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Abstract: The results from many cardiovascular (CV) outcome trials suggest that glucose lowering
medications (GLMs) are effective for the CV clinical risk management of type 2 diabetes (T2D) patients.
The aim of this study is to compare the effectiveness of two GLMs (SGLT2i and GLP-1RA) for the
CV clinical risk management of T2D patients in a real-world setting, by simultaneously reducing
glycated hemoglobin, body weight, and systolic blood pressure. Data from the real-world Italian
multicenter retrospective study Dapagliflozin Real World evideNce in Type 2 Diabetes (DARWINT
2D) are analyzed. Different statistical approaches are compared to deal with the real-world-associated
issues, which can arise from model misspecification, nonrandomized treatment assignment, and
a high percentage of missingness in the outcome, and can potentially bias the marginal treatment
effect (MTE) estimate and thus have an influence on the clinical risk management of patients. We
compare the logistic regression (LR), propensity score (PS)-based methods, and the targeted maximum
likelihood estimator (TMLE), which allows for the use of machine learning (ML) models. Furthermore,
a simulation study is performed, resembling the structure of the conditional dependencies among
the main variables in DARWIN-T2D. LR and PS methods do not underline any difference in the
effectiveness regarding the attainment of combined CV risk factor goals between the two treatments.
TMLE suggests instead that dapagliflozin is significantly more effective than GLP-1RA for the CV
risk management of T2D patients. The results from the simulation study suggest that TMLE has the
lowest bias and SE for the estimate of the MTE.

Keywords: cardiovascular risk management; type 2 diabetes; real-world data; model misspecification;
missing outcome data; TMLE; propensity score

1. Introduction

Coronary heart disease, cerebrovascular disease, peripheral arterial disease of an
atherosclerotic origin, and heart failure are the leading causes of morbidity and mortality
in diabetic patients, resulting in an estimated $37.3 billion in cardiovascular (CV)-related
spending per year. Common conditions coexist in type 2 diabetes (T2D) patients, such as
hypertension or dyslipidemia, which make the CV risk management of T2D individuals
more challenging [1,2].

Many CV outcome trials in the last decades have suggested that glucose lowering
medications (GLMs) can be effective for the CV risk management of T2D patients. In
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particular, it was found that certain specific sodium-glucose cotransporter-2 inhibitors
(SGLT2i) [3,4] and glucagon-like peptide-1receptor agonists (GLP-1RA) [5–7], which are
two classes of GLMs, are both safe and effective for CV risk management, by addressing
risk factors associated with adverse cardio–renal outcomes in T2D patients.

In general, SGLT2is are supposed to be less effective at lowering glucose than GLP-1RA;
meanwhile, a network meta-analysis suggests that there are no differences in the glycemic
effects of GLP-1RA or SGLT2i when added after dual-therapy failure [8]. Furthermore,
some trials showed that both GLP-1RA and SGLT2i are useful for managing other CV-
associated risk factors, which typically occur in T2D patients, such as the increase in body
weight (BW) and systolic blood pressure (SBP) [9,10]. However, the STENO-2 study focuses
on the importance of dealing with composite outcomes, i.e., the simultaneous management
of multiple CV risk factors [11].

However, today, the number of RCTs that compare SGLT2i and GLP-1RA considering
composite outcomes that deal simultaneously with an ensemble of CV risk factors, such as
glycated hemoglobin (HbA1c), BW, and SBP, are lacking. In this case, real-world data are
very useful for integrating knowledge with medium-level evidence, which can be helpful
to contribute to the clinical decision-making process [12,13].

To address this gap, in our previous work [12], we conducted a retrospective real-
world study to compare the effectiveness of dapagliflozin (SGLT2i) and GLP-1RA in T2D
patients, evaluating the proportion of patients with a simultaneous reduction in CV-related
risk factors (HbA1c > 0.5%, BW > 2 kg, and SBP > 2 mm Hg), and no differences were
found. However, we had to deal with the typical issues related to real-world observational
studies, such as missingness (we deleted observations with missing outcome data), model
misspecification, and the absence of randomization in the treatment assignment.

