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1 INTRODUCTION

In the past years both therapeutic and preventive vaccines have 
been developed with the aim to fight and prevent different types 
of cancers (Kahn, 2009; Kantoff, 2010; Kenter et al., 2009). The 
power of vaccines relies on their ability to stimulate a strong and 
long-lasting antigen-specific immune response, mediated both 
by B and T lymphocytes. Although induction of a protective 
titer of neutralizing antibodies is the main objective of most of 
the vac-cines against infectious agents, including vaccines to 
carcinogenic human papillomavirus and hepatitis B virus, 
which also protect from cervical and liver cancer, respectively 
(Lollini et al., 2011),

evidence in humans that antibodies induced by a vaccine can

contribute to antitumor immunity is scanty (Schoenfeld et al.,

2010). Conversely, the major goal of both prophylactic and

therapeutic vaccines against non-infectious tumors, which ac-

count for �80% of all tumors (Lollini et al., 2011), is to

induce a long-lasting antigen-specific CD8 T-cell immunity. In

support of this concept, high densities of effector memory CD8þ

cytotoxic T cells are associated with a longer overall survival in

several human cancers (Fridman et al., 2012).
Usually, an effective vaccine requires multiple immunizations

in the form of prime boost. Several studies have shown that

boosting with a different vector carrying the same antigen is

better at enhancing immune responses than boosting with the

homologous vector. The mechanism underlying this phenom-

enon is still obscure. Heterologous prime-boost approaches are

now widely used in efforts to develop vaccines (Kaufmann, 2010;

Sallusto et al., 2010). It is also generally accepted that a strong

primary immune response is required to give rise to a large pool

of memory cells (Sprent and Surh, 2011). However, what affects

the longevity of memory T cells is not fully understood, and

much controversy exists regarding the role of antigens in this

process (Kaech et al., 2002; Sprent and Surh, 2011;

Zinkernagel, 2002). Sustained high amounts of soluble antigens

often lead to tolerance or exhaustion both in T and B cells. As a

result of exhaustion, antigen-specific T and B cells express a var-

iety of inhibitory receptors such as PD-1, LAG-3, CD244,

CD160, TIM-3 and CTLA-4 (Wherry, 2011).
Dendritic cell (DC)-based vaccines have been extensively

investigated as potential cancer therapeutic vaccines because of

the primary role of DCs as antigen presenting cells (APCs) and

their unique ability in T-cell priming (Banchereau and Steinman,

1998). DCs pulsed with the antigen of choice induce a potent

antigen-specific immune response and favor the generation of the

memory pool. This stems from the asymmetric division of

engaged naive T cells into effector and memory cells (Chang

et al., 2007). Several phase II clinical trials based on the use of

DCs pulsed with tumor-associated antigens are ongoing (Finn,

2008). Moreover, Sipuleucel-T (Provenge, Dendreon, Inc.), an

autologous APC-based vaccine has been the first vaccine

approved by the Food and Drug Administration for the treat-

ment of cancer patients. In a phase III trial in patients affected by

castration-resistant prostate cancer, Sipuleucel-T gave a 4.1

month benefit in overall survival relative to a control arm that
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received unpulsed APCs. However, no significant effects on the
time to objective disease progression were observed (Kantoff,
2010). These promising results also suggest that some fundamen-

tal biological questions remain unanswered. For DC-based vac-
cines, it is not yet known whether booster immunizations should
consist of DCs or other means. It has been reported that antigen-

bearing DCs are rapidly eliminated by antigen-specific cytotoxic
T lymphocytes (CTLs) when injected in previously vaccinated
mice (Guarda et al., 2007; Yang et al., 2006), therefore, arguing

for a reduced effectiveness of DC-based boosts. Jouanneau et al.
(2006) observed in the GL26 model that DCs are essential for the
priming, but they are less effective than tumor cell lysate alone in

boosting the antitumor immune response and for the induction
of long-term immune memory. Another unsolved issue is the
frequency of boosting. It has been reported that repeated im-

munizations result in increased frequencies of memory T cells
(Masopust et al., 2006; Wirth et al., 2010). However, overstimu-
lation can drive memory T cells toward terminal differentiation
such as activation-induced cell death, fratricide or exhaustion

