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Abstract. The high number of accidents in living areas, work environments, and 
ambient, in general, can benefit of prevention mechanisms able to identify the 
causes and the indications which precede accidents, and to put in place strategies 
to avoid risks whenever this is possible. To this aim, this paper presents a risk 
management architecture for monitoring movements within a smart ambient and 
managing possible risks. In particular, we present a methodology for movement 
analysis aimed at detecting and preventing risks. Results from experimentations 
are discussed. 
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1 Introduction 

One of the goals of a smart environment is to support and enhance the abilities of its 
occupants in executing tasks. In particular, in living areas, work plants, or 
construction environments, these tasks can present a high level of risk, ranging from 
moving around in a (potentially dangerous) space to interacting with objects/machines 
and handling (potentially dangerous) tools.  

To support the occupants in facing possible risks, the concept of smart 
environment is introduced along with concepts of self-healing features and ambient 
intelligence [2, 15]. Sensors and devices can be distributed in the areas to detect the 
current state (context) of the environment and determine what actions should be taken 
to face or prevent risks (self-healing system) [5, 13, 19, 21]. The context consists of 
any information that can be used to characterize the situation (or state) of an entity, 
namely, a person, a place, a physical or computational object, or a machine, a tool, a 
protection kit or a sensor network. This information can include personal movements, 
physical gestures, relationships between persons and objects in the environment, 
features of the physical environment such as spatial layout and temperature, and 
identity the location of people and objects in the environment.  

This paper proposes an approach to location-based risk analysis in combination 
with a movement recognition method. To create a smart environment, where such an 
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approach is possible, smart tags can be employed, such as sensors, RFID, or smart 
phones that can be carried or worn by persons to allow the detection of their location, 
their proximity to potentially dangerous sources and to determine the risk they are 
exposed to at a given instant. In particular, we propose a method enabling to detect 
what risks can possibly arise due to the movements of a person in the area. We focus 
on the use of inertial sensors for such monitoring. Inertial sensors are low cost 
devices that measure linear forces and torque forces, and which can be worn on body. 
These are becoming smaller and smaller, so increasing the user acceptance of body-
worn sensors. Movement classification with inertial sensor showed to be useful in 
many areas like ambient intelligent and healthcare applications, in neuroscience and 
for tracking activities [1, 12, 15, 18]. Inertial sensors can also be used for human 
computer interaction, gait and posture analysis, and motion capture, or to understand 
emotional status from body posture [3, 10]. A large literature exists about the use of 
inertial sensors to classify movements, with different results. Many of the proposed 
methodologies are specific to problems or applications or to the given technology. 
Hence, sometimes they are hardly to translate into practice, or they use minimal 
dictionaries (3-6 actions), hence not allowing for the use of a method that could be 
reused in different contexts [1, 23]. Recently, a new technique called Distributed 
Sparsity Classifier has been proposed [23], where a public database of movements is 
introduced, called WARD 1.0, which has been made available and which we used to 
compare and test the results of our approach. Based on information we can obtain 
from inertial sensors, we define applications that use the context to provide task-
relevant information and/or services to a user, hence to be context-aware [7]. In this 
paper, we show how information collected from the environment can be conveyed to 
a Risk Management System able to compute and re-distribute information signalling 
risks and emergencies, where emergencies are defined as situations that have a high 
danger and must be faced immediately. Risk is instead defined as a situation which 
evolves smoothly (such as a gas loss or a moving machine) which can be notified  
and prevented.  

This paper is organized as follows. Section 2 introduces our architectural 
perspective to risk management. Section 3 presents how movements in our application 
domain are monitored and the methodology for movement analysis, with tests and 
results and ICS and ECS (intra cluster inter cluster) measures. Section 4 presents a 
sample scenario. Conclusions and further work are given in Section 5.  

2 An Architectural Perspective towards Risks 

Our Risk Management System (RMS) (see Figure 1) exploits the Monitoring, 
Analyzing, Planning, Executing (MAPE) loop [6, 11]. This loop observes the 
environment, detects the anomalies by analyzing the data collected through the 
monitoring step, decides if a risky situation occurred and if intervention/change is 
needed and of what type, and puts in place (executes) the planned modifications in the 
environment. The main tasks of the MAPE risk control loop are: 



 Smart Solutions for Risk Prevention through Analysis of People Movements 5 

1) Monitoring is continuously performed through a set of sensors (e.g., RFID 
sensors, video cameras, inertial sensors) and devices (e.g., PDAs, PCs) called here 
informative devices. Such devices are distributed in the environment (e.g., on the 
machines/tools, on the persons and on equipment) and collect data regarding for 
example the level of gas, the movement of machineries and persons, the 
operations performed using a tool (e.g., a hammer, a water container), or the health 
conditions of persons.  