In fact, in observational biomedical research, the evaluation of the marginal (i.e., at
the population level) treatment effect (MTE) is made more challenging by nonrandomized
treatment assignment and missingness in both covariates (X) and in outcome (Y) measures.
Treatment groups often differ in baseline characteristics, and an appropriate statistical
method that adjusts for confounding variables and considers the missingness mechanism
both in the covariates and outcome is necessary to minimize the bias in MTE estimates so
as to improve the causal inference.

This study aims to compare in a real-world setting the effectiveness of dapagliflozin
(SGLT2i) and GLP-1RA in the CV risk management of T2D patients by simultaneously
controlling CV associated risk factors (HbA1c, BW, and SBP).

The results from different statistical approaches are compared to limit the size of the
bias in the estimate of the MTE due to model misspecification and non-randomized treat-
ment assignment. In special cases, the missing dichotomous outcome data are generated
under a missing not at random (MNAR) or missing at random (MAR) mechanism [14].
Both real-world and simulated data tailored to the case study are analyzed.

2. Materials and Methods
2.1. Case Study with Real-World Data

We analyzed real-world data from the Italian multicenter retrospective nationwide
Dapagliflozin Real World evideNce in Type 2 Diabetes (DARWIN-T2D) study, conducted
at 46 diabetes specialist outpatient clinics in Italy. One of the aims of DARWIN-T2D is
to describe the baseline clinical features in diabetic patients initiated on dapagliflozin
compared with those who initiated on a comparator GLM, such as GLP-1RA, and to
compare the changes in glycemic efficacy parameters [15]. The secondary objectives were
to compare the effectiveness of dapagliflozin and other GLMs, including GLP-1RA, in
the CV risk management of diabetic individuals. T2D patients initiated on dapagliflozin
or GLP-1RA were compared to evaluate the proportion of patients with a simultaneous
reduction in HbA1c > 0.5%, BW > 2 kg, and SBP > 2 mm Hg [12]. More details about the
DARWIN T2D study can be found in previous publications [12,15].
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The MICE algorithm [16] was applied to impute the missing covariate data, and five
imputed datasets were obtained. Only covariates with less than 40% missing data were
included as predictors in the imputation process, including the observed outcome val-
ues [17–20]. The outcome variable was not imputed, because it has been shown that when
missingness is in the outcome variable, complete case (CC) and multiple imputation (MI)
strategies [21] lead to similar results, with a low bias only when the missingness mechanism
is missing completely at random (MCAR) or missing at random (MAR); however, in our
case study, we cannot a priori exclude a missing not at random (MNAR) mechanism on the
outcome [22,23]. In fact, subjects with observed and missing outcome data significantly
differed in terms of age, waist circumference, fasting glucose, total and LDL cholesterol,
eGFR, insulin associated therapy, and ACEi/ARBs therapy [12].

In each imputed dataset, we estimated the propensity score (PS) model via the logistic
regression (LR) approach, considering the following baseline covariates of age, sex, duration
of diabetes, BW, body mass index (BMI), fasting plasma glucose (FPG), HbA1c, systolic,
and diastolic pressure (SBP and DBP, respectively), total and HDL cholesterol, triglycerides,
eGFR, insulin and metformin therapy, micro-angiopathy, and macro-angiopathy.

The multiple drugs taken by patients were not considered in this analysis, because
in our previous work [12], we performed a sensitivity analysis where the number of prior
GLM drug classes was added as a covariate in the PS models, but we observed that there
were no differences in the results. Furthermore, the median number and range of prior
GLM classes were superimposable in the two treatment groups.

PS matching was performed with the nearest 1:1 ratio without replacement and with a
caliper of 0.15 standard deviations of the distribution of the PSs on the logit scale [24].

Outcome analyses were performed on each imputed database, and the results were
pooled together following Rubin’s rules [25] and the within approach [26].