(Overwijk and Restifo, 2001; Wherry, 2011).
To address these biological issues, we started analyzing the

ability of DC-based vaccines to induce a long-lasting antigen-

specific immune response in mice. As immunological readout
of antigen-primed and functional T cells, we measured the inter-
feron gamma (IFN-�) contained in sera of vaccinated mice, and

the frequency of CD8þCD44þ T cells able to release IFN-� upon
ex vivo-specific antigen challenge (Camporeale et al., 2003).
Preliminary experiments suggested that to optimize the best

boosting strategy, we would have had to set many experiments
each lasting several months. To investigate these biological prob-
lems, as a first step, we began by setting up an in silico model

capable to describe the biological phenomena observed in the
animal model. The aim of the model is to verify the memory
T-cell induction hypothesis by a DC-based vaccine observed

in vivo and to give new suggestions on the designing of boosting
strategies. During the past decades, several approaches have been
devoted to model the immune system or parts of it, with math-

ematical equation-based models representing the largest slice
among these approaches. Differential equation-based models
usually reproduce the dynamics of the average concentrations

of the immune-system–involved entities over time, to obtain
the main aspects of the immune response. Simple models based
on systems of ordinary or partial differential equations can be

easily analyzed to obtain, for example, asymptotic behaviors. On
the other hand, for more complex scenarios, it is usually difficult
to build complex ordinary differential equations (ODE)-based

models, as well as incorporate new aspects. The trade-off be-
tween an accurate biological representation and the mathemat-
ical feasibility may lead to biologically useless models or to

mathematically intractable models.
Cellular automata (CA) or agent-based models represent a

large class of discrete modeling techniques where each entity is

followed individually, and global behaviors are obtained from
local behaviors of all involved entities. In this way, it is possible
to model the immune system in much more detail, allowing it to

determine behavior distribution (and not just the average).
Moreover, it is easy to add and remove new entities and non-
linear interactions, to expand or update the model to the last

biological insights, leaving the problem computationally

tractable. Cellular automata and agent-based models can be suc-

cessfully used to simulate without any problems the receptor

diversity of the immune repertoire, opening the door to natural

scale simulations. An example of approaches in this direction is

discussed in (Halling-Brown et al., 2010). However, even such

approaches have their own flaws. Because of the lack of a solid

mathematical theory, they miss tools allowing any asymptotic

analysis, and require considerable computational power to simu-

late individual agents, in particular for large-scale simulations.

Some good review articles that can introduce the reader to the

modeling techniques of the immune system are presented in

Germain et al. (2011), Lundegaard et al. (2007), and Perelson

and Weisbuch (1997).
The problem we are dealing with requires the ability to

uniquely represent the immune response of CTLs specific for

the immunodominant Tag-IV antigen from the oncovirus SV40

[Mylin et al. (1995), and also in vivo measurements refer to this].

This is a valid argument for supporting the assumption that a

monoclonal model based on ODE described in this article can be

considered adequate. The ODE model includes all the relevant

entities (such as activated CTLs and memory T cells) needed to

confirm the presence of immunological memory. We simulated

the biological behavior in the presence and in the absence of

memory T cells.

2 METHODS

2.1 Model description

To model antigen-specific CTL activation and differentiation into

memory T cells on vaccination with pulsed DCs, we developed a model

based on a system of six ODEs for six different populations: pulsed

DCs (Di) in the injection point, pulsed DCs (Dp) in the presenting loca-

tions, naive CTLs (Tn), activated CTLs (Ta), memory T cells (Tm) and

IFN-� (I).

Equations (1) and (2) deal with the pulsed DCs at the injection point

and the presenting location, respectively. These two equations are used to

model the injection of pulsed DCs into the host and their consecutive

migration from the injection point to the site where presentation to CTLs

occurs (i.e. lymph nodes). Di [Equation (1)] are injected according to the

function kinðt, qÞ that introduces into the system q pulsed DCs, if, accord-

ing to the administration protocol, at time t an injection is scheduled.

