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Abstract
Graph theory proved to be a quite powerful mathematical tool to model several problems in
a discrete setting. In this paper the authors illustrate how a general graph framework can be
used to model multi-dimensional alternatives decision processes in three different contexts:
social choice, judgment aggregation and automata decisions.
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JEL Classification D71 · D72

1 Introduction

Graph theory, as many other mathematical tools, was born from a real problem: the Seven
Bridges of Krönigsberg. Krönigsberg was a city in the ancient Prussia crossed by a river
including two large islands which were connected to each other and to the mainland by
seven bridges. The problem was to devise a walk through the city that would cross each of
those bridges once and only once. Its negative resolution by Leonhard Euler in 1736 laid the
foundations and the formalization of the graph theory.

Eitherwe talk about networks, decisions, connections or any other problemwhich involves
a datum that can be codified in a point and an exchange of data, or information, among those
points, we are in the presence of a graph (think, for instance, to the graph of railways with
vertices the stations and edges their connections). One of the real problem, that can be
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efficiently modeled using graphs, is related to choices or decisions among different objects,
situations or people.

In this paper we illustrate a way to model via graph theory, a multi-dimensional alternative
decision process which can involve social choices (i.e. voting, group decisions, etc.), judg-
ments (i.e. judges who have to decide if someone is guilty or not of something ) or automata
decisions. The latter is the new contribution of the paper.

The classical social choice literature studies the aggregation of individual preferences
(usually represented as partial orders or sets of ordered pairs, i.e graphs) into collective
“social” preferences. The judgement aggregation literature studies the aggregation of individ-
ual judgements (assignments of True or False to sets of logical propositions) into a collective
(e.g. of a jury or a committee) judgement. Finally CP-nets were introduced in [3] to model
automated decision processes in order to reach a key goal in the study of computer-based
decision support: the construction of tools that allow the preference elicitation process to be
automated, either partially or fully. While classical social choice has an old history which
trace back to French revolution and the famous Condorcet paradox on voting (see Exam-
ple 2.1), the judgement aggregation theory is much younger and essentially started with [9]
which identified the Doctrinal paradox (see Example 2.2). Formalized by List and Pettit [11]
by means of propositional logic, it has been studied by many authors (see, for instance, [6,
12] and, for a review on the argument, [16]).

More recently Marengo et al. [15] showed how the propositional logic framework intro-
duced in List and Pettit [11] can be equivalently formalized by means of a multi-dimensional
graph model which allows to extend to the Judgment aggregation framework the classical
results in the social choice literature and vice-versa. Their attempt to model the judgment
aggregation framework by means of graphs is a generalization of the decision process intro-
duced in [13] and modeled via graphs in [1, 14].

In this paper, following their example, we model the automata decision framework by
means of the graph model described in [14]. In particular this graph-based description allows
to slightly generalize the CP-nets model largely used in the automata decision literature. We
point out that the collective decision making over multidimensional alternatives has been
largely studied over the past years with dozens of papers (see, for instance [10] for a partial
survey on the argument). In this paper we are mainly interested in the new contribution
added to this literature by Marengo and Pasquali [13], in particular in the decision process
via objects scheme and in the concept of local optimum they introduced (see Sect. 3.1).

Our goal is double, from one hand we show a Category-like approach to decisions by
exhibiting a general graph framework that model multi-dimensional alternatives decision
processes in three different contexts. On the other hand the description of the CP-nets in
terms of graphs allows to introduce the decision process of Marengo and Pasquali [13]
and the known results related to the concept of local optimum in the automata decisions
framework. In particular we remark that the CP-nets based decision process is a special case
of the Marengo and Pasquali [13] decision process (see Remark 4.3).

The paper is organized as follows. In Sect. 2, we recall the preference aggregation
framework with its associated graph, the judgement aggregation framework in terms of
propositional logic and CP-net model. In Sect. 3 we illustrate the decision process intro-
duced by Marengo and Pasquali [13] to model the case of multi-dimensional alternatives
and we introduce a slightly different version of the graph-theoretic framework described in
[15] for judgment aggregation. Finally in Sect. 4, the original part of our paper, we rewrite
the CP-net model in terms of graphs opening the way to connections between the CP-net
decision framework and the decision process introduced in [13] and developed in [15].
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Table 1 Preferences �1, �2 and
�3

�1 x �1 y �1 z

�2 y �2 z �2 x

�3 z �3 x �3 y

2 Preliminaries

2.1 The preference aggregation framework: graphs

Consider a population of ν agents, each agent characterized by a system of transitive prefer-
ences �i over the set of social outcomes X . The set of systems of transitive preferences �
is denoted by P . The social choice literature studies social preference functions also called
social decision rules

R : Pν −→ P
(�1, . . . ,�ν) �−→ �R (�1, . . . ,�ν)

which aggregate the preferences of ν individual agents into a system of social preferences or
social rules �R(�1,...,�ν ). Here P denotes the set of systems of (non-necessarily transitive)
social preferences; as a matter of fact, we note that the social rule �R(�1,...,�ν ) is not, in
general, transitive anymore.

Example 2.1 (Majority rule) Let’s consider the aggregation by majority rule, i.e. for any
x, y ∈ X , x � y if and only if the number m of agents i for which x �i y is m > ν

2 . Assume
there are three agents with preferences �1,�2 and �3 on the set X = {x, y, z} as listed in
Table 1.

Then the aggregation by majority rule provides x � y � z � x which is clearly NOT
transitive anymore. This is known as the Condorcet Paradox.

Notice that the social choice literature requires, in general, individual and social preferences
to satisfy some properties. The most common ones include:

• (Pareto) A social preference function is Pareto if x �i y for any 1 ≤ i ≤ ν then
x �R(�1,...,�ν ) y.

• (IIA / Indifference of Irrelevant Alternatives) If there are two profiles of individual pref-
erences (�1, . . . ,�ν) and (�∗

1, . . . ,�∗
ν) such that x �i y if and only if x �∗

i y for all i ,
then we have x �R(�1,...,�ν ) y if and only if x �R(�∗

1,...,�∗
ν ) y.

