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Abstract: Three-dimensional (3D) printing was introduced firstly for industrial use, but it gained
popularity in different medical fields, including orthopedic surgeries. Particularly, 3D-printed
models have been used in the pre-operative planning for spine surgery, oncology, acetabular fracture
treatment and complex primary total hip arthroplasty (THA) or revision THA. In knee surgery,
some authors described good accuracy with 3D-printed wedge for Opening Wedge High Tibial
Osteotomy (OWHTO), but there are no studies describing its application in Total Knee Arthroplasty
(TKA). In both primary and revision TKA, a 3D-printed model may be useful to better evaluate
knee morphology and deformity, implants, bone losses and the compatibility between different
components used. Furthermore, some companies provide a bone thickness evaluation, which may
be useful to identify zones at risk of intra-operative fracture, especially in those cases in which a
cone or sleeve must be used. The first aim of this manuscript was to evaluate possible application of
3D-printed model in pre-operative planning of both complex primary and revision TKA, compared
to standard planning. Two clinical cases will also be described to show how these models can be used
for planning purposes.
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1. Introduction

Three-dimensional (3D) printing was first introduced in the 1980s, mainly for industrial
use. However, since early 2000, it gained popularity in different medical fields, such as
maxillofacial, dental, orthopedic and oncologic surgery [1,2].

In orthopedic surgeries 3D-printed models can be used for both educational purposes,
pre-operative planning and surgery simulation. Furthermore, it can be used to create
custom guides or implants [1,3,4]. A hands-on model can increase the visualization for
bone pathology and deformity, especially for less skilled surgeons. Different studies focused
on 3D printing technologies’ utility in orthopedic surgeries, with a dramatic increase in
publications between 2014 and 2020 [5].

Patient-specific 3D-printed models can be obtained from both Computer Tomography
(CT) scans and Magnetic Resonance Imaging (MRI) slices, with the latter being less used [6].

There are two 3D printing techniques in orthopedic surgery. In the subtractive tech-
nique, the model is milled from a foam (e.g., polyurethane), with low costs and poor
geometric accuracy, and with no possibility to be sterilized for intra-operative use. Con-
versely in additive techniques the models are produced through a layer-by-layer process,
with a powder, liquid, or plastic material. With this technique, the 3D-printed model
can reproduce more complex structures and cavities, with higher accuracy compared to
subtractive techniques [7]. Three additive technologies are mainly used in orthopedic
fields: stereolithography, selective laser sintering (SLS) and fused deposition modelling
(FDM). Stereolithography is based on an optical light energy source scanning over a resin,
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which turns solid specific areas of the liquid’s surface. SLS is based on a high-power laser
which fuses plastic, metal, ceramic, or glass powder into a physical model designed on
3D images by a computer-aided design. This type of manufacturing can provide high
geometry accuracy, but with high costs. FDM is based on extraction and solidification of
materials in layers made by the deposition of a polymer. As this technique allows the use
of different materials (and colors), it is probably the most versatile, and also provides a
high geometric accuracy and the possibility to use sterilizable materials [7,8].

Three-dimensionally-printed models have been used in different orthopedic fields,
including traumatology, shoulder surgeries, oncology, spine and, mainly, complex hip
arthroplasty and acetabular fractures [9]. However, there are no studies or case reports on
the application of 3D printing in the pre-operative planning of primary and revision Total
Knee Arthroplasty (TKA). The aim of this manuscript was to summarize the application of
3D-printed models in the pre-operative planning for both primary and revision TKA. For
this purpose, two cases from our institution will be described as an example.

2. Materials and Methods

A literature search was performed including all the studies published until June 2022
regarding application of 3D printing in orthopedics. Initially, all the studies describing
application of 3D-printed models in the pre-operative planning of different orthopedic fields
were included. Studies were screened and more relevant studies were briefly described.

However, to better understand the role of 3D-printed models in Knee replacement
surgeries, two cases were reported. In both the cases a 3D printed model, based on a
CT scan, was produced by Medics® (Turin, Italy). The 3D model was printed with FDM
additive technology and was provided with a further document with all measurements
performed. Furthermore, the model can be printed separable in two parts, especially in
revision cases: the bone (after implant removal) and the implant. The surgeon can decide
to make bone, implant and cement in different colors in the document, as well as in the
3D-printed model. Finally, the manufacturer can provide the surgeon with a bone thickness
map, which turns out useful in planning more delicate zones.