2) Analysis on the monitored data verifies if data are out of ordinary values (e.g., the 
gas level is >= a threshold, or a machinery is moving towards an area where 
persons are working, the hearth pressure of a person is in the normal range).  
A threshold is a point value or a range which delimitates regions of risks from the 
normal/ordinary values. If the Risk Threshold is respected, the system operates 
normally. In between the Risk and the Emergency Threshold, the system is 
operating in a risky status, where preventive actions can still be put in place to 
prevent the risk. Beyond the Emergency Threshold, the system operates in 
emergency [8], and corrective actions are applied. 

3) Planning is performed when in one (or more) monitored element is out of the 
admitted ranges. In the planning, our solution associates a risk evaluation function 
to each element in the environment. By combining all the risks evaluations, we 
determine if we are in face of a risk, an emergency, or a false alarm. In case of 
risk, in the planning, the RMS selects the most suitable strategy (a set of 
interventions) able to reduce or eliminate the risk.  

4) Executing applies the strategies identified in the planning phase. Upon application 
of the strategies, the loop continues with the monitoring phase.  

 

Fig. 1. Risk Management Architecture 

The risk model supported by the architecture shown in Figure 1 is based on 
modeling explicitly both risk and environment entities meaningful for risk 
computation [7, 8]. In particular, the risk model is person centred, in that it relates the 
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risk to the user behaviour and movements (work activities in our case study). We have 
presented our approach in [7, 8, 9]. In this paper, we deal with monitoring the 
persons’ activities using body-worn informative devices (see next sections).  

3 Monitoring Persons’ Movements  

There are many specific advantages in using body-worn sensors instead of video 
cameras for movement classification. Inertial sensors can be placed on specific 
segments of the body or in clothes accessories. Consequently, we know with absolute 
certainty which segment of the body the data refers to, and we do not have to solve 
“hidden parts” problems, nor solve color and luminance issues typical of video 
cameras. Also, we do not have to segment the body from the other environment 
information, or to disambiguate and interpret data when many people are present in 
the same area [4, 14, 17].  On the other hand, there is no general methodology to 
classify movements that can be used in different situations or with different 
technologies. The usual approaches are very specific to the given situation. After an 
accurate study of the Dictionary of actions [16, 20], very specific features are chosen 
and used. When we change the Dictionary, the recognition accuracy is not guaranteed.  

In this paper, we show why the method of FFxIVFF significantly improves 
accuracy of movement classification by using inertial sensors. The method exploits a 
procedure, called FFxIVFF, which automatically changes the movement features 
weighting in function of the movements [16, 20]. FFxIVFF transforms the space, 
lowering, in the Dictionary, the importance of those features that are less 
discriminative, and incrementing those features that are more frequent within a given 
class. The procedure automatically adapts the feature weighting with respect to the 
given Dictionary, and hence, can be used in different contexts. Also, it greatly 
improves accuracy with respect to other recent concurrent methodologies, providing a 
general instrument for movement classification with inertial sensors. A movement 
classifier of this type can be used for example to understand which type of actions are 
executed by a person in an environment, such as a construction plant or an industrial 
area where there are people at work, given a proper Dictionary of actions as showed 
in [16, 20]. The ICS and ECS (inter cluster intra cluster) measures, given in the 
Section 3, shows that the method improve clusters density and separation, explaining 
why the FFxIVFF works well with inertial sensors. Also, in this research, this kind of 
classifiers is used at run-time in an environment in order to understand if a risky 
situation arises, in dependence not only of the person’s location but specifically of the 
action the person is executing. For example, a person holding a lighter where free 
inflammable gas is present constitutes a risky situation, but until the lighter is off the 
risk is relatively low. An actual risk arises when a person tries to ignite it in the 
environment. A movement classifier with inertial sensors can understand this kind of 
risky situation, which depends on the person’s actions and on the situation, and can 
help avoiding it. The benefits of intervening in such risky circumstances and avoid 
catastrophic situations are evident. 
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3.1 Methodology for Movement Classification 

