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1 Introduction

The Quantum Spectral Curve (QSC) has become an indispensable tool of precision spec-
troscopy in AdS5/CFT4 and AdS4/CFT3 holographic models [1–20]. For a review on the
QSC, see [21]. In this paper, we shall take a step towards extending this powerful method to
the spectral problem in another important holographic duality, namely planar AdS3/CFT2.
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It is believed that AdS3/CFT2 dual pairs with 8+8 supersymmetries are integrable [22–
24].1 This is the maximal amount of supersymmetry that is allowed for string theory
backgrounds of the form AdS3 ×M7, withM7 = S3 ×T4 orM7 = S3 × S3 × S1. The sym-
metries of these two backgrounds are respectively the small and large (4, 4) superconformal
symmetries, whose Lie sub-algebras are psu(1, 1|2)2 and d(2, 1;α)2. The exact S matrices
can be found by imposing compatibility with the (centrally extended) vacuum-preserving
symmetry algebras of the two theories [27–32], much like what can be done in higher-
dimensional cases [33]. In this paper, we will focus on string theory on AdS3 × S3 × T4

supported by R-R charge.
An important difference between these theories and higher-dimensional integrable string

backgrounds is the presence of massless excitations in the worldsheet theory, in addition to
the more familiar massive ones. The resulting integrable 2-to-2 S matrix breaks up into
independent pieces for the scattering of massless/massless, massive/massive and mixed
mass excitations. Expressed in terms of Zhukovsky variables, the S matrices resemble those
of higher-dimensional integrable holographic theories, with the mass entering through the
shortening conditions. This resemblance is particularly striking in the case of massive
excitations [22, 28], where in the weak-coupling limit the Bethe Equations (BEs) reduce to
those of a homogeneous nearest-neighbour psu(1, 1|2)× psu(1, 1|2) spin-chain, with the two
factors only connected by the level-matching condition. Away from the weak-coupling limit,
the BEs for each psu(1, 1|2) wing bear a striking similarity to the corresponding part of
the psu(2, 2|4) BEs of AdS5/CFT4. These observations suggest that (at least a part of) the
AdS3/CFT2 Q-system can be constructed using two sets of psu(1, 1|2) Q-functions, one for
each wing, and coupling them together in a way that is consistent with the crossing. The
Q-system is an important part of any known QSC [2, 14]. In this paper, instead of deriving
the QSC following a long route from TBA equations, we use the Q-system as a starting
point supplying it with the analyticity properties following closely the previously known
cases. However, fairly quickly we realise that one of the analyticity assumptions must be
relaxed in our case — namely we no longer assume the square-root type of singularity near
the branch points. This new feature is inherently connected with the properties of the
dressing factors of [30–32].

Each S matrix block comes with a dressing factor which is not fixed by symmetry
requirements. Dressing factors satisfy crossing equations [30–32] that follow from the Hopf
algebra structure of the theory [34–36]. In the case of string theory on AdS3 × S3 × T4

supported by R-R charge only, dressing factors which solve these crossing equations have
been found [37, 38]. There are two independent dressing phases that enter the massive S
matrix, corresponding to either scattering excitations in the same psu(1, 1|2) wing or in
different wings. Their sum is equal to (twice) the Beisert-Eden-Staudacher (BES) phase [39],
while their difference is a new phase, which appears only at the so-called Hernandez-
Lopez order [40]. The relative simplicity of this latter factor is related to the fact that
boundstates in the theory can only be made from massive constituent excitations from the
same psu(1, 1|2) wing. As with all solutions of crossing equations, there is potential for

1For earlier work in this direction see [25, 26].
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CDD ambiguities due to homogeneous solutions of crossing. The absence of such additional
factors was demonstrated in [41], where it was shown that the proposed dressing factors
have exactly the required Dorey-Hofman-Maldacena (DHM) double poles and zeros [42].

In the case of massive modes, crossing maps the two psu(1, 1|2) wings into one another.
This suggest that, as a consequence of crossing, the two copies of the psu(1, 1|2) Q-systems
should be related by a suitable analytic continuation. Analogous gluing conditions, which
can be traced back to crossing, are known to exist in the AdS5/CFT4 and AdS4/CFT3
QSC and are needed in addition to the QQ-relations to constrain the system to a closed
system of equations, which can be treated analytically [6, 7] in some limits and by means of
numerical analysis [4] in general. Furthermore, the simple gluing of the Q-functions can
be shown [2, 14] to produce a rather involved expression for the BES dressing phase when
considering the large-volume solution.

While a number of ingredients for the current construction are borrowed from the
known cases, the new type of near-branch point singularity is a crucial novel ingredient.
As a test of our proposal we demonstrated how the ABA equations for the massive sector
are precisely reproduced in the large-length limit including the dressing phases. In these
considerations, we had to make an additional simplifying assumption about the monodromy
of µ-function in the asymptotic limit, which we have not managed to prove. At the same
time, we only reproduced the massive sector equations, which suggests that removing this
assumption could revive all the massless degrees of freedom, but we leave this question for
future work. Another important direction is to verify the completeness of our system of
equations by solving it either numerically as in [4] or in a near BPS limits like in [3, 15].

An intuitive way in which to understand the effect of massless modes is that the massless
dispersion relation can be viewed in an approximate sense as the large coupling limit of the
massive one, as long as the particle momentum is kept fixed. In the QSC formalism, the
coupling usually controls the distance between the cuts in the rescaled spectral parameter
u/g. As a result, in the zero mass limit, one might expect this to lead to a number of
quadratic cuts collapsing on top of one another. This suggests that, in models with massless
modes, the QSC may have a more general singularity structure near the branch points,
rather than the conventional square root behaviour seen in higher-dimensional cases. We
also expect the analyticity to be simplified in the purely massless sector by employing the
pseudo-relativistic variable of [43, 44].

In fact, the assumption of a square-root singularity is over-restrictive in AdS3 because
it gives rise to a new algebraic constraint on the Q-functions in addition to the QQ-relations.
In turn, such a condition collapses the two wings of Q-functions into one, likely leading to
drastically simpler analytic properties such as those seen in the Hubbard model [45], based
on a single su(2|2) symmetry.

The rest of the paper is organised as follows. In section 2, we collect pre-existing
results on integrability for the AdS3/CFT2 duality, which will inspire our conjecture, and
describe the algebraic structure of the Q-system for psu(1, 1|2). Section 3 presents our
main proposal for the Quantum Spectral Curve, and describes the unique features of these
equations as compared to the previous cases. In section 2.1, we study the large-volume limit
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of these equations, reproducing precisely the full Asymptotic Bethe Ansatz for massive
modes. Finally, we present our conclusions and discuss some future directions. The paper
also contains three appendices collecting some notations and technical details.

Note added. The work described here begun before the epidemic. Shortly after the
first wave was coming to an end in Europe, we concluded that the large-length limit
was incompatible with square-root cuts as described in section 4.3.1. During the recent
“Integrability in Lower Dimensional AdS/CFT” online workshop we learnt that Simon
Ekhammar and Dima Volin had also independently come to a similar conclusion. We
are grateful to Dima and Simon for informing us of their findings and coordinating on
the release date of the manuscripts to the arXiv. Motivated by these discussions, we
revisited our construction and found that relaxing the branch-cut condition allows for a
consistent definition of the QSC together with a large-length limit that reproduces the
all-loop massive ABA equations found in the literature. Our proposal for the QSC seems to
be fully consistent with the one published simultaneously in [46].

2 Data on the AdS3/CFT2 integrable system

In this section we assemble together the known facts about the AdS3/CFT2 integrable
system. This includes the asymptotic Bethe ansatz for massive modes, classical algebraic
curve and the psu(1, 1|2) Q-system.

2.1 Asymptotic Bethe Ansatz

The massive Asymptotic Bethe Ansatz (ABA) equations which we will be referring to are
those presented in [28]. The symmetry controlling the Bethe equations is psu(1, 1|2)2. Each
copy of psu(1, 1|2) has associated one momentum carrying root and two auxiliary roots.
These are called x, y1 and y3 for one copy of psu(1, 1|2) and x̄, y1̄ and y3̄, respectively, for
the other copy. The explicit form of the BEs is:

1 =
K2∏
j=1

y1,k − x+
j

y1,k − x−j

K2̄∏
j=1

1− 1
y1,kx̄

−
j

1− 1
y1,kx̄

+
j

,

(
x+
k

x−k

)L
=

K2∏
j 6=k

x+
k − x

−
j

x−k − x
+
j

1− 1
x+
k
x−j

1− 1
x−
k
x+
j

σ2(xk, xj)
K1∏
j=1

x−k − y1,j

x+
k − y1,j

K3∏
j=1

x−k − y3,j

x+
k − y3,j

×
K2̄∏
j=1

1− 1
x+
k
x̄+
j

1− 1
x−
k
x̄−j

1− 1
x+
k
x̄−j

1− 1
x−
k
x̄+
j

σ̃2(xk, x̄j)
K1̄∏
j=1

1− 1
x−
k
y1̄,j

1− 1
x+
k
y1̄,j

K3̄∏
j=1

1− 1
x−
k
y3̄,j

1− 1
x+
k
y3̄,j

,

1 =
K2∏
j=1

y3,k − x+
j

y3,k − x−j

K2̄∏
j=1

1− 1
y3,kx̄

−
j

1− 1
y3,kx̄

+
j

, (2.1)
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Figure 1. Grading used in the Asymptotic Bethe equations.

1 =
K2̄∏
j=1

y1̄,k − x̄−j
y1̄,k − x̄+

j

K2∏
j=1

1− 1
y1̄,kx

+
j

1− 1
y1̄,kx

−
j

,

(
x̄+
k

x̄−k

)L
=

K2̄∏
j 6=k

x̄−k − x̄
+
j

x̄+
k − x̄

−
j

1− 1
x̄+
k
x̄−j

1− 1
x̄−
k
x̄+
j

σ2(x̄k, x̄j)
K1̄∏
j=1

x̄+
k − y1̄,j

x̄−k − y1̄,j

K3̄∏
j=1

x̄+
k − y3̄,j

x̄−k − y3̄,j

×
K2∏
j=1

1− 1
x̄−
k
x−j

1− 1
x̄+
k
x+
j

1− 1
x̄+
k
x−j

1− 1
x̄−
k
x+
j

σ̃2(x̄k, xj)
K1∏
j=1

1− 1
x̄+
k
y1,j

1− 1
x̄−
k
y1,j

K3∏
j=1

1− 1
x̄+
k
y3,j

1− 1
x̄−
k
y3,j

,

1 =
K2̄∏
j=1

y3̄,k − x̄−j
y3̄,k − x̄+

j

K2∏
j=1

1− 1
y3̄,kx

+
j

1− 1
y3̄,kx

−
j

. (2.2)

The Bethe equations are written in the grading illustrated in figure 1. The massless
modes will not be included in our analysis, and they do not feature anywhere in the Bethe
equations we write. There is a further level-matching constraint on the solutions to the
Bethe equations, in the form of

1 =
K2∏
j=1

x+
j

x−j

K2̄∏
j=1

x̄+
j

x̄−j
(2.3)

(once more disregarding massless modes). The Zhukovsky variables satisfy the familiar
constraint given by (suppressing the particle index)

x+ + 1
x+ − x

− − 1
x−

= i

h
,

x+

x−
= eip, (2.4)

where h is the coupling constant of the theory and p is the particle momentum. The same
holds for the barred variables. The dispersion relation that gives the energy of a particle of
momentum p reads

E(p) =
√

1 + 16h2 sin2 p

2 , (2.5)

and the anomalous dimension of the state associated to a solution of the ABA is given by

δ∆ ≡ γ = 2h
K2∑
k=1

(
i

x+
k

− i

x−k

)
+ 2h

K2̄∑
j=1

(
i

x̄+
j

− i

x̄−j

)
. (2.6)

The explicit form of the dressing phases from [37] is given by

σ(p1, p2) = eiθ(p1,p2), σ̃(p1, p2) = eiθ̃(p1,p2), (2.7)

– 5 –



J
H
E
P
1
2
(
2
0
2
1
)
0
4
8

with the familiar splitting

θ(p1, p2) = χ(x+
1 , x

+
2 ) + χ(x−1 , x

−
2 )− χ(x+

1 , x
−
2 )− χ(x−1 , x

+
2 ), (2.8)

with similar expressions for σ̃. The individual blocks read

χ(x, y) = χBES(x, y)− 1
2
[
χHL(x, y)− χ−(x, y)

]
, (2.9)

χ̃(x, y) = χBES(x, y)− 1
2
[
χHL(x, y) + χ−(x, y)

]
.

