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Successful treatment with MEK-inhibitor in a patient with
NRAS-related cutaneous skeletal hypophosphatemia syndrome
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Abstract

Cutaneous skeletal hypophosphatemia syndrome (CSHS) is caused by somatic mosaic

NRAS variants and characterized by melanocytic/sebaceous naevi, eye, and brain malfor-

mations, and FGF23-mediated hypophosphatemic rickets. The MEK inhibitor Trametinib,

acting on the RAS/MAPK pathway, is a candidate for CSHS therapy. A 4-year-old boy

with seborrheic nevus, eye choristoma, multiple hamartomas, brain malformation, pleural

lymphangioma and chylothorax developed severe hypophosphatemic rickets unrespon-

sive to phosphate supplementation. The c.182A > G;p.(Gln61Arg) somatic NRAS variant

found in DNA from nevus biopsy allowed diagnosing CSHS. We administered Trametinib

for 15 months investigating the transcriptional effects at different time points by whole

blood RNA-seq. Treatment resulted in prompt normalization of phosphatemia and phos-

phaturia, catch-up growth, chylothorax regression, improvement of bone mineral density,

reduction of epidermal nevus and hamartomas. Global RNA sequencing on peripheral

blood mononucleate cells showed transcriptional changes under MEK inhibition consist-

ing in a strong sustained downregulation of signatures related to RAS/MAPK, PI3 kinase,

WNT and YAP/TAZ pathways, reverting previously defined transcriptomic signatures.

CSHS was effectively treated with a MEK inhibitor with almost complete recovery of

rickets and partial regression of the phenotype. We identified “core” genes modulated

by MEK inhibition potentially serving as surrogate markers of Trametinib action.
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1 | INTRODUCTION

Somatic mosaicism is increasingly recognized as a fundamental etio-

pathogenetic mechanism contributing to human diseases as recent

progresses in genomic technologies enabled characterization of sev-

eral diseases deriving from somatic DNA mutation. In this setting,

phenotypes associated with somatic variants of the RASopathy genes

continue to emerge showing extreme clinical variability, reflecting the

specific variant effects, the location of the mosaic, and timing of the

DNA change during embryonic life.3

Schimmelpenning-Feuerstein-Mims syndrome (SFMS, OMIM

#163200), also known as linear sebaceous nevus syndrome, is a neu-

rooculocutaneous condition caused by somatic gain-of-function vari-

ants in the HRAS, NRAS, or KRAS genes. SFMS is characterized by

congenital linear nevus sebaceous on the face associated with brain

anomalies and dysfunction, epidermal nevi, ocular malformations, and

vascular abnormalities. The association of SFMS and hypophosphate-

mic rickets designate the cutaneous skeletal hypophosphatemia syn-

drome (CSHS).4,5

In CSHS, mosaicism involving skeletal tissue results in increased

FGF23 release by osteocytes, leading to reduced renal phosphate

resorption by downregulation of the luminal expression of sodium-

phosphate cotransporters in the kidney proximal tubule. This results

in hyperphosphaturic hypophosphatemia and rickets.4,6 FGFR1-RAS-

MAPK signaling pathway has an important role in human skeletal

development and bone homeostasis and is a key regulator of FGF23

production.4,7 CSHS has been recently described, as well as its molec-

ular basis, with the description of a handful of patients with

variants in HRAS,4,5,8–11 and the pathogenic NRAS variants

p.Gln61Arg, p.Gln61Leu, p.Gly12Cys, and p.Gly13Arg.8

Recently, precision medicine offered exciting therapeutic oppor-

tunities in the RASopathies: the extensively studied role of the ampli-

fication of the signaling RAS-MAPK cascade in cancer allowed

developing targeted therapies modulating its pathogenetic oversignal-

ling. The selective inhibition of mitogen-activated protein/

extracellular signal-regulated kinase (MEK), the final effector signal

transducer of the pathway, seems particularly promising. This strategy

was effective in ameliorating both germline12,13 and somatic14 RASo-

pathies in humans and animals.15 Trametinib, a selective inhibitor of

MEK, is approved for treatment of BRAF-mutated metastatic mela-

noma. Here we report the first case of CSHS successfully treated by

MEK inhibition with Trametinib.