Di then migrate to presenting locations (term ��50Di). They can also

disappear from natural death (term ��1Di).

dDi

dt
¼ kinðt, qÞ � �50Di � �1Di ð1Þ

Equation (2) models the behavior of pulsed DCs into the presenting

location. Dp are estimated on the basis of migrating Di (term �50Di) and

disappear from the system for multiple causes, such as natural death

(term ��1Dp).

dDp

dt
¼ �50Di � �1Dp ð2Þ

We initially considered the possibility to model the migration process

using delay differential equations, by adding in Equation (2) (term �50Di)

a time delay of �2–4h. However, we abandoned this approach because

after some numerical simulations, we noted only negligible differences

between results obtained with and without time delay. This is probably

because such a short time delay becomes insignificant in respect to the

time-scale of the experiment (1 year).
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Equation (3) models the antigen-specific naive CTLs behavior (Tn). In

general when naive CTLs are activated, they are replaced by means of

hematopoiesis to keep the naive CTLs number almost constant as speci-

fied in the leukocyte formula. Of course, this does not mean that the

newborn CTLs will share the same MHC/antigen complex specificity of

previously activated cells. Present immunological knowledge cannot pre-

dict whether and when a CTL will be replaced by one of the same spe-

cificity. Moreover, cell receptors are randomly selected by DNA

recombinations. Hence, it is feasible to suppose that after a reasonable

time window, the level of antigent-specific CTLs will approach to the

same initial level. Finally, this is in line with the fact that the immunolo-

gical repertoire is almost specific for each individual.

The term h1ðTn0 � TnÞ represents the recovery rate. Under safe condi-

tions (absence of the pathogen), the number of T cells tends to a given

value Tn0. When antigenic presentation by Dp occurs, naive T cells are

activated (term ��5DpTn). We note here that Equation (3) takes into

account only a small portion of naive T-cell population composed by

those cells whose receptor is able to recognize the specific antigen and

not the entire T-cell population.

dTn

dt
¼ h1ðTn0 � TnÞ � �5DpTn ð3Þ

Activated CTLs (Ta) are modeled by Equation (4). They appear in the

system as a consequence of the antigenic presentation to Tn by Dp cells

(term ��5DpTn) and can disappear from the system due to death

(�a3Ta). As a consequence of activation, a small portion of activated T

cells can become memory cells (�a20Ta).

dTa

dt
¼ �5DpTn � a20Ta � a3Ta ð4Þ

Memory CTLs [Equation (5)] are estimated on the basis of activated T

cells (term a20Ta) and then disappear from the model because of multiple

causes, among which is natural death (�a21Tn).

dTm

dt
¼ a20Ta � a21Tn ð5Þ

The last equation [Equation (6)] describes IFN-� dynamics. The quan-

tity of IFN-� released by CTLs is taken as an outcome of the ex vivo

experiment, and it is used to estimate the number of activated T cells. To

compare our results with ex vivo observation, we modeled IFN-� dy-

namics as follows. IFN-� is released by activated and memory T cells

that are supposed to release the same quantity of IFN-� [term

h10ðTa þ TmÞ] and disappear from the model for natural degradation

(term ��10I).

dI

dt
¼ h10ðTa þ TmÞ � �10I ð6Þ

It is worth mentioning here that the capacity to endow the host with

the ability to learn through multiple encounters, and then generate

memory, is in general not representable by ODEs. This important

aspect has been analyzed using, for example, agent-based modeling

(Palladini et al., 2010; Pennisi et al., 2010). We modeled the learning

phase that arises from the multiple encounters of T cells with targets

cells by coding that into coefficients that were tuned to reproduce the

fraction of memory T cells generated and observed in the mouse; the

memory is then represented as the activation of dormant pathways.

Parameter values are shown in Table 1 and have been set at reasonable

values based on results coming from the literature, from the observation

of the in vivo experiments and from our past experience (Castiglione et al.,

2012; Halling-Brown et al., 2010; Pappalardo et al., 2006, 2009a, b, 2010,

2011, 2012; Pennisi et al., 2008, 2009).

Numerical simulations start at week 8 (t0 ¼ 0), time of the first injec-

tion of pulsed DCs. The time-length of the simulations has been set to 360

days. The physical time step for the simulations is �ðtÞ ¼ 1 day. To solve

numerically the ODE system, we used Berkeley Madonna software.

Initial conditions have been set to 0 for all populations except for Tn,

where Tnð0Þ ¼ Tn0. Because Tag-IV is an antigen specifically designed to

give rise to a strong immune response, we supposed that �20% of the

total population of naive CTLs was potentially able to recognize the

antigen. Supposing a total population of �400 naive CD8 T cells per

mm3, we set up Tn0 ¼ 80. The differentiation rate of activated CTLs (a20)

has been tuned up in such a way that the total number of newborn

memory T cells for each injection of pulsed DCs is �5% of the maximum

number of activated T cells for each injection. Moreover, to simulate lack

of memory, a20 has been set to 0. The parameters that we defined as

‘tuned’ are free parameters, i.e. they were set to fit the experimental

data. We highlight here that for these parameters there are no measures

in the literature.