3. Results
3.1. Applications of 3D-Printed Models

Three-dimensionally-printed models have been extensively used in different orthope-
dic fields. Campana et al. summarized the application of 3D-printed models in shoulder
surgery, particularly for Total Shoulder Arthroplasty (TSA), either by creating a 3D model
to allow a more precise pre-operative planning, especially in case of severe glenoid deformi-
ties, or to create a Patient-Specific Instrumentation (PSI) in more complex cases [10]. Several
studies reported good results and possible implant positioning improvement with both
PSI and pre-operative planning with 3D-printed models, especially in complex TSA [11,12].
Other authors evaluated the utility of 3D-printed models in both shoulder instability and
traumatological surgery, concluding that these models may help surgeons to make an accu-
rate pre-operative planning and to simulate the surgery, leading to better outcomes [13–16].

Some researchers described 3D-printed models’ utility in spine surgery, especially
for correction of deformities (scoliosis) or complex fractures. This technology may help
surgeons with both pre-operative planning, surgical simulations, doctor-patient commu-
nication, development of intra-operative PSI and even implantable devices. In particular,
3D technology’s efficacy in improving screw placement was evaluated and confirmed by
different studies [8,17,18].

Three-dimensionally-printed models can also be successfully applied to complex trau-
matology, in which pre-operative planning and good visualization of fracture morphology
is mandatory and not always easy with standard images modalities, such as X-rays or CT
scans. Good outcomes are described using 3D-printed models in pre-operative planning
for complex proximal tibial plateau fractures, with better visualization of fracture’s mor-
phology, decreased operative time, intraoperative blood loss and fluoroscopy time [19–23].
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Sun et al. recently published their data on 50 patients with hip or knee fracture who under-
went a THA/TKA, concluding that 3D-printed models can help surgeons in pre-operative
planning as well as in improving accuracy and safety [24].

However, most of the studies on trauma surgery and 3D-printed models focused on
acetabular fractures, confirming that 3D-printed models help in better defining morphology
of acetabular fractures, leading to reduced operative time, blood loss and intra-operative
use of fluoroscopy. However, there is no consensus that these advantages can lead to better
functional outcomes [25–27]. A recent systematic review and meta-analysis evaluated the
effect of 3D-printed models on pre-operative planning and outcomes in orthopedic trauma
surgery. The authors included 17 studies with 922 patients with different fracture sites and
confirmed in all cases a reduction in operative time, blood loss and fluoroscopy use when
pre-operative planning with 3D-printed models was performed [28].

Many researchers focused on the utility of 3D technology in total hip arthroplasty
(THA) or revision THA. In particular, THA in dysplastic, traumatic or post-septic cases
can be challenging for the surgeon due to altered anatomy. In these cases, 3D-printed
models may help to identify pelvic structure, acetabular deformity, bone defects and to plan
some surgical needs such as ideal extent of reaming and possible use of augments [29–32].
Several researchers also evaluated the outcomes of PSI in complex primary or revision hip
replacement cases, with good results. However, this technology implies high costs, and it
should be reserved to only difficult cases [33,34].

Few papers have evaluated 3D-printed models for pre-operative planning in knee
surgery, mostly describing the outcomes using a 3D-printed model wedge to improve
alignment accuracy in Opening Wedge High Tibial Osteotomy (OWHTO). Kim et al. evalu-
ated the outcomes in 20 patients treated using the 3D-printed model (a plastic sterilized
wedge equal to the amount of opening required) compared to 20 patients with standard pre-
operative planning. The authors concluded that a more accurate correction can be achieved
using the 3D-printed model compared to standard pre-operative planning [35]. In a similar
study, same authors evaluated the efficacy of the same technology not only in achieving a
satisfactory correction, but also in respecting the posterior tibial slope (PTS) [36].