The part denoted by BES is the Beisert-Eden-Staudacher [39] dressing phase — its expression
can be found reproduced in the review [47]. The same holds for the HL part, referring to
the Hernandez-Lopez phase [48]

χHL(x, y) =
(∫

C+
−
∫
C−

)
dw

4π
1

x− w

[
log(y − w)− log(y − 1

w
)
]
. (2.10)

The new ingredient which was constructed in [37] is given by

χ−(x, y) =
(∫

C+
−
∫
C−

)
dw

8π
1

x− w
log

[
(y − w)

(
1− 1

yw

)]
− x↔ y, (2.11)

where the contours C± denote the upper (resp., lower) half semicircle in the complex
w-plane, both running anti-clockwise. These expressions are valid in the physical region
|x| > 1, |y| > 1. The notation χ− is commonly used in the AdS3 literature for this portion
of the phase. The minus sign should not be confused with a shift in the spectral parameter
— as will otherwise always be meant in this paper.

Since we will be merely concerned with the massive modes, it is expected that the
Asymptotic Bethe equations which we have written above should be valid exactly in the
coupling h but only asymptotically in the length L. In other words, wrapping corrections are
expected to be exponentially suppressed [49]. This situation would be rather different were
we to include massless modes, whose impact on the TBA is not exponentially suppressed —
they are expected to be polynomially suppressed in the presence of mixed massive-massless
interactions [50], or require exact solutions as in the case of the conformal TBA of [44, 51]
(see also [52, 53]).

Notice also that 4h gives the size of the branch cut which goes to zero at weak coupling.
Since all interaction between the two psu(1, 1|2) wings go through the branch-cut, the two
wings become completely decoupled in the limit of small coupling constant h→ 0, except
for the level-matching condition.

2.2 Main features of the classical curve

The Quantum Spectral Curve is a quantum version of the classical curve, which thus
contains crucial structural hints. We shall from now on denote with un-dotted/dotted
indices the variables pertaining to the first/second wing, respectively, of the Dynkin diagram
— corresponding to the first/second copy of psu(1, 1|2).

– 6 –
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Here we present a short description of some aspects of the algebraic curve describing
the integrability of classical solutions of string theory on AdS3 × S3 × T 4, following the
discussion in [54]. This description is based on 4+4 quasimomenta, associated to the
fundamental representations of the two psu(1, 1|2)’s. They will be denoted by (pA1 , pA2 , pS1 , pS2 )
and (pA1̇ , p

A
2̇ , p

S
1̇ , p

S
2̇ ). Each quasimomentum naturally parametrises motion in one of the

factors of the target space, which is marked by the superscripts A, S for AdS3 and S3,
respectively. They are very important quantities which are expected to arise in a WKB-type
approximation of the Q-functions in the classical limit of the quantum spectral curve.

The p’s are naturally seen as functions of the Zhukovsky variables, and contain the
symmetry charges of the solution in their asymptotics:

pA1
pA2
pS1
pS2

 ' 1
2hx


−∆− S − B̂
+∆ + S − B̂
−J −K − B̂
+J +K − B̂

 = 1
2hx


−γ − 2K1 − L
+γ + 2K3 + L

−2K1 + 2K2 − L
−2K2 + 2K3 + L

 , (2.12)


pA1̇
pA2̇
pS1̇
pS2̇

 ' 1
2hx


+∆− S − B̌
−∆ + S − B̌
+J −K − B̌
−J +K − B̌

 = 1
2hx


+γ − 2K1̇ + 2K2̇ + L

−γ − 2K2̇ + 2K3̇ − L
−2K1̇ + L

2K3̇ − L

 , (2.13)

where on the r.h.s. we used the explicit expression of the charges in terms of Bethe roots
numbers. Finally, the classical curve tells us how the quasimomenta in the two wings are
related. In particular, for the quasimomenta describing motion in AdS3, the relation is
extremely simple and consists in analytic continuation

pAa

(1
x

)
= pAȧ (x), a = 1, 2 , (2.14)

as described in equations (7.13) and (7.38) of [22]. We will lift this property to the
quantum case.

2.3 Algebra of the psu(1, 1|2) Q-system

The sets of functional relations between the Q-functions (known as Q-systems) take a
universal form depending only on the symmetry algebra of the integrable system. Since our
model contains two copies of psu(1, 1|2), important input for our construction comes from
the structure of QQ relations for this algebra.

The psu(1, 1|2) Q-system contains 16 independent Q-functions depending on the spectral
parameter u. They can be labelled as QA|I , where A, I are completely anti-symmetric
strings of indices made from {1, 2}

A , I ∈ {∅, 1, 2, (12)} , (2.15)

interrelated by the QQ relations

QaA|IQA|Ii = Q+
aA|IiQ

−
A|I −Q

−
aA|IiQ

+
A|I , (2.16)

Q12|IQ∅|I = Q+
1|IQ

−
2|I −Q

−
1|IQ

+
2|I , (2.17)

QA|12QA|∅ = Q+
A|1Q

−
A|2 −Q

−
A|1Q

+
A|2 , (2.18)
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where a, i ∈ {1, 2} are single indices, and A, I are anti-symmetric multi-indices defined
above. The first type of relation (2.16) is usually called fermionic, and the remaining two
bosonic. In these equations, we are using the notation adopted in the whole paper for shifts
in the spectral parameter u: for any function g,

g[±n](u) ≡ g(u± in
2 ) , g±(u) ≡ g[±1](u). (2.19)

In our proposal, the QSC will contain two copies of these relations, which we will denote by
distinguishing between dotted and undotted indices (giving us 16+16 Q-functions). In this
section, we focus on one wing, and elaborate on some consequences of (2.16)–(2.18).

We will make a simple special choice for the Q-functions with the extremal combinations
of indices:

Q∅|∅ = Q12|12 = 1, (2.20)

which is analogous to the choice made in the other known QSC cases. Notice that the
Q-system has several symmetries, and in particular we are free to set Q∅|∅ = 1 through
an overall normalisation. The further, nontrivial algebraic assumption underlying (2.20)
is that Q12|12(u)/Q∅|∅(u) is an i-periodic function of u. Once we have this periodicity
property, the analytic properties of Q-functions we will discuss in the next sections imply
that Q12|12/Q∅|∅ should be a constant, which we are free to normalise to one using the

symmetries of the Q-system. In quantum spin chains, the periodicity 1 =
Q+

12|12Q
−
∅|∅

Q−12|12Q
+
∅|∅

can be
traced to the quantum transfer matrix having a unit determinant. It is also expected that
such condition reflects the projectivity of the algebra psu(1, 1|2). In particular, as discussed
in [2], it implements a zero-charge constraint for the quantum numbers, which enter the
asymptotics of Q-functions in the way described in the next section. For these reasons,
from now on we assume the validity of (2.20), which so far seems fully consistent with the
description of the AdS3 integrable system.

We will adopt a special notation for some of the Q-functions,

Qk ≡ Q∅|k, Pa ≡ Qa|∅, Qk ≡ εklQ12|l, Pa ≡ εabQb|12, (2.21)

as well as Qa|i ≡ εabεijQb|j . Explicitly,

Qa|i =
(
Q2|2 −Q2|1
−Q1|2 Q1|1

)
, (2.22)

such that
Qa|iQ

b|i = δba, Qa|iQ
a|j = δji , (2.23)

due to the unimodularity property

det
(
Qa|i

)
= 1, (2.24)

which is a consequence of the Q-system with the boundary conditions (2.20). Let us write
explicitly some of the fermionic equations, which will be used extensively,

Q+
a|i −Q

−
a|i = PaQi, (2.25)

– 8 –
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together with Q−a|i −Q
+
a|i = Q12|iQa|12, which can be rewritten in Hodge-dual notation as

Qa|i + −Qa|i − = −PaQi. (2.26)

Further useful consequences of the QQ relations are:2

PaPa = QiQi = 0, (2.27)

and the following relations

Q±a|iQ
i = Pa , Q±a|iP

a = Qi , Qa|i ±Qi = Pa , Qa|i ±Pa = Qi , (2.28)

where the equations with ± signs are compatible due to (2.25)–(2.27).
A useful rewriting of (2.25), (2.26) incorporating Qa|i is

Q−a|i = Q+
a|j

(
δji −QjQi

)
, Qa|i − = Qa|j +

(
δij + QiQj

)
, (2.29)

or alternatively,

Q−a|i = Q+
b|i

(
δba −PbPa

)
, Qa|i − = Qb|i +

(
δba + PbPa

)
. (2.30)

So far, most of these relations are structurally similar to the ones found for psu(2, 2|4) —
the AdS5 case. In this case of lower rank, however, there is an interesting new feature,
which follows from the fact that Qa|i and Qa|i are related in a simple manner by (2.22).
The compatibility of (2.25) and (2.26) then gives

QkPa = −εklεabQlPb, (2.31)

or explicitly,

Q1P1 = −Q2P2 , Q1P2 = +Q2P1 , Q2P1 = +Q1P2 , Q2P2 = +Q1P1, (2.32)

which imply the equalities of certain ratios of P or Q functions:

Q1

Q2
= −Q2

Q1
= −P2

P1 = +P1
P2 ≡ r. (2.33)

The quantity r(u) defined above will have an interesting role in our system. Notice that it
allows to raise or lower the indices

Qk = +rεklQl , Qk = −1
r
εklQl , Pk = −1

r
εklPl , Pk = +rεklPl . (2.34)

Finally, a useful consequence of the Q-system is the existence of a 2nd order finite difference
equation, describing the Q functions in terms of the P functions (and vice versa). These
Baxter-type equations are described in appendix C.

2We note that the validity of (2.27) depends on the constraint 1 =
Q+

12|12Q
−
∅|∅

Q−12|12Q
+
∅|∅

.
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Q-system and Bethe ansatz. An important consequence of a Q-system is that it
immediately implies the existence of Bethe-like equations restricting the positions of the
zeros of the Q-functions, which play the role of Bethe roots. In this argument, we anticipate
a crucial assumption on the Q-functions, namely that they do not have any poles.

One such system of Bethe equations constrains the zeros of the Q-functions

Q∅|1 = Q1, Q1|1, Q12|1 = −Q2. (2.35)

For instance, from (2.26) we learn that

Q+
1|1 −Q

−
1|1

∣∣∣
u∈{zeros of Q1}

= P1Q1|u∈{zeros of Q1} = 0, (2.36)

while, since Q1P1 = −P2Q2, it is also true that

Q+
1|1 −Q

−
1|1

∣∣∣
u∈{zeros of P1}

= Q+
1|1 −Q

−
1|1

∣∣∣
u∈{zeros of P2}

= Q+
1|1 −Q

−
1|1

∣∣∣
u∈{zeros of Q2}

= 0.
(2.37)

Shifting the bosonic equation Q+
1|1Q

−
2|1 −Q

−
1|1Q

+
2|1 = −Q2Q1 by ±i/2, we also obtain

Q++
1|1 Q2|1

∣∣∣
u∈{zeros of Q1|1}

= −Q2+Q+
1

∣∣∣
u∈{zeros of Q1|1}

, (2.38)

Q−−1|1 Q2|1

∣∣∣
u∈{zeros of Q1|1}

= +Q2−Q−1
∣∣∣
u∈{zeros of Q1|1}

. (2.39)

The above constraints can be recast as the exact Bethe equations3

Q+
1|1

Q−1|1

∣∣∣∣∣∣
u∈{zeros of Q1}

= 1 (2.40)

Q++
1|1 Q−1 Q2−

Q−−1|1 Q+
1 Q2 +

∣∣∣∣∣∣
u∈{zeros of Q1|1}

= −1, (2.41)

Q+
1|1

Q−1|1

∣∣∣∣∣∣
u∈{zeros of Q2}

= 1, (2.42)

where the middle relation comes from the ratio of (2.38), (2.39). In a similar way one can
deduce several other systems of Bethe equations. For instance, relations of the same form
are valid for the zeros of the functions P1, Q1|1, P2. We write these relations with a dot,

3In the case where the Q-functions have cuts, such as will be our system, the relation will be valid on the
main Riemann sheet where the Q-system is defined.
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anticipating that they will be relevant for the second wing:
Q+

1̇|1̇

Q−1̇|1̇

∣∣∣∣∣∣
u∈{zeros of P1̇}

= 1 (2.43)

Q++
1̇|1̇ P−1̇ P2̇−

Q−−1̇|1̇ P+
1̇ P2̇ +

∣∣∣∣∣∣
u∈{zeros of Q1̇|1̇}

= −1, (2.44)

Q+
1̇|1̇

Q−1̇|1̇

∣∣∣∣∣∣
u∈{zeros of P2̇}

= 1. (2.45)

In a system like the ones arising in AdS/CFT, the Q-functions are in general complicated
functions not known explicitly, therefore such exact Bethe equations have limited practical
usefulness when analysing generic solutions of the QSC. However, for certain classes of
solutions, such as those with large charges or near special points in the moduli space of
the holographic theory the Q-functions do simplify. In the last section of the paper, we
find the explicit large-volume limit of some Q-functions, arising from our QSC equations.
Exact Bethe equations such as the ones given above will then reduce to the ABA equations.
Additionally, AdS3/CFT2 dual pairs have multiple moduli, which preserve integrability [55]
and at special points in the moduli space of each holographic pair additional simplifications
to the exact Bethe equations may occur. For example, the weakly coupled RR-charged
theory is expected to describe a nearest-neighbour integrable spin chain [56].