Preferences can be weak, denoted by �, or strict, denoted by �, that is the two conditions
x �R y and y �R x can hold both or be mutually exclusive, respectively. Moreover given
the sets

Y0,�R = {x ∈ X | ∃y ∈ X such that (x, y) ∈ Y1,�R or (y, x) ∈ Y1,�R},
and

Y1,�R = {(y, x) ∈ X × X | x 
= y and x �R y},
wesay that the preferences are complete ifY0,�R = X and for any twoelements x, y ∈ Y0,�R
either (x, y) ∈ Y1,�R or (y, x) ∈ Y1,�R .

The graph: A common representation of preferences is by means of directed graphs. The
sets Y0,� and Y1,� correspond, respectively, to the sets of vertices and edges of a graph Y�.
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Edges are directed from y to x if x � y. In the graph framework, a Condorcet Paradox of the
form x1 � x2 � · · · � xh � x1 corresponds to a cycle γ having x1, x2, · · · , xh as vertices.
For this reasons they are called cycle à la Condorcet-Arrow.

Note that the completeness assumption on social rules guarantees that the graph Y� is
connected and complete while for the preferences to be strict or weak implies to have either
only one or possibly two edges between two vertices.

2.2 The judgement aggregation framework: logic

In the judgement aggregation framework, we have n judges J = { j1, j2, . . . , jn} who are
called to express judgements on a set � = �a ∪ �c of (m + s) logical propositions, which
is the (disjoint) union of the set �a = {P1, . . . , Pm} of atomic propositions and the set
�c = {C1, . . . , Cs} of compound propositions. A compound proposition is something in the
Boolean algebra generated by logical operations on atomic propositions, such as P ∧ Q,
P ∨ Q, ¬P → Q, etc.

Atomic propositions generally represent basic facts (i.e. P: the suspect is guilty of “break-
ing”; Q: the suspect is guilty of “entering”), compound propositions represent laws or rules
(e.g. P ∧ Q: the suspect is guilty of “breaking and entering” when (the suspect is guilty
of “breaking”) and (the suspect is guilty of “entering”) ). A judgement is logical if and
only if given the judgement’s atomic propositions, the value of the judgement’s compound
propositions agrees with the respective rules.

In this framework a judge’s judgment is an (m + s)-vector

J = (Ja ||Jc) = (J (P1), . . . , J (Pm), J (C1), . . . , J (Cs))

(the symbol || denotes concatenation) that assigns 1 (True) or 0 (False), i.e. a truth value,
to each proposition. The first m coordinates forming a vector Ja corresponding to atomic
propositions and the last s coordinates forming a vector Jc corresponding to compound
propositions (for details see [5, 7]). Since we want judges to be logically consistent, values
of Jc are uniquely determined by values of Ja .

As an example, suppose we have m = 2 atomic propositions P1 = P and P2 = Q and
s = 1 compound proposition C1 = P ∧ Q. Suppose that a judge assigns value Ja = (0, 0)
to atomic propositions, then in order for her to be logic, Jc = (0 ∧ 0) = (0). Thus, the final
logical judgement is J = (0, 0, 0).

If U� is the set of logical judgements then a judgement aggregation function is a function
f : U

n
� → U� which aggregates n logical judgements into a single logical judgement and

is the analogous of a social preference function in the social choice framework. Like social
preference functions, also judgement aggregation functions are usually required to satisfy
some additional properties:

• (Unanimity) If Ji (P) = x for all judgments Ji , then J (P) = f (J1, . . . , Jn)(P) = x .
Notice that unanimity implies f (J , . . . , J ) = J .

• (Propositionwise Independence) Following Dietrich and List [7], a judgement aggre-
gation function f is propositionwise independent if there exist (m + s) functions
fi : {0, 1}n → {0, 1}, 1 ≤ i ≤ (m + s), such that whenever f (J1, . . . , Jn) = J , for
each i we have (J )i = fi ((J1)i , . . . , (Jn)i ).

Example 2.2 (Majority rule) Let the judgement aggregation function f be the majority rule
and three judges {1, 2, 3} judge about atomic propositions {P, Q}, and consistently on com-
pound proposition {R(= P ∧ Q)}, as in Table 2.
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Table 2 Judgements leading to a doctrinal paradox

P (obligation) Q (action) R (liability)(: ⇐⇒ (P ∧ Q))

Judge 1 True True True

Judge 2 False True False

Judge 3 True False False

Majority True True False

Then the majority rule (last row of Table 2) aggregates single judges’s judgments in a NOT
logically consistent judgment. This is known as the Doctrinal Paradox and it is in judgment
theory the analogous of the Condorcet Paradox in Example 2.1. The doctrinal paradox was
presented in [9] and had some important real life examples such as the famous US Supreme
Court case Arizona vs. Fulminante.

2.3 The automated decision framework: CP-Net

In this last subsection we introduce a different mathematical object largely used to study
automated decision making: CP-net. CP-nets are used to study, in computer-based decision
support, how to make the preference elicitation process automated, either partially or fully.
For an introduction on the subject see [3] (see also [8] and, more recently, [4]).

In [3] authors assume existence of a set of variables (or features or attributes ) V =
{X1, . . . , Xn} over which the decision maker has preferences. Each variable Xi can assume
several values in its domain Dom(Xi ) = {xi

1, ..., xi
ni

} and the preference ranking is defined by
a total order � on the spaceO = ∏n

i=1 Dom(Xi ) of all possible alternatives. An assignment
x of values to a set X ⊂ V of variables is a function that maps each variable in X to an
element of its domain; if X = V, x is a complete assignment, otherwise x is called a partial
assignment. Boutilier et al. [3] denoted by Asst(X) the set of all assignments to X ⊂ V and
defined a set of variables X to be preferentially independent of its complement Y = V \ X
if and only if for all x1, x2 ∈ Asst(X) and y1, y2 ∈ Asst(Y)

x1y1 � x2y1 iff x1y2 � x2y2. (2.3)

More generally, if X,Y and Z partition V, X is said to be conditionally preferentially inde-
pendent of Y given an assignment z ∈ Asst(Z) if and only if for all x1, x2 ∈ Asst(X) and
y1, y2 ∈ Asst(Y)

x1y1z � x2y1z iff x1y2z � x2y2z. (2.4)

X is said to be conditionally preferentially independent of Y given Z if Eq. (2.4) holds for
any z ∈ Asst(Z).