Different studies evaluated the utility of PSI in Total Knee Arthroplasty (TKA), focusing
both on implant alignment and cost-effectiveness. However, no studies were published
reporting 3D-printed models in pre-operative planning for both primary and revision
TKA. Furthermore, it must be mentioned that 3D-printed models cost between EUR500
and EUR1000, depending on model’s complexity, and it is cheaper compared to other
technologies, such as PSI.

3.2. Application of 3D-Printed Models in Pre-Operative Planning of Primary Total Knee Arthroplasty

A careful pre-operative planning is mandatory in primary TKA to obtain a well-
positioned, stable implant and, consequently, good outcomes [37–39].

Pre-operatively, surgeons should focus on comorbidities, patient’s history and char-
acteristics (e.g., previous surgery, level of activities, etc.) and a complete knee evaluation.
In particular, clinical evaluation should include Range of Motion (ROM), skin (previous
scars) evaluation, patients’ gait, neurovascular status, patellar tracking and stability eval-
uation, as well as the complete lower limb alignment. Furthermore, presence of foot
abnormalities, especially in valgus knee, should be evaluated and, in some cases, addressed
pre-operatively [37–40]. Evaluating all these characteristics is useful to choose the correct
implant design and the level of constraint in primary TKA.

For a correct pre-operative planning, including implant’s size and positioning, a
complete imaging is also mandatory. An X-ray panel should include a knee antero-posterior
weight-bearing view (AP), a weight-bearing lateral view (LL), a full-length hip-to-ankle
AP weight-bearing view and a patellar view [37]. Radiographic planning should include
evaluation of the Hip-Knee Angle (HKA), with consequent description of the type (varus
or valgus) and amount of the deformity. The second step is to define the femoral Valgus
Cut Angle (VCA), which may be standardized (e.g., 3◦, 5◦ or 6◦), or based on HKA [41].
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A femoral cut is then simulated based on VCA, and a tibial cut is also simulated based
on the chosen alignment (mechanical or Kinematic). At the time of pre-operative planning,
osteophytes are also recognized on AP and LL view, and the patella is evaluated. Lastly,
implant size and positioning can be simulated according to dedicated templates. Recently, dif-
ferent software for digital templating has been proposed, with improvement in pre-operative
planning accuracy [42]. Table 1 summarizes the current pre-operative planning.

Table 1. Summary of information available to the surgeons with standard pre-operative planning for
primary TKA.

CLINICAL EVALUATION INFORMATION SURGEONS CAN
OBTAIN

Skin evaluation Need for plastic surgery (i.e., skin
expander) in case of multiple scars

Knee stability Level of constraint
Reducibility of the deformity Need for ligamentous release

Range of motion Need for extensive approach
Extensor apparatus Need for any reconstruction

Lower limb evaluation Associated or staged procedure (i.e., foot
surgery)

Gait evaluation Associated pathology (i.e., hip, lumbar
stenosis. . . )

Patellar evaluation Need for patellar replacement/associated
procedure (i.e., facetectomy. . . )

RADIOLOGICAL EVALUATION INFORMATION SURGEONS CAN
OBTAIN

Standard radiological evaluation

Antero-posterior (AP)
- Osteophytes
- Planning for femoral and tibial cut
- Component size
- Component position

Lateral

- Osteophytes (posterior)
- Femoral offset
- Planning for tibial slope
- Patellar height

Long leg (weight bearing)

- Any deformity (post-traumatic)→
both AP and lateral

- Overall alignment
- Hip/foot pathology
- Careful distal femoral and proximal

tibial cut planning

Merchant view

- Need for patellar replacement (both
clinical and radiological)

- Patellar tilt
- Planning for patellar cut

Computer tomography (CT) scan

Axial coronal and sagittal scans

- Evaluation of bone loss
(post-traumatic arthritis)

- Evaluation bone deformity
(rotational problems)

- Not for every case
Magnetic resonance (MR)

Axial coronal and sagittal scans
- Better definition of intra-articular

pathology (i.e., synovitis)
- Not for every case
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However, some primary TKA can be defined as “complex”, due to severe ligament
deficiency, post-traumatic bone losses, extra-articular deformities and comorbidities (e.g.,
poliomyelitis) [37]. In these cases, an accurate pre-operative planning can be challenging,
so different authors proposed using a Patient Specific Instrumentation (PSI) to improve
implant positioning and outcomes [43,44]. However, PSI should be reserved to complex
primary TKA to improve its cost-effectiveness [45].

