now, writing hεx,v(s) = e−εsh0x,v(s) we see that

∥∥∥∥h
ε
x,v(·) − hεx,v

(
· − πη

|η|2
)∥∥∥∥

L1(R)

6

∫

R

e−εs

∣∣∣∣h
0
x,v(s)− h0x,v

(
s− πη

|η|2
)∣∣∣∣ ds

+

∫

R

∣∣∣∣e
−εs − e

−ε
(

s− πη

|η|2

)∣∣∣∣
∣∣∣∣h

0
x,v

(
s− πη

|η|2
)∣∣∣∣ ds

6

∥∥∥∥h
0
x,v(·)− h0x,v

(
· − πη

|η|2
)∥∥∥∥

L1(R)

+
∣∣∣1− e

ε πη

|η|2

∣∣∣ ‖h0x,v‖L1(R) .

The first term is independent of ε and goes to zero as |η| → ∞ owing to the continuity of
translation. For the second term, there is CR > 0 such that

sup
ε∈[0,1]

∣∣∣1− e
ε πη

|η|2

∣∣∣ 6 CR

|η| ∀|η| > R.

This proves that

lim
|η|→∞

sup
ε∈[0,1]

|Gε+iηf(x, v)| = 0 for µ+-a. e. (x, v) ∈ Γ+.

Now, since

sup
η∈R

sup
ε∈[0,1]

|Gε+iηf(x, v)| 6 ‖h0x,v(·)‖L1(R)

and

∫

Γ+

‖h0x,v(·)‖L1(R)dµ+(x, v) = ‖f‖X0 < ∞, we deduce the result from the dominated

convergence theorem. �
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A.2. Differentiability properties ofMλH, ΞλH and Gλ. We give here the full proof of Propo-
sition 5.1

Proof of Proposition 5.1. We prove the various points of the Proposition.
(1) For λ ∈ C+ and f ∈ X1, one has

d

dλ
Gλf(x, v) = −

∫ τ−(x,v)

0
tf(x− tv, v)e−λtdt, for a. e.(x, v) ∈ Γ+.

Notice that, for any f ∈ X1 and any (x, v) ∈ Γ+

∫ τ−(x,v)

0
tf(x− tv, v)dt =

∫ τ−(x,v)

0
t+(x− tv, v)f(x− tv, v)dt = G0(t+f)(x, v)

since t+(x − tv, v) = t. In particular, G0(t+f) ∈ L1
+ since f ∈ X1 and we can invoke the

dominated convergence theorem to get the conclusion. The result for higher-order derivatives
proceed along the same lines. Let us now prove (5.3). For f ∈ Xk , it holds for µ-a. e. (x, v) ∈ Γ+

dj

dλj
Gλf(x, v) = (−1)j

∫ τ−(x,v)

0
sjf(x− sv, v) exp(−λs)ds.

Introducing ϕ(x, v) = |f(x, v)| t+(x, v)j , (x, v) ∈ Ω× R
d, we get easily that

∣∣∣∣
dj

dλj
Gλf(x, v)

∣∣∣∣ 6
∫ τ−(x,v)

0
ϕ(x− sv, v)ds = G0ϕ(x, v).

Then, according to (2.10),
∥∥∥∥
dj

dλj
Gλf

∥∥∥∥
L1
+

6 ‖G0ϕ‖L1
+
6 ‖ϕ‖X0

For j 6 k, it is clear that ‖ϕ‖X0 6 Dj‖f‖Xj
6 Dj‖f‖Xk

and the conclusion follows.

(2) For ϕ ∈ Y
−
k+1, ε > 0, η ∈ R one checks easily that

dk

dηk
Mε+iηϕ(x, v) −

dk

dηk
Miηϕ(x, v) = (−i)kτ−(x, v)k

(exp (−(ε+ iη)τ−(x, v)) − exp (−iητ−(x, v)))M0ϕ(x, v),

for any (x, v) ∈ Γ−. Therefore
∣∣∣∣
dk

dηk
Mε+iηϕ(x, v) −

dk

dηk
Miηϕ(x, v)

∣∣∣∣ = τ−(x, v)
k|M0ϕ(x, v)| |exp(−ε(τ−(x, v)) − 1|

and, reasoning as in Lemma A.1, we get
∣∣∣∣
dk

dηk
Mε+iηϕ(x, v) −

dk

dηk
Miηϕ(x, v)