3 Proposal for the QSC

In this section we describe the structure of the proposed Quantum Spectral Curve for AdS3.
In the absence of the general TBA equations we cannot follow the usual route of [2, 57, 58]
to derive the QSC from TBA. Instead we will be guided by the common properties of the
known QSCs for AdS5 and AdS4.

If we summarise the known QSCs there are two main ingredients: QQ-relations, and
analytical properties of Q-functions. We consider these components in turn in the following.

3.1 Introducing the Q-functions

QQ-relations. In the known case, the QQ-relations follow from the structure of the
symmetry of the system. In AdS3 we have two copies of psu(1, 1|2) and a natural assumption
would be to have two copies of QQ-relations for psu(1, 1|2), described in the previous section.
To distinguish the two copies we will use dotted indices for one of them, so we will use the
following sets of indices (a = 1, 2, k = 1, 2 and same for dotted indices)

Qk, Pa, Qa|k ↔ Qa|k, Qk, Pa , (3.1)

Qk̇, Pȧ, Qȧ|k̇ ↔ Qȧ|k̇, Qk̇, Pȧ . (3.2)

The above Q-functions are related by the QQ-relations. A distinguished subset of them,
from which one can recover the remaining Q-functions are

Pa , Pa and Pȧ , Pȧ constrained by PaPa = PȧPȧ = 0 . (3.3)
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For example, Qk can be reconstructed from Pa and Pa by solving the second order finite-
difference equation

Q++
k D−1 −QkD2 + Q−−k D+

1 = 0 , (3.4)

with the coefficients depending solely on P’s:

D1 = εabPa−Pb+ , D2 = εabPa−−Pb++ −PcPc−− εabPaPb++ . (3.5)

The above relation, derived in appendix C, is a consequence of the QQ-relations, so an
identical equation holds for the dotted Q-functions. Equally one can interchange Q↔ P
in (3.4) and (3.5).

Classical correspondence. In the classical limit, described by strong coupling h→∞
and large quantum numbers scaling as ∼ h, we expect that the quasimomenta appear in
a WKB approximation of some of the Q-functions. In particular, they should be directly
related to the Q-functions living in the fundamental representation of each psu(1, 1|2) algebra.
With the notation borrowed from the other cases, we link P’s with the quasi-momenta
associated with S3 and Q’s with the ones for AdS3.

For the first wing, we will take this correspondence to be the following:

(Q1,Q2|P1,P2) ∼
(
e−
∫ u

pA1 , e−
∫ u

pA2 |e+
∫ u

pS1 , e+
∫ u

pS2
)
, (3.6)(

Q1,Q2|P1,P2
)
∼
(
e
∫ u

pA1 , e
∫ u

pA2 |e−
∫ u

pS1 , e−
∫ u

pS2
)
, (3.7)

which is structurally the same as in AdS5. For the second wing, we take4

(Q1̇,Q2̇|P1̇,P2̇) ∼
(
e−
∫ u

pA2 , e−
∫ u

pA1 |e
∫ u

pS2 , e
∫ u

pS1
)
, (3.8)(

Q1̇,Q2̇|P1̇,P2̇
)
∼
(
e
∫ u

pA2̇ , e
∫ u

pA1̇ |e−
∫ u

pS2̇ , e−
∫ u

pS1̇

)
. (3.9)

Large-u asymptotics. Consistently with the quasi-classical identifications (3.9) and the
asymptotics of the quasimomenta described in section 2.2, the Q-functions should exhibit
power-law asymptotics at large u, with behaviour characterised by the charges. In particular,
we assume

Pa ' AauMa , Pa ' Aa u−Ma−1, Qi ' BiuM̂i , Qi ' Biu−M̂i−1, (3.10)

for large u, where

Ma ≡
(
−L2 +K2 −K1 − 1, L2 −K2 +K3

)
,

M̂k ≡
(
γ

2 + L

2 +K1, −
γ

2 −
L

2 −K3 − 1
)
,

(3.11)

Mȧ ≡
(
−L2 +K3̇,

L

2 −K1̇ − 1
)
,

M̂k̇ ≡
(
γ

2 + L

2 +K2̇ −K3̇ − 1, −γ2 −
L

2 −K2̇ +K1̇

)
.

(3.12)

4Comparing (3.6) and (3.8), the reader will notice that we reordered some of the labels in the second
wing. This is just an arbitrary choice with no loss of generality at this stage (notice that 1 ↔ 2 in the
indices is a trivial symmetry of the Q-system), but it will be convenient for the future, as it will make the
discussion more symmetric between the two wings.
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In the following sections, we will see that some of the Q-functions have horizontal cuts
connecting to infinity. In this case, the asymptotic behaviour above will be assumed to be
valid for Im(u) > 0.

Notice that the classical identification is valid in a regime of large quantum numbers, so
that it only fixes the structure of (3.10) up to finite shifts. However, those can be fine-tuned
by the match with the ABA which will be described in the last section of the paper. We
will take the exact asymptotics of the Q-functions to be as above.

Constraints on the constant prefactors and shortening conditions. The pre-
factors A and B in P and Q functions (3.10) usually play an important role. They can be
determined by plugging the large u expansion into the QQ-relations or Baxter equation.
This leads to the following identities

r0 h
B̂

∏
(−y3̇,i)∏
(−y1̇,i)

= B1

B2
= A1
A2 r0 h

B̌

∏
(−y3,i)∏
(−y1,i)

= B1̇

B2̇
= A1̇
A2̇

. (3.13)

The Baxter equation then implies

B1B
1 = −B2B

2 = i

4
(∆− J −K + S)(∆ + J +K + S + 2)

∆ + S + 1 , (3.14)

A1A
1 = −A2A

2 = i

4
(∆− J −K + S)(∆ + J +K + S + 2)

J +K + 1 , (3.15)

and with dots

B1̇B
1̇ = −B2̇B

2̇ = i

4
(∆− J +K − S)(∆ + J −K − S − 2)

∆− S − 1 , (3.16)

A1̇A
1̇ = −A2̇A

2̇ = i

4
(∆− J +K − S)(∆ + J −K − S − 2)

J −K − 1 . (3.17)

Above we used the following relation between the charges and the Bethe root numbers:

∆ = γ + L+K2̇ + K1
2 + K3

2 −
K1̇
2 −

K3̇
2 ,

S = K1
2 + K3

2 + K1̇
2 + K3̇

2 −K2̇ ,

K = K1
2 + K3

2 + K1̇
2 + K3̇

2 −K2 ,

J = L−K2 + K1
2 + K3

2 −
K1̇
2 −

K3̇
2 ,

B̂ = K1 −K3 ,

B̌ = K1̇ −K3̇ .

(3.18)

The half-BPS shortening condition ∆ = J and S = K follows from requiring for A and
B to vanish. This is an integrability-based derivation of a non-renormalization result for
theories with small (4, 4) super-conformal symmetry. In such theories, there are left or
right sub-algebra shortening conditions: ∆L = JL or ∆R = JR. It is well-known that at
generic points in the moduli space states which are short with respect to only one such
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Figure 2. Standard analytic structure of P’s with one branch cut. As a consequence of this,
Q functions will have an infinite ladder of cuts separated by i in the lower or upper half of the
analytic plane.

sub-algebra (i.e. quarter-BPS states) are not protected, while states which satisfy both
shortening conditions (half-BPS states) do not receive quantum corrections [59–61]. An
independent derivation of these results was found using ABA methods [62, 63] which are
valid in the large L limit. The QSC derivation presented here, showing that only half-BPS
states are protected, is valid for all lengths L.

3.2 Analytic properties

As in all other studied cases, we assume that all 4 types of P’s have only one branch cut
(−2h, 2h) on the real axis and no other singularities on either sheet of their Riemann surface,
as shown on figure 2. Since the Q-functions are determined in terms of P’s by means
of equation (3.4), the analytic properties of Q can be deduced from those of P. Before
describing them let us introduce two different bases of solutions of (3.4):

Q↓k − Upper Half Plane analytic (UHPA) solutions (3.19)
Q↑k − Lower Half Plane analytic (LHPA) solutions . (3.20)

As the coefficients of (3.4) only have a few cuts near the real axis, and are analytic otherwise,
we can always find two solutions of (3.4) Q↓k which do not have cuts in the UHP, and
another pair of solutions Q↑k which are analytic in the LHP. Rewriting (3.4) as

Q↓k = Q↓++
k D++

2 −Q↓[+4]
k D+

1

D
[+3]
1

, (3.21)

and assuming that Q↓k is analytic for Im u > 0 we see that the highlighted terms in the r.h.s.
will produce a branch cut on the real axis. Iterating further (3.21) with shifts u→ u− 2in
in general we generate a ladder of cuts going down the complex plane like on figure 2.

At the same time, since there are only two linearly independent (with periodic coeffi-
cients) solutions of a second order equation (3.4) there must exist an i-periodic function
(with short cuts) Ω l

k which relates the two sets of solutions

Q↑k = Ω m
k Q↓m , Ω m

k (u+ i) = Ω m
k (u) . (3.22)

In fact one can write Ω m
k explicitly in terms of Q’s

Ω m
k = εml

Q↑kQ
↓−−
l −Q↑−−k Q↓l

Q↓1Q↓−−2 −Q↓−−1 Q↓2
(3.23)
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Figure 3. Two Q’s from different Q-systems are glued together.

and the periodicity can be verified using (3.4). There are identical equations for the dotted
indices. Furthermore, in appendix C we show that the Hodge-dual Q-functions also satisfy

Q↑k = Ωk
mQ↓m Ωk

mΩ l
k = δlm . (3.24)

Gluing conditions. So far, the two Q-systems were existing independently. Here we
propose a particular way of joining them together. The underlying idea is to fix the apparent
asymmetry between the analytic properties of Q and P (see figure 2). Whereas P has only
one branch-cut, as we argued above, Q should have a ladder of cuts going either up or down
from the real axis. Following the observation in other QSCs, we notice that a section of the
Riemann surface of Q’s with long cut i.e. (−∞,−2h) ∪ (2h,∞) on the real axis should not
have any other cuts. More specifically we require that (see figure 3)

Q↓k(u+ i0) = G ṅ
k Q↑ṅ(u− i0) , Q↓

k̇
(u+ i0) = G n

k̇
Q↑n(u− i0) , u ∈ (−2h, 2h) (3.25)

where G ṅ
k and G n

k̇
are two different independent constant matrices. In the studied cases

of QSC they have several zero components, but in our case their exact form is still to be
deduced. However, one can make a first guess by looking at the classical counterpart of the
gluing relations (2.14). Using the identification (3.6) we see that it suggests G 2̇

1 and G 1̇
2 to

be the only non-zero elements of G ṅ
k .

For the Hodge-dual Q-functions, the gluing conditions take a similar form

Qk↓(u+ i0) = Gkṅ Qṅ↑(u− i0) , Qk̇↓(u+ i0) = Gk̇n Qn↑(u− i0) , u ∈ (−2h, 2h). (3.26)

Like in the known cases, we assert that gluing is a symmetry of the Q-system

Gkṅ = εklεṅṁG
ṁ
l , Gk̇n = εk̇l̇εnmG

m
l̇

, detG = 1 . (3.27)

In the following, we will choose a basis of Q-functions with specified large-u asymptotics on
the first sheet, described in (3.10). after this choice is made, we are not free to diagonalise
the gluing matrix with a linear transformation. For this reason, we will keep track of it
explicitly throughout. We leave for future work the discussion of the matrix structure of
G in this special basis, but as we argued above the classical limit suggests an off-diagonal
structure for this matrix.
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Properties of the r-function. The r-function, which was defined in section 2.3 and
allows to lower and raise indices, has interesting analyticity properties. From (2.33) we note
that r = P1/P2, meaning that r (and ṙ) has at most one cut on the main sheet (−2h, 2h).
At the same time r = Q↓1/Q2↓, meaning that it has only one long cut at the same time. In
other words the analytic continuation from above rγ is analytic in the LHP.

(Qk↓)(u+ i0) = r(u+ i0)εklQ↓l (u+ i0) = r(u+ i0)εklG ṅ
l Q↑ṅ(u− i0), (3.28)

at the same time the l.h.s. can be expressed as

Gkṅ Qṅ↑(u− i0) = Gkṅ ε
ṅṁṙ(u− i0)Q↑ṁ(u− i0) = ṙ(u− i0)εklG ṅ

l Q↑ṅ(u− i0), (3.29)

from where we deduce that r(u+ i0) = ṙ(u− i0). Similarly, we can start from the dotted
version of the derivation above to get r(u − i0) = ṙ(u + i0). From this consideration we
see that r(u) has a single quadratic cut, which connects it to ṙ(u). This branch cut can be
rationalised with the help of the Zhukovsky variable x(u) = u+

√
u−2h

√
u+2h

2h so we can write
r explicitly in terms of its zeros/poles5

r(u) = r0

∏K3−NR
i (x(u)− y3,i)

∏K3̇−NR
i (1/x(u)− y3̇,i)∏K1−NB

i (x(u)− y1,i)
∏K1̇−NB
i (1/x(u)− y1̇,i)

, (3.30)

and ṙ(u) is r(u) with x(u) replaced by 1/x(u). r0 is a constant. In the above expression we
assume |y...| ≥ 1. Finding such a simple expression for a combination of P’s is an interesting
novel feature of the AdS3 QSC.