2.2. Simulation Study

Data were simulated by defining a directed acyclic graph (DAG), as shown in Figure 1,
using the simcausal R package (R version 3.2.0) [27,28].
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The simulation process was set up to resemble the relationships between the main
variables in the case study (DARWIN-T2D), i.e., sex (W1), age at diagnosis (W2), BMI (W3),
LDL cholesterol (W4), insulin use (W5), and macro angiopathy (W6). We constructed a
Bayesian Network (BN) on variables extracted from the DARWIN-T2D dataset obtaining
the conditional probability distributions, which reflect the dependencies among these
variables. Then, the Peter–Clark stable algorithm with 100-fold bootstrap was applied for
the structural learning of the BN [29]. Finally, a more robust BN was obtained by averaging
the 100 BNs learned and considering only the relationships between the variables present
at least 95% of the time [30]. Thus, using such dependencies relations extracted from
DARWIN-T2D and the summary statistics of the main variables of the case study, we
considered the following simulation process:
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• W1 ~ Bernoulli (0.6);
• W2 ~ Gaussian (mean = 60, sd = 8);
• W3 ~ Gaussian (mean = 35, sd = 6);
• W4 ~ Gaussian (mean = 90 if W1 = 1 and mean = 97 if W1 = 0, sd = 30),
• W5 ~ Bernoulli (plogis (−2 + 0.05 ×W2));
• W6 ~ Bernoulli (plogis (−12 + 0.50 ×W3 −W1));
• Z ~ Bernoulli (plogis (−2 + 0.05 ×W3 − 0.20 ×W5 + 0.10 ×W6));
• Y ~ Bernoulli (plogis (−3 + Z− 0.05×W2 + 0.05×W4 − 0.80×W1 − 0.20×W1 ×W2)),

where plogis is the inverse logit function: 1/log[p/(1− p)].

In the case study, because subjects with observed and missing outcome data signif-
icantly differed in many covariates [12] and the use of the less studied and deepened
mechanism and a lack of knowledge on how to deal with it, we simulated an MNAR
mechanism on the outcome using two different frequencies: 20% and 40%. In more detail,
the probability of missingness in Y depends on the Y value itself: if Y = 1, the probability of
missingness is 70%. Because it was not possible to determine what kind of missing outcome
mechanism was underlying the case study data, the MAR mechanism was also simulated
as a sensitivity analysis, which was performed using a multivariate amputation procedure.
For each unit, a weighted sum score was computed via a linear regression equation for
each covariate with the same weight, excluding the outcome variable. Then, each patient
was assigned a probability of having missing outcome data based on his/her weighted
sum score, following a right-tailed logistic distribution function, i.e., subjects with a higher
weighted sum score had a higher probability of having missing outcome data [31]. The
results of the MAR scenarios are included in the Supplementary Material.

Missingness mechanisms were simulated through the ampute function in the mice R
package [31].

In the simulation study, we performed the comparisons in the most common real-
world situation: both the treatment and outcome models were misspecified. More specif-
ically, in the Z model, W2 and W6 were included as covariates, and W3 and W4 were
included in the Y model, as follows:

Y ∼ α0Z + α1W3 + α2W4

Z ∼ α3W2 + α4W6

The outcome and treatment models (Y and Z, respectively) that we estimated were in
fact misspecified, because we included in the estimation of the outcome model (Y) covariate
W3, which was not present in the true outcome model (Y), and we did not include W1, W2,
and the interaction term W1 ×W2, which were instead present in the true model.

In the same way, in the treatment model (Z), we included in the estimation of the
model the covariate W2, which was not in the true model, and we omitted W3 and W5,
which were instead in the true model.

We estimated the PS models via the LR approach. PS matching was performed with
the nearest 1:1 ratio without replacement and with a caliper of 0.15 standard deviations of
the distribution of PS on the logit scale [24].

The true marginal OR(mOR) value (1.66) was evaluated on 5,000,000 observations
generated through DAG in Figure 1.

Sensitivity to the sample size was addressed by performing the analyses with both
n = 1000 and n = 5000.

Overall, 1000 simulations were performed to estimate the mean bias measure, the
standard error (SE) size, and the 95% nominal coverage (NC) intervals. The bias was
defined as the differences between the true mOR and the mean value of the estimates of
OR obtained in all of the simulations, i.e.,

bias = true(OR)− E(ÔR)
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Statistical analyses were performed using R version 3.4.5 [32].