For movement analysis, we used five MTx inertial sensors of XSens [22]. Each MTx 
sensor has three components: an accelerometer, a gyroscope, and a magnetometer 
with three degrees of freedom, providing information on acceleration (+/- 50 m/sec2), 
rate of turn (+/-2 rad/sec), and earth-magnetic field (+/-1 normalized) in a three-axial 
reference system. In order to recognize a movement, we need a database of 
movements to create our test set and to generate the FFxIVFF [16, 20]. Consequently, 
a specific set of actions is executed by a set of people and features are extracted from 
the generated data, action by action, sample by sample using an iterative procedure. In 
order to obtain these data, we employ a tool which simulates data transmission from 
sensors (details are presented in [9]). In particular, each component – accelerometer, 
gyroscope, and magnetometer – has three dimensional data (X,Y,Z). Every datum is 
also considered in its 2D and 3D norm representation (|XY|, |XZ|, |YZ|, |XYZ|). Then, 
data are filtered using eight transformation functions (null, smoothing, low pass, 
mean, variance, variance with low pass, first derivative, second derivative) generating 
840 different signals from the original ones. These transformation functions are very 
generic, and are quite common in the movement classification area. Then, for each 
transformation 10 generic features are chosen generating 8400 features. Feature 
values are quantized into 22 intervals for a total of 184.800 intervals: when hit a 
specific interval is marked 1, otherwise is left to 0. Hence, every action generates a 
sparse vector of 184.800 binary values. The given values are stored in a vector. 
Values are quantized, and FF and IVFF are calculated. Hence, any action is 
transformed into a n-dimensional vector in a n-dimensional Feature-Action space. The 
set of quantized features-action vectors of an action executed by a population and 
reweighted by FFxIVFF constitutes the pattern of the given type of action. When a 
new action is executed, we transform it (using a run-time procedure) into a vector of 
the Feature-Action space using the same methodology. Then, we calculate how 
similar it is to the given type of actions, using a similarity measure. In particular we 
use three popular similarity measures: a Ranking algorithm (Eq.1), an Euclidean 
Distance (Eq.2), and a Cosine Similarity (Eq.3). The formulas are the following:  
 rank୨ ൌ  ∑ W୧,୨୬୧ୀଵ                                                            (1) dist୧ ൌ ට∑ ൫W୧,୨ െ q୧,୨൯ଶ୬୨ୀଵ                                           (2) cos ߠ ൌ W౟,ౠ.୯౟,ౠหW౟,ౠหห୯౟,ౠห                                                            (3) 

 

where W୧,୨ represents the weight of the σ୧ interval of action a୨ of the Training-Set, and  q୧,୨ is the IVFF value associated to the feature of query.   

3.2 The FFxIVFF Transformation 

In this space, the centroids of the actions cluster are too close to each other, making 
the recognition a problem. In order to increase the accuracy, and use algorithms that 
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are fast and feasible in run-time applications but are still reliable in term of accuracy, 
we transform the feature action space into a different space by appropriately 
reweighting the features values (see [15, 16]). Hence, two weights have been 
introduced: the FF (“Feature Frequency”) and the IVFF (“Inverse vocabulary 
frequency”). The FF formula: FF୧,୨ ൌ  ୬౟,ౠ|P|                                                           (4) 

where n୧,୨ is the number of occurrences of the σ୧ feature in the action a୨, and |P| 
represents the population cardinality. The IVFF formula is:     IVFF௜ ൌ  log |A||ሼୟ׷ ஢౟אୟሽ|                                                 (5) 

where |A| represents the cardinality of the vocabulary, and  |ሼa ׷  σ୧ א aሽ|  the number 
of actions a where feature σ୧ assumes values. The overall weight of a single feature is 
given by the multiplication: W୧,୨ ൌ FF୧,୨ כ IVFF୧. The FF takes into account how 
frequent is a feature in the given population rising the importance of the features that 
appear in the same class of movements (Eq.4). The IVFF takes into account how 
frequent is a feature in the dictionary: a feature that is present in more actions is 
considered less discriminative, and its weight is lowered according to the formula 
(Eq. 5.). We note that the FFxIVFF space is different from the original values space: 
some dimensions can be canceled or enhanced depending on the role of features in the 
dictionary and population. The FFxIVFF transforms the original space into a space 
where clusters appear to be denser and more separated. This approach allows reaching 
high accuracy (the highest in literature as far as we know), using very simple and fast 
algorithms of similarity.  