3.3 On analytic continuation

We now deduce several consequences of the discussion in the previous section. We will see
that the simple set of constraints given above implies the existence of a rich mathematical
structure. The Q-functions live on a Riemann surface with infinitely many sheets, but the
equations we will now deduce allow us to map any one of these sheets to the first one, as is
the case also for the other examples of QSCs.

As anticipated in the introduction, it will turn out that the branch cuts in this system of
QSC equations cannot be quadratic. This means that, for any branch point on the Riemann
surface, we can go around it in two ways, and in principle this yields two different results.

We will introduce the analytic continuation paths γ and its inverse γ−1, which we will
also denote by γ̄. The path γ goes around a branch point at 2h in anticlockwise sense,
or alternatively, it goes around the branch point at −2h in clockwise sense. Since in this
section we think in terms of short cuts for all the Q-functions, we can say that γ goes
through the short cut (−2h,+2h) from above, while γ̄ crosses it from below. The two paths
are represented in figure 4. We denote the analytic continuation of any function of u along
these paths as fγ or fγ−1 ≡ f γ̄ . In this notation, (3.25) and (3.26) become

(Q↓k)
γ = G ṁ

k Q↑ṅ , (Q↓
k̇
)γ = G n

k̇
Q↑n, (Qk↓)γ = GkṅQ̄ṅ↑, (Qṅ↓)γ = GȧbQb↑. (3.31)

5The number of poles and zeros Kn is introduced to match later the notations in the ABA. NR and NB
are introduced to allow for different types of Bethe roots to coincide and consequently cancel in the ratio.
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Figure 4. Two contours we use for analytic continuation.

3.3.1 The Qω-system

By defining i-periodic functions ω:

ω ṅ
k = G ṁ

k Ω ṅ
ṁ , ω n

k̇
= G m

k̇
Ω n
m , (3.32)

where Ω’s are the matrices relating LHPA and UHPA bases in (3.24), (3.22), the system of
equations (3.31) can be conveniently rewritten in the form

Q↓γk = ω ṁ
k Q↓ṁ , Q↓γ

k̇
= ω m

k̇
Q↓m. (3.33)

Notice also that by construction, it follows from the properties of the gluing matrix and Ω
function that

ω ṁ
k ωl ṁ = δlk , det(ω) = 1. (3.34)

Similarly, one can introduce
ω̄ m
ṅ = GkṅΩm

k, (3.35)

such that
Q↑γ

−1

k̇
= ω̄ m

k̇
Q↑m. (3.36)

In what follows, we adopt a simplified notation,6 where Q↓ is denoted by Q and Q↑ is
denoted by Q̄. So (3.33) and (3.36) become

Qγ
k = ω ṁ

k Qṁ , Q̄γ̄
k = ω̄ ṁ

k Q̄ṁ . (3.37)

Now let us understand the analytic continuation under the cuts of ω, focusing on ω l
k̇

first.
Notice that the matrix Ω l

k can be expressed as Ω l
k = Q̄+

a|kQ
a|l + (see (C.7)) and since Qa|i +

has no cut on the real axis, we only need to understand the analytic continuation of Q̄+
a|k.

The defining relation of this function is

Q̄+
a|k − Q̄

−
a|k = PaQ̄k, (3.38)

where Q̄−a|k is now analytic and invariant under the analytic continuation along γ̄. Computing
the discontinuity we obtain

Q̄+γ̄
a|k − Q̄

+
a|k = Pγ̄

aQ̄γ̄
k −PaQ̄k , (3.39)

6Notice that this notation does not necessarily mean complex conjugation of the Q-functions; however,
we expect that for real parameters there will be a simple relation.
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which, multiplied by Qa|l + on the left, leads to

(Ω l
k )γ̄ − Ω l

k = Q̄γ̄
kQl γ̄ − Q̄kQl . (3.40)

Next, multiplying these equations by G k
k̇
, and using (3.31), we find:

(ω l
k̇

)γ̄ − ω l
k̇

= Qk̇Q
l γ̄ −Qγ

k̇
Ql . (3.41)

This expression generalises a similar relation found in AdS5 and AdS4 cases, but now we
distinguish two different directions for the analytic continuation on the r.h.s.. As usual one
can replace dotted to undotted indices to get a similar identity for ω l̇

k .
We can use (3.41) to determine the double continuation of Qk̇ along the contour γ —

we will then see explicitly that there may be an obstruction to the cuts being quadratic.
We start by continuing (3.37) along the inverse path γ̄, which gives

Qk̇ = (ω l
k̇

)γ̄Qγ̄
l = ω l

k̇
Qγ̄
l −Qγ

k̇
QlQγ̄

l = ω l
k̇

(
δpl −QlQp)Qγ̄

p , (3.42)

where the second equality is obtained by using (3.41), and recalling that QiQi = 0. Inverting
the factor on the r.h.s., we get

Qγ̄
p =

(
δlp + QpQl

)
ωk̇lQk̇ . (3.43)

From this we can compute directly the difference of the analytic continuation of the
Q-function along γ and γ̄:

Qγ
k −Qγ̄

k = Qṁ

(
ω ṁ
k − ωṁk

)
+ QkQlω ṁ

l Qṁ. (3.44)

In the case of AdS5, the two terms on the r.h.s. would vanish separately, due to the symmetry
properties of the analogue of ω, ensuring that the branch cuts are quadratic. In our case,
that does not need to be the case, since ω connects different kinds of indices and there is
no reason a priori to expect any symmetry between them.

We make a further interesting observation by rewriting (3.41) in the form

(ω l
k̇

)γ̄ −Qk̇Q
l γ̄ = ω l

k̇
−Qγ

k̇
Ql . (3.45)

This shows immediately that the combination ω l
k̇
−Qγ

k̇
Ql is equal to its analytic continua-

tion, and therefore the cut on the real axis disappears in this combination. We can also
write it as ω m

k̇
(δlm −QmQl). Then taking (3.42) along γ, we get

Qγ

k̇
= ω l

k̇

(
δpl −QlQp)Qp = ω l

k̇
Ql (3.46)

with the final equality being in agreement with (3.32). The first equality allows us to find
the expression for Qk̇ continued a second time along γ:

Qγ2

k̇
= ω l

k̇

(
δpl −QlQp)Qγ

p = ω l
k̇

(
δpl −QlQp)ω ḣ

p Qḣ . (3.47)
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This expression confirms the potential obstruction to the cuts being quadratic. In particular,
we can repeatedly iterate this continuation and obtain in general

(Qk̇)
γn = U p

k̇
(Qp)γ

n−1
, (Qk)γ

n = U̇ ṗ
k (Qṗ)γ

n−1
, (3.48)

(Qk̇)
γ̄n = Ū p

k̇
(Qp)γ̄

n−1
, (Qk)γ̄

n = ˙̄U ṗ
k (Qṗ)γ̄

n−1
, (3.49)

where

U p

k̇
≡ ω l

k̇

(
δpl −QlQp) , Ū p

k̇
≡
(
U̇−1

) p

k̇
=
(
δṁ
k̇

+ Qk̇Q
ṁ
)
ωpṁ, (3.50)

U̇ ṗ
k ≡ ω

ṁ
k

(
δṗṁ −QṁQṗ

)
, ˙̄U ṗ

k ≡
(
U−1

) ṗ

k
= (δmk + QkQm)ωṗm. (3.51)

In general, following the path γn produces a concatenation of monodromies U · U̇ ·U · U̇ . . . ,
but since there is no reason to expect (U · U̇) to be the identity matrix (or a root of the
latter), this is nontrivial, meaning that each branch point has infinite order and connects to
infinitely many sheets.

Notice that, while in general we expect the branch points to be non-quadratic, there
are some special combinations of Q-functions that do exhibit this property. We already
showed that this is the case for the ratio r defined in (2.33). We now consider

QlQγ̄
l = Qlωk̇lQk̇ = Qk̇ γQk̇ , (3.52)

where we used (3.43) and the analogous equation to (3.37) with (raised, dotted) indices.
Lowering the indices with (2.33), and remembering that, as deduced above, rγ = rγ̄ = ṙ,
the same relations (and their dotted version) can be written as

εklQkQγ̄
l = −εk̇l̇Qk̇Q

γ

l̇
, εklQkQγ

l = −εk̇l̇Qk̇Q
γ̄

l̇
. (3.53)

Continuing the first equation above along γ, we get

εklQγ
kQl = −εk̇l̇Qγ

k̇
Qγ2

l̇
, (3.54)

but due to the second equation in (3.53), the l.h.s. is also equal to −εk̇l̇Qγ̄

k̇
Ql̇, meaning that

the combination εk̇l̇Qγ̄

k̇
Ql̇ = εklQkQγ

l comes back after γ2!
As a final observation, we notice that, continuing the two sides of (3.45) along γ, one

can also obtain an explicit equation for ωγ in terms of quantities on the first sheet.
The main results of this section can be summarised in the following equations:7

(Q)γ
k̇

= ω l
k̇

Ql(Qk̇)γ = ωk̇lQl , (3.55)

and(
(ω)γ̄ − ω

) l

k̇
= Qk̇(Q

l)γ̄ − (Qk̇)
γQl,

(
(ω)γ̄ − ω

)k̇
l

= −Qk̇(Ql)γ̄ + (Qk̇)γQl. (3.56)

Here, as usual, we understand that for every equation there is its double obtained by
interchanging dotted and undotted indices. Together with QiQi = 0, ω l

k̇
ωk̇m = δlm, and the

7Results for Q and ω functions with raised indices can be found using the same steps.

– 19 –



J
H
E
P
1
2
(
2
0
2
1
)
0
4
8

Figure 5. Periodicity of µ as a function with long cuts is identical to the property µ++ = µγ for a
section with short cuts.

periodicity of ω, the relations (3.55), (3.56) may be taken as a self-consistent description of
the QSC, which is usually dubbed Qω-system.8 Bouncing back and forth between these
equations, and using the fact that ω is i-periodic, one can obtain the result of any analytic
continuation of the Q-functions and ω functions, inside any cut, and express it in terms
of their values on the first sheet. This is the same feature that was observed in the other
examples of QSC, see the discussion in [1]. It is encouraging that this property is still valid
here, even though the analytic structure is more complicated due to the branch points
having infinite order.

3.3.2 The Pµ-system

We now describe the constraints on the analytic continuation of P functions. Analogously
to [2], the main object in this case is the matrix µ defined as

µ ḃ
a ≡ Q−a|c ω

c
ḋ
Qḃ|ḋ − , µa

ḃ
≡ Qa|c − ω ḋ

c Q−
ḃ|ḋ, (3.57)

which will play a role similar to ω. Notice that just like in the case of ω, µ has unit
determinant and µ ḃ

a µ
c
ḃ

= δca. We also notice the alternative expression

µ ḃ
a = Q̄−a|i(G

i
k̇
ωk̇lG

l
ṁ)Q̄ḃ|ṁ −, (3.58)

which is obtained through the relations (C.6), and will become useful in the discussion of
the next section.