2.3. Statistical Methods

In this study, we compared, in both real-world and simulated settings, the marginal
odds ratio (mOR) in order to estimate the effectiveness of GLMs in the CV risk management
of T2D patients, by controlling CV-related risk factors, according to the following methods:
(i) logistic regression for covariate adjustment (LR), (ii) PS adjustment, (iii) PS matching,
(iv) inverse probability of treatment weighting (IPTW), and (v) the targeted maximum like-
lihood estimator (TMLE), which are the most widely used approaches in the literature [33].
In the following sections, more details about the statistical methods are provided.

2.3.1. Logistic Regression for Covariate Adjustment (LR)

When the outcome is dichotomous, the most traditional method to estimate the MTE,
while controlling for confounders, is the logistic regression (LR) model. However, many as-
sumptions must be satisfied: the model should be fitted correctly, all the confounders must
be measured, the observations should be independent of each other, no multi-collinearity
among the independent variables is allowed, and the relationship between the independent
variables and the log odds must be linear. Often, in real-world data, these assumptions are
not verified or are not testable, resulting in a high probability of model misspecification,
with a consequent increase in bias in the treatment effect estimate.

Furthermore, the LR model approximates the estimate of mOR with the estimate of
conditional OR (cOR), which has to be interpreted at the subject level, assuming homo-
geneity in the treatment effect for subjects with the same observed covariates, without
taking into account possible heterogeneity in the treatment [34]. cOR is more reliable
in a randomized controlled setting, where, generally, problems related to unmeasured
confounding are controlled by the randomization itself [35].

2.3.2. Propensity Score Based Methods: Adjustment, Matching, IPTW

mOR, introduced in 1974 by Rubin, is instead interpreted at the population level and
takes advantage of the potential outcome framework [36]. Each subject has two potential
outcomes: the outcome Y1 he/she would have experienced if he/she had been treated
(Z = 1), and the outcome Y0 he/she would have had if he/she had not been treated (Z = 0).
For each subject, it was possible to observe only one realization of the outcome.

Rosenbaum and Rubin introduced PS-based methods to estimate the mOR in the poten-
tial outcomes framework [37]. PS is defined as the probability to be assigned to a treatment
(Z, a binary variable), conditioned on baseline covariates W, mathematically P (Z = 1|W).
PS allows for the balance of baseline covariates between two different treatment groups via
matching, inverse probability of treatment weighting (IPTW), or stratification [38,39].

However, PS methods are sensitive to the misspecification of both treatment and
outcome models [40]. It has been shown that if the treatment and/or outcome model is
misspecified, the mOR estimate is biased in the direction of cOR [35]. In other words,
PS methods require the absence of unmeasured confounders or, equivalently, that the
randomization assumption is satisfied, which means that given the baseline covariates W,
the treatment Z is independent of the potential outcomes Y1 and Y0 [37]. Additionally, PS
methods require that the positivity assumption is satisfied; that is, for any values of the
baseline covariates W, the probability of being treated is nether 0 nor 1: 0 < P (Z = 1|W) < 1
for all W [37]. Often, in real-world data, these assumptions cannot be verified, and a biased
MTE estimate could be obtained via PS methods.

2.3.3. Targeted Maximum Likelihood Estimator (TMLE)

TMLE is a maximum likelihood estimator based on the G computation estimator,
introduced in 2006 by Van der Laan and Rubin. TMLE is a semiparametric double-robust
method that improves the chances of correctly specifying the treatment and outcome
model, taking advantage of flexible estimation via nonparametric machine learning (ML)
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methods [28]. Double-robust methods were developed to minimize the impact of model
misspecification that has heavier consequences on biased causal inference [41–44]. It
computes initial estimates of the outcome regression Q0(Z, W) = E (Y|Z, W, ∆ = 1) and
PS models based on complete observations only. ∆ represents the model regarding the
missingness mechanism on the outcome Y. ∆ = 1 indicates the observations for which the
outcome is not missing, meanwhile ∆ = 0 represents observations with missing outcomes.
Then, the initial outcome regression model is updated, by constructing a logistic model

logit Q0(ε)(Y = 1 |Z, W, ∆ = 1 ) = logit Q0(Y = 1 |Z, W, ∆ = 1 ) + εH(Z, W)

where H (Z, W) are “clever covariates” and ε is computed via the maximum likelihood
procedure. The “clever covariates” take advantage of the information contained in the PS
model and in the missingness mechanism on the outcome model P (∆ = 1|Z, W) as follows:

H(Z, W) =
1

P(∆ = 1|Z, W)

(
Z

P(Z = 1|W)
− 1− Z

P(Z = 0|W)

)
The update is performed in the potential outcome framework both for Z = 0 and

Z = 1 for all subjects. Finally, the empirical mean of the predicted probabilities of the
counterfactual outcome is computed, and mOR is obtained. The efficient influence function
is then used to compute the SE and the Wald-type 95% confidence interval. Both the initial
and the updated estimates can be estimated via the super learner (SL) algorithm, which is a
statistical approach based on ML ensemble methods that finds the optimal combination
of a collection of algorithms to minimize the cross validated risk, i.e., the prediction error
computed in the cross-validation framework. A mathematically proven theorem states
that the SL algorithm performs asymptotically, as well as the oracle selector, i.e., the best
candidate between learner algorithms [45–47].

Furthermore, TMLE allows for simultaneously dealing with missing outcome data
and model misspecification that, in the case of MAR or MNAR in the outcome, can have a
stronger contribution for obtaining biased causal inference [41,42]. A procedure of inverse
probability weighting (IPW) to deal with missing outcome data is intrinsically implemented
in the TMLE algorithm. More details about TMLE can be found in [33,46,48].

Two analyses based on the TMLE were performed. In the first (TMLE1), the super
learner (SL) algorithm includes only the default algorithms (main terms LR, stepwise
forward and backward model selection, and main terms LR with interaction terms). In
the second (TMLE2) one, the SL algorithm includes the following algorithms: main terms
LR, stepwise forward and backward model selection, main terms LR and interaction
terms, stepwise forward and backward model selection with interaction terms, generalized
additive models (GAMs), random forest (RF), and recursive partitioning and regression
trees (RPART).

TMLE analyses are performed under two different strategies to handle missing out-
come data: the complete case (CC) approach, i.e., excluding observations with miss-
ing outcome (TMLE_CC), and the IPW approach, which is included in the TMLE it-
self (TMLE_IPW).

3. Results
3.1. Case Study with Real-World Data

From a population of 281,217 patients with T2D collected in DARWIN-T2D, longi-
tudinal data were collected for 2484 patients who initiated Dapagliflozin and 2247 who
initiated a GLP-1RA medication. A follow up examination was available for 830 patients in
the Dapagliflozin group and 811 patients in the GLP-1RA group. Composite outcome data
were available for 473 patients who initiated Dapagliflozin and for 336 patients who initi-
ated GLP-1RA. Therefore, the missingness of the outcome variable was 49%. Furthermore,
in a previous work [12] in which we made the analyses only on subjects with an observed
outcome, we noticed that patients with observed outcome data differed systematically
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in several covariates (such as age, waist circumference, fasting glucose, total and LDL
cholesterol, eGFR, insulin associated therapy, and ACEi/ARBs therapy) from patients with
missing outcome data. Thus, the missingness mechanism on the outcome data did not seem
to be MCAR, and CC analyses could lead to significant bias in the estimation of the MTE of
the GLMs in controlling the CV-related risk factors. PS matching analysis was performed
between 229 subjects in each group. A good balance in the covariates was achieved (all
standardized differences were less than 0.10). More details about the PS analyses can be
found in [12].

Table 1 shows the results of the effect of Dapagliflozin, compared with GLP1RA,
obtained via different statistical approaches. ORs < 1 indicate that attaining the composite
outcome occurred less frequently in the Dapagliflozin group than in the GLP-1RA group.
LR and PS methods with the CC analysis yielded similar results: they did not underline
any differences between the two GLMs in controlling CV-related risk factors. On the other
hand, TMLE2 (IPW) showed an OR = 1.35, with a significant 95% confidence interval
(CI) (1.04–1.73).