3.3 The Datasets 

In order to test the proposed method, we used two databases: NIDA 1.0 (Nomadis 
internal Database of Actions) the database of the Nomadis Laboratory at the 
University of Milano-Bicocca (see [20]) and the WARD 1.0 (Wearable Action 
Recognition Database) created at UC Berkeley [23]. These databases are quite 
representative of a typical database of actions, since they are large (respectively 273 
and 1200 samples) and have a large number of actions (respectively, 13 and 21). They 
are quite different for issues such as sensors technology, dimension of the vocabulary 
of actions, number and type of samples, and granularity of low level data. NIDA 1.0 
contains 21 types of actions for a total of 273 samples. These actions are:  
 

1. Get up from seat. 2. Get up from a chair. 3. Open a wardrobe. 4. Open a door. 5. Fall. 
6. Walk forward 7. Run. 8.  Turn left 180 degrees. 9. Turn right 180 degrees.  10. Turn 
left 90 degrees. 11. Turn right 90 degrees. 12.  Karate frontal kick. 13.  Karate side 
kick. 14.  Karate punch. 15. Go upstairs. 16. Go downstairs. 17. Jump. 18. Write. 19. 
Lie down on a seat. 20. Sitting on a chair. 21. Heavily sitting on a chair.  
 

WARD contains 13 types of actions performed by 20 people ranging from 20 to 79-
years-old with 5 repetition per action, for a total of 1200 actions. The list of actions is 
the following:   
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1. Stand (ST). 2. Sit (SI). 3. Lie down (LI). 4. Walk forward (WF). 5. Walk left-circle 
(WL). 6. Walk right circle (WR). 7. Turn left (TL). 8. Turn right (TR). 9. Go upstairs 
(UP). 10. Go downstairs (DO). 11. Jog (JO). 12. Jump (JU). 13. Drive truck (PU). 

3.4 Tests and Results 

Even if the two databases are technologically different, the methodology has been 
applied – as is – without significant changes to both the databases, using a Leave One 
Out Cross Validation (LOOCV) methodology. Recognition accuracies are very high 
in both cases. The classification accuracies using the NIDA 1.0 database (273 samples 
of 21 type actions) are the followings: Ranking 89.74%, Euclidean Distance 95.23%, 
Cosine similarity 95.23%. The classification accuracies of algorithms using the 
WARD 1.0 database are the followings: Ranking 97.5%, Euclidean Distance 97.74%, 
Cosine 97.63%. We have to note that the accuracy of our methodology applied to the 
WARD 1.0 database outperforms their results [see 23]. The UC Berkeley researchers 
reached and accuracy of only 93.4 % using their databases. In particular, we reduced 
by three times the error rate (from 6.6% to 2.26%).  

Other tests have been done to test the accuracy reducing the number of worn 
sensors, to check the sensitivity to sensor numbers [16]. Using WARD 1.0 with 3 
sensors on the pelvis, the right wrist, and ankle, we reached an accuracy of 97.63% 
(with the cosine similarity), and using only one sensor we reached a 93.62% of 
accuracy (with cosine similarity), against the 93.4 % of U.C. Berkeley obtained on the 
same database with all the 5 sensors. 

In order to understand why the proposed method has far better accuracy than 
former methodologies, we tried to understand which effects FFxIVFF has on 
dimension of clusters both in WARD 1.0 and NIDA 1.0 multidimensional spaces.  

At this aim, the Intracluster (ICS) and Intercluster (ECS) have been calculated, and 
measures confirm that the FFxIVFF  creates a space where clusters are more dense 
and well separated, justifying the higher accuracies obtained in the tests sections with 
the LOOCV methodology. Intracluster and Intercluster similarity have been measured 
in the values space, then in the FF space and finally in the FFxIVFF space. Cosine 
similarity has been used as a similarity measure. Results have been compared and 
showed in Table 1.  

Note that FF and IVFF actually enhance cluster density and cluster separation, 
respectively. In particular, using the NIDA database, we can note that: 

• IVFF enhances the Intercluster similarity 5.96 times wrt FF, and 12.23 times wrt 
the values space; 

• FF enhances the Intracluster similarity, while thanks to FFxIVFF Intracluster 
similarity passes the critical threshold of 0.9. 

While using WARD database we can note that: 
• IVFF enhances the Intercluster similarity 4.08 times wrt the values space 
• FF enhances the Intracluster similarity, while thanks to FFxIVFF Intracluster 

similarity passes the critical threshold of 0.9.  
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The Intracluster and Intercluster similarity confirm us the reasons why FFxIVFF 
works well. Clusters are more dense and further apart (the values of Intercluster 
similarity has been improved of one order), significantly reducing the probability of 
false positives. Thanks to that, it is possible to classify movements with greater 
accuracy even using a few sensors (three). Note that it is possible to recognize 
movements that involve parts of body that have not a sensor placed on it. The 
accuracy results, confirmed by ICS and ECS measures, sustains the idea that the 
FFxIVFF methodology is solid, and allow us to propose the use of this methodology 
in actual situations, even at runtime.   