∣∣∣∣ 6 εDj+1|v|−k−1 |M0ϕ(x, v)|

and the result follows. �

We give the proof of Corollary 5.3
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Proof of Corollary 5.3. Since the mapping λ ∈ C+ 7→ MλH ∈ B(L1
+) is holomorphic, for any

ε > 0, the mapping

η ∈ R 7→ dj

dηj
Mε+iηH ∈ B(L1

+)

is continuous for any 0 6 j 6 k. Thanks to (5.4), we can let ε → 0 and conclude that the
derivatives exist and are continuous on R. Now, for any λ ∈ C+, one has

d

dλ
Mλϕ(x, v) = −τ−(x, v) exp(−λτ−(x, v))ϕ(x − τ−(x, v)v, v) = −τ−Mλϕ

so that, by the dominated convergence theorem, limλ→0
d
dλMλϕ = −τ−M0ϕ provided ϕ ∈ Y

−
1 .

The conclusion follows easily. The proof for ΞλH proceeds along the same line. For ϕ ∈ Y
−
k+1,

ε > 0, η ∈ R one checks easily that

dk

dηk
Ξε+iηϕ(x, v) −

dk

dηk
Ξiηϕ(x, v) = (−i)kt−(x, v)k

(exp (−(ε+ iη)t−(x, v)) − exp (−iηt−(x, v)))Ξ0ϕ(x, v),

for any (x, v) ∈ Ω× V. So, as in (5.4),
∥∥∥∥
dk

dηk
Ξε+iηH− dk

dηk
ΞiηH

∥∥∥∥
B(L1

+,X0)

6 εD ‖H‖B(L1
+,Y−

k+1)
∀η ∈ R, ε > 0.

We deduce the result as in the previous point. �

With the notations of the above proof, we have also the following technical Lemma regarding
derivatives of LN (iη) which was used in the proof of Proposition 5.7.

Lemma A.2. For any j ∈ {1, . . . , NH}, there exists C̄j > 0 such that
∥∥∥L(j)N (η)

∥∥∥
B(L1

+)
6 C̄j (N + 1)j ‖L⌊ N

2j
⌋(iη)‖B(L1

+) ∀N > 2j . (A.4)

Proof. The proof is based upon elementary but tedious computations. For simplicity of notations,
we will simply here denote ‖ · ‖ for the norm ‖ · ‖B(L1

+) . We notice first that, since LN (iη) =

(L1(iη))
N , one has for the first derivative:

L
(1)
N (iη) =

N∑

r=0

Lr(iη)L
(1)
1 (iη)LN−r(iη)

We also denote Since ‖L1(iη)‖ 6 1 and

‖L(1)1 (iη)‖ =

∥∥∥∥
d

dη
MiηH

∥∥∥∥ = ‖τ−L1(iη)‖ 6 ‖M0‖B(Y−
1 ,Y+

1 )‖H‖B(L1
+ ,Y−

1 ) := C1

and
∥∥∥L(1)N (iη)

∥∥∥ 6 C1

N∑

r=0

‖Lr(iη)‖ ‖LN−r(iη)‖ 6 2C1

⌊N
2
⌋∑

r=0

‖Lr(iη)‖ ‖LN−r(iη)‖ .

Since N − r > ⌊N2 ⌋ for any 0 6 r 6 ⌊N2 ⌋, we get

∥∥∥L(1)N (iη)
∥∥∥ 6 2C1‖L⌊N

2
⌋(iη)‖

⌊N
2
⌋∑

r=0

‖Lr(iη)‖ , N > 2mp (A.5)
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which results in ∥∥∥L(1)N (iη)
∥∥∥ 6 C1(N + 1)‖L⌊N

2
⌋(iη)‖

and proves the result for j = 1. Now, for j = 2, one has

L
(2)
N (iη) =

N∑

r=0

L(1)r (iη)L
(1)
1 (iη)LN−r(iη) +

N∑

r=0

Lr(iη)L
(2)
1 (iη)LN−r(iη)

+

N∑

r=0

Lr(iη)L
(1)
1 (iη)L

(1)
N−r(iη).