It is worth noting that we used the levels and the proportions of

IFN-�þ cells and Kb/Tagþ cells at week 9 to calibrate the model and

the same levels and proportions at week 18 to validate the model results.

2.2 LHS-PRCC sensitivity analysis

To understand which parameter may be considered fundamental in this

process, it is important to analyze the sensitivity of the model to variation

of parameters. Classical sensitivity analysis is usually done by varying a

given parameter in reasonable ranges and keeping the others constant.

Obviously, results coming from this kind of analysis are strongly bound

to the values of the fixed parameters and different sets of values for the

fixed parameters may lead to completely different results.

Partial rank correlated coefficients (PRCC) (Saltelli, 2004) is a statis-

tical sensitivity analysis technique that tries to overcome the limits of

classical sensitivity analysis by computing a partial correlation on rank-

transformed data between two sets of variables, represented in our case

by the model input parameters and the model entities values. The strength

of such a methodology is given by the fact that correlation does not

depend by a given set of parameters, and therefore, it is possible to esti-

mate how variations in a given parameter may influence the results of the

model, despite the value of the other parameters. Nevertheless, the meth-

odology can be, in principle, easily applied and used with any kind of

continuous or discrete model.

The methodology we used to perform sensitivity analysis (LHS-

PRCC) is briefly described as follows. More information about this

Table 1. ODE model parameters

Parameter Value

Q 500

a1 ln(2)/7

a50 0.15

h1 0.015

a5 0.005

a3 ln(2)/1.7

a20 0.03

a21 ln(2)/10

h10 30

a10 ln(2)/0.375

Note: q represents the number of injected pulsed DCs/ml; it was tuned with in vivo

results. a1 is the pulsed DCs death rate (half-life � 7 days) (Merad andManz, 2009).

a50 is the migration rate of Di toward presentation location; it was tuned. h1 is the T-

naive cells recover rate; it was tuned. a5 is the CTL activation rate; it was tuned. a3 is

the activated T-cell death rate (half-life �2 days) (DeBoer et al., 2003). a20 is the

memory T-cell differentiation rate; it was tuned. a21 is the memory T-cell death rate

(half-life 8 weeks); it was tuned. h10 is the IFN-� quantity released by T cells (fg/ml)

(Pennisi et al., 2010). a10 is the IFN-� degradation rate (half-life �9h).
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methodology can be found in Marino et al. (2008). Parameters space is

initially sampled using a Monte-Carlo technique. In this case, we use a

technique named Latin-Hypercube-Sampling (LHS) (Mckay et al., 1979).

The technique divides the random parameter distributions into N (where

N represents the chosen sample size) equal probability intervals that are

then sampled. The choice for N should be at least kþ 1, where k is the

number of parameters varied, but usually much larger to ensure accuracy.

In our trials, we set N¼ 1000.

After sampling, a LHS matrix X of sampled parameters is built. Each

row represents a unique set of variables for the model sampled without

replacement.

The model is then solved for each row of X, and the model output

values are stored into an output matrix Y. Each matrix is then rank-

transformed (XR and YR). X and Y can be used to calculate the

Pearson correlation coefficient. XR and YR can be used to calculate the

Spearman or rank correlation coefficient and the PRCC.

PRCC between an input parameter xj 2 XR, j � k and output y 2 YR

is then computed by considering the residuals xj �bxj and y� ŷ, where bxj
and ŷ are given by the following regression models:

bxj ¼ c0 þ
Xk

p¼1, p6¼j

cpxp and ŷ ¼ b0 þ
Xk

p¼1, p6¼j

bpxp

Using this methodology, we analyzed the effects of the most important

input parameters that most influence the behavior of the released IFN-�.

We plotted for these entities the PRCCs over the entire time course of the

experiment to see how the sensitivity of parameters changes as system

dynamics progresses, and we showed the relative PRCC scatterplots at

critical time-points. Results are available in Supplementary Data S1.

2.3 Mice and reagents

C57BL/6 mice were purchased from Charles River Italia (Calco, Italy).

Animals were treated in accordance with the European Community

guidelines and with the approval of the institutional ethical committee.