Table 1. Intracluster similarity before and after FFxIVFF 

 

The independence of technology, the possibility to use few sensors, and the 
feasibility of these results confirmed by the ICS and ECS measure, give us now the 
scientific ground for a real use of the method. In this case, we propose to use three 
body worn sensors, to understand which kind of movements has been executed, and to 
relate risk analysis to movements, as we can see in the next section.  

4 Movements’ Analysis in Risk Management: A Sample 
Scenario 

In work areas, users employ tools or drive machines. We only examine risk related to 
movements of persons in handling these tools and machines (namely, we ignore the 
case of risks generated by tools and machines). We can monitor the persons’ 
movements and check the risk which they are exposed to. We assume that inertial 
sensors are worn by persons and allow risk to be identified by the Movement 
Evaluator module of the Risk Management Architecture. We assume that other 
sensors, e.g., RFID for determining the location of the various entities - objects, 
persons - in the environment, are in place to detect other risks. Based on these 
affirmations, we are currently extending the database of actions with work specific 
activities. We associate a Risk Level to each work related action in the range [0..5] 
where risk increases from 0 to 5. Examples of clusters of actions bound to their Risk 
Levels will include: 
 

Database  Type  Value Space (Cos)  FF space (Cos)  FFxIVFF space (Cos)  

Nida  Intercluster  0,3506425  0,1710151  0,0286604  

 Intracluster  0,7077682  0,8759209  0,9260479 

Ward  Intercluster  0,2476419  0,2367639  0,0605941  

 Intracluster  0,6038969  0,8455223  0,9311265  
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1. Enter work area. 2. Go upstairs at the second floor. 3. Use hammer. 4. Turn left 90 
degrees. 5. Stop working. 6. Go downstairs. 7. Leave the work area.  

 Risk Level = 3 
 
1. Enter work area. 2. Step into the truck. 3. Drive the truck. 4. Stop the truck. 5. 
Leave the area.  

Risk Level = 5 
 
The Movement Evaluator module of our architecture (see Figure 1) performs a 
continuous monitoring of the persons/tools and machinery through both identifications 
(e.g., RFID) obtained by applying passive tags on instruments and inertial sensors. 
Through controlled points in the environment, the system is aware of which tool a 
worker is interacting with at a given moment and hence, executes given check 
operations. A catalogue of all work tools and their assignment to workers is available. 
The Movement Evaluator determines if a person is at risk by using a RiskEvaluation 
function. Such function analyses the parameters characterizing each person/tool and 
machinery interaction by: a) evaluating the data retrieved from the sensors; b) 
correlating such data to the Risk Level assigned to actions. The trend of the 
RiskEvaluation function is defined by a utility function: e.g., linear, logarithmic, 
exponential, sigmoid. We assume that the output of an evaluation is normalized and 
always included in [0..1]. Namely, we have: 

evaluation_value= f (parameter) 

where f denotes the evaluation function and parameter represents the elements 
monitored to determine the risk, in this case the actions the person is performing with 
which tool and machinery. The evaluation_value is numeric and expresses the risk for 
each parameter. If it is beyond a given value (fixed for that particular parameter), a 
potential risk is signaled. For example, for the “closeness to moving crane”, the 
lowest value corresponds to the best quality, while the highest value corresponds to a 
risk event. In our approach, a set of function f are stored in the Movement Evaluator 
files. There may be more parameters for one entity (e.g., tools/machineries, persons, 
protection garments, informative device). Depending on the risky situation, there may 
be various solutions for their management. For example, a worker is notified about his 
position to close to the location of a truck in movement or can receive a warning 
when walking forward in the direction of a dangerous machine. He is then required to 
use another type of tool or to adopt another strategy to achieve the same 
objective/task. These solutions are called strategies and are defined as sequences of 
actions to be executed with different priorities depending on the evaluated Risk Level. 
We have implemented a sample preliminary set of strategies in a prototype which is 
described in [9].  

5 Concluding Remarks 

In this paper we have presented an overview of our approach to risk management in 
smart environments based on the analysis of persons’ movements. We have provided 
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details on the method we adopt concerning the computation of persons’ movements in 
the environment. From the architectural point of view, our solution exploits self-
healing mechanisms by implementing the MAPE loop. Currently, our prototype for 
risk management addresses risks exploiting this loop. Its design allows the evolution 
towards the consideration of the detailed persons’ movements, which we plan to 
integrate in the prototype in the next future.  

Acknowledgments. This work has been partially supported by the TeKNE Project 
and by the S-Cube European Network of Excellence in Software Services and 
Systems.  
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