While ω is an i-periodic function on the Riemann section with short cuts, µ has a
periodicity on the section with long cuts, as depicted in figure 5. Expressed in terms of a
section with short cuts, this “mirror periodicity” becomes

µ++ = (µ)γ . (3.59)

To prove this relation (and thus also long-cut periodicity of µ), we continue it along γ̄ and
show that the combination (µ++)γ̄ − µ vanishes. We can rewrite such a difference as

(
(µ++)γ̄ − µ

) ḃ

a
= Q+

a|i (ωi
k̇
)γ̄ Qḃ|k̇ + −Q−a|i ω

i
k̇
Qḃ|k̇ −. (3.60)

8As we saw in this section, these relations can be used to deduce algebraically all remaining properties,
including the effect of crossing the cuts in the opposite directions.
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We can now plug in (ω)γ−1 from the (undotted version of) (3.56), and, in the second term,
use the identities (2.29) to relate Q−a|i and Q

+
a|i. We get

Q+
a|k

(
ωkṁ + (Qk)γQṁ −Qk(Qṁ)γ̄

)
Qḃ|ṁ +

− Q+
a|k

(
δkm −QkQm

)
ωmṁ

(
δṁ
k̇

+ QṁQk̇

)
Qḃ|k̇ + = 0, (3.61)

where a perfect cancellation occurs due to (3.55), (3.56), establishing (3.59). We can use µ
to compute the values of P on the second sheet. In particular, the definition (3.57), together
with Pa = Q+

a|iQ
i, immediately implies

(Pa)γ = µ ḃ ++
a Pḃ = (µ ḃ

a )γPḃ, (3.62)

which is conveniently rewritten as

(Pa)γ̄ = Pḃµ
ḃ
a . (3.63)

This equation, compared to (3.37), highlights the symmetry of the construction between P
and Q functions. From (3.41), it is also immediate to derive

(µ ḃ
a )γ − µ ḃ

a = Q+
a|k

(
ωkṁ − (ωkṁ)γ̄

)
Qḃ|ṁ+ = Pa(Pḃ)γ̄ − (Pa)γPḃ, (3.64)

which shows that the combination µ ḃ
a + Pa(Pḃ)γ̄ =

(
δba + PaPb

)
µ ḃ
b has no cut on the real

axis. From this observation and (3.63) we also deduce

(Pa)γ =
(
δba + PaPb

)
µ ḃ
b Pḃ , (Pa)γ

2 =
(
δba + PaPb

)
µ ḃ
b (Pḃ)

γ , (3.65)

and we obtain, similar to the previous discussion, that the branch points are in general
connected to an infinite series of sheets, which can be reached by iterating

(Pa)γ̄
n = W̄ ḃ

a (Pḃ)
γ̄n−1

, (Pa)γ
n = W ḃ

a(Pḃ)
γn−1

, (3.66)

with W , W̄ defined by

W ḃ
a =

(
δba + PaPb

)
µ ḃ
b , W̄ ḃ

a = µċ a

(
δḃċ −PċPḃ

)
, (3.67)

with Ẇ = (W̄ )−1, ˙̄W = (W )−1 defined similarly by dotting/undotting all indices. As in the
previous paragraph, we see that going around the branch point many times keeps leading
to new sheets, since we expect in general that (W · Ẇ ) ba 6= δba, being there no reason to
expect otherwise.

We can summarise the finding of this section in a set of Pµ equations. For the first
wing they read,

(Pa)γ̄ = Pḃµ
ḃ
a , (Pa)γ̄ = Pḃµ a

ḃ
, (3.68)

and

(µ ḃ
a )γ − µ ḃ

a = Pa(Pḃ)γ̄ − (Pa)γPḃ, (µa
ḃ
)γ − µa

ḃ
= −Pa(Pḃ)

γ̄ + (Pa)γPḃ. (3.69)

Together with the mirror-periodicity of µ, this can also be taken as a self-consistent
description of the QSC. As remarked for the Qω-system, these equations contain enough
information to map the values of P and µ functions on any sheet, back to the first main one.
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4 The ABA limit

In this section, we will find an asymptotic solution for some of the Q-functions in the large-L
limit. This will lead us to a perfect match with the Asymptotic Bethe Ansatz for massive
states, including the dressing phases.

4.1 Large-volume scaling of the QSC

To deduce the large-L solution, we will use arguments developed for the AdS5 case in [2] and
then also successfully used for AdS4 case to derive the ABA in [14]. The crucial observation
is that, for large L, some Q-functions are exponentially suppressed/enhanced, following the
pattern of their large-u asymptotics (3.10). Following the notation of [2], we introduce a
parameter ε ∝ e−L to keep track of this scaling. We then see that for large L (i.e., ε ∼ 0),

Qa|i ∼
(

1 ε2

1
ε2 1

)
, Qa|i ∼

(
1 1

ε2

ε2 1

)
, (4.1)

Qi ∼ (ε−1, ε), Qi ∼ (ε, ε−1), Pi ∼ (ε, ε−1), Pi ∼ (ε−1, ε). (4.2)

In the second wing, we would have exactly the same pattern for the dotted Q-functions.
In addition, since the ω functions are periodic on a Riemann section with short cuts, they
have constant asymptotics. We will then assume that they all scale as

ω ṁ
k ∼ O(1), ωkm ∼ O(1), ω m

k̇
∼ O(1), ωk̇m ∼ O(1), ε→ 0. (4.3)

We then notice that some of the QQ relations, Pµ and Qω equations simplify significantly.
Dropping the subleading terms for ε→ 0 we find for instance, from (3.57),

µ 2̇
1 = Q−1|kω

k
l̇
Q2̇|l̇ − ∼ Q−1|1ω

1
2̇Q

2̇|2̇ − = Q−1|1ω
1
2̇Q
−
1̇|1̇, (4.4)

and similarly we get to
µ2

1̇ ∼ Q
−
1|1ω

1̇
2 Q−1̇|1̇, (4.5)

where we recalled that by definition Q2|2 = Q1|1. Another important equation is obtained
starting from P1 = (Q+

1|i)Q
i, and considering the analytic continuation along γ (recall that

Q+
a|1 has no cut on the real axis). Using the Qω-system, and then considering the large-L

scaling, we get
(P1)γ = Q+

1|lω
l
k̇
Qk̇ ∼ Q+

1|1ω
1
2̇Q2̇, (4.6)

which will play an important role in the following derivation of the ABA.
We now proceed to deduce the form of some of the elements of the QSC in the ABA

scaling. To do that, we will take as a working hypothesis the property that, for the functions
µ 2̇

1 , µ 2
1̇ , µ1̇

2, µ1
2̇, the cut on the real axis becomes quadratic in the large-L limit. We will

see that all the solutions for massive states fall into this category.9

9It is tempting to speculate that asymptotic solutions including massless modes might be found by
relaxing this assumption on the behaviour at large L. On the other hand the massless modes suffer from
stronger wrapping effects, which limits the range of validity of the corresponding ABA regime, which may
mean that the approach of [2] is not sensitive enough to detect those power-like effects, and the ABA should
be recovered via a different route. We reserve these questions for future studies.
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We will also make an assumption that the gluing matrix follows the pattern one can
deduce from the gluing equations in the classical limit, namely that all the diagonal elements
vanish. Our derivation assumes that this is true at least in the ABA limit, but we suspect
it may be true even at finite L (this is what happens in AdS5).

Finally, we will use the expressions obtained from (3.58) in the ABA limit, such as

µ 2̇
1 ∼ Q̄−1|1(G 1

k̇
ωk̇lG

l
2̇)Q̄−1̇|1̇ ∝ Q̄

−
1|1ω

2̇
1Q̄
−
1̇|1̇. (4.7)

4.2 Fixing Q-functions on the first sheet

Finding Q1|1, µ 2̇
1 and ω1

2̇. To determine these functions, we use the assumption on
the quadratic nature of the branch point of µ 2̇

1 in the ABA limit. Even though this
assumption could appear to be too restrictive, we will nevertheless show that in the ABA
limit this extra restriction does not lead to any inconsistencies. The simplification of the
analytic structure of µ is quite typical in the ABA limit — for instance in the AdS5 case
the discontinuity of logµ appears to be a simple rational function of x, whereas in general
it would have an infinity tower of cuts. With that in mind, we can follow closely [2], and
this part may be skimmed through by the reader familiar with that paper. The surprises
begin from section 4.3, where the non-quadratic nature of the branch points pops up again
in a crucial way.

We start by considering the function µ 2̇
1 (u+ i/2). We take it to have a finite number

of zeros on the first Riemann sheet with short cuts, and we store such zeros in a polynomial
Q(u) =

∏
i(u− ui). We then consider

(F )2 ≡ µ 2̇
1

µ 2̇++
1

Q+

Q−
= µ 2̇

1

(µ 2̇
1 )γ

Q+

Q−
(4.8)

which by definition has no zeros or poles on the first Riemann sheet with short cuts. Since
by our assumption the branch points of µ become quadratic in the ABA limit, using the
property (µ)γ = µ++ ∼ µγ̄ , it is simple to obtain the same equations as in [2]:

F (F )γ ∼ F (F )γ̄ ∼ Q+

Q−
. (4.9)

All the other cuts in F must disappear in the ABA limit. In fact, using (4.5), and the
periodicity of ω, we see that F 2 can be rewritten as

F 2 =
Q−1|1Q

−
1̇|1̇

Q+
1|1Q

+
1̇|1̇

Q+

Q−
, (4.10)

which does not have cuts in the upper half plane, while (4.7) leads us to the expression

F 2 =
Q̄−1|1 Q̄

−
1̇|1̇

Q̄+
1|1 Q̄

+
1̇|1̇

Q+

Q−
, (4.11)

which shows that there are no cuts in the lower half plane either. Taking into account that
F has constant asymptotics at large u on the first sheet, we have a simple Riemann-Hilbert
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problem (4.9), with the standard solution

F = ±ei
P
2
B(+)
B(−)

, (4.12)

with eiP ≡
∏
i
x+
i

x−i
, and B(±)(u) ≡

√
h
x∓i

( 1
x(u) − x

∓
i ). The constant factor will not be very

important in the current considerations.10

Setting Q1|1Q1̇|1̇ ≡ Q(f+)2, equation (4.10) then gives us a difference equation

f++

f
=
B(−)
B(+)

, (4.13)

where by construction f should have neither poles nor zeros in the upper half plane, and
power-like asymptotics. Up to a multiplicative constant, the solution is

f(u) ∝ exp
(∫ 2h

−2h

dz

2πi log
B(−)(z + i0+)R(+)(z + i0+)
B(+)(z + i0+)R(−)(z + i0+)∂z log Γ(iz − iu)

)
, (4.14)

where we use ∝ to indicate that there could be an irrelevant constant factor in the equation.
With the explicit form of f in (4.14), we have fixed Q1|1Q1̇|1̇ completely. Noticing that
µ 2̇

1 = Q−1|1Q
−
1̇|1̇ω

1
2̇ ∝ Q̄

−
1|1Q̄

−
1̇|1̇ω

1
2̇, where ω should be i-periodic, we can also find

µ 2̇
1 ∝ Q−ff̄−−, ω1

2̇ ∝
f̄−−

f
, Q1|1Q1̇|1̇ ∝ Q (f+)2, (4.15)

where f̄ is solution of f̄/f̄−− = B(−)
B(+)

with no cuts in the lower half plane and constant
asymptotics.11 From the expression (4.10), we also see that the set of zeros of Q must
coincide with the union of the zeros of Q1|1 and Q1̇|1̇. Therefore we split this polynomial
as Q(u) ≡ Q2(u)Q2̇(u), with Q2(u) ≡

∏K2
i=1(u − u2,i), Q2̇(u) ≡

∏K2̇
i=1(u − u2̇,i), with the

understanding that Q2 contains zeros of Q1|1, and Q2̇ zeros of Q1̇|1̇. This notation is chosen
in anticipation of the role of the zeros in the ABA. With these conventions, we have

µ 2̇
1 ∝ Q−2 Q

−
2̇ f2f2̇f̄

−−
2 f̄−−2̇ , ω1

2̇ ∝
f̄−−2 f̄−−2̇
f2 f2̇

, Q1|1 ∝ Q2 f
+
2 f

+
2̇ P, Q1̇|1̇ ∝ Q2̇ f

+
2 f

+
2̇

1
P
,

(4.16)
with the obvious notation that fα are solutions of f++

α /fα = Bα,(−)
Bα,(+)

, with α ∈
{
2, 2̇
}
(see

appendix A), and where P is a yet unfixed function of u coming from splitting the product
Q1|1Q1̇|1̇. This function should have neither zeros nor poles, and moreover P− cannot have
any cuts in the upper half plane. On the other hand, the quantity

Q̄+
1|1 = Q+

1|jΩ
j

1 ∼ Q
+
1|1Ω 1

1 for ε→ 0, (4.17)

10In any case, one can establish by an argument parallel to the one in [2], that eiP = 1, which can be
recognised as the level matching condition in the ABA interpretation.

11We have that f̄ is simply the complex conjugate of f for real roots, and otherwise it is given by a simple
integral representation similar to (4.14).
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should be analytic in the lower half plane, where the matrix Ω is defined by ω b
ȧ = G c

ȧ Ω b
c .

Using the assumed classics-inspired off-diagonal property of the gluing matrix, we see
that Ω 1

1 ∝ ω 1
2̇ . Then, from (4.17) and the above found solution for ω 1

2̇ , we deduce
that Q̄+

1|1 — which should be analytic in the lower half plane — can also be written

as Q2
B2,(−)B2̇,(−)
B2,(+)B2̇,(+)

f̄−−2 f̄−−2̇ P+. Since all the other factors already have this property, we
conclude that P+ should have no cuts in the lower half plane. All together, we found
that the function P cannot have any singularities or zeroes and thus is a constant (due to
regularity at infinity). In conclusion, we found

Q1|1 ∝ Q2 f
+
2̇ f

+
2 , Q1̇|1̇ ∝ Q2̇ f

+
2̇ f

+
2 , (4.18)

µ 2̇
1 ∝ µ 2

1̇ ∝ Q−2 Q−2̇ f2 f̄
−−
2 f2̇ f̄

−−
2̇ ,

ω1
2̇ ∝ ω

1̇
2 ∝

f̄−−2
f2

f̄−−2̇
f2̇

,

where we included the values of more ω, µ functions, obtained by obvious generalisations of
the argument above.