For each variable Xi ∈ V, Boutilier et al. [3] ask the user to identify a set of parent
variables P(Xi ) ⊂ V that can affect her preference over various values of Xi . Formally a set
P(Xi ) ⊂ V such that Xi is conditionally preferentially independent of V \ (P(Xi ) ∪ {Xi })
given P(Xi ). Hence Xi is annotated with a conditional preference table (CPT) describing the
user’s preferences over the values of the variable Xi given every combination of parent values.
In other words, letting P(Xi ) = U, for each assignment u ∈ Asst(U) they assume that a
total preorder �i

u is provided over the domain of Xi : for any two values x, x ′ ∈ Dom(Xi ),

123



S. Mitsui, S. Settepanella

Fig. 1 a CP-net for soup and wine; b induced preference graph

either x �i
u x ′ or x ′ �i

u x or x �i
u x ′. Boutilier et al. [3] call these structures conditional

preference networks or CP-net. Essentially they provide the following definition.

Definition 2.5 A CP-net over variables V = {X1, . . . , Xn} is a directed graph G over
X1, . . . , Xn whose nodes are annotated with conditional preference table C PT (Xi ) for each
Xi ∈ V. Each conditional preference table C PT (Xi ) associates a total order �i

u with each
instantiation u of Xi ’s parent P(Xi ) = U.

Example 2.6 (My Dinner I) Consider the following example over dinner preferences (see
[3]). The choice is among two preferences, soup and wine, each one taking two values: fish
and vegetables for the soup and red and white for the wine. The preference on the latter is
conditioned by the choice of the first. That is V = {X1, X2}, X1 = soup and X2 = wine,
Dom(X1) = {fish, vegetables}, Dom(X2) = {red,white} and while the choice of the soup is
not conditioned, i.e. P(X1) = ∅, we have that P(X2) = {X1}.

If we denote the alternatives in Dom(X1) and Dom(X2), respectively by S f , Sv, Ww and
Wr , the CP-net described in Fig. 1a is equivalent to the fact that the fish soup is preferred to the
vegetables one and that the preferred wine conditioned to the fish soup (resp. the vegetables
soup) is the white wine (resp. the red wine). The preference graph induced by the CP-net in
Fig. 1a is represented in Fig. 1b.

In the following section we will describe how both, preferences and judgments have been
modeled by means of a very similar graph structure introduced in [14] to study preferences in
multi-dimensional alternatives cases. The goal of this paper is to extend this graph framework
to CP-net.

3 A graphmodel in multi-dimensional decisions

In this section we describe the graph framework introduced in [14] and [1] in order to model
the multi-dimensional alternatives decision process described in [13]. We also describe its
extension to the judgments aggregation introduced in [15].
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Fig. 2 The graph associated to
the go out example

3.1 Multi-dimensional alternatives case in preferences

In real life situations, choices are often made among bundles of interdependent elements.

Example 3.1 Let’s consider the example of a group of friends deciding “what shall we do
tonight?” in which they have to decide upon where and when to go as in the following
two-dimensional case:

Where? movie (0), restaurant (1) First feature f1
When? 20:00 (0), 22:00 (1) Second feature f2

There are 2×2 = 4 possibilities and each alternative is a bundle of interdependent elements.
The sub-alternatives are grouped into features and, in each group, denoted by numbers (start-
ing from 0). So, for instance, “movie at 20:00” is preferred to “restaurant at 22:00”, and this
preference is denoted by 00 � 11.

If all the preferences are expressed and an aggregation rule is established (e.g. majority),
it is possible to aggregate all the preferences of the group in a single graph as the one depicted
in Fig. 2. In this graph, for instance, the edge from 11 to 01 says that the group prefers the
option 01 to 11.

In order to study those cases [13] considered a bundle of elements F = { f1, . . . , fn} that they
called features, the i th of which takes mi values, i.e. {0, 1, 2, . . . , mi −1} with i = 1, . . . , n.
In this framework a social outcome became an n-sequence v1 · · · vn of values such that
0 ≤ vi < mi and the set X = ∏n

i=1 fi of all social outcomes has cardinality
∏n

i=1 mi .
They hence described a decision method which can take into account only a given subset of
features at any step of the process.

Let’s consider as in Sect. 2.1 a population of ν agents which preferences are aggre-
gated in a a social preference � over the set of social outcomes X = ∏n

i=1 fi . The
graph Y� of the social preference is then the graph having vertices Y0,� = X and edges
Y1,� = {(x, y) ∈ X × X \ � | y � x}.

Object Schemes and Best Neighbors An objects scheme is defined as a set of objects A =
{AI1 , . . . ,AIk },AI j = { fi | i ∈ I j }, I j ⊆ {1, . . . , n}, such that

⋃k
j=1 I j = {1, . . . , n}. So,

for instance, in the Example 3.1 there are two possible objects scheme: A1 = {{where,when}}
and A2 = {{where}, {when}}.

A social outcome y is said to be a preferred neighbor of a social outcome x with respect
to an object AIh ∈ A if the following conditions hold:

1. y � x ,
2. in x and y the features f j /∈ AIh have the same value,
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3. x and y have different values for at least one feature f j ∈ AIh .

For instance, from Fig. 2 we notice that the preferred neighbor with respect to the only object
{where,when} of A1 is 11 for any vertex. Meanwhile if we consider the objects scheme A2

then, for example, 00 is the preferred neighbor of 10 with respect to the object {where} and
the preferred neighbor of 01 with respect to the object {when}.

The set of all preferred neighbors of the social outcome x with respect toAIh ∈ A and A,
respectively, are denoted by �(x,AIh ) and �(x, A) = ⋃k

j=1 �(x,AI j ).
A preferred neighbor y ∈ �(x,AIh ) of x is said to be a best neighbor if

y � w ∀w ∈ �(x,AIh ).