2 | MATERIALS AND METHODS

2.1 | Case report

The boy was born from an uneventful pregnancy at 38 weeks of gesta-

tional age with normal birth parameters. At birth, a large skin malforma-

tion involving the left side of the scalp, face, neck and shoulder was

evident (Figure 1A–F). The vertex showed multiple lipo-hamartomas, an

epidermal nevus was present on the left forehead and periocular skin,

with a choristoma of the eye. Brain MRI showed hypotrophy of the left

hemisphere with polymicrogyria. He was admitted to our hospital at

2 months of age for respiratory distress caused by a left pleural lym-

phangioma with chylothorax (Figure 1H). He has been empirically trea-

ted with rapamycin aiming at reducing the multiple skin lesions and

chylothorax, with transient success and short periods of remissions. At

4 years and 6 months of age he presented signs of rickets (cupped

enlargement of the metaphyses and bowing of the lower limbs,

Figure 1C,J,M,P), and a decline in the growth percentiles. Severe hypo-

phosphatemic rickets was diagnosed consistent with serum phosphate

concentration of 0.47 mmol/L (normal for age 1.2–1.8 mmL/L), renal

tubular phosphate reabsorption 72%–80% (normal >85%), and rickets

score 10/10. Sequencing (NimbleGen SeqCap Target Enrichment kit,

Roche, on the sequencing platform NextSeq550, Illumina) of the DNA

extracted from skin biopsy of the epidermal nevus revealed the

somatic mosaic pathogenic variant NRAS (NM_002524.5): c.182A > G,

p.Gln61Arg with a variant allele frequency of 29% consistent with the

diagnosis of CSHS.

Treatment with oral phosphate (35 mg/kg/day in four aliquots)

and calcitriol (0.5 μg once a day) was started. One month later, as no

biochemical effect was evident, oral phosphate was titrated up to

60 mg/kg/day, but serum phosphate levels continued to decrease.

Given the unresponsiveness to standard therapy, treatment with

Trametinib (Mekinist®, Novartis; 0.032 mg/kg/day) for compassionate

use was started after having obtained informed consent from the par-

ents and local ad-hoc Ethic Committee approval and under IRB

approval protocol 0068301-ID-256-2022, June 17, 2022, Comitato

Etico Interaziendale AOU Città della Salute e della Scienza di Torino.

2.2 | RNA sequencing

Peripheral blood mononuclear cells (PBMCs) were isolated form fresh

blood samples within 2 h from collection and stored frozen. RNA was

extracted using the Direct-Zol RNA kit ZY-R2052 (Euroclone). RNA

concentration was quantified using the Qubit Fluorometer (Thermo

Fisher Scientific). RNA quality was assessed by verifying RNA Integrity

Number and percentage of RNA fragments >200 nucleotides in size

(DV200) with Agilent RNAKits on a Bioanalyzer 2100 (Agilent). Total

RNA was processed for RNA-seq analysis with the TruSeq RNA

Library PrepKit v2 (Illumina). Library yield was quantified using the

Qubit Fluorometer (ThermoFisher Scientific). Library correct size and

purity were checked on a Bioanalyzer 2100 (Agilent), using Agilent

DNA High Sensitivity kit. Libraries were sequenced on a NextSeq500

system (Illumina).

2.3 | Gene expression quantification

Each fastq file was aligned using Spliced Transcripts Alignment to a

Reference (STAR) software (https://github.com/alexdobin/STAR/

releases) to human genome version hg38. Gencode 27 was used as

the transcriptome reference database and gene quantification was
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F IGURE 1 Legend on next page.
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performed with featureCounts (http://subread.sourceforge.net). To

avoid noise from low-abundance genes, genes not reaching

four counts in at least one sample were removed, and a thresholding

was applied by assigning a random value between three and four

counts to values below four counts. The final processing step was

trimmed mean of M values normalization using the EdgeR package

(available at http://bioconductor.org).

2.4 | Gene set enrichment analysis

For each gene, expression values from the two samples at each day of

treatment were averaged, then the log2 ratio versus Day 0 was calcu-

lated at each time point. For each time point, log2ratio values were

used to rank genes for preranked GSEA, using standard parameters.1

Log2 ratio between average expression at all treatment points versus

Day 0 was also calculated for preranked GSEA.

3 | RESULTS

3.1 | Treatment

Trametinib administration resulted in a prompt and stable normaliza-

tion of blood phosphate (1.21 mml/L, day 11 from treatment start)

and increase of urinary phosphate resorption (95%–99%) (Figure 1L).