There may be another option to simplify pre-operative planning and visualization in
primary TKA: a 3D-printed knee model for pre-operative planning, as demonstrated by
the following case.

3.3. Clinical Case: Primary TKA in Poliomyelitis

A 58-year-old female patient suffered of poliomyelitis in her childhood, with subse-
quent left lower limb muscular deficiency. She came to our attention complaining about
a left knee pain. The patient was a small lady, 150 cm in height, 47 kg in weight, with a
Body mass Index (BMI) of 21 kg/m2. Due to poliomyelitis, she underwent three different
surgeries for lower limb elongation and a hindfoot fusion. She was diagnosed with left knee
osteoarthritis, and, after failure of initial conservative treatment, she was recommended for
TKA. Figure 1 shows pre-operative X-rays.
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Figure 1. Pre-operative X-rays evaluation: (A) long-leg weight-bearing view; (B) lateral view;
(C) antero-posterior view; (D) patellar view.

At the clinical evaluation, the patient was able to fully extend the knee, with a flexion
limited to 100◦ due to pain. There was a partially reducible valgus deformity, with severe
lower limb muscular deficiency, a positive valgus stress and recurvatum and valgus thrust
during gait. Furthermore, there was a mild-to-moderate extension lag mainly due to
quadricep muscle deficiency.

The main difficulties to be considered approaching this case were: (1) ligamentous
deficiency with possible need for high constrain; (2) issues related to poliomyelitis, such as
bone deformities, ligament laxities, recurvatum and quadricep deficiency [46]; and (3) the
patient’s small size, as detected with a digital templating. The patient’s size was particularly
worrying in this case, because digital templating already demonstrated very small distal
femur and proximal tibia, which were not compatible with some available implants.
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For these reasons, a 3D-printed model, based on a CT scan, was produced by Medics®

(Turin, Italy). In this case, as shown in Figure 2A, available data on the femur were
Posterior Condylar Offset (PCO = 28.7 mm), medio-lateral femur diameter (59.8 mm),
antero-posterior medial (44.2 mm) and lateral (64.6 mm) diameter and distal and proximal
medullary canal diameter (distal 15.3 mm × 29.1 mm, proximal 12.08 mm × 17.4 mm). On
the tibial side (Figure 2B), available data were antero-posterior axis (36.9 mm), medio-lateral
axis (53.2 mm), tibial slope (9.6◦) and distal and proximal medullary canal diameter (distal
9.7 mm × 15.4 mm, proximal 18.7 mm × 30.5 mm).
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A bone thickness analysis was also included (Figure 3), revealing poor bone thickness
in the distal femur (on both condyles, more on medial than on lateral condyle) and in the
medial proximal tibia. In Figure 3, red zones correspond to 0.1 mm thickness, while green
zones correspond to a maximum thickness of 6 mm.
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In this case, the 3D-printed model turned out to be extremely useful to plan the surgery.
Considering knee dimension and the need for a constraint, the only implant that could
fit these characteristics was the extra-small size of Endomodell® (Waldemar Link GmbH,
Hamburg, Germany), which guaranteed both the right level of constraint and a very small
dimension. With all this information, an accurate pre-operative planning, sizing, and
surgery simulation was performed (Figure 4).
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Figure 4. Three-dimensionally-printed model for pre-operative planning and implant size evaluation.
(A) Comparison between tibial component size and tibial bone model; (B) comparison between
femoral component size and femoral bone model.

Post-operative X-rays for this patient are shown in Figure 5.
Six months after surgery, the patient was satisfied with complete ROM, stable knee,

no pain and no sign of loosening at the X-rays.
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3.4. Application of 3D-Printed Models in Pre-Operative Planning of Revision Total Knee Arthroplasty