The set of all best neighbors of the social outcome x with respect to AIh ∈ A is denoted by
B(x,AIh ). When preferences are strict, either B(x,AIh ) is empty or B(x,AIh ) contains one
social outcome only.

Domination paths and local optima A domination path D P(x, y, A) through A, starting
from x and ending in y, is a path in the social graphY� connecting sequence of best neighbors
with respect to objects in A, i.e. a sequence

x = x0 ≺ x1 ≺ · · · ≺ xs = y

such that there exist objects, not necessarily distinct, AIh1
, . . . ,AIhs

∈ A with xi ∈
B(xi−1,AIhi

) for all 1 ≤ i ≤ s.
A social outcome x is said to be a local optimum for A if �(x, A) is empty and, simply, a

local optimum if there exists at least an object scheme A such that �(x, A) is empty. Notice
that if �(x, A) is empty then B(x, A) = ⋃k

j=1 B(x,AI j ) is empty that is any domination
path through A which contains x ends in x . So, for instance, if we consider the objects scheme
A1 in the Example 3.1, we only have the local optimum 11 while, if we consider the objects
scheme A2, also 00 is a local optimum.

In [14], authors proved that a social outcome x is a local optimum if and only if it is
preferred to all the social outcome y which differs from x by only one feature.

The decision process Finally we can describe the decision process as follows.
A domination path is said to be maximal if it ends in either a local optimum or a limit
domination cycle1 An agenda α of an object scheme A = {AI1 , . . . ,AIk } is an ordered
t-uple of indices (h1, . . . , ht ) with t ≥ k such that {h1, . . . , ht } = {1, . . . , k}. An agenda α

states the order in which the objects AIi are decided upon.
The decision process consists in moving from an initial social outcome x0, called status

quo, along the maximal path through a fixed object scheme A, ordered by an agenda α. If
the maximal path ends up in a local optimum, then this will be the preferred choice of the
society.

Thanks to this graph description Amendola and Settepanella builded an algorithm that
allowed them to obtain numerical results described in [1] and to prove (see [2]) that the
probability to get a local optimum in the binary case, i.e. fi ’s take only value 0 or 1, converge
to a value close to 63% when the number of features increases.

The following questions arise naturally: can this result be extended to CP-net? Is this
decision process compatible with CP-net structure? The first step to answer to those questions
is to re-write the CP-net framework in terms of graphs (see Sect. 4).

1 More precisely, either xs is a local optimum or xs−t belongs to B(xs ,AIhs+1 ), where hs is the remainder
of the division of s − 1 by t .
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Fig. 3 The graphs Gi of preferences of judges ji , i = 1, 2, 3 in Table 2 and their aggregated graph (under
majority rule). Curved edges labelled R represent preferences on the compound proposition R = P ∧ Q

3.2 Graph theoretical approach to Judgment

In [15], authors show how the doctrinal paradox in Example 2.2 can be represented via a
graph similar to the one in Example 3.1. Indeed if we assume proposition-wise consistency,
i.e. we assume that what a judge think about the proposition P is not influenced by the value
of the proposition Q and vice versa, then the judgements of judges 1, 2 and 3 in Table 2
correspond to graphs in Fig. 3. For instance, via the correspondence True-1 and False-0, it
is an easy check that since the preference of the Judge 1 is True-True, i.e. 11, then the value
1 is preferred in each single proposition and in the compound one, that is we obtain the first
graph in Fig. 3 in which the vertex 11 is a sink.2

The aggregation by majority rule gives rise to a cycle involving vertices (0, 0), (0, 1)
and (1, 1) corresponding to a cycle between False-False, False-True and True-True. This is a
Condorcet cycle which corresponds to the doctrinal paradox (also called discursive dilemma)
in Table 2. Starting from this example, Marengo, Settepanella and Zhang provided a general
proof of the equivalence between the two paradoxes beyond this particular example (see
[15]).

In the rest of this Section we will describe the graph-theoretic framework defined in [15]3

and which generalizes the multi-dimensional alternatives model described in [14].

A multi-graphs model Let’s consider n individuals (e.g. voters or judges), a set of N alter-
natives, where each alternative is an m-dimensional object, and a set of s labels for s-tuple
of directed graphs. Each individual is characterized by an s-tuple of preference graphs, each
one with N vertices corresponding to the alternatives. In the case of preferences described
in [14], s = 1 and the s-tuple of graphs will contain only one element.

Recall fromSect. 2.2 that� contains atomic propositions Pj , j = 1, . . . , m and compound
propositions C j , j = 1, . . . , s. Given a judgement J = (Ja ||Jc) ∈ {0, 1}m+s , we build s
associated graphs Gi (J ) = (V (J ), Ei (J )), each of them corresponding to a compound
proposition Ci , as follows:

1. each Gi (J ) has the same set of vertices V (J ), which consists of the 2m vertices v ∈
{0, 1}m of the m-dimensional cube in R

m . As discussed in Sect. 2.2, these correspond to
the 2m potential choices of Ja .

2. An edge (v,w) from v tow,v 
= w, is in Ei (J ) if and only if one of the following occurs:

2 Recall that a sink in a directed graph is a vertex in which all edges enter or arrive and no edge exits.
3 Notice that in [15] authors give a slightly different description of this framework bymeans of a unique graph.
This description as s-tuple of directed graphs has been chosen since it is more consistent with the purpose of
this paper and it first appears here.
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(i) they differ only for the value of one entry t , and the value (J )t of the t th entry of J
equals the t th entry (w)t of w (and hence (v)t = ¬(J )t )4. We call such an edge an
atomic edge.

(ii) Ci (v) 
= Ci (w), Ci (w) = (Jc)i , Ci (v) 
= (Jc)i . We call such an edge a compound
edge.

Note that all the graphs Gi have the same vertices and atomic edges.

Example 3.2 Reconsider Example 2.2 from Table 2. This is a case with only one compound
proposition, that is s = 1 and each judge ji has only one associated graph Gi , i = 1, 2, 3 as
described in Fig. 3.