After 15 days of therapy, the patient presented hungry bone syn-

drome (serum calcium nadir 2.1 mmol/L, Figure 1O) resolved with a

short calcium therapy (1500 mg/days), and tendency to hyperpho-

sphatemia (1.9 mmol/L) which required Trametinib reduction to

0.025 mg/kg/day: serum alkaline phosphatase decreased consistently

and normalized over time. DXA total body scan revealed a significant

improvement in bone mineralization, from a whole body BMD Z-score

�2.3 SDS before treatment start to +1.1 SDS at 15 months. In

2 months, catch-up growth recovery was noticed, and continued all

throughout the follow-up. A discoloration of skin lesion and a reduc-

tion of the clinical features of rickets were evident and a stable regres-

sion of the chylothorax was observed (Figure 1i). After 5 months of

therapy, reduction of the thickness of the hamartomas at the scalp

and improvement in bone architecture at total body X-ray were

observed (Figure 1D, G, K, N, Q). After 6 months, RMN showed a sub-

stantial stability of the anatomical anomalies seen before treatment

and cardiac function was stable. A subclinical mild increase in

serum potassium concentration was constantly observed (nadir plas-

matic K+ 5.4 mEq/L) but no rhythm abnormalities were evident at

serial ECG nor alterations in the other ions. Serum creatinine-phos-

phate-kinase (CPK) increased from normal to 565 U/L (+37 days) and

remained steadily mildly increased from there on (range 305–367)

during the follow-up observation period (currently 15 months), in

spite of a reported improvement in strength and movement

performance.

3.2 | Transcriptomics

We recently described that Trametinib treatment of a

RAF1-associated Noonan syndrome patient induces transcriptional

changes in PBMCs.13 These changes underpin strong and sustained

downregulation of signatures related to the RAS/MAPK, PI3 kinase,

WNT and YAP/TAZ pathways. Moreover, we found consistent down-

regulation of a PBMC signature reflecting PTPN11 germline mutation

previously defined for NS patients,2 indicating that MEK inhibition

exerts a broad effect on signal transduction and that transcriptional

profiling of PBMCs could be used to explore surrogate markers of Tra-

metinib action. To further evaluate the possibility of monitoring Tra-

metinib activity through transcriptome analysis, PBMCs were

obtained from the NRAS-mutant patient at days 0, 6, 19, 95, and

154 of treatment and processed for global RNA sequencing analysis

by GeneSet Enrichment Analysis (GSEA)1 to explore functional path-

way alterations (Table S1). As shown in Figure 2, all pathways previ-

ously identified as Trametinib-downmodulated in the RAF1 NS

patient13 are consistently downregulated also in the NRAS patient,

apart from four out of eight EGFR/RAS/MEX pathway signatures

(Figure 2A) and two out of three PI-3 kinase pathway signatures

(Figure 2B), displaying oscillatory behavior. Most interestingly, Trame-

tinib completely reverted the expression of PBMC signatures previ-

ously identified in NS patients (Figure 2C).2 In addition, GSEA

provided a list of “core” genes that are the most up- or down-

regulated in that gene set. We therefore explored the overlap

between the RAF1 and NRAS patients core genes in each of the con-

cordantly modulated gene sets (Table S2): this analysis highlighted a

striking overlap in the core genes, indicating that, for a given gene set,

the most Trametinib-modulated genes tend to be the same across NS

patients.