One has again,

‖L(1)1 (iη)‖ 6 C1, ‖L(2)1 (iη)‖ 6 C2 = ‖M0‖B(Y−
2 ,Y+

2 )‖H‖B(L1
+ ,Y−

2 )

so that, as before

∥∥∥L(2)N (iη)
∥∥∥ 6 2C1

N∑

r=0

‖Lr(iη)‖ ‖L(1)N−r(iη)‖ + C2

N∑

r=0

‖Lr(iη)‖ ‖LN−r(iη)‖

6 4C1

⌊N
2
⌋∑

r=0

‖Lr(iη)‖ ‖L(1)N−r(iη)‖ + 2C2

⌊N
2
⌋∑

r=0

‖Lr(iη)‖ ‖LN−r(iη)‖

The last sum is bounded like in the previous step while, for the first sum, we apply (A.5) toN −r
so that

‖L(1)N−r(iη)‖ 6 2C1‖L⌊N−r
2

⌋(iη)‖
⌊N−r

2
⌋∑

r1=0

‖Lr1(iη)‖ 6 2C1‖L⌊N
4
⌋(iη)‖

⌊N−r
2

⌋∑

r1=0

‖Lr1(iη)‖

and

2C1

⌊N
2
⌋∑

r=0

‖Lr(iη)‖ ‖L(1)N−r(iη)‖ 6 (2C1)
2‖L⌊N

2
⌋(iη)‖

⌊N
2
⌋∑

r=0

⌊N−r
2

⌋∑

r1=0

‖Lr1(iη)‖

so that

∥∥∥L(2)N (iη)
∥∥∥ 6 (2C1)

2‖L⌊N
4
⌋(iη)‖

⌊N
2
⌋∑

r=0

⌊N−r
2

⌋∑

r1=0

‖Lr1(iη)‖ + 2C2‖L⌊N
4
⌋(iη)‖

⌊N
2
⌋∑

r=0

‖Lr(iη)‖.

This clearly gives the rough estimate (using ⌊N−r
2 ⌋+ 1 6 ⌊N2 ⌋+ 1 6 N+1

2 ),
∥∥∥L(2)N (iη)

∥∥∥ 6

∥∥∥L⌊N
4
⌋(iη)

∥∥∥
(
(C1(N + 1))2 + C2(N + 1)

)
(A.6)

and proves the result for j = 2. By a tedious but simple induction argument, we deduce then the
result for any j ∈ {0, . . . , NH − 1}. Recall that, for j ∈ N,

‖L(j)1 (iη)‖ = ‖τ j−MiηH‖ 6 ‖M0‖B(Y−
j ,Y+

j )‖H‖B(L1
+,Y+

j ) := Cj

which is finite as long as j 6 NH. �
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A.3. Additional properties of the Dyson-Phillips iterates. For technical reasons we need
to introduce a slightly different expression for the iterates Uk(t) defined in Section 3.1 where
we allow various boundary operator to enter the construction. More precisely, let us consider a
sequence (Hn)n∈N of boundary operators

(Hn)n ⊂ B(L1
+, L

1
−), ‖Hn‖B(L1

+,L1
−) 6 1, ∀n ∈ N.

We mimic then the construction of [3] and define, for any t > 0, V0(t) = U0(t) = U0(t) and

Definition A.3. Let t > 0, k > 1 and f ∈ D0 be given. For (x, v) ∈ Ω × V with t−(x, v) < t,
there exists a unique y ∈ ∂Ω with (y, v) ∈ Γ− and a unique 0 < s < min(t, τ+(y, v)) such that

x = y + sv and then one sets

[Vk(t)f ](x, v) =
[
HkB

+Vk−1(t− s)f
]
(y, v),

We set [Vk(t)f ](x, v) = 0 if t−(x, v) > t and Uk(0)f = 0.

We establish here the properties of such a sequence of Dyson-Phillips operators. We first
recall the following, taken from [3, Proposition 3, Corollary 2] (see also [4, Proposition 3.6]):

Proposition A.4. For any f ∈ D0, any t > 0, U0(t)f ∈ D(T0) and the traces B±U0(t)f ∈ L1
±

and the mappings t > 0 7→ B±U0(t)f ∈ L1
± are continuous with

∫ t

0
‖B+U0(s)f‖L1

+
ds = ‖f‖X0 − ‖U0(t)f‖X0 , ∀t > 0.

One then proves by induction, exactly as in [3, Theorem 3.2] (see also [4, Theorem 3.9]), the
following

Theorem A.5. For any k > 1, f ∈ D0 one has Uk(t)f ∈ X0 for any t > 0 with

‖Vk(t)f‖X0 6 ‖f‖X0 . (A.7)

In particular, Uk(t) can be extended to be a bounded linear operator, still denoted Uk(t) ∈ B(X0)
with

‖Vk(t)‖B(X0) 6 1 ∀t > 0, k > 1.