We conclude this Section with a Theorem equivalent to Theorem 4.4 in [15] and which states
the equivalence between the logic framework used to model Judgment aggregation and the
graph-theoretic framework.

Denote by Gr(m) the set of all graphs on 2m vertices, by G : U� → (Gr(m))s the map
that sends a logical judgement J to the s-tuple (G1, . . . , Gs) of associated graphs and by
Gr(m)G = G({0, 1}m+s) ⊂ Gr(m)s the set of s-tuples of graphs (G1, . . . , Gs) obtainable
from any judgement (even non-logical ones) in {0, 1}m+s . The following Theorem holds (see
[15]).

Theorem 3.3 The function G that associates to each element J ∈ {0, 1}m+s its s-tuple of
graphs (G1(J ), . . . , Gs(J )) gives a bijection between {0, 1}m+s and Gr(m)G. G naturally
induces a bijection G̃ between sets of functions

{ f | f : ({0, 1}m+s)n → {0, 1}m+s} � { fgr | fgr : (Gr(m)G)n → (Gr(m)G)},
where f and fgr are aggregation functions, respectively, on Judgments and Graphs.

4 The graph representation of CP-Nets

In this Section we show how the CP-net language can be translated in the multi-alternatives
graph framework described in the Sect. 3. This open the question wether the decision process
introduced in [13] and extended to graphs in [14] can be used to fruitfully model automated
decision making.

4.1 The graph of preferences

Let’s consider, as in Sect. 2.3, the space O = ∏n
i=1 Dom(Xi ) of all complete assignments

endowed with a total order �. To be consistent with notations, if X ⊂ V, we use the symbol
OX = ∏

Xi ∈X Dom(Xi ) to denote assignments, instead of Asst(X).

Completion of partial assignments If prX denotes the projection map

prX : O → OX,

then elements o ∈ O such that prX(o) = x are called completions of x .

4 This captures the idea of judge systematicity introduced in [15], i.e. the idea that what a judge think with
respect to proposition P is not affected by what she thinks on proposition Q.
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Given y ∈ OY,Y = V \ X, xy ∈ O will denote the only completion of x which satisfies
prY(xy) = y. More in general, given a partition {Y1, . . . ,Yk} of V, y1 . . . yk ∈ O will
denote the only element which satisfies prY j (y1 . . . yk) = y j for any j = 1, . . . , k.
The graph Analogously to Sect. 2.1, the space O with its assigned total order � can be
represented by the graph G = (V (G), E(G)) having vertices V (G) = O and oriented edges
E(G) = {(o, o′) ∈ O | o 
= o′, o′ � o}. An example of such a graph is the one depicted in
the Fig. 4 in which, for instance, the fact that the vertex 000 is a sink of the graph is equivalent
to the fact that the assignment 000 is preferred to any other assignment.

Then, fixed a subset X ⊂ V, the set of completions of a partial assignment x ∈ OX
corresponds to the subset of vertices

V (Gx ) = {o ∈ O|prX(o) = x},
which naturally defines the subgraph Gx = (V (Gx ), E(Gx )) of G with

E(Gx ) = {(o, o′) ∈ E(G) | o, o′ ∈ V (Gx )}.
For example, if we fix the subset X = {X1} ⊂ V = {X1, X2, X3} in the Example 4.10
and we consider the partial assignment x = 1 ∈ OX = {0, 1}, then the subgraph Gx is the
graph in the right side of the cube in the Fig. 4, that is the subgraph involving the vertices
V (Gx ) = {100, 110, 111, 101} in which the value of the first entry is always 1.

More in general, given a partition {Y1, . . . ,Yk} of V, the set of completions of a partial
assignment y2 . . . yk corresponds to the subset of vertices

V (G y2...yk ) = {o ∈ O | prY j (o) = y j , j = 2, . . . , k}
which naturally defines the graph G y2...yk .

Preferentially and conditionally independence Recall that two graphs G and H are iso-
morphic if and only if there is a bijection f between vertices which preserves the edges.
Given a partition {Y1, . . . ,Yk} of V and two partial assignments y2 . . . yk, z2 . . . zk , in this
paper we are mainly interested in the graph isomorphism

G y2...yk � Gz2...zk

which sends the vertex o ∈ V (G y2...yk ), prY1(o) = x into the only vertex o′ ∈ V (Gz2...zk )

which satisfies prY1(o
′) = x . For simplicity, in the rest of the paper we use the symbol � to

refer to such isomorphisms.
We can easily check that, given a partition {X,Y} of V, X is preferentially independent

of Y if and only if G y1 � G y2 for all y1, y2 ∈ OY. Indeed the Eq. (2.3) becomes

(x2y1, x1y1) ∈ E(G y1) if and only if (x2y2, x1y2) ∈ E(G y2). (4.1)

For instance, in the Fig. 5d the four edges oriented all in the same direction correspond to the
fact that G y1 � G y2 for all y1, y2 ∈ OY given the partition {X,Y},X = {X1},Y = {X2, X3}
of V. Indeed in this case OY = {00, 01, 10, 11} and, for example, G00 is the graph having
as vertices V (G00) = {000, 100} and as edges the only edge joining 100 to 000. It is then an
easy remark that G y1 � G y2 for all y1, y2 ∈ OY.

Similarly, given a partition {X,Y,Z} of V, X is said to be conditionally preferentially
independent ofY given z ∈ OZ if G y1z � G y2z for any y1, y2 ∈ OY and given Z if this holds
for any z ∈ OZ. Equation (2.4) becomes

(x2y1z, x1y1z) ∈ E(G y1z) if and only if (x2y2z, x1y2z) ∈ E(G y2z). (4.2)
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Family of Parent sets Consider a set of parent variables P(Xi ) ⊂ V defined in Sect. 2.3. If
we call parent sets such subsets ofV then , for any fixed variable Xi ∈ V the family of parent
sets is

P(Xi ) = {Z ⊂ V | Gzy1 � Gzy2∀z ∈ OZ,∀y1, y2 ∈ OY,Y = V \ ({Xi } ∪ Z)).