The goals of revision TKA are the same as for primary TKA, but there are often more
challenges to face. In some cases, it may be difficult to obtain good stability, treat bone
loss, achieve good fixation and restore knee kinematic at the same time. An accurate
pre-operative planning is mandatory in revision TKA to correctly address all these aspects.
The first step in pre-operative planning for revision TKA is to make a diagnosis. Firstly, it
is mandatory to rule out infection [47]. Recently, the new International Consensus Meeting
(ICM) of Philadelphia has been published, with a new algorithm for periprosthetic Joint
Infection (PJI) diagnosis [48]. A patient’s history and careful and complete lower limb
clinical evaluation are mandatory to identify the cause of failure [47]. A complete X-ray
evaluation should be obtained, including long-leg weight bearing view, AP and LL weight
bearing view and patellar view [47]. X-rays can provide a lot of information, including
implant position, bone loss, implant alignment, patellar height and morphology, presence
of cement and implant size. Particularly, bone loss should be accurately evaluated pre-
operatively, and, in some cases, a Computer Tomography (CT) scan can be useful to better
evaluate bone loss amount and location and to determine how to treat it, even if it can be
difficult to visualize due to metal artifacts [49,50].

However, not only the amount of bone loss, but also the quality of the remaining bone
should be evaluated to predict which treatment choice should best achieve a good fixation
in at least two out of three zones as described by Morgan-Jones (epiphysis, metaphysis and
diaphysis) [51], as well as bone filling [52].

Standard pre-operative planning still has and important role in evaluating implant
size, need for stems, augments, cones or sleeve and correct component positioning. Digital
planning may help in terms of accuracy and to better understand the relationship between
the different revision implant components. Table 2 summarizes key points for pre-operative
planning in revision TKA.
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Table 2. Summary of information available to the surgeons with standard pre-operative planning for
revision TKA.

CLINICAL EVALUATION INFORMATION SURGEONS CAN
OBTAIN

Skin evaluation Need for plastic surgery (i.e., skin expander) in
case of multiple scars

Knee stability Level of constraint

Range of motion Need for extensive approach

Extensor apparatus Need for any reconstruction

Lower limb evaluation Associated or staged procedure (i.e., foot
surgery)

Gait evaluation Associated pathology (i.e., hip, lumbar
stenosis. . . )

Patellar evaluation Need for patellar replacement/associated
procedure (i.e., facetectomy. . . )

Careful evaluation of the entire lower limb Look for other cause of pain

Rule out infection (clinical evaluation,
arthrocentesis, apply the International

Consensus Meeting criteria [48]
If any doubt, consider the knee infected

RADIOLOGICAL EVALUATION INFORMATION SURGEONS CAN
OBTAIN

Standard radiological evaluation

Antero-posterior (AP)

- Component size
- Component position
- Polyethylene gap symmetry
- Component overhang
- Bony impingement—Ossification
- Osteolysis
- Progressive radiolucent lines
- Subsidence
- Fracture

Lateral

- Femoral component size
- Posterior femoral offset
- Patellar height and thickness
- Tibial component slope
- Osteolysis (typically along the posterior

condyles)

Long leg (weight bearing) - Overall alignment
- Hips and spine evaluation

Merchant view

- Patellar tilt
- Patellar malalignment
- Femoral component overhang
- Component thickness
- Patellar facet impingement

Computer tomography (CT) scan

Axial coronal and sagittal scans
- Bone loss
- Osteolysis
- Component rotation
- Fracture

Magnetic resonance (MR)

Axial coronal and sagittal scans
- Better definition of intra-articular

pathology (i.e., synovitis, patellar clunk)
- Not for every case

Bone scans

Without leukocyte

- Aseptic loosening
- Periprosthetic joint infection
- Stress fractures
- No more included for periprosthetic

infection diagnosis
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However, 3D-printed models, obtained from CT scans, can be useful in the pre-
operative planning, particularly in complex revision cases, in which bone loss can be a
huge issue. The usefulness of 3D-printed models in pre-operative planning was previously
published only in revision THA, while there are no studies regarding revision TKA [53].

The following clinical case will show how 3D knee models can be used in pre-operative
setting of complex revision TKA.

3.5. Clinical Case: Complex Revision TKA

A female patient, 66 years-old, slightly overweight (BMI 27 kg/m2) and without
significant comorbidities, underwent right and left revision TKA for aseptic loosening with
a rotating hinge implant. A couple of years later, she developed progressive left knee pain,
in which an Endomodell® (Waldemar Link GmbH, Hamburg, Germany) rotating hinge
was implanted. The pain was mainly located at the tibial side. At the clinical evaluation,
there was one single anterior scar, no signs of infection, ROM was 0–100◦, tibial pain was
evocated during palpation and the knee was stable. PJI was firstly ruled out with negative
lab test and negative white blood cells (WBC) and polymorphonucleate (PMN%) count in
the synovial liquid.