Unless specified, all chemical reagents were from Sigma-Aldrich, and

monoclonal antibodies were from BD Pharmingen.

2.4 DC preparation

DCs were prepared and characterized as previously described

(Camporeale et al., 2003). Briefly, bone marrow cells were seeded into

six-well plates in ISCOVE supplemented with penicillin/streptomycin and

10% fetal calf serum (Euroclone, Wetherby, UK), and the growth factors

GM-CSF (25ng/ml) and IL-4 (5ng/ml; R&D Systems, Minneapolis,

MN, USA). Eight hours before retrieval of cells, the pro-maturation

factor lipopolysaccharide (1�g/ml) was added to the culture medium.

On day 7 of the in vitro culture, non-adherent and loosely adherent

cells were collected. Culture supernatants were evaluated for mycoplasma

contamination by PCR, and positive cultures were discarded.

2.5 Immunization protocol

DCs were resuspended in phosphate buffered saline at 2� 106/ml and

pulsed with 2�M of the immunodominant CTL epitope Tag-IV

peptide(VVYDFLKC; Research Genetics, Huntsville, AL, USA) for

1h at 37 C, washed, resuspended in phosphate buffered saline and sub-

sequently injected intradermally (i.d.) into the right flank of mice (5� 105

DC/mouse).

2.6 Schedule of immunization

Eight-week-old C57BL/6 mice were primed by i.d. injection of Tag-IV-

pulsed DCs (DC-Tag). Four weeks later the primed mice were boosted

with DC-Tag, and this process was repeated every 6 weeks for additional

two times. Animals were killed 7 days after the first vaccination or 6

weeks after each boost.

2.7 Flow cytometry analyses

Spleens were collected and processed to single cell suspension.

Splenocytes were stained ex vivo with phycoerythrin-labeled Kb/Tag-IV

pentamers (ProImmune, Sarasota, FL, USA) in combination with the

indicated fluorochrome-labeled monoclonal antibodies, the Dump mix-

ture of antibodies (i.e. CD4, CD19, CD11c and CD11b), the vitality

marker To-PRO3 and assessed by flow cytometry. Alternatively,

cells were cultured in the absence or in the presence of 2�M Tag-IV

peptide for 24h, of which the last 3 h were in the presence of brefeldin

A (5�g/ml). Cells were then surface stained with fluorochrome-

conjugated anti-CD4, anti-CD8, anti-CD44, anti-CD62L monoclonal

antibodies, fixed and analyzed for IFN-� intracellular cytokine staining.

PMA/ionomycin was used as positive control. Dead cells were excluded

by physical parameters. IFN-�þ cells were gated on CD8þ CD44þ, viable

cells. Cytokine production in the absence of stimulation was considered

as background release and subtracted from values obtained by the spe-

cific peptides. In all experiments, cells were acquired on a BD

FacsCanto�.

2.8 Statistical analysis of in vivo experimental studies

Prism 5.0a software was implemented to conduct statistical analysis on

data collected in ex vivo immunological assays. Comparison of data

collected from the different experimental groups of mice (at least five

mice/group) was conducted using the ANOVA, and NewmanKeuls test

or the two-tailed Students t-test. Values were considered statically signifi-

cant for P50.05.

2.9 Measurements for in silico setup

To set up the in silico approach, we measured the induction and main-

tenance of an antigen-specific CTL response in C57BL/6 mice injected

with DCs pulsed with Tag-IV, the immunodominat CTL epitope from

the SV40 Tag antigen (DC-Tag) (Mylin et al., 1995).

2.10 Ethics statement

Wild-type C57BL/6 mice (Charles River Breeding Laboratories, Calco,

Italy) were housed in a pathogen-free animal facility and treated in ac-

cordance with the European Community guidelines. The in vivo experi-

ments were approved by the ethical committee of the Istituto Scientifico

San Raffaele (IACUC # 410).

3 RESULTS AND DISCUSSION

3.1 The biological experiment

Eight-week-old mice were primed with a single i.d. injection of

DC-Tag, and a first group was sacrificed 1 week later (Fig. 1A).