Notice that the twovariable subsetsX = {Xi } andY = V\{Xi } are preferentially independent
if and only if ∅ ∈ P(Xi ).

Remark 4.3 It is worthy to mention at this point that the variables correspond to the features
described in the Sect. 3.1. Analogously the CP-nets decision process which fixes a single
variable at each step, corresponds to the special case in which the objects scheme contains
exactly as many objects as the number of variables and each object has exactly one element,
i.e. A = {{X1}, . . . , {Xn}}. In particular an order of the variables corresponds to an agenda.
This allows to retrieve in the automata decisions the concept of local optimum (see the
Sect. 4.4) and the result on local optimum obtained in [2] and described in Sect. 3.1.

Finally notice that the agenda in the CP-nets decision process is simply an order on the
variables and it is only repeated once. Meanwhile in the Marengo and Pasquali decision
process the fixed agenda can be more general allowing several repetitions inside it and the
agenda itself can be repeated infinitely many times. This implies that the known results on
the local optimum have an higher degree of generality.

4.2 The Lattice of parent sets and theminimal elements

In this section we show that the family of parent sets is a lattice with respect to the operations
of intersection and union of sets. Moreover the family P(Xi ) can be partially ordered by
inclusion and, in particular, it admits a minimum element which turn out to be the best choice
in the CP-net decision process (see Sect. 4.3).

In order to prove that the family of parent sets is a lattice we need the following Lemma.

Lemma 4.4 Let Xi ∈ V be a variable, P(Xi ) its family of parent sets and Z1 ∈ P(Xi ). Then
any subset Z2 ⊂ V such that Z2 ⊃ Z1 belongs to P(Xi ).

Proof Denote by Y1 := V \ ({Xi } ∪ Z1) and Y2 := V \ ({Xi } ∪ Z2). Since Z1 ⊂ Z2, then
any z2 ∈ OZ2 can be uniquely written as the completion z2 = z1z of an element z1 ∈ Z1

such that prZ2\Z1(z2) = z. Hence, in particular, for any two elements y2, y′
2 ∈ OY2 , the

completions y1 = y2z and y′
1 = y′

2z are elements in OY1 and, by Z1 ∈ P(Xi ), we have
that Gz1 y1 � Gz1 y′

1
. Finally, by the unicity of the completion, z1y1 = z1zy2 = z2y2 and

z1y′
1 = z1zy′

2 = z2y′
2, that is Gz2 y2 � Gz1y1 � Gz1 y′

1
� Gz2 y′

2
. ��

Proposition 4.5 Let Xi ∈ V be a variable, P(Xi ) its family of parent sets and Z1, Z2 ∈
P(Xi ). Then Z1 ∪ Z2 ∈ P(Xi ) and Z1 ∩ Z2 ∈ P(Xi ).

Proof [∪] It is a direct consequence of Lemma 4.4.
[∩] The cases Z1 ⊂ Z2 and Z2 ⊂ Z1 are trivially true. Let’s consider the case in which
Z1 
⊂ Z2 and Z2 
⊂ Z1 and define Z = Z1 ∩ Z2. If Z 
= ∅ then V is partitioned by Z ,
Y1 = Z1 \ Z2, Y2 = Z2 \ Z1 and Y3 = V \ (Z1 ∪ Z2).

Let’s denote by Y the set Y = Y1 ∪ Y2 ∪ Y3 = V \ Z . Then any two elements y, y′ ∈ OY

are written in an unique way as y = y1y2y3, y′ = y′
1y′

2y′
3 with yi , y′

i ∈ OYi and we have

Gzy = Gzy1y2 y3 = Gz1 y2 y3 � Gz1 y′
2 y′

3
= Gz,y1 y′

2 y′
3
,
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where the isomorphism holds by z1 = zy1 ∈ Z1 ∈ P(Xi ). Analogously, by z2 = zy′
2 ∈

Z2 ∈ P(Xi ), we have

Gzy � Gzy1 y′
2 y′

3
= Gz2 y1 y′

3
� Gz2 y′

1y′
3

= Gzy′
1y′

2 y′
3

= Gzy′

which conclude the proof when Z 
= ∅. Exactly same argument applies to the case Z = ∅
considering the partition of V given by Y1, Y2, Y3. ��
If we denote by

Pm(Xi ) =
⋂

Z∈P(Xi )

Z and PM (Xi ) =
⋃

Z∈P(Xi )

Z (4.6)

by Proposition 4.5 Pm(Xi ), PM (Xi ) ∈ P(Xi ) and the following theorem holds.

Theorem 4.7 For any variable Xi ∈ V, its family of parent sets P(Xi ) is a bounded lattice
with Pm(Xi ) and PM (Xi ) as, respectively, minimum and maximum elements.

4.3 Theminimal CP-graph

In this Subsection we are going to define a graph structure that we call minimal CP-graph,
equivalent to the CP-net model. We will need the following definition.

Definition 4.8 Let V = {X1, . . . , Xn} be a set of variables. Then for any fixed element
P = (P(X1), . . . , P(Xn)) ∈ ∏

i∈{1,...,n} P(Xi ), we call P-variable graph the graph GP(V)

having V as set of vertices and {(X j , Xi ) ∈ V × V | X j ∈ P(Xi )} as set of edges.
Let V = {X1, . . . , Xn} be a set of variables, O = ∏

i∈{1,...,n} Dom(Xi ) the space of all
possible alternatives ranked by the preference order�, G = (O,�) the associated preference
graph defined in the Sect. 4.1 and P(Xi ), i = 1, . . . , n families of parent sets.

For any element Z ∈ P(Xi ), Xi ∈ V is conditionally preferentially independent of
Y = V\ ({Xi }∪Z) and, in particular, for any fixed z ∈ OZ, all graphs in {Gzy | y ∈ OY} are
isomorphic. Then, without restriction of generality, we can pick any representative Gzy ∈
{Gzy | y ∈ OY} and give the following definition equivalent to the definition of CP-net.