Standard X-rays demonstrated a varus lower limb alignment, tibial aseptic loosening,
previous augments on the tibial side, full stem cementation, acceptable patellar height and
a huge bone loss was expected, especially on the tibial side. A CT scan was also performed,
and bone loss was confirmed on the tibial side, even if it was difficult to evaluate due to the
presence of multiple artifacts. Figure 6 shows pre-operative X-rays and CT scan.
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Figure 6. Pre-operative X-rays of the re-revision TKA case. (A) Long-leg weight bearing view; (B) 
antero-posterior view; (C) lateral view; (D) patellar view; (E) coronal view of a computer tomogra-
phy (CT) scan demonstrating tibial bone loss (red circle); (F) coronal view of a CT scan demonstrat-
ing femoral artifacts (red circle); (G) axial view of a CT scan demonstrating tibial artifacts (red circle). 

Figure 6. Pre-operative X-rays of the re-revision TKA case. (A) Long-leg weight bearing view;
(B) antero-posterior view; (C) lateral view; (D) patellar view; (E) coronal view of a computer tomogra-
phy (CT) scan demonstrating tibial bone loss (red circle); (F) coronal view of a CT scan demonstrating
femoral artifacts (red circle); (G) axial view of a CT scan demonstrating tibial artifacts (red circle).

Pre-operative planning was performed as usual using a digital template, including
implant (size and position), stem (size, type, and position), augments and cones for both
bone loss filling and implant fixation.

The predictable difficulties in this re-revision TKA were removal of the implant (rotat-
ing hinge), removal of the cement (full stem cementation), bone loss treatment, obtaining a
good implant fixation considering predictable poor bone quality, and restoring tibial joint
line and correct patellar height. Considering all these difficulties, a 3D-printed model was
obtained from the CT scan (Medics®, Turin, Italy). The surgeon chose to print implant and
cement together in the 3D model of the tibial component, and to isolate bone loss in the
tibia, which was the main concern. Figure 7 shows the 3D-printed model.
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tibial gap (26 mm); femoral component lateral positioning (9.3° flexion); mediolateral 
(ML) and antero-posterior (AP) diameter for the femoral side, both with and without ce-
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Figure 7. Three-dimensionally-printed model of the case. (A) Image by the company (grey bone, blue
implant, light blue cement); (B) 3D model femoral and tibial component; (C) 3D femoral model with
implant separated from bone-cement; (D) 3D tibial model with implant separated from bone without
cement; (E) 3D femoral model showing bone (white) and cement (blue); (F) 3D tibial model showing
tibial bone loss.

In the provided document, different information was collected, such as femoral to tibial
gap (26 mm); femoral component lateral positioning (9.3◦ flexion); mediolateral (ML) and
antero-posterior (AP) diameter for the femoral side, both with and without cement, to better
evaluate implant size (ML 67.6 mm, AP medial 47.5 mm, AP lateral 49.6 mm); ML and AP
diameter for the tibial side (respectively, 72.2 mm and 54.13 mm); and intramedullary canal
diameter both on femoral and tibial side (respectively, distal diameter 16.2 mm × 20.1 mm
and 15.7 mm × 17.8 mm, proximal diameter 19.5 mm × 28.4 mm and 26.4 mm × 27.6 mm).
All these features are shown in Figure 8.
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Figure 8. Data provided with the 3D-printed model. (A) Femoral-tibial gap (red and green line); (B) 
femoral component lateral positioning; (C) femoral diameters (mediolateral diameter for cement 
red line, mediolateral diameter for bone light blue line, antero-posterior medial diameter purple 
line, antero-posterior lateral orange line); (D) intramedullary femoral canal diameter (distal red line, 
proximal green line); (E) intramedullary tibial canal diameter (distal red line, proximal green line); 
(F) tibial bone loss and diameter evaluation (mediolateral green line, anteroposterior red line). 