Table 1. The results of the DARWIN T2D study.

Method OR (95% CI)

LR 0.82 (0.53−1.27)
PS matching 0.86 (0.53−1.41)
PS covariate 0.81 (0.52−1.26)

IPTW 0.85 (0.54−1.34)
TMLE 1 (CC) 1.33 (0.91−1.96)
TMLE 2 (CC) 1.53 (1.09−2.14)

TMLE 1 (IPW) 1.34 (0.95−1.91)
TMLE 2 (IPW) 1.35 (1.04−1.73)

Dapagliflozin vs. GLP 1RA. OR = odds ratio; 95% CI = 95% confidence interval; LR = logistic regression;
PS = propensity score; IPTW = inverse probability of treatment weighting; TMLE = targeted maximum likelihood
estimator; CC = complete case; IPW = Missing Outcome Data. TMLE1: LR with main terms only, LR with stepwise
model selection procedures, LR with interaction terms; TMLE2: LR with main terms only, LR with stepwise
procedures, LR with interaction terms, LR with interaction terms with stepwise model selection procedures,
generalized additive models (GAM), random forest (RF), and recursive partitioning and regression trees (RPART).

In Table 2, the coefficients of the algorithms selected by SL in TMLE2 (IPW) for the
RW case study are reported. Only the LR model with interaction terms was never selected.

Table 2. Coefficients of the algorithms selected by the super learner algorithm in TMLE2 (IPW) for
the DARWIN T2D study.

Model

Outcome (Y) Treatment (Z) Missingness (∆)

Super Learner algorithms
LR 0 0 0.09

Step 0.51 0.19 0
Step + interaction terms 0.12 0.10 0
LR + interaction terms 0 0 0

GAM 0.31 0 0.21
RF 0.03 0.53 0

RPART 0.03 0.18 0.70
LR = logistic regression; Step = LR with stepwise forward and backward model selection; GAM = generalized
additive model; RF = random forest; RPART = recursive partitioning and regression tree.

3.2. Simulation Study

In Table 3, the results of the simulation study are reported, with different amounts of
MNAR outcome data and different sample sizes (n = 1000 and n = 5000).
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Table 3. The results of the simulation study with different scenarios and the MNAR mechanism on
the outcome.

LR PS
Matching

PS
Covariate IPTW TMLE1

(CC)
TMLE2

(CC)
TMLE1
(IPW)

TMLE2
(IPW)

SCENARIO 1: 20% MNAR on Y, n = 1000
OR 1.89 1.90 1.88 1.84 1.79 1.79 1.75 1.75
Bias 0.23 0.25 0.23 0.18 0.13 0.13 0.09 0.09
SE 0.67 0.84 0.68 0.66 0.58 0.58 0.58 0.57

95% NCI 94.5 93.9 94.0 94.5 94.5 92.4 93.9 91.6

SCENARIO 2: 40% MNAR on Y, n = 1000
OR 2.06 2.07 2.05 2.00 1.97 1.98 1.92 1.94
Bias 0.40 0.41 0.39 0.34 0.31 0.32 0.26 0.28
SE 1.30 1.31 1.30 1.23 1.20 1.18 1.15 1.17

95% NCI 94.2 96.0 94.6 95.5 94.9 92.4 94.2 91.2

SCENARIO 3: 20% MNAR on Y, n = 5000
OR 1.78 1.77 1.77 1.74 1.70 1.70 1.66 1.66
Bias 0.12 0.11 0.11 0.08 0.04 0.04 0.002 0.006
SE 0.25 0.28 0.25 0.25 0.22 0.22 0.22 0.22

95% NCI 92.0 93.5 92.7 94.6 95.6 94.2 94.6 93.4

SCENARIO 4: 40% MNAR on Y, n = 5000
OR 1.78 1.79 1.78 1.74 1.73 1.73 1.68 1.68
Bias 0.12 0.13 0.12 0.08 0.07 0.07 0.02 0.02
SE 0.37 0.43 0.37 0.36 0.35 0.35 0.35 0.35