A substantial amount of CD8þCD44þ T cells were found in the

spleen of vaccinated mice that bound Kb/Tag pentamers

(Fig. 1B), therefore, demonstrating to be antigen-experienced

and specific for Tag. Among the Tag-specific T cells, �80%

displayed an effector phenotype (i.e. CD62L–), whereas420%

were central memory (Fig. 1C). We investigated whether the

IFN-� measured in the sera of vaccinated mice could be used

as an indicator of the effector function of antigen-specific CD8þ

T cells. The amount of IFN-� in the sera of vaccinated mice 1

week after priming was43-fold the amount found in naive lit-

termates (56.3� 10.8 versus 17.2� 2.5 pg/ml, respectively).
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However, this value remained stable thereafter and did not

mimic the drop in Tag-specific T cells found by pentamer stain-

ing at week 18 (Fig. 1B and data not shown). This was likely due

to the fact that several cells of the innate and adaptive arms of

the immune system concur in producing IFN-� on vaccination.
Thus, we used an ex vivo intracellular production assay to inves-

tigate the effector function of antigen-specific T cells activated by
vaccination. Interestingly, a fraction of CD8þCD44þ T cells

similar to that found with Kb pentamer staining (Fig. 1B) also

produced IFN-� on antigen-specific challenge (Fig. 1D) and spe-
cifically killed targets expressing the relevant antigen (data not

shown), therefore, confirming our previously published data
(Rigamonti et al., 2011). To investigate the effects of boosts on

the dimension of the antigen-specific memory pool, mice were

boosted with DC-Tag 4 weeks later. This time schedule was
chosen based on the notion that an ideal memory CTL response

requires 4–6 weeks to settle in (Sallusto et al., 2010). In spite of

the recent vaccination, 1 week after the first boost the percentage
(Fig. 1D) and number (Fig. 1F) of CD8þCD44þ T cells produ-

cing IFN-� substantially decreased. Mice were boosted 6 weeks
later, and the last group of mice was sacrificed 6 weeks after the

third boost (Fig. 1A). As expected from a memory response

measured more than a month after immunization (Wirth et al.,
2010), the number of Tag-specific splenocytes dropped of almost

one log (Fig. 1B), whereas central memory T cells increased
(Fig. 1C). A similar proportion between effector and memory

T cells was found within the population of IFN-�þ cells

(Fig. 1E), therefore, suggesting that Kb/Tag and IFN-� stained
the same cells. Interestingly, both the percentage (Fig. 1D) and

the absolute number (Fig. 1F) of antigen-specific CTL remained

stable thereafter, therefore, suggesting that the vaccination pro-
cedure allowed the induction of a long-lasting antigen-specific

memory response.

3.2 The in silico experiment

To model CTL activation and differentiation into memory T

cells on vaccination with pulsed DCs, we developed a model
based on a system of six ODEs for six different populations

(for details see Section 2).

3.2.1 Supporting long last T-memory hypothesis In Figure 2 we

show the ODE immune system behavior for the following enti-
ties: DC-Tag in the injection point and where the antigen is pre-

sented (Di and Dp, respectively), naive, activated and memory
antigen-specific CTLs (Tn, Ta and Tm), and the levels of IFN-�
released by antigen-specific CTLs (I), starting from week 8 for a

period of 1 year. To compare ex vivo results with the in silico
experiments, we evaluated the total number of activated and

memory CD8þ T cells and their percentage measured at week
9 and 18 (Figs. 3 and 4). Figure 3 shows the total number of

Tagþ cells (both activated and memory antigen-specific CTLs) at

weeks 9 and 18. Comparing these results with Figure 1B, one can
notice that the model qualitatively reproduces the same propor-

tions observed ex vivo. Moreover, looking at Figure 4 the per-

centage of specific memory CTLs follows the same dynamics
observed ex vivo in Figure 1C. These results are in good agree-

ment with the ex vivo data and all together support the immuno-
logical memory hypothesis.

3.2.2 Prediction of the role of the second injection (Boosting) over
the pool of memory T cells. To both investigate the role of the
second injection (boosting) over the pool of memory Tag-specific