Similar to the primary TKA 3D-printed model, in this case, the manufacturer pro-
vided a bone thickness evaluation (minimum thickness = red, maximum thickness = 
green). On the femoral size, the bone was very thin in the anterior and posterior femoral 
cortex (about 0.86 mm), while distal femoral condyles showed good bone thickness. On 
the tibial side, basically all the metaphyseal and proximal diaphysis were extremely thin 
(around 0.62 mm), except for the anterior tibial cortex (10 mm thickness). Figure 9 showed 
these results. 

Figure 8. Data provided with the 3D-printed model. (A) Femoral-tibial gap (red and green line);
(B) femoral component lateral positioning; (C) femoral diameters (mediolateral diameter for cement
red line, mediolateral diameter for bone light blue line, antero-posterior medial diameter purple
line, antero-posterior lateral orange line); (D) intramedullary femoral canal diameter (distal red line,
proximal green line); (E) intramedullary tibial canal diameter (distal red line, proximal green line);
(F) tibial bone loss and diameter evaluation (mediolateral green line, anteroposterior red line).

Similar to the primary TKA 3D-printed model, in this case, the manufacturer provided
a bone thickness evaluation (minimum thickness = red, maximum thickness = green).
On the femoral size, the bone was very thin in the anterior and posterior femoral cortex
(about 0.86 mm), while distal femoral condyles showed good bone thickness. On the tibial
side, basically all the metaphyseal and proximal diaphysis were extremely thin (around
0.62 mm), except for the anterior tibial cortex (10 mm thickness). Figure 9 showed these
results.
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Al the femoral images showed low bone thickness at the femoral cortex. (E) anterior tibia; (F) pos-
terior tibia; (G) medial tibia; (H) lateral tibia. All tibial images show poor bone thickness except for 
anterior tibial cortex. 

With these data on both bone morphology, bone loss and bone thickness, a careful 
surgery simulation was performed, including size of cone (used both to fill tibial bone loss 
and to achieve a good fixation in the metaphysis) and zones of safe position, without dam-
aging femoral or tibial cortex, as well as size of the chosen implant (Endomodel®, Walde-
mar Link GmbH, Hamburg, Germany). Figure 10 shows X-rays one year after surgery, 
with good implant fixation, no signs of loosening in a satisfied patient. 

Figure 9. Data provided with the 3D model regarding bone thickness (low thickness red color, high
thickness green color). (A) Anterior femur; (B) posterior femur; (C) medial femur; (D) lateral femur.
Al the femoral images showed low bone thickness at the femoral cortex. (E) anterior tibia; (F) posterior
tibia; (G) medial tibia; (H) lateral tibia. All tibial images show poor bone thickness except for anterior
tibial cortex.

With these data on both bone morphology, bone loss and bone thickness, a careful
surgery simulation was performed, including size of cone (used both to fill tibial bone
loss and to achieve a good fixation in the metaphysis) and zones of safe position, without
damaging femoral or tibial cortex, as well as size of the chosen implant (Endomodel®,
Waldemar Link GmbH, Hamburg, Germany). Figure 10 shows X-rays one year after surgery,
with good implant fixation, no signs of loosening in a satisfied patient.
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Figure 10. X-rays one year after surgery. (A) Long-leg weight bearing view; (B) lateral view;
(C) antero-posterior view, (D) patellar view.

4. Discussion

A 3D-printed knee model may add different advantages to standard digital templating
in both primary and revision TKA. First, it allows for direct visualization of the knee,
including bone defect and neurovascular structures, which can be reproduced with the 3D
printing. This feature may turn out to be extremely useful in certain primary setting, such
as poliomyelitis sequalae. Furthermore, surgeons can decide to print the entire lower limb,
to better visualize extra-articular deformities in three dimensions, including rotational
deformities, which may be difficult to be visualized with standard imaging techniques. The
real dimensions of the knee can also be directly experienced with the 3D model, allowing the
surgeon for a precise implant sizing. Lastly, the surgeon can simulate implant positioning
in the 3D model pre-operatively, with a good accuracy compared to the surgery. All these
advantages were also previously described for complex primary THA [29]. However,
in both primary and revision TKA, 3D printed models cannot replace a careful clinical
evaluation and complete radiological examination, which are mandatory and give different
information, such as degree of constraint needed, need for extensive approach, coronal and
sagittal alignment and many others in both primary and revision TKA.