Parametrising P and Q functions. From the AdS5 and AdS4 cases, we expect that
a special subset of P and Q functions will converge to simple explicit expressions in the
ABA limit. This is the subset of the P functions which are small, together with the Q
functions that are large, for ε→ 0. From (4.2), we see that those are P1, P2, Q1, Q2, and
their dotted counterparts. We expect that their zeros on the first sheet will acquire the
meaning of Bethe roots.

With this in mind, we make the following ansatz:

P1 ∝ x−L/2A×R1̃B˜̇1B2,(−), P2 ∝ x−L/2A×R3̃B˜̇3B2,(−), (4.19)

Q1 ∝
xL/2

A′
×R1B1̇f2

f2̇
B2̇,(+)

, Q2 ∝ xL/2

A′
×R3B3̇ f2

f2̇
B2̇,(+)

. (4.20)

Above, we have stored the zeros of the P and Q functions on the first sheet inside the
Zhukovsky polynomials Rα, defined12 in appendix A (again, the notation anticipates the
role of these zeros in the ABA, but for now they are generic parameters). The other Bα
and fα factors (also defined in the appendix) are chosen for future convenience, but they
do not have zeros on the first sheet. Notice that the ansatz above is fully general, because
it contains the arbitrary functions of u A(u), A′(u). By construction they should have no
poles or zeros on the first sheet, and moreover A, which appears in the P functions, can
have only a single cut.

Comparing with (2.33), we see that we can write the important function r in two
alternative ways as

r ∝
R1̃B˜̇1
R3̃B˜̇3

∝ R3B3̇
R1B1̇

, (4.21)

which means that R3̃ and R1̃ could have common zeroes.
12In the definitions (A.6), (A.5), we take the zeros to satisfy |xα,j | > 1, which means the zeros of Rα (Bα)

are on the first (second) sheet in terms of the spectral parameter u.
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Likewise we make a similar ansatz for the second wing:

P1̇ ∝ x
−L/2 Ȧ ×R′3̇B

′
3B2̇,(−), P2̇ ∝ x−L/2 Ȧ ×R′1̇B

′
1B2̇,(−), (4.22)

Q1̇ ∝
xL/2

Ȧ′
×R′˜̇3B

′
3̃f2̇

f2
B2,(+)

, Q2̇ ∝ xL/2

Ȧ′
×R′˜̇1B

′
1̃ f2̇

f2
B2,(+)

, (4.23)

with functions Ȧ(u), Ȧ′(u) having no zeroes on the main sheet. In (4.22), (4.23), we have
introduced polynomials in x vs 1

x , R
′
α and B′α, respectively. They are defined just like

in (A.5), (A.6), but where the zeros of these polynomials (and their number) are in principle
unrelated to the ones appearing in the first wing. We will however soon see that there is a
simple identification. From (2.33) we again get

ṙ ∝
R′3̇B

′
3

R′1̇B
′
1
∝
R′˜̇1
B′1̃

R′˜̇3
B′3̃

. (4.24)

Furthermore, recalling that ṙγ = r we get

R1̃B˜̇1
R3̃B˜̇3

∝ R3B3̇
R1B1̇

∝
B′3̇R

′
3

B′1̇R
′
1
∝
B′˜̇1
R′1̃

B′˜̇3
R′3̃

. (4.25)

One can for example deduce that R1̃R1 = R3R3̃ etc. from the above equation.

Fermionic duality equation. An important constraint comes from one of the QQ
relations

Q+
1|1 −Q

−
1|1 = Q1P1 , (4.26)

where we see the appearance of Q1|1 determined in (4.18). Plugging in that value, and the
ansatz (4.19), (4.20), we find, from the first equality in (4.26),

R2,(+)B2̇,(−) −R2,(−)B2̇,(+) ∝ R1R1̃B1̇B˜̇1
A
A′

, (4.27)

where we used the property that Q±α = Bα,(±)Rα,(±). Since the left hand side is a rational
function in 1/x(u), and A, A′ should have no zeros or poles on the first sheet, the ratio
A(u)/A′(u) can only be a polynomial in the variable 1

x(u) . But we can absorb any such
function in a redefinition of the B˜̇1, B1̇ polynomials (which are so far completely uncon-
strained), so without loss of generality we can take A/A′ = 1. Similar considerations arise
from considering (4.26) in the second wing. From now on, therefore we take

A(u) = A′(u) , Ȧ(u) = Ȧ′(u). (4.28)

Notice that we still have two undetermined functions, which will be fixed in the next section.
Using that A = A′, from (4.27) we obtain

R2,(+)B2̇,(−) −R2,(−)B2̇,(+) ∝ R1R1̃B1̇B˜̇1 . (4.29)

The analogous constraint obtained by considering the second wing reads

B2,(−)R2̇,(+) −B2,(+)R2̇,(+) ∝ B
′
1B
′
1̃R
′
1̇R
′
˜̇1
, (4.30)
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and analytically continuing this equation to another sheet we find the identity

R1R1̃B1̇B˜̇1 ∝ R
′
1R
′
1̃B
′
1̇B
′
˜̇1

(4.31)

which implies
R1R1̃ = R′1R

′
1̃ . (4.32)

Equations of the form (4.29) are examples of fermionic duality relations. They imply
that the sets of roots with labels 1, 2, 3 (or alternatively the “dual” set obtained with 1↔ 1̃,
3↔ 3̃) satisfy the auxiliary ABA equations of the form

1 =
Q+

2 B2,(−)B2̇,(−)

Q−2 B2,(+)B2̇,(+)

∣∣∣∣∣
u∈{roots of type 1,1̃,3,3̃}

. (4.33)

4.3 Going inside the cut: fixing the dressing phases

So far we reduced the ansatz for P’s and Q’s to just two unknown functions with one cut
and no zeroes A and Ȧ on the main sheet. In order to constrain them further, we need to
go to the next sheet of their Riemann surfaces.

This will bring us to the most interesting part of the analysis, where things will be
radically different than in AdS5 and AdS4. By studying equations of the form (4.6), which
we repeat here,

(P1)γ ∼ Q+
1|1ω

1
2̇Q2̇ , (P1̇)γ ∼ Q+

1̇|1̇ω
1̇
2Q2 (4.34)

we will find that the P and Q functions cannot have a quadratic cut even in the ABA limit.
We will also be able to fix the form of the yet undetermined functions A(u), Ȧ(u) and relate
them to the dressing phases of [37].

4.3.1 The cuts cannot be quadratic

The strategy will be to compare the r.h.s. of each of the equations (4.34), with the analytic
continuation of P functions, starting from their form in (4.19), (4.23).13 From the first
equation in (4.6), in particular, we obtain:

Pγ
1 = xL/2(A)γB1̃R˜̇1R2,(−) =

(
Q+

2 f
++
2̇ f++

2

)( f̄2f̄2̇
f++

2 f++
2̇

)(
xL/2

Ȧ
R′˜̇1
B′1̃

f2f2̇
B2,(+)

)
. (4.35)

We noticed in the previous section that the roots of R1̃ and R′1̃ satisfy the same BAE
equation (4.33). The same is true for the roots of R˜̇1 and R′˜̇1

. Whereas this does not
necessarily mean that all roots coincide, we will assume R1̃ = R′1̃ and R˜̇1 = R′˜̇1

. In this case
we get a nice cancellation in the above equation, which further supports this requirement.
Then we get a simple relation

(A)γ Ȧ =
(
R2,(+)
R2,(−)

)(
f̄−−2 f++

2 f̄−−2̇ f++
2̇

)
. (4.36)

13Here a comment is in order: in principle, the analytic continuation through the cut might not commute
with the large-L limit, due to the presence of Stokes-type phenomena — where a subleading correction on
the first sheet might become large on the second sheet invalidating the result. However, as discussed in [2],
one can expect that it is safe to analytically continue the ABA limit of a Q-function that is already small
on the first sheet. This is the case of the P functions we consider which are of order ε.
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It is striking to compare this with the consequence of the second relation in (4.34), which
yields

A (Ȧ)γ =
(
R2̇,(+)
R2̇,(−)

) (
f̄−−2 f++

2 f̄−−2̇ f++
2̇

)
. (4.37)

Now we continue this relation along the reverse path γ̄: the result on the l.h.s. is (A)γ̄Ȧ, and
the analytic continuation of the r.h.s. is simple to compute, since the f++, f̄−− functions
have no cut on the real axis, so are left unchanged. By comparing the result with (4.36),
we get the following “double-discontinuity” relations

Aγ

Aγ̄
=
R2,(+)
R2,(−)

B2̇,(−)
B2̇,(+)

,
Ȧγ

Ȧγ̄
=
R2̇,(+)
R2̇,(−)

B2,(−)
B2,(+)

, (4.38)

where the r.h.s. clearly cannot vanish (except for the vacuum) since the Rα and Bα functions
have zeros on different sheets. We will now solve (4.36) and (4.37).

4.3.2 Relation to the dressing phases

In order to find the solution, without lack of generality we introduce the following ansatz in
terms of ρ and ρ̇

A =
√
B2,(+)
B2,(−)

σ1,BES
2 σ1,BES

2̇ ρ , Ȧ =

√√√√B2̇,(+)
B2̇,(−)

σ1,BES
2 σ1,BES

2̇ ρ̇ , (4.39)

where, using notation from [2], σ1,BES
α denote natural building blocks of the Beisert-Eden-

Staudacher dressing factor. They satisfy

(σ1,BES
α )γ σ1,BES

α = (σ1,BES
α )γ̄ σ1,BES

α ∝ f++
α f̄−−α , α = 2, 2̇ , (4.40)

and are related to the product of the BES dressing factors via

σBES(u) =
σ1,BES(u+ i

2)
σ1,BES(u− i

2)
, (4.41)

with the notation explained in appendix A. With this redefinition, (4.36), (4.37) become

(ρ)γ ρ̇ ∝

√√√√R2,(+)
R2,(−)

B2̇,(−)
B2̇,(+)

, (ρ̇)γ ρ ∝

√√√√R2̇,(+)
R2̇,(−)

B2,(−)
B2,(+)

. (4.42)

In appendix B, we define the functions σ1,extra and σ̃1,extra which are related to the two
independent dressing phases appearing in ABA equations of section 2.1 in the following way:

σ(u) = σBES(u)
σ1,extra(u+ i

2)
σ1,extra(u− i

2)
, σ̃(u) = σBES(u)

σ̃1,extra(u+ i
2)

σ̃1,extra(u− i
2)
. (4.43)

In the same appendix, we also show that these extra pieces satisfy the following identities

(σ1,extra
α )γ σ̃1,extra

α =
√
Rα,(+)
Rα,(−)

, (σ̃1,extra
α )γ σα1,extra =

√
Bα,(−)
Bα,(+)

, α ∈
{
2, 2̇
}
, (4.44)
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which we both verify directly and also independently deduce from crossing via functional
arguments.

Using those building blocks, we can write

ρ = σ1,extra
2 σ̃1,extra

2̇ ρ0 , ρ̇ = σ1,extra
2̇ σ̃1,extra

2 ρ̇0 , (4.45)

where ρ0 and ρ̇0 should be functions with square-root branch cut on the real axis satisfying

ργ0 = 1/ρ̇0 , ρ̇γ0 = 1/ρ0 . (4.46)

This equation tells us that ργ0 is a function with a single cut and neither zeroes nor poles,
and likewise ρ̇0 and ρ0. In other words it can only be a power of x, which can be included
into a re-definition of L. So without reducing the generality we can set ρ̇0 = ρ0 = 1. This
completes the derivation of the asymptotic limit of our QSC.

4.4 Summary of results for the asymptotic limit

Let us summarise what we found for the expressions of P and Q functions. In the first
wing we have:

P1 ∝ x−L/2R1̃B˜̇1

√
B2,(+)B2,(−) σ

1
2 σ̃

1
2̇, P2 ∝ x−L/2R3̃B˜̇3

√
B2,(+)B2,(−) σ

1
2 σ̃

1
2̇, (4.47)

Q1 ∝ xL/2R1B1̇

√
B2,(−)
B2,(+)

f2 f2̇
B2̇,(+) σ

1
2 σ̃

1
2̇
, Q2 ∝ xL/2R3B3̇

√
B2,(−)
B2,(+)

f2 f2̇
B2̇,(+) σ

1
2 σ̃

1
2̇
, (4.48)

and in the second wing:

P1̇ ∝ x
−L/2R3̇B3

√
B2̇,(+)B2̇,(−) σ1

2̇ σ̃
1
2, P2̇ ∝ x−L/2R1̇B1

√
B2̇,(+)B2̇,(−) σ1

2̇ σ̃
1
2, (4.49)

Q1̇ ∝ x
L/2R˜̇3B3̃

√√√√B2̇,(−)
B2̇,(+)

f2f2̇
B2,(+) σ

1
2̇ σ̃

1
2
, Q2̇ ∝ xL/2R˜̇1B1̃

√√√√B2̇,(−)
B2̇,(+)

f2f2̇
B2,(+) σ

1
2̇ σ̃

1
2
. (4.50)

All relevant notations are collected in appendix A. Having an asymptotic solution for all
relevant P and Q functions we can plug them into the exact Bethe ansatz equations (2.40)–
(2.45) and compare the result with the ABA (2.1).

