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Abstract
Genetic programming (GP) is a general purpose artificial intelligence method, that breeds populations of computer 
programs to solve a given problem, mimicking the principles of Darwinian evolution. Among the several different 
uses, it can be employed for supervised machine learning, interpreting the evolving programs as predictive models. 
With the objective of improving GP for multi-class classification, in this paper we model a feature of biological evolu-
tion: the structuring of populations into sub-populations, or demes. In particular, we present the progressively insular 
cooperative GP (PIC GP), in which classification is performed by applying two stages, in two different co-evolving 
sub-populations: a population, called population of specialists, aimed at optimizing the learning for the different 
classes, and a population, called population of teams, in which specialists are joined and the evolution allows us to 
obtain the final predictive model. By means of three simple parameters, PIC GP can tune the amount of cooperation 
between specialists of different classes. Preliminary experiments indicate that PIC GP achieves the best performance 
when the evolution begins with a high level of cooperation between specialists of different classes, and then this type 
of cooperation is progressively decreased, until only specialists of the same class can cooperate between each other. In 
this paper, we compare PIC GP with some state-of-the-art classification algorithms on a rich set of test applications. 
The obtained results show that PIC GP is highly competitive with the best algorithms, outperforming the majority of 
its competitors on the studied problems.
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Introduction

Genetic programming (GP) [1] breads a population of com-
puter programs (individuals) by mimicking the principles 
of Darwin’s theory of evolution. At each step, stochastic 
operators of crossover and mutation are applied to generate 
new individuals, the most promising of which are proba-
bilistically selected for the next generation. This selection 
step emulates Darwinian natural selection, introducing into 

GP the ecological relationship of competition. In classifica-
tion tasks, GP individuals (classifiers) usually compete to 
generate a discriminating function that best separates the 
instances of each target class. However, in the Darwin’s 
theory other ecological relationships besides competition 
are important. Among them, cooperation, a mutually ben-
eficial interaction between species [2], is essential. This 
paper presents an empirical study of the progressive insu-
lar cooperative GP (PIC GP), a modified GP algorithm in 
which cooperation between solutions is applied to solve 
multi-class classification (MCC) problems (i.e. for classi-
fication tasks with three or more target classes). To use GP 
for MCC, the very first decision to be made is on how to 
discriminate the classes, all at once or in pairs. In practi-
cal terms, addressing this question means having either a 
single classifier to handle the entire classification task or 
to have as many classifiers as the number of classes to be 
modelled. Very few successful studies have been published 
so far using the first approach, in which a single solution 
has to deal with the whole complexity of the classification 
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task. This may be one of the reasons why GP is currently 
not considered a top algorithm for MCC, as clearly stated, 
for instance, in [3]. However, if we consider the second 
approach, the standard GP process should be changed from 
its basic design to evolve solutions joining more than one 
program, since one different classifier is needed for each 
target class. PIC GP uses this approach, having individu-
als divided in subpopulations according to the target class 
they are specialised in classifying. We call these individuals 
specialists. Specialists are grouped in teams, higher-level 
solutions that combine specialist outcomes to give the uni-
vocal algorithm prediction. Because the evolution of spe-
cialists alone is not always enough to produce good teams, 
the teams themselves are evolved in a separate population. 
Consequently, in this approach, the GP evolution works 
in an upgraded two-level design, one level for the special-
ists and another for the solution that join the outcomes of 
these classifiers. In addition to the competition relationship, 
typical of natural selection, the two-level design of PIC GP 
presents an opportunity for the introduction of coopera-
tion between individuals of different specialisations. The 
cooperation is present in a team-based GP only if special-
ised individuals are allowed to interact over the evolution 
process. Simply joining them into a team, in itself, is not a 
cooperative, but rather a collaborative action, since the spe-
cialised individuals work together, but do not benefit indi-
vidually from it. In PIC GP, the specialists can evolve with 
different levels of cooperation, which can be modified by 
tuning three simple parameters that are presented in more 
detail in Sect. 3.1.4. Following the terminology used in [4], 
specialist subpopulations are called demes when the level of 
cooperation between specialists is high, and islands when it 
is low or inexistent. The proposed method is called PIC GP 
because the algorithm begins with demes (high cooperation 
between specialists) that can be progressively transformed 
into islands (no cooperation at all). Our objective in this 
work was to investigate the dynamics of PIC GP, by study-
ing how parameters affect its evolution. The manuscript is 
organised as follows: Sect. 2 presents a review of previous 
and related GP methods for MCC. Section 3 explains the 
functioning of PIC GP. Section 4 describes our experimen-
tal study, first presenting the experimental settings and the 
employed test problems, and then discussing the obtained 
results. Finally, Sect. 5 concludes the paper and proposes 
ideas for future research.

GP for Multiclass Classification

In some previous work on MCC, GP was used as a wrapper 
method for data preprocessing, for posterior classification 
performed by other algorithms [3, 5–8]. Other strategies 

use GP directly for dealing with the classification problem, 
without any posterior classifier procedure. When discrimi-
nating three or more classes, the very first decision is how 
to separate them. Three main possibilities have been inves-
tigated so far: all-vs-all, pairwise or one-vs-all.