95% NCI 95.2 95.6 95.1 95.7 95.8 94.8 96.1 95.2

OR = odds ratio; SE = standard error; 95% NC = 95% nominal coverage interval; MNAR = missing not at random;
n = sample size; LR = logistic regression; PS = propensity score; IPTW = inverse probability of treatment weighting;
TMLE = targeted maximum likelihood estimator; CC = complete case; IPW = inverse probability weighting.
TMLE1: LR with main terms only, LR with stepwise model selection procedures, LR with interaction terms;
TMLE2: LR with main terms only, LR with stepwise procedures, LR with interaction terms, LR with interaction
terms with stepwise model selection procedures, generalized additive Models (GAM), random forest (RF), and
recursive partitioning and regression trees (RPART).

Regardless of the amount of missingness on outcome data and sample size, TMLE is
the approach with the smallest bias and SE. The results show that including the missingness
mechanism on the outcome in TMLE (TMLE 2 IPW) improves the OR estimation. The same
conclusions were achieved by simulating a MAR mechanism on the outcome, as shown in
Supplementary Table S1.

There are no relevant differences in terms of the 95% NC intervals in the MNAR scenario;
however, they were higher for TMLE approaches in the MAR scenario (Supplementary Table S1).

4. Discussion

Many CV outcome trials suggest that GLMs are effective for the CV risk management
of T2D patients by simultaneously controlling the CV-related risk factors, such as HbA1c,
BW, and SBP. However, RCTs that consider such risk factors simultaneously are still few,
and real-world studies can help to fill this gap and can be helpful to contribute to the clinical
decision-making process. Observational data are often used to study causal questions,
even if their estimates are more biased than clinical trials. However, Hernan highlights
the importance of having multiple studies with imprecise estimates rather than having no
study at all. Then, after several studies become available, it is important to meta-analyze
them to provide a more precise pooled effect estimate [49].

Real-world data availability is constantly growing, but advanced statistical approaches
are needed to address real-world data-related limitations, such as the absence of random-
ization, the presence of measured and unmeasured confounders, and the high percentage
of missing data, both in the outcome and covariates.

In this work, we compared traditional approaches, such as LR- and PS-based meth-
ods, with an advanced ML approach (TMLE), to estimate the effectiveness of GLMs in
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simultaneously controlling CV-related risk factors (i.e., HbA1c, BW, and SBP). In the real-
world case study (DARWIN-T2D), traditional approaches showed no difference between
the two treatments. Contrariwise, TMLE pointed out an opposite association compared
with the estimates obtained using traditional methods. In fact, according to the TMLE,
dapagliflozin simultaneously reduced the CV-related risk factors (HbA1c, BW, and SBP)
significantly more than GLP-1RAs. As no RCTs provide a background for this clinically
relevant comparison, our results have particularly interesting therapeutic implications for
routine clinical practice. Missingness patterns in real-world data may be driven by the
characteristics of the different therapies being compared, thereby affecting the outcome
comparison. The reversing of the OR could be explained by the fact that, often, LR- and
PS-based methods give a biased estimate of the mOR that stretches in the direction of the
cOR [50,51] when the model is misspecified. When the conditional and marginal treatment
effects do not coincide and they are in opposite directions [52], we refer to this situation
as the non-collapsibility of the OR [36]. Furthermore, because of the non-collapsibility of
the OR, even a correctly specified LR model generally does not produce estimates of the
marginal treatment effect [28].

Furthermore, TMLE can gather interactions between covariates and nonlinearity
through the SL algorithm, which could contribute to the change in the direction of the OR.
In fact, applying the TMLE without the intervention of the SL algorithm but using the GLM
approach only for the Y, Z, and ∆ models, we obtain a weaker OR with a non-statistically
significant 95% CI (OR = 1.11; 95% CI 0.79–1.69).

Other studies used simulation methods to compare the properties of TMLE to those of
other statistical estimators. For example, Pang and colleagues [33] evaluated the perfor-
mance of TMLE compared with an IPW estimator of the MTE of post-myocardial infarction
statin use considering the 1-year risk for all-cause mortality from the Clinical Practice Re-
search Datalink. Their simulation study showed that when TMLE and IPW estimators used
the same treatment model specification, they may perform differently due to differential
sensitivity to practical positivity violations. However, they observed that TMLE, which is a
doubly robust estimator, showed an improved performance with richer specifications than
the outcome model.