Definition 4.9 Let V = {X1, . . . , Xn} be a set of variables, G = (O,�) the asso-
ciated preference graph and P(Xi ), i = 1, . . . , n families of parent sets. Fixed an
element P = (P(X1), . . . , P(Xn)) ∈ ∏

i∈{1,...,n} P(Xi ), we call CP-graph the couple
(GP(V), {G P (Xi )}i=1,...,n) where

G P (Xi ) =
⋃

z∈OP(Xi )

Gzyi , for a chosen yi ∈ OV\({Xi }∪P(Xi )).

In particular if P = (Pm(X1), . . . , Pm(Xn)) is the n-tuple of minimal parent sets, we
will call (GP(V), {G Pm (Xi )}i=1,...,n) the minimal CP-graph and it will be denoted by
(Gm(V), {Gm(Xi )}i=1,...,n).

We provide the following example.

Example 4.10 Let’s consider the acyclic complete graph G represented in Fig. 4 associated to
the variable set V = {X1, X2, X3} with binary variables Xi , i.e. OXi = {0, 1}, and families
of parent sets represented in Table 3.

Let’s describe the graphs G P (X1) for P(X1) ∈ P(X1). In the case that P(X1) = ∅, if we
choose y = 00 ∈ OV\({X1}∪∅) as representative, G P (X1) is the graph represented in Fig. 5a.
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Fig. 4 The graph G with set of
vertices O

Table 3 Parent sets and
minimum parent sets

Xi P(Xi ) Pm(Xi )

X1 {∅, {X2}, {X3}, {X2, X3}} ∅
X2 {{X1}, {X1, X3}} {X1}
X3 {{X2}, {X1, X2}} {X2}

(b) (c) (d)(a)

Fig. 5 Graphs G P (X1)’s

Remark that although we can get different G P (X1) depending on fixed y ∈ OV\({X1}∪∅),
they are all isomorphic.

Similarly in the case P(X1) = {X2} (resp. {X3}), by fixing y = 0 ∈ OV\({X1}∪{X2}) (resp.
y = 0 ∈ OV\({X1}∪{X3})), we get the graph G P (X1) represented in Fig. 5b (resp. Fig. 5c).
Finally the graph G P (X1) for P(X1) = {X2, X3} is represented in Fig. 5d.

Comparing the graphs in Fig. 5, we observe that graphs in Fig. 5a, c and d can be obtained
from the graph in Fig. 5a associated to the minimum parent set Pm(X1) = ∅ by isomorphism,
i.e. considering the union of the copies of G P (X1) obtained when y varies opportunely
in OV\({X1}∪∅) = {00, 01, 10, 11}. This suggests that it is enough to describe the graphs
G P (Xi ) for P(Xi ) = Pm(Xi ) the minimum parent set. The graphs in Fig. 6a and b represent,
respectively, the graphs G P (X2), G P (X3) in the case P(Xi ) = Pm(Xi ), i = 2, 3 minimum
parent sets.

Notice that graphs in Figs. 5 and 6 are subgraphs of the graph of preferences G with edges
between vertices which only differ by the value of exactly one variable Xi ∈ V. This is a
direct consequence of CP-net definition (see Sect. 2.3) in which the conditional preference
table C PT (Xi ) is defined using the total order among alternatives which only differ by the
value of the variable Xi . In particular, fixed a parent set P(Xi ) for each variable Xi it is
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(a) (b)

Fig. 6 The graphs G P (Xi ) for P(Xi ) = Pm (Xi ), i = 2, 3

(a) (b)

Fig. 7 The subgraph of G equivalent to the conditional preference table of Example 4.10

possible to build the subgraph

HP =
n⋃

i=1

G P (Xi ), P = (P(X1), . . . , P(Xn))

of G with vertices all vertices in G and edges between vertices differing by just one entry,
i.e. having the so called Hamming distance equal to 1.

For example, if we consider the case illustrated in Example 4.10, the subgraph HP =⋃3
i=1 G Pm (Xi ) is the graph represented in Fig. 7a.
In particular, it is an easy remark that isomorphisms Gzy � Gzy′ , y, y′ ∈ OV\({Xi }∪P(Xi ))

for each value z ∈ OP(Xi ), i = 1, . . . , n allow to extend the graph HP in an unique way
to the only subgraph H of G having as vertices all vertices of G and as edges all edges of
Hamming distance 1 of G, i.e. all edges which only differ for the value of one variable Xi

(Example 4.10 is depicted in Fig. 7b). We will call H the Hamming one subgraph of G and
since, obviously, the graph H is independent from the choice of the set P, we can state the
following Theorem.

Theorem 4.11 Let V = {X1, . . . , Xn} be a set of variables, G = (O,�) the associated
preference graph and P(Xi ), i = 1, . . . , n the families of parent sets. Then all the CP-
graphs (GP(V), {G P (Xi )}i=1,...,n) give rise to the same subgraph H of G for any choice of
P ∈ ∏

i∈{1,...,n} P(Xi ). In particular H is the Hamming one subgraph of G.
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As a corollary of this Theoremwe get that the minimal CP-graph (Gm(V), {Gm(Xi )}i=1,...,n)

is a good representative since in any decision process, it provides the same preference graph
with the smallest amount of choices, i.e. in the fastest time. In particular the graph of variables
Gm(V) uniquely defines the families of parent sets P(Xi ) for i = 1, . . . , n. By definition of
variable graph we have the following Proposition.

Proposition 4.12 Let V = {X1, . . . , Xn} be a set of variables and G(V) be an a-cyclic
complete variable graph. Then G(V) = Gm(V) is the minimal variable graph associated to
the n-tuple of minimal parent variables P = (Pm(X1), . . . , Pm(Xn)) ∈ ∏

i∈{1,...,n} P(Xi )

and if Xi1 � Xi2 � · · · � Xin is the transitive order on the variables induced by G(V) then:

1. ∅ ∈ P(Xi1);
2. there exists a chain of parent variables

∅ ⊂ {Xi1} ⊂ {Xi1 , Xi2} ⊂ · · · ⊂ {Xi1 , . . . , Xi j } · · · ⊂ {Xi1 , . . . , Xin−1} (4.13)

such that {Xi1 , . . . , Xi j } ∈ P(Xi j+1);
3. the parent set {Xi1 , . . . , Xi j } is the minimum parent set Pm(Xi j+1).