All-vs-all The all-vs-all strategy is the most simple exten-
sion of the binary classification approach. In this strategy, 
a single GP solution is generated and K − 1 thresholds are 
applied to its outcomes for a K classes problem. A single 
model must therefore be able to discriminate among all 
classes. For instance, Zhang and Smart [9] proposed a single 
classifier with K − 1 thresholds, dynamically evolved during 
the GP run. The same authors, in [10], used properties of 
Gaussian distributions of the classes to dynamically define 
the K − 1 thresholds of the GP multiclassifier solution. Usu-
ally, this approach is less likely to produce good models, 
since it has to handle all the problem complexity at once.

Pairwise. In the pairwise strategy, the problem of clas-
sifying K classes is decomposed into K classifiers, each 
one trained contrasting one target class with the others, 
in pairs. Thus, we can imagine the training dataset repre-
sents K × (K − 1)∕2 binary classification problems. The 
final algorithm result is given by a combination of the 
predictions of the K classifiers. Examples using GP with 
this strategy can be found in [11] and [12].

One-vs-all In the one-vs-all category, to which PIC GP 
belongs, the problem of classifying K classes is decomposed 
into K binary classification problems, contrasting each class 
with all others at once, to generate K classifiers, one for each 
target class. The predictions of these K classifiers are then 
combined by means of an algorithm, able to output the final 
classification. In GP, these K classifiers can be evolved using 
one of the following approaches:

(1) Independent runs approach. The GP is simply run 
K times, one for each class, with the dataset split for the 
corresponding one-vs-all comparison. For example, Lin 
et al. [13] used the independent runs approach, proposing 
a multi-layer system with independent GP multi popula-
tions for MCC problems. In the last layer, the solutions 
obtained in the previous layers were combined in a single 
population, and a single GP solution was produced. Chien 
et al. [14] used GP with independent runs to generate a 
rough classification function in which the fitness of the 
classifier is a mean of the normalised distance between 
the output and the threshold, considering both the correct 
and the incorrect classified data instances.

(2) Same run, different subpopulations approach. In 
this approach, the subpopulations can be totally isolated 
(in this case they are called islands), or they can exchange 
their individuals (demes). For example, Chen and Lu [15] 
used an island subpopulation approach, with the final pre-
diction being decided by majority voting among the dif-
ferent models.
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(3) Same run, same population, independent individuals 
approach. In this approach, the individuals evolve all in the 
same population, as in a standard GP implementation, but at 
each generation they are evaluated and set to be responsible 
for classifying one of the target classes. Smart and Zhang 
[16] used this approach for evolving all classifiers in a sin-
gle GP run, with solutions evaluated for every target class at 
each generation. For the GP prediction, the data instance was 
evaluated by all K solutions and was assigned to the class to 
which it had the highest probability of belonging to.

(4) Teams approach.  A team can be imagined as a tree, 
in which the root node combines the results of its members. 
Each team member is a single threshold binary classifier, 
specialised in a corresponding class. Both the team and 
its members evolve in the GP process. Thus, the two-level 
nature of evolving K classifiers, that are combined into a 
single GP solution, becomes explicit. Evolving only the 
specialists can produce strong individuals that perform 
poorly for the combined prediction. Nevertheless, the 
specialists should also evolve individually, to be able to 
improve the output of the team. For that to happen, it is 
necessary to define their individual evolution criteria, i.e. 
their individual fitnesses. Therefore, the team’s approach 
creates a new decision requirement, that is to define how 
the team fitness will be distributed among the team’s mem-
bers. This is called the credit assignment problem [17]. The 
team outcome will be the class whose specialist member 
gives a positive result. However, since more than one spe-
cialist can give a positive prediction, the team also requires 
a disambiguation procedure to define which of the posi-
tive classes will correspond to its final classification result. 
Haynes et al. [18] published pioneering work using the 
team’s approach with Strongly Typed GP. Their focus was 
in the role of crossover in making team populations evolve 
in coordination. The presented crossover operator essen-
tially controlled if individuals specialised in a target class 
could exchange genetic material with individuals special-
ised in other target classes. In a later and more complete 
publication, Haynes and Sen [19] explored more widely 
this idea and concluded that the crossover that allowed the 
exchange of genetic material among random different spe-
cialists was advantageous for the studied problem. Muni 
et al. [20] proposed a Team-based GP for MCC in which 
the specialists evolve by exchanging parts of their struc-
ture, i.e. doing crossover, only with individuals specialised 
in the same class. Besides that, the algorithm has two inter-
esting features: each specialists has its own threshold and, 
to speed up the algorithm, the learning phase is made with 
a step-wise strategy, in which not all data observations are 
used in each generation.

Some authors have also used hybrid methods, like 
we do in this work. For instance, in [17], the authors 
applied the teams approach together with the demes 

subpopulation approach for two binary classifications and 
a regression problem with Linear GP. Lichodzijewski and 
Heywood [21] presented a mixed independent individuals 
and team approach in a GP that evolves the training sub-
set, the individual binary classifiers and the team, each 
in a separate evolution process. Soule and Komireddy 
[22] also presented a mixed independent individuals and 
teams approach, in which specialist individuals evolved 
in islands and replaced team’s members. Thomason and 
Soule [23] presented a variation of this idea, in which 
teams are selected and replace individuals in islands.