4 | DISCUSSION

We report the first case of severe CSHS treated with a precision med-

icine approach with the MEK inhibitor Trametinib. In CSHS, successful

F IGURE 1 Patient at 3 months of age showed large epidermal nevus of the left side of the scalp, sebaceous nevus of the left hemi-face, neck
and shoulder (A), multiple lipo-amarthromas at the vertex (E), and choristoma of the left eye (A) that evolved over time before treatment start
(B, C, F) with clinical (C) and radiological signs (J, M, P) of rickets at 4 years and 6 months of age, consistent with recurrent chylothorax with
ipsilateral pleural lymphangioma (H). After 15 months of treatment, there was an improvement in the thickness and color of the sebaceous nevus
(D) and of the lipo-amarthromatous lesion at the vertex (G), with regression of the radiological signs of rickets (K, N, Q). The left panels display the
course of serum and renal tubular resorption of phosphate (L) and of serum total calcium and alkaline phosphatase (O) before and during the first
6 months of Trametinib administration
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F IGURE 2 Trametinib-induced changes in signaling pathway-associated gene expression signatures in PBMCs of the NRAS-associated NS
patient. Signature modulation is estimated by the GSEA normalized enrichment score (y-axis), at various times of Trametinib treatment versus
pretreatment (x-axis). (A) EGFR/RAS/MEK pathway signatures previously found downmodulated by Trametinib in PBMCs of a RAF1 NS
patient.13 (B) Cell cycle and other signaling pathway signature, as indicated, previously found downmodulated by Trametinib in PBMCs of a RAF1
NS patient.13 (C) Reverted expression by Trametinib of previously published PBMC gene expression signatures of NS patients,2 as indicated.
PTPN11 UP/DOWN = genes up- or down-regulated in PBMCs of PTPN11 NS patients versus healthy controls; NS UP/DOWN = genes up- or
down-regulated in PBMCs of PTPN11/SOS1/SHOC2 NS patients versus healthy controls
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treatment with oral phosphate supplements and calcitriol was

reported.5,9 Although an age-related spontaneous regression of hypo-

phosphatemia and improvement of the skeletal phenotype has been

described,5 progression of the phenotype to extensive bone dysplasia in

adulthood is common.16 In our case, rickets became acutely prominent

at 4 years of age with a rapidly evolving skeletal demineralization,

growth arrest and life-threatening hypophospatemia. No response to

oral phosphate supplementation was observed, despite the administra-

tion of sustained high doses aimed at compensating for the large renal

loss. With failure of the conventional treatment, we took into consider-

ation two strategies: the recently introduced anti-FGF23 antibody buro-

sumab, approved for treating X-linked hypophosphatemia17 and

downregulation the RAS/MAPK cascade by MEK-inhibition. Despite that

burosumab is usually proposed in children to treat X-linked hypopho-

sphatemia, we chose the MEK-inhibition strategy in order to modulate

the molecular pathogenetic mechanism in all the tissues involved in the

genetic NRAS mosaic affecting several apparatuses. This strategy was

successful in normalizing phosphate metabolism, inducing a regression of

recurrent chylothorax and mitigating skin manifestations. Shortly after

the treatment began, we observed a prompt normalization of the phos-

phaturia and phosphatemia. Phosphate plasmatic levels and urinary

excretion remained constantly normal throughout the treatment and

allowed a rapid remineralization of bone evaluated by improvement in

the classical rickets signs, radiological rickets score, and bone densitome-

try. Treatment response was also accompanied by catch-up growth and

resolution of muscle weakness, bone pain, chronic fatigue, and appetite

loss. As often observed in rickets, treatment resulted in the “hungry
bone syndrome” phenomenon, and hypocalcemia linked to the massive

calcium incorporation into the bone, effectively managed with calcium

supplements. The therapy was well tolerated, showing no clinically rele-

vant side effects. From the biochemical point of view, a transient moder-

ate increase in muscle CPK and serum potassium were noted: common

side effects previously observed under Trametinib therapy.

Whole blood RNA-seq was performed before and during treat-

ment to define the transcriptional effects of MEK inhibition. As

recently described in a RAF1 NS patient treated with Trametinib,13 we

performed PBMC transcriptome profiling to monitor gene expression

changes and explore functional readouts of Trametinib efficacy. At

odds with the exploratory type of analysis performed in our previous

work, we could here focus on Trametinib-modulated pathways and

signatures already observed in our RAF1 patient and found remarkable

concordance. Although some of the signatures displayed oscillatory

behavior, concordant modulation of all pathways was confirmed,

reflecting Trametinib-driven downregulation of EGFR/RAS/MEK, cell

cycle, PI-3 kinase, WNT and YAP/TAZ pathways. Moreover, reversion

of the previously identified NS-associated PBMC signatures2 was

even more evident than in our RAF1 patient, confirming that MEK

inhibition exerts a broad effect on signal transduction. Among the

newly identified functional changes induced by Trametinib in the

NRAS patient, we observed that the most heavily upregulated gene

set (“RELA_DN.V1_UP”) reflects downregulation by Trametinib of the

NFKB pathway, confirming a previously identified cross-talk between

the two pathways.18

In conclusion, a biological mechanism-guided treatment in CSHS

by MEK-inhibition seems promising and contributes further to a proof

of principle supporting future studies and trials on MEK-inhibition

strategies for mosaic RASopathies.
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