Moreover, the following holds for any k > 1

(1) (Vk(t))t>0 is a strongly continuous family of B(X0).
(2) For any f ∈ D0, one has Vk(t)f ∈ D(Tmax) for all t > 0 with

TmaxVk(t)f = Vk(t)Tmaxf = Vk(t)T0f.

(3) For any f ∈ D0 and any t > 0, the traces B±Vk(t)f ∈ L1
± and the mappings t > 0 7→

B±Vk(t)f ∈ L1
± are continuous.

(4) For any f ∈ D0, it holds
∫ t

0
‖B+Vk(s)f‖L1

+
ds 6

∫ t

0
‖HkB

+Vk−1(s)f‖L1
+
ds, ∀t > 0. (A.8)

One can actually sharpen estimate (A.7)

Proposition A.6. For any n > 1, f ∈ D0, one has Vn(t)f ∈ X0 for any t > 0 with

‖Vn(t)f‖X0
6

n∏

k=1

‖Hk‖B(L1
+,L1

−) ‖f‖X0 . (A.9)
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In particular, Vn(t) can be extended to a bounded linear operator, still denoted Vn(t) ∈ B(X0)with

‖Vn(t)‖B(X0)
6

n∏

j=1

‖Hk‖B(L1
+,L1

−) , n > 1, t > 0.

Proof. The proof is made by induction. Let f ∈ D0 and t > 0 be fixed. For n = 1, one deduce
from (2.2) that

‖V1(t)f‖X0 =

∫

Γ−

dµ−(z, v)

∫ τ+(z,v)

0
|[V1(t)f ](z + sv, v)| ds.

From the definition of V1(t), for µ−-a. e. (z, v) ∈ Γ− and s ∈ (0, τ+(z, v)), one has

[V1(t)f ] (z + sv, v) =

{
[H1B

+U0(t− s)f ] (z, v) if t > s

0 if t 6 s. ,

so that

‖V1(t)f‖X0 =

∫

Γ−

dµ−(z, v)

∫ min(t,τ+(z,v))

0

∣∣[H1(B
+U0(t− s)f)

]
(z, v)

∣∣ ds

6

∫ t

0
‖H1(B

+U0(t− s)f)‖L1
−
ds

Therefore,

‖V1(t)f‖X0 6 ‖H1‖B(L1
+,L1

−)

∫ t

0
‖B+U0(t− s)f‖L1

+
ds

and one deduces from Prop. A.4 that

‖V1(t)f‖X0 6 ‖H1‖B(L1
+,L1

−) (‖f‖X0 − ‖U0(t)f‖X0) .

This proves (A.9) for n = 1. Assume then the result to be true for n > 1 and let us prove for
n+ 1. Using (2.2) one has, a before,

‖Vn+1(t)f‖X0
=

∫

Γ−

dµ−(z, v)

∫ τ+(z,v)

0
|[Vn+1(t)f ] (z + sv, v)| ds

=

∫

Γ−

dµ−(z, v)

∫ min(t,τ+(z,v))

0

∣∣[Hn+1B
+Vn(t− s)f

]
(z, v)

∣∣ ds

6

∫ t

0

∥∥Hn+1

(
B+Vn(t− s)f

)∥∥
L1
−
ds

6 ‖Hn+1‖B(L1
+,L1

−)

∫ t

0

∥∥B+Vn(t− s)f
∥∥
L1
+
ds.

Using then (A.8), we deduce that

‖Vn+1(t)f‖X0
6 ‖Hn+1‖B(L1

+,L1
−)

∫ t

0
‖HnB

+Vn−1(s)f‖L1
−
ds

6 ‖Hn+1‖B(L1
+,L1

−) ‖Hn‖B(L1
+,L1

−)

∫ t

0
‖B+Vn−1(s)f‖L1

+
ds.
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Using repeatedly (A.8) we deduce

∫ t

0
‖B+Vn−1(s)f‖L1

+
ds 6

n−1∏

k=1

‖Hk‖B(L1
+,L1

−)

∫ t

0
‖B+U0(s)f‖L1

+
ds

and Prop. A.4 yields

∫ t

0
‖B+Vn−1(s)f‖L1

+
ds 6

n−1∏

k=1

‖Hk‖B(L1
+,L1

−)‖f‖X0

and the result follows. �
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