CTLs and to verify the prediction capabilities of the

Fig. 1. Dynamics of antigen-specific CD8þ T cells during the vaccination

schedule. (A) Schematic representation of the experiment. Eight-week-old

C57BL/6 mice were primed by i.d. injection of DC-Tag. Four weeks later,

the mice were boosted with DC-Tag and this procedure was repeated

twice every six weeks. Groups of animals were killed 1 week after the

first injection of DC-Tag (week 9, n¼ 5), 1 week after the first boost

(week 13; n¼ 5), or 6 weeks after each boost (week 18, n¼ 13; week 24,

n¼ 10 and week 30, n¼ 9). (B) Splenocytes from vaccinated mice were

investigated for their specificity by staining with Kb/Tag pentamers. Data

are reported as percentage�SD of Kb/Tagþ cells within the gate of

CD8þ T cells. (C) Percentage of effector and central memory CD8þ T

cells within the Kb/Tagþ cells. The effector function of Tag-specific CD8þ

T cells was assessed ex vivo by flow cytometry analysis of intracellular

IFN-� production in the presence of Tag-IV. Percentage (D) and total

number (F) of IFN-�–producing cells are depicted after electronic gating

on CD8þ CD44þ viable cells. (E) Percentage of effector and central

memory CD8þ T cells within the IFN-�þ cells. Data are representative

of at least three independent experiments. Statistical analyses were done

using the ANOVA, Newman–Keuls test and Student’s t-test.

***P50.001 and **0.0015P50.01
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mathematical model, we simulated two scenarios. In these simu-

lations we executed, as in previous experiments, the first priming

with Dc-Tag at week 8. This priming was followed (or not) by a

second injection of Dc-Tag at week 12 (boost). The outcome of

the experiment was represented by the number of specific CTLs

(TaþTm) at week 9, and at week 18 both in the presence and

absence of the boosting. The simulations showed a lower level of

specific memory CTLs in the absence of the boosting (Fig. 5).
A similar experiment was then set up in vivo, where the mice

were primed at week 8 by DC-Tag. The initial set of mice was

divided in three groups. The first group was sacrificed at week 9

(priming) to measure primary response. The second and third

groups were left untouched (no boost) or boosted at week 12

with DC-Tag and sacrificed after an additional 6 weeks (week

18). As already showed by the mathematical model, the boosting

had a substantial impact on the percentage of CD8þCD44þ

CTLs producing IFN-� (Fig. 5), and in vivo results reported

the same behaviors (from a qualitative point of view) already

observed with the mathematical simulations. Hence, the

mathematical model demonstrated was able to anticipate the

importance of the second injection in promoting the generation

of long-lived memory CTLs.

3.3 LHS-PRCC sensitivity analysis

Because activated CTLs release IFN-�, we tracked, using PRCC

analysis, the effects of the model parameters on the quantity of

the released cytokine. It is worth mentioning here that the results

of the analysis we performed are strictly dependent on the four-

injection vaccination schedule we have modeled. Results of sen-

sitivity analysis are available as Supplementary Data S1. Here,

we only outline the major findings.

3.3.1 Role of CTL differentiation and death rates over
IFN-� Sensitivity analysis reported that memory CTL differ-

entiation rate coefficient a20, which gives an estimation of the

rate of activated CTLs (Ta) that differentiate into memory cells

(Tm), showed a reduced correlation with IFN-�, especially

shortly after every DC-Tag, whereas such a correlation increased

with the distance from the vaccine injection. This can be

explained by the fact that after every injection, the immune re-

sponse is mainly mediated by activated CTLs, whereas memory

CTLs cells give a minor contribution at this time, especially after

the first two injections. Far from injections, the immune response

of activated CTLs declines and memory CTLs become the prin-

cipal cells involved in IFN-� release. Similar considerations also

hold when we verified the impact of memory CTL death rate on

IFN-�.

3.3.2 Role of naive CTL recovery rate over IFN-� The naive cell
recovery rate (h1), which refers to the speed at which the immune

system reconstitutes the naive CTLs pool with newly generated

CTLs, showed almost no correlation between the naive cell re-

covery rate and the IFN-� production, except for a short period

of around week 12, just after the second injection of DCs. At that

time the number of Tn was lower than those related to the other

administrations. It is worth noting that higher values of h1 would

A

B

C

Fig. 2. ODE model dynamics. Dynamics for pulsed DCs, CD8 T cells

and IFN-�. (A) Di represents the dynamics of injected DCs pulsed with

the antigen, whereas Dp represents their dynamics in the presentation

locations, i.e. lymphnodes. (B) Tn represents the dynamics of naive

CTLs, Ta depicts the dynamics of activated CTLs, whereas Tm are the

memory T cells. (C) Dynamics of IFN-� released by antigen-specific

CTLs (I)

Fig. 4. Percentage of specific effector and memory CD8þ T cells.