4.5 Match with the Asymptotic Bethe Ansatz

We have finally arrived at a full specification of the Q-functions P1, P2, Q1, Q2, Q1|1, and
their dotted cousins, in the ABA limit. To obtain the Asymptotic Bethe Ansatz, we can just
plug their values in the exact Bethe equations (2.40)–(2.45) following from the Q-system.

We will have the following correspondence between the zeros appearing on the first
sheet of the Q-functions, and the Bethe roots appearing in the Asymptotic Bethe Ansatz:
for the first wing

Roots: u1,k u2,k u3,k
Q-function: Q1 Q1|1 Q2 ,

Dual roots: u1̃,k u3̃,k
Q-function: P1 P2 , (4.51)
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and for the second wing:

Root: u1̇,k u2̇,k u3̇,k
Q-function: P1̇ Q1̇|1̇ P2̇ ,

Dual roots: u˜̇1,k u˜̇3,k
Q-function: Q1̇ Q2̇ . (4.52)

In particular, the exact Bethe equations (2.40)–(2.42) for the first wing reduce exactly
the ABA equations (A.14)–(A.16) using the Q-functions (4.47)–(4.48). Similarly, using
the exact Bethe equations of the form (2.43)-(2.45), but for the dotted Q-functions, we
reproduce the ABA equations (A.17)–(A.19) using the asymptotic values (4.49)–(4.50).

As an example to demonstrate the procedure, we display the case of the middle-node
equation for the first wing. At the roots of Q1|1 i.e. at u = u2,i we have

−1 =
Q++

1|1 Q
−
∅|1Q

−
12|1

Q−−1|1 Q
+
∅|1Q

+
12|1

=
Q++

1|1 Q−1 Q2−

Q−−1|1 Q+
1 Q2+

=
(x−)L(σ1+

2 σ̃1+
2̇ )2Q++

2 R−1 B
−
1̇ R
−
3 B
−
3̇ f

[+3]
2 f

[+3]
2̇ f−2 f

−
2̇ B

−
2(−)B

+
2(+)[B

+
2̇(+)]

2

(x+)L(σ1−
2 σ̃1−

2̇ )2Q−−2 R+
1 B

+
1̇ R

+
3 B

+
3̇ f

+
2 f+

2̇ f+
2 f

+
2̇ B

+
2(−)B

−
2(+)[B

−
2̇(+)]

2 ,

where we have cancelled some terms repeated in the numerator and denominator. Next
we have to use the defining property of the function fα: f++

α
fα

= Bα,(−)
Bα,(+)

in appropriate
shifted version, to re-create various B functions, some of which then cancel out and some
remain. At the end of this massive simplification what is left is exactly the middle-node
ABA equation for the first wing, where one needs to recall how the dressing phases are
reconstructed from σ1 and σ̃1 via σα = σ1+

σ1− and σ̃α = σ̃1+
α

σ̃1−
α

:

−1 =
(
x−

x+

)L
× Q++

2
Q−−2

× (σ2)2 × R−1 R
−
3

R+
1 R

+
3

×
B+

2̇,(−)B
+
2̇,(+)

B−2̇,(−)B
−
2̇,(+)

× (σ̃2̇)2 ×
B−1̇ B

−
3̇

B+
1̇ B

+
3̇

∣∣∣∣∣∣
u=u2,i

, i = 1, . . . ,K2. (4.53)

Finally, since the ABA equations (2.1) in the classical regime, h→∞, L ∼ Kα →∞
with fixed L ≡ L/h reproduce the classical limit (3.6)–(3.9) via condensation of roots into
cuts in the standard way [54], it follows that we also reproduce the classical limit from the
QSC, similarly to [2]. Thus we see that our QSC successfully reproduces all the data from
section 2.

5 Discussion and outlook

The QSCs for AdS5 and AdS4 have a lot in common with one another — both are
based on QQ-relations dictated by the global symmetries and have similar additional
analyticity constraints. We use these general features to propose a QSC for string theory
on AdS3 × S3 × T 4 with RR charge and its CFT2 dual. However, in contrast to the
higher-dimensional QSCs, the assumption of square-root singularity near the branch points
needs to be dropped. While we reproduced successfully the ABA equations for massive
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modes, we should still emphasise that, unlike in the previous cases [2, 14], we do not have
the luxury of TBA equations which can be used as a starting point to derive the QSC
equations. Instead, we use a bottom-up approach where we guess the QSC based on the
symmetries and analogy with previous cases, and then verify it in some limits.

On the important point of the order of the cuts, we notice that if we assume them
to be of the usual square-root type, unlike in previous cases, we get a further nontrivial
algebraic constraint (3.47) on the Q-functions in addition to the QQ-relations, resulting in
a too restrictive set of equations. So to some extent the absence of square-root behaviour is
dictated by symmetries.

To be fully confident in the self-consistency and completeness of equations proposed
here, we need to perform further tests beyond the matching with the ABA presented here.
For example, constructing the perturbative weak coupling solution at several loop orders
would be useful, which can be done with the methods of [6, 7]. The QSC should also
reproduce the protected spectrum of the theory [59], accounting for all-order wrapping
corrections not considered in the ABA analysis [62, 63]. Further, it would be interesting
to consider near-BPS limits where one can expect a non-trivial analytic solution at finite
coupling [3, 15]. Finally, one should try to solve the system numerically with high precision
like in [4]. Another potential way to test our equations would be to re-derive the TBA
equations for the massless modes [44, 51].

An important question to address is whether the massless modes of the theory are
already contained in our QSC proposal or whether the construction needs to be generalised
in some way. For example, one might wonder whether it is possible to take a tensor product
of our Q-system with an additional Q-system, perhaps based on su(2)◦ under which the
massless bosons are known to transform [28]. Unfortunately, such a direct product is
not compatible with the fact that massless fermions transform non-trivially under the
psu(1, 1|2)2 symmetry. On the other hand, the structure of the Q-system is rather rigid so
it is harder to see how to augment it by an additional Q-system in a more non-trivial way.

Alternatively, it may be that incorporating the massless modes requires relaxing slightly
some of the analyticity and pole-structure properties we require of the QSC. The starting
point for this approach would be an attempt to derive the ABA equations including massless
modes in the large-volume limit, generalising the construction we presented above. This
would require new arguments, since the notion of the asymptotic regime is delicate in the
presence of massless excitations, where the standard exponential large-L suppression is no
longer there and wrapping corrections often are of the same order as the ABA contributions.
However, we point out that the QSC structure is typically very rigid and does not allow for
much more freedom. In particular, given the underlying psu(1, 1|2) algebraic structure of our
system, we believe that the only place where the QQ relations could be changed would be a
modification of the condition Q12|12 = Q1̇2̇|1̇2̇ = 1. We might also have to modify the gluing
condition, although this seems less natural. However, we cannot at this stage exclude the pos-
sibility that neither of these options will be necessary and the QSC presented here is already
complete. To provide evidence for this claim, it would be very interesting to solve the QSC
equations at finite coupling, as this would allow to perform tests in various limits, for example
comparing with massless solutions at weak coupling or in the semi-classical regime [64].
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If these additional tests can be satisfactorily performed, one can hope that AdS3 would
become an ideal background for application of SoV program for correlators [18]. Further,
combining the AdS3 QSC spectral methods with Conformal Bootstrap [20] techniques could
provide a simpler testing ground for these ideas compared to the N = 4 SYM case.

Following these tests of our conjecture, it would be interesting to extend the AdS3
QSC construction to AdS3 × S3 × T 4 backgrounds supported by combinations of RR and
NSNS charges. The ABA for these theories is also known [31] and solutions to the crossing
equations have recently been found [65], which should provide a further testing ground for
the QSC analysis. String theory on AdS3×S3×S3×S1 is also expected to be integrable [32].
Finding the QSC for this model would be particularly interesting since the global symmetry
algebra is d(2, 1;α)2, for which the Q-system should exhibit novel features.

It would be interesting to see whether similar techniques to the ones we have employed
here can be extended to the AdS2/CFT1 integrable system [66], which also features the
presence of massless modes and has an algebraic structure of a similar complexity. The
issue of long vs short representations, which is relevant in that case, is likely to represent
an additional novelty and a reason for adapting the method even further.
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A Rewriting the ABA equations

Notations. We introduce some useful notations for the ABA equations. First, using the
Zhukovsky map,

x(u) = 1
2h
(
u+
√
u− 2h

√
u+ 2h

)
, (A.1)

we reparametrise the roots in terms of u2,k, u1,k, u3,k, such that x±k ≡ x(u2,k± i
2), 1 ≤ k ≤ K2,

y1,k ≡ x(u1,k), 1 ≤ k ≤ K1, y3,k ≡ x(u3,k), 1 ≤ k ≤ K3, and similarly for the other wing
introducing u2̇,k, u1̇,k, u3̇,k. We also accordingly rename Kᾱ ≡ Kα̇, α = 1, 2, 3, as compared
to the notations of section 2.1.
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It is convenient to introduce the generalised Baxter polynomials

Bα,(±) (u) ≡
Kα∏
j=1

√
h

x∓α,j

( 1
x (u) − x

∓
α,j

)
, α ∈

{
2, 2̇
}

(A.2)

Rα,(±) (u) ≡
Kα∏
j=1

√
h

x∓α,j

(
x (u)− x∓α,j

)
, α ∈

{
2, 2̇
}

(A.3)

Qα (u) =
Kα∏
j=1

(u− uα,j) , α ∈
{
2, 2̇
}
, (A.4)

Bα (u) =
Kα∏
j=1

( 1
x (u) − yα,j

)
, α ∈

{
1, 3, 1̇, 3̇

}
(A.5)

Rα (u) =
Kα∏
j=1

(x (u)− yα,j) , α ∈
{
1, 3, 1̇, 3̇

}
. (A.6)

Notice that Bα,(±)Rα,(±) ∝ Q±α , where the shift of a function of u is defined as g[±n](u) ≡
g(u+ in2 ), g± ≡ g[±1]. Through the Zhukovsky map, we also consider the dressing phase a
function of rapidities:

σ(u,v)≡ exp
(
iχ(x+(u), x+(v))− iχ(x+(u), x−(v))+ iχ(x−(u), x−(v))− iχ(x−(u), x+(v))

)
,

(A.7)
and we introduce the notation:

σα(u) ≡
Kα∏
i=1

σ(u, uα,i), α = 2, 2̇, (A.8)

and the same conventions are taken for σ̃. We also use the same notation for the BES
dressing phase. We also introduce useful building blocks

σ1(u, v) ≡ exp
(
iχ(x(u), x+(v))− iχ(x(u), x−(v))

)
, (A.9)

and similarly for σ̃1, and σ1BES, and denote again the products over roots as

σ1
α(u) ≡

Kα∏
i=1

σ1(u, uα,i), (A.10)

with the analogous definitions made for σ̃1
α(u) and σ1,BES(u). We then have the relation

σα(u) =
σ1
α(u+ i

2)
σ1
α(u− i

2)
, (A.11)

and its generalisations. It will also be useful for some of our discussions to define σ1,extra
α (u),

σ̃1,extra
α (u) through

σ1
α(u) ≡ σ1,BES

α (u) σ1,extra
α (u), σ̃1

α(u) ≡ σ1,BES
α (u) σ̃1,extra

α (u). (A.12)
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Finally, for the reader’s convenience we collect the defining relations for the functions fα,
f̄α appearing in the large-volume solution of the QSC:

f++
α

fα
=
Bα,(−)
Bα,(+)

,
f̄α

f̄−−α
=
Bα,(−)
Bα,(+)

, (A.13)

where fα is assumed analytic in the upper half plane and f̄α in the lower half plane, and
both are free of poles everywhere. These functions are given explicitly (up to an arbitrary
multiplicative constant) by DHM-type integral representations similar to (4.14).

Compact rewriting of the ABA equations. With the notations above, the ABA
equations can be rewritten as

1 =
Q−2 B2,(+)B2̇,(+)

Q+
2 B2,(−)B2̇,(−)

∣∣∣∣∣
u=u1,i

, i = 1, . . . ,K1, (A.14)

−1 =
(
x[−]

x[+]

)L
× Q++

2
Q−−2

× (σ2)2 × R−1 R
−
3

R+
1 R

+
3

×
B+

2̇,(−)B
+
2̇,(+)

B−2̇,(−)B
−
2̇,(+)

× (σ̃2̇)2 ×
B−1̇ B

−
3̇

B+
1̇ B

+
3̇

∣∣∣∣∣∣
u=u2,i

, i = 1, . . . ,K2 (A.15)

1 =
Q−2 B2,(+)B2̇,(+)

Q+
2 B2,(−)B2̇,(−)

∣∣∣∣∣
u=u3,i

, i = 1, . . . ,K3 (A.16)

for the first wing, and

1 =
Q−2̇ B2̇,(+)B2,(+)

Q+
2̇ B2̇,(−)B2,(−)

∣∣∣∣∣
u=u1̇,i

, i = 1, . . . ,K1̇, (A.17)

−1 =
(
x[−]

x[+]

)−L
×

Q++
2̇

Q−−2̇
×

B−2̇,(−)

B+
2̇,(+)

2

(σ2̇)−2 ×
R−1̇ R

−
3̇

R+
1̇ R

+
3̇

×
B−2,(−)B

+
2,(−)

B−2,(+)B
+
2,(+)

× (σ̃2)−2 × B−1 B
−
3

B+
1 B

+
3

∣∣∣∣∣∣
u=u2̇,i

, i = 1, . . . ,K2̇ (A.18)

1 =
Q−2̇ B2̇,(+)B2,(+)

Q+
2̇ B2̇,(−)B2,(−)

∣∣∣∣∣
u=u3̇,i

, i = 1, . . . ,K3̇ (A.19)

for the second wing.