In the revision setting, 3D printing can add more information to the standard pre-
operative planning. For example, the bone and implant can be printed separately for a better
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evaluation of bone losses. Furthermore, compared to CT scans, 3D-printed models have
no artifacts due to images manipulation, allowing again for a better bone loss evaluation.
As well as in primary cases, the 3D-printed model can be used to “simulate” the surgery,
and it allows a better visualization of the relationship between stem, augments, and cones
or sleeves. In some implants, the internal diameter of cones is independent from the size,
and it can match only a few stems’ diameter. If augments are added in the epiphyseal zone,
the relationship between tibial component and cone or sleeve changes causing, in some
cases, an incompatibility between presence of both augments, stems and cones/sleeves.
Furthermore, if an offset stem is used, it may not fit into the cone because the diameter
is bigger due to the offset. All these aspects can be only partially evaluated on digital
templating, while a 3D-printed model may help in visualizing them.

Finally, as previously described, some 3D printing companies also allow for a bone
thickness evaluation. This information cannot be fully obtained from CT scan due to
artifacts, and it may be useful in pre-operative setting, especially if a cone or sleeve must
be implanted, because it may conflict with the anterior, posterior, medial or lateral cortex,
with subsequent risk of intra-operative fracture.

Three-dimensionally-printed models are pretty “low cost” compared to other technolo-
gies possibly used in primary or revision TKA, such as PSI: a model costs between EUR500
and EUR1000, depending on its complexity. Obviously, PSI and other similar technologies
have different advantages compared to 3D-printed models, but the latter seems to have a
good cost-effectiveness in pre-operative planning of complex cases.

It must be mentioned that manufacturers involved in 3D-printed models are studying
new solutions, including bone quality evaluation through Bone Mineral Density (BMD).
Some of them can define bone “quantity”, intended as bone thickness, as shown in the
cases, and reproduce it with a colored scale. This feature can add new information, and the
surgeon may be able to know pre-operatively where the risk of intra-operative fractures is
very high.

This study has different limitations. First, it is a narrative review of the available
literature on this emerging technology. Considering the heterogeneity of the study and
the anatomical districts involved, a more systematic approach with a meta-analysis of
data was not feasible. Furthermore, only two cases were reported. More cases have
been performed with this technology in our hospital, but collecting concrete data of the
advantages compared to standard planning (i.e., accuracy of implant size and position)
would be very hard due to the complexity and variety of surgeries. For this reason, the
authors decided to just describe the usefulness of the 3D printed models to give the reader
a first sight into this new application of this relatively new technology. However, more data
has to be collected with a more systematic approach to better evaluate cost-effectiveness of
this technology in primary and revision TKA.

5. Conclusions

Three-dimensional printing technology is gaining popularity in different orthopedic
fields. Three-dimensional models are successfully used for pre-operative planning in spine
surgery, oncology, trauma (especially acetabular fracture) and hip replacement/revision.
In all these cases, 3D models were reported to help surgeons to better visualize anatomy,
fracture morphology and to simulate the reconstruction. Three-dimensional printing
technology is also involved in development of PSI, which can be used for hip or knee
replacement.

However, there is no literature regarding the application of 3D-printed models in
pre-operative planning for complex primary or revision TKA. In these cases, 3D-printed
models may be useful to better visualize the deformity, to accurately plan implant size
and positioning and to simulate the surgery in complex cases. Furthermore, especially in
complex revision TKA, a 3D model may help surgeons to better visualize bone losses, and
to evaluate the compatibility between different systems used, such as augments, cones,
sleeves and stems. Some manufacturers can provide surgeons also with further information
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regarding bone thickness, which may be useful to pre-operatively know which zones are at
risk of fracture during surgery.

In conclusion, 3D-printed models may be a useful tool in pre-operative setting of
complex primary and revision TKA, also considering the relative low cost compared to
other technologies, but it cannot replace a careful clinical and radiological evaluation.
However, more studies will be useful to better evaluate clinical advantages of this relatively
new technology.
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