Notice that the presence or absence of an edge in theminimal variable graphGm(V)matters as
it changes the minimal parent sets and, consequently, the family of parent sets. The question
whether a given graph is the minimal variable graph of a set of variable V deserves to be
better investigated. In the next Section we will deal with the difference on CP-graphs when
the variable graph is a-cyclic or contains cycles.

4.4 Satisfiability and B-optima

In Sect. 4.3 we proved that a CP-graph is equivalent to provide a minimum graph HP which
can be completed by isomorphisms to the hamming one subgraph H = (O,�H ) of the
acyclic complete graph G = (O,�). Notice that two different complete graphs G = (O,�)

and G ′ = (O,�′) can have the same hamming one subgraph H . On the other hand any
graph G = (O,�) which has H as subgraph has to contain the acyclic graph T = (O,�T )

obtained completing H by transitivity, i.e. adding to H all the edges (o, o′) such that it exists
an oriented path from o to o′ in H . To build the graph T from HP is equivalent to what
[3] called entailment. The fact that T can be completed to, at least, one acyclic graph G
is equivalent to their definition of satisfiable CP-net. We get that the following statement
equivalent to Theorem 1. in [3] holds.

Theorem 4.14 Every acyclic CP-net is satisfiable.

If we denote by Pm = (Pm(X1), . . . , Pm(Xn)) the n-tuple of minimal parent sets, then
Theorem 4.14 is equivalent to the following statement.

Theorem 4.15 If the Pm-variable graph Gm(V) is acyclic, then H is the hamming distance
one subgraph of at least one acyclic complete graph G.

Since the graph G from Theorem 4.15 is not unique, we can ask what we can say about the
existence of a most preferred choice5. In order to study this problem, we introduce the notion
of B-optimum, and we compare it with the one of local optimum defined in Sect. 3.1.

5 Notice that if G would be unique then the most preferred choice would be the unique sink of G acyclic
complete graph.
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(a) (b)

Fig. 8 Hamming one subgraphs. The added edges in H2 are the dotted ones

(a) (b)

Fig. 9 Minimal variable graphs associated to the hamming one subgraphs in Fig. 8

Definition 4.16 Let G = (O,�) be an acyclic complete graph, H ⊂ G be its hamming one
subgraph and T = (O,�T ) the acyclic extended graph of H . An element o ∈ O is called a
B-optimum if o′

�T o for any o′ ∈ O, o′ 
= o. The set of all B-optima will be denoted by B.
Example 4.17 Let’s consider the hamming one subgraphs H1 and H2 depicted in Fig. 8.While
the graph H2 can be completed by transitivity by adding the dotted edges as drawn in Fig. 8b
the graph H1 cannot and hence it coincides with its acyclic extended graph T1. It is easy to
check that H1 admits two B-optima 00 and 11 while H2 only the B-optimum 11. It is also
an easy remark that in both cases the B-optima coincide with the local optima of the graphs.
This is not a coincidence as stated in the following Theorem 4.18.

Theorem 4.18 Let G = (O,�) be an acyclic complete graph. An element o ∈ O is a
B-optimum if and only if it is a local optimum.

Proof An element o ∈ O is a local optimum if and only if it satisfies the condition o � o′
for any element o′ ∈ O such that dH (o, o′) = 1. This implies that there is no path along H
that can end in o hence o′

�T o for any o′ ∈ O, that is o is a B-optimum. The vice versa is
obvious. ��
Finally let’s consider the two minimum variable graphs depicted in Fig. 9. The two graphs
represent the minimum variable graphs associated, respectively, to the graphs H1 and H2

depicted in Fig. 8. We notice that while the minimum graph associated to H1 is cyclic, the
one associated to H2 is acyclic. This is related to the existence of multiple B-optima as stated
in the following theorem.

Theorem 4.19 Let V be a set of n variables and G = (O,�) an acyclic complete graph. If
the minimum variable graph Gm(V) is acyclic, then the B-optimum exists and is unique.

Proof Let’s suppose, by absurd, that there are two B-optima o1, o2, o1 
= o2. Then the set

W = {Xi ∈ V | prXi (o1) 
= prXi (o2)}
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(a)

(b)

Fig. 10 The counterexample to the converse of Theorem 4.19

is not empty and fixed an element X ∈ W we can write o1 = x1y1z, o2 = x2y2z with
xi ∈ OX , yi ∈ OW\X , z ∈ OV\W. If we define o′

1 = x2y1z and o′
2 = x1y2z then o′

i differs
from oi only on the entry of the variable X and hence oi � o′

i since, by Theorem 4.18, o1
and o2 are also local optima. It follows that the graphs G y1z and G y2z are not isomorphic
and hence X is nor preferentially independent of V \ {X} nor conditionally preferentially
independent ofW \ {X} given V \ W, i.e. ∅ /∈ P(X) and V \ W /∈ P(X). The latter implies
that there is another variable X ′ ∈ W, X ′ 
= X such that X ′ ∈ Pm(X), that is (X ′, X) is an
edge in the subgraph Gm(W) of Gm(V).

Let’s now consider the longest path Xi1 . . . Xih in Gm(W). By the above considerations,
fixed the first variable of the path Xi1 , there is a variable X ′ such that (X ′, Xi1) is an edge
of Gm(W). Since Xi1 . . . Xih is the longest path, then there is an index j ∈ {1, . . . , h} such
that X ′ = Xi j , that is Gm(W) contains the cycle Xi1 . . . Xi j which is an absurd as Gm(W) is
a subgraph of an acyclic graph. ��

Remark that the converse of the Theorem 4.19 does not hold in general. A counterexample
is shown in Fig. 10: the vertex 010 is the unique B-optimum of the humming one graph in
(a), but the variable graph, depicted in (b), is not acyclic.
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