B Functional equations for the building blocks of dressing factors

In this section, we decompose the two types of dressing factors appearing in the ABA as

σ(u, v) = σBES(u, v)σextra(u, v) , σ̃(u, v) = σBES σ̃extra(u, v) , (B.1)
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and similarly

σ1(u, v) = σ1,BES(u, v)σ1,extra(u, v) , σ̃1(u, v) = σ1,BES σ̃1,extra(u, v), (B.2)

see section A for notation. The goal of this appendix is to establish the functional relations

σ1,extra(uγ , v) σ̃1,extra(u, v) =

√√√√R(+)(u, v)
R(−)(u, v) ,

σ̃1,extra(uγ , v) σ1,extra(u, v) =

√√√√B(−)(u, v)
B(+)(u, v) ,

(B.3)

where in this appendix we denote

R(±)(u, v) = x(u)− x∓(v)√
x∓(v)

, B(±)(u, v) = R(±)(uγ , v) =
1

x(u) − x
∓(v)√

x∓(v)
. (B.4)

These relations are important for deriving the ABA from the QSC, as they imply the crucial
equation (4.44). In presenting their proof here, we will also deduce

σ1,extra(uγ−1
, v) σ̃1,extra(u, v) =

√√√√R(−)(u, v)
R(+)(u, v) ,

σ̃1,extra(uγ−1
, v) σ1,extra(u, v) =

√√√√B(+)(u, v)
B(−)(u, v) .

(B.5)

B.1 Direct derivation

We start by verifying these relations directly, based on the expressions for the dressing
phases of [37]. From the results of this paper we deduce

σ1,extra(x, x±2 ) = exp iΛLL(x, x±2 ), σ̃1,extra,RL(x, x±2 ) = exp iΛRL(x, x±2 ), (B.6)

where we have defined14

ΛLL(x, x±2 ) = −1
2χ

HL(x, x+
2 ) + 1

2χ
HL(x, x−2 ) + 1

2χ
−(x, x+

2 )− 1
2χ
−(x, x−2 ),

ΛRL(x, x±2 ) = −1
2χ

HL(x, x+
2 ) + 1

2χ
HL(x, x−2 )− 1

2χ
−(x, x+

2 ) + 1
2χ
−(x, x−2 ), (B.7)

and we have the integral representations

χHL (x, y) = π

2

∮
dw

2πi

∮
dw′

2πi
sign (w′ + 1/w′ − w − 1/w)

(x− w) (y − w′) ,

χ− (x, y) =
(∫

C+
−
∫
C−

)
dw

8π
1

x− w
log

[
(y − w)

(
1− 1

yw

)]
− x↔ y, (B.8)

14We use the notation χ− of [37], where the minus does not denote a shift in the spectral parameter but
is just a label.
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where the full circles run counterclockwise and the contours C± denote the upper (resp.,
lower) half semicircle in the complex w-plane, running counterclockwise.

We can write

t(x, x±2 ) ≡
(
σ1,extra

)2
(x, x±2 ) = exp

[
2iχextra(x, x+

2 )− 2iχextra(x, x−2 )
]
, (B.9)

and the same for the other block denoted with tilde, where

χextra = −1
2
(
χHL − χ−

)
, χ̃extra = −1

2
(
χHL + χ−

)
, (B.10)

and χHL and χ− are given by an explicit integral representation.
Equations (3.8) and (3.9) of [37] are consistent with

χHL + (χHL)γ−1 = i

2 log `HL, `HL(x, y) = x− y
1− xy , (B.11)

while equations (3.14) and (3.15) in the same paper are consistent with

χ− − (χ−)γ−1 = i

2 log `−, `−(x, y) = (x− y)
(

1− 1
xy

)
. (B.12)

Therefore, we can assemble

(σ1,extra)γ−1
σ̃1,extra = exp 1

4 log `
HL(x, x+

2 )`−(x, x+
2 )

`HL(x, x−2 )`−(x, x−2 )
=
(x−2
x+

2

) 1
4

√
(x− x+

2 )
(x− x−2 )

. (B.13)

Recalling the definition of the function R(±), we can reproduce the first equation in (B.5).
Likewise, we can compute

(σ̃1,extra)γ−1
σ1,extra = exp 1

4 log `
HL(x, x+

2 )`−(x, x−2 )
`HL(x, x−2 )`−(x, x+

2 )
=
(x+

2
x−2

) 1
4

√√√√ 1
x − x

−
2

1
x − x

+
2
, (B.14)

which reproduces the second equation in (B.5) if we recall the definition of the function
B(±). The other relations in (B.26) also follow: since the cut is of logarithmic type, we get
the reciprocal results on the r.h.s. if we cross it in the other direction.

B.2 Functional argument

Here we establish the same relations starting from the crossing equation, and assuming
certain minimality requirements on its solution. The crossing equation can be decomposed
into the crossing satisfied by the BES part,

σBES(uγcross
1 , u2)σBES(u1, u2) = x−2

x+
2

x−1 − x
+
2

x−1 − x
−
2

1− 1
x+

1 x
+
2

1− 1
x+

1 x
−
2

, (B.15)

and the crossing relations for the extra pieces:

σextra(uγcross
1 , u2)2 σ̃extra(u1, u2)2 = (x+

1 − x
+
2 )(x−1 − x

−
2 )

(x−1 − x
+
2 )(x+

1 − x
−
2 )
, (B.16)

σextra(u1, u2)2 σ̃extra(uγcross1 , u2)2 =

(
1− 1

x+
1 x
−
2

)(
1− 1

x−1 x
+
2

)
(

1− 1
x+

1 x
+
2

)(
1− 1

x−1 x
−
2

) . (B.17)
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Figure 6. The analytic continuation path used in the crossing relation. It crosses the cuts of the
dressing factors at (−2h, 2h) ± i

2 , and can be decomposed into γ+ and γ−, which cross only one
cut each.

The path γcross is depicted in figure 6, and it can be decomposed as the concatenation of
the path γ+, entering the lower cut, followed by γ− which enters the upper cut. Notice that
in our notations, different from some of the literature, both γ± cross one cut from below.

We now follow a similar route to the one described in [47], and disentangle the path
γcross to derive a simpler equation for a natural building block of the solution to the crossing
constraints. We will assume that, for the minimal solution, the crossing path is equivalent
to the one obtained by concatenating γ− and γ+ in opposite order, γcross ' γ+ ·γ− ' γ− ·γ+.
Under this assumption, analytically continuing along the inverse path γ−1

+ the crossing
relations (B.16), (B.17), we get:

s(uγ−1 , u2)ŝ(uγ
−1
+

1 , u2) =
R+

(−)B
−
(+)

R+
(+)B

−
(−)
≡ A, (B.18)

ŝ(uγ−1 , u2)s(uγ
−1
+

1 , u2) =
R−(−)B

+
(+)

R−(+)B
+
(−)
≡ C, (B.19)

while continuing the same variable along γ−1
− , we get:

s(uγ+
1 , u2)ŝ(uγ

−1
−

1 , u2) =
B+

(−)R
−
(+)

B+
(+)R

−
(−)
≡ B, (B.20)

ŝ(uγ+
1 , u2)s(uγ

−1
−

1 , u2) =
B−(−)R

+
(+)

B−(+)R
+
(−)
≡ D, (B.21)

where for simplicity of the next expressions, we denoted s(u1, u2) ≡ σextra(u1, u2)2,
s̃(u1, u2) ≡ σ̃extra(u1, u2)2.

From now on, we omit the second variable, since it is simply a spectator in all these
functional relations, and use the notation g[n], described in the main text, to shift the first
variable of various functions. We proceed by making the ansatz

s ≡ t+

t−
, s̃ ≡ t̃+

t̃−
, (B.22)

where t, t̃ are assumed to be functions with a single cut (−2h, 2h). The relations between
these blocks and the ones introduced above is simply t ∝ (σ1,extra)2, t̃ ∝ (σ̃1,extra)2.
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Now we notice that,(
t+

t−

)γ−
= (tγ−1)+

t−
,

(
t+

t−

)γ+

= t+

(tγ−1)−
, (B.23)

and there are similar relations if we do analytic continuations along the inverse paths
γ−1
± , which are simply obtained by replacing γ−1 → γ on the r.h.s. Taking the product

of (B.18), (B.20), we arrive at

(
(t)γ−1

t̃ t (t̃)γ
)D̂−D̂−1

= AB =
(
R(−)B(−)
R(+)B(+)

)D̂−D̂−1

, (B.24)

where D̂ ≡ i
2∂u, so that in this notation gnD̂ ≡ g[n]. Since we look for the minimal solution

to crossing, we take the simplest solution to the previous functional relation:

(t)γ−1
t̃ t (t̃)γ =

R(−)B(−)
R(+)B(+)

. (B.25)

Similarly, considering the ratio of the same two equations, and assuming the minimal
solution, we obtain (

(t)γ−1
t̃
)
/
(
t (t̃)γ

)
=
R(−)B(+)
R(+)B(−)

, (B.26)

and finally from (B.25), (B.26) we read:

(t)γ−1
t̃ =

R(−)
R(+)

, t (t̃)γ =
B(−)
B(+)

. (B.27)

By the same arguments from the remaining two equations we extract:

(t)γ t̃ =
R(+)
R(−)

, (t) (t̃)γ−1 =
B(+)
B(−)

. (B.28)

Taking into account that, in the notations of the main text, t ≡ (σ1,extra)2, t̃ ≡ (σ̃1,extra)2,
we have therefore deduced the relations (B.3), (B.5).

C Baxter equations

Baxter equations for Q and P functions. The obvious identities

Q++
k εijQ−−i Qj −Qkε

ijQ−−i Q++
j + Q−−k εijQiQ++

j = 0 , k = 1, 2, (C.1)

can be recast as the Baxter equations

Q++
k D−1 −QkD2 + Q−−k D+

1 = 0 , k = 1, 2, (C.2)

where the coefficients can also be rewritten in terms of P functions using the QQ relations:

D1 ≡ εijQ−i Q+
j = εabPa−Pb+ (C.3)

D2 ≡ εijQ−−i Q++
j = εabPa−−Pb++ −PcPc−−εabPaPb++

= εabPa−−Pb++ −PcPc++εabPaPb−− (C.4)
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(the last equality follows from PaPa = 0). These equations, supplemented by the large-u
asymptotics, give a way to compute the Q functions starting from the knowledge of the P
functions.

There are also equations of the same form, obtained by replacing P↔ Q, which may
be used to compute the P functions starting from the Q’s.

Finite difference relations for Qa|i. We close this appendix by noticing that also the
middle node Q-functions can be defined as the solutions of a system of finite-difference
equations, which are simply obtained from the Q-system.

One such system of relations is

Q+
a|i −Q

−
a|i = PaPbQ+

b|i. (C.5)

These relations can be used to construct Qa|i from the knowledge of the P functions. The
solution is specified by requiring the appropriate asymptotic behaviour, and the region of
analyticity. Solutions analytic in the upper half plane are denoted as Q↓a|i. The solutions
analytic in the lower half plane form an alternative basis of solutions, denoted by Q↑a|i. The
numerical method to compute Q↓a|i and Q

↑
a|i in terms of the P functions is described in [4].

The two bases of solutions of the same finite-difference equations are related by an
i-periodic matrix

Q↑+a|i = Ω j
i Q

↓+
a|j , Qa|i↑+ = Ωi

jQ
a|j↓+, (C.6)

which imply
Ω l
k = Q↑+a|kQ

a|l↓+, Ωk
l = Qa|k↑+Q↓+a|l . (C.7)

Multiplying the first equation in (C.6) by Pa on the left, we see immediately that Ω is the
same matrix relating Q↑ and Q↓ in (3.22). Similarly, the second equation show that

Qi↑ = Ωi
jQj↓. (C.8)

Since Qa|i has unit determinant and Qa|iQa|j = δji , from (C.7) we see immediately that Ω
has unit determinant as well, and

Ωi
jΩ

j
k = δik. (C.9)

Finally, another useful form of (C.5) is

Q+
a|i −Q

−
a|i = QiQjQ+

a|j , (C.10)

which can be used to determine Qa|i from the knowledge of the Q functions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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