Percentage of specific effector and memory CD8þ T cells (TaþTm) mea-

sured in silico at week 9 and 18. Percentages are in a good agreement with

the ex vivo results (see Fig. 1C)

Fig. 3. Tag-specific activated and memory CD8þ T cells. Tag-specific

activated and memory CD8þ T cells/mcl (TaþTm) measured in silico

at week 9 and 18
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entitle faster recruitment of specific naive CTLs and would allow

higher levels of IFN-�. However, such a parameter cannot be

modified in vivo. The presence of a positive PRCC correlation

when the number of Tn is low may suggest that the second in-

jection of vaccine is given too early, and it should be advisable to

delay the second injection to give more time to the immune

system to repopulate the specific naive CTLs population until

no correlation is reached. Lack of correlation for the entire

period may represent an important achievement in designing a

treatment that is effective not only for an individual but also for

an entire population because small variations in the rate of re-

covery of naive cells for different individuals would not influence

the efficacy of the treatment.

4 CONCLUSION

Our in silicomodel showed the ability to predict the dimension of

the immune response induced in mice by DC vaccination, and

allowed us to define the relative contribution of several param-

eters (i.e. memory cell differentiation and death rates and naive

cell recovery rate) to the success of the prime-boost strategy. It

also predicted the role of the second injection (Boost) over the

pool of memory T cells. Nevertheless, it allowed the identifica-

tion of a time window in which boosts may be detrimental

(Supplementary Data S1). These findings appear to be consistent

with data reported by us (Kaech et al., 2002) and (Ricupito et al.,
2013a). We have demonstrated that boosting healthy mice every
2 weeks instead of every month hindered persistence of IFN-

�-competent memory CD8þ T cells (Ricupito et al., 2013a). In
addition, when vaccinated mice were challenged with melanoma
cells, 80% of the mice that had received a monthly boosting

rejected the tumor. Conversely, mice treated with tighter vaccin-
ation schedules survived similarly to non-boosted mice and re-
markably less than mice boosted every month (Ricupito et al.,
2013b). One of the advantages of the system is that several enti-

ties and variables can be added each time. As an example, it
might be interesting to investigate the role of endogenous DCs
and the antigen formulation (e.g. synthetic peptide, protein or

cell fragment) in T-cell priming induced by the vaccine. It has
been reported that the requirement of antigen transfer to en-
dogenous APCs for in vivo CTL priming by DC-based vaccines

may depend on the antigen formulation (Yewdall et al., 2010).
Furthermore, by adding the characteristic of the patient (e.g. age,
sex, weight, general health status, stage of cancer, comorbidities

and medications) a personalized vaccination schedule might be
generated. One limitation of the reported data is that they were
obtained modeling a healthy subject, and therefore, they are ap-

plicable only for the design of preventive vaccines. The system
needs to be challenged against more stringent biological contexts,
such as in the presence of minimal residual disease or bulky

tumors. Our recent findings suggest that tumor antigens released
from the tumor as a consequence of either the tumor-cell turn-
over or the immune attack already boost memory T cells induced

by vaccine priming, and vaccine boosts may be detrimental. On
the other hand, the model does not take into account the regu-
lation of T-cell longevity and the peculiarities of the antigens.

These issues appear important and future version of the model
could incorporate them, as wet experiments reveal their roles.
An additional limit of the study is that it is entirely based on

mouse data. There are no published clinical trials in which dif-
ferent vaccination schedules have been compared with induction
of long-lasting antitumor immunity. Most of the vaccination

protocols tested so far in cancer patients stemmed from the ex-
perience with prophylactic vaccines against infectious diseases,
which are dissimilar to non-infectious tumors. Thus, reliable

preclinical models are needed to investigate the therapeutic effi-
cacy of cancer vaccines. Mice are the experimental tool of choice
for the majority of tumor immunologists because of the remark-

able similarities between mouse and human immune system.
Nevertheless, significant differences exist between mice and
humans in immune system development, cell subpopulations of
both the innate and adaptive arms and perception of endogenous

and exogenous activation signals (Mestas and Hughes, 2004).
This should sound a word of caution to avoid over interpreting
results obtained in mouse models.

Due to the fact that information is also available for humans
on the six different populations we used to develop the related
ODEs, our model might be easily tested in the human context

and provide useful information for DC-based cancer vaccines.
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