Furthermore, Schuler et al. [53] performed a simulation study to compare the methods
under parametric regression misspecification, and their results highlight TMLE’s property
of double robustness. Moreover, their simulation study demonstrated that incorporating
ML techniques in SL may outperform parametric regression in observational data settings.

In this study, we also observed that TMLE took advantage of the non-parametric
algorithms included in the SL to address model misspecification. Still, unlike previous
studies, we looked in detail at the missingness mechanisms in the outcome data. In
particular, we focused on MNAR and MAR missingness mechanisms on the outcome, as
it is still unclear how to deal with this and there may be relevant consequences of model
misspecification, typically occurring in real-world observational studies [41,42,54].

In [55,56], the authors showed that TMLE implemented with the SL algorithm had
the lowest bias compared with misspecified-parametric-model-based methods; however, a
comparison of how the mechanism of outcome missingness affects their performance is
still lacking.

In our simulation study tailored to the real-world dataset, TMLE was confirmed to
have the lowest bias and SE, even with a large amount of missing outcome data, under
MNAR and MAR mechanisms. Additionally, we found that TMLE performed better than
the CC approach if the missingness mechanism was included in the OR estimation process,
confirming that CC must be used only when MCAR or MAR mechanisms are present [22].
Different missingness mechanisms on the outcome were addressed, and more attention
was given to MNAR, which is still poorly studied and guidelines on how to deal with it are
still lacking. Furthermore, the consequences of model misspecification are more relevant
with MNAR than with MAR or MCAR [41,42], so it is important not to neglect this aspect
and not to a priori exclude the possibility of having MNAR missing outcome data [57].
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The 95% NC intervals from the different methods were similar when the MNAR
mechanism on Y was present, while the 95% NC was higher for the TMLE when a MAR
mechanism was considered.

One limitation of the TMLE was its complexity, intensified by using the SL algorithm
for constructing the outcome, treatment, and missingness mechanism on the outcome
models. This complexity entailed a greater computational effort compared with more
traditional approaches, but was exceeded by the superiority of the TMLE in terms of
robustness and stability.

A limitation of this study is that only a few scenarios were considered in the simulation
study. This choice was justified by providing a simulation scheme as close as possible to the
real-world data characteristics of the case study, taking advantage of Bayesian networks.
However, we made some simulations also varying some settings, such as the amount of
missingness in the outcome or the sample size, in order to test our results’ stability and
generalizability, obtaining promising insights.

The results of this study suggest that, in observational studies, TMLE could simultane-
ously deal with misspecification and missingness on outcome data, even under MNAR (or
MAR) scenarios, outperforming both the LR model and PS methods in terms of bias, SE,
and 95% NC intervals. Traditional approaches require lots of assumptions to be satisfied,
and they are more suitable in the presence of MCAR or MAR mechanism on the outcome;
however, it is usually difficult to identify the missingness mechanism underlying the data,
and a priori excluding an MNAR mechanism [55] could amplify the consequences of the
model misspecification.

Our recommendation is not a priori excluding MAR or MNAR schemes, and to use
simulations to identify which approach is the more adapt to that specific situation.

5. Conclusions

In conclusion, as RCTs providing a background for the comparison of the effectiveness
of SGLT2i and GLP-1RA in the simultaneous management of CV-related risk factors in
T2D patients are still lacking, the results of this study can have particularly interesting
therapeutic implications for routine clinical practice and can contribute to the clinical
decision-making process for the CV risk management in T2D individuals.

Furthermore, our study confirms that TMLE has appealing statistical properties, i.e., it
can simultaneously deal with model misspecification through advanced ML algorithms
used by SL and with missing outcome data, even under the MNAR mechanism, which are
typical issues in real-world studies that evaluate the effectiveness of medications.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijerph192214825/s1, Table S1: Results of the simulation
study with different scenarios and the MAR mechanism on the outcome.
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