Generally speaking, it is expected that the cooperation 
between specialists will favour the search space exploration 
and that the competition will favour the search space exploi-
tation. In a traditional GP, the balance between exploration 
and exploitation is carried on mainly by crossover and muta-
tion rates and the selection pressure. In a cooperative GP, the 
interaction among specialists can also help to control this 
balance. In a Linear GP study, Luke and Spector [24] found 
that restricting the interaction to individuals of the same 
specialisation improved the algorithm performance. Soule 
[25] studied a GP regression problem and concluded that 
heterogeneity among teams is necessary but not sufficient, 
while individuals’ high specialisation, that is related with 
heterogeneity, is key for improving the algorithm perfor-
mance. Nevertheless, it is still an open issue how to benefit 
from the balance between cooperation and the evolution 
of highly specialised individuals, to properly explore and 
exploit the search space, and this is the main motivation 
for our work. In the present study, variations in the level of 
specialists cooperation over time were explored. Individu-
als can be distributed in class-based demes, work fully as 
islands or begin the algorithm in demes and progressively 
be detached into islands. Thus, by controlling the level of 
cooperation among specialists, exploration can be favoured 
in the beginning of the evolution and exploitation can be 
intensified as the algorithm evolves.

Progressive Insular Cooperative GP

The system studied in this work, Progressively insular 
cooperative (PIC) GP, is a one-vs-all mixed individuals 
and teams approach for cooperative MCC. Algorithm 1 
describes with pseudocode the main steps of PIC GP. 
The implementation was made in Python 3.9, with 
the numpy, scipy and ski_measures libraries. Its 
general structure is exemplified in Fig. 1, for a 3-class 
classification problem, consisting in categorising data 
observations into classes C1 , C2 and C3.

The system is composed of two main populations, evolv-
ing at the same time: the population of specialists and the 
population of teams. The population of specialists is, in turn, 
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partitioned into a number of subpopulations equal to the num-
ber of target classes. Each one of these subpopulations i con-
tains individuals specialised in the classification of class Ci . 
The level of cooperation between specialists of different sub-
populations is controlled by only two parameters: the coop-
eration intensity rate (CIR) and the generation in which the 
algorithm should convert the specialised subpopulations from 
demes into islands. A third parameter, the CIR decrease rate, 
adjusts the CIR over the algorithm evolution. For example, the 
subpopulations of specialists can begin as demes (with high 
level of cooperation between specialists), but further in the 
evolution they can become islands (independent and isolated 
subpopulations, with no cooperation between them). The fact 

that the level of cooperation among specialists over the algo-
rithm evolution is entirely customisable is one of key features 
of PIC GP and it is one the main novelties of this work. Addi-
tionally, in PIC GP, the selection method of the specialists is 
different from standard GP, in order to work with two parents 
at a time and foster cooperation. A team in PIC GP contains 
one specialist from each of the subpopulations and combines 
the results of the classifiers of all target classes. The evolu-
tion of the teams is also modified from the standard GP. At 
each generation, as the teams evolve, its population is replaced 
half by teams’ offspring and half by new teams composed of 
evolved specialists. The following subsections describe in 
detail how each step of PIC GP works.
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Specialists Evolution Components

Specialists and Their Fitness

The solutions that we call specialists are trees. Each 
tree is labelled with an attribute that represents the 
class that this individual should classify in a binary 
one-vs-all classification task. Let C be that class label. 
To classify instances, the tree has a logistic function 
( S(x) = 1∕(1 + e−x) ) at its root node and uses the threshold 
0.5 for classes discrimination (instances with an output 
greater than 0.5 are classified as belonging to class C, 
while the other instances are identified as not belong-
ing to class C), as it is usual, for instance, in Perceptron 
artificial neural networks. The chosen fitness function 
for the specialists was the f-score measure. This is the 
harmonic mean of precision and recall rates of a target 
class, being the precision the proportion of true positive 
over all positive classifications and the recall, the pro-
portion of true positive over all positive observations in 
the data. This measure was chosen because, contrarily to 
accuracy, it is a reliable measure of performance also in 
presence of unbalanced data. The definition of the class 
in which individuals are specialised can be done in three 
ways: (i) it can be simply defined as the class for which 
the individual has a higher fitness, (ii) it can be assigned 
by the algorithm to balance the number of specialists in 
the population, or (iii) it can be the specialisation class 
of the parents of the solution if the algorithm is in the 
islands phase.

Specialists Initial Population

Like in traditional GP, the specialists population is initial-
ised using the ramped half-and-half method [1]. Special-
ists are firstly assigned to the class label for which they 

work better. Then, to ensure that there will be special-
ists of all classes in the initial population, individuals in 
classes with exceeding specialists are relocated. For each 
class, only the N/K best individuals are kept, where N is 
the size of the entire specialists population and K is the 
number of class labels in the dataset. If there are more 
than N/K individuals specialised in a class, the weaker 
are randomly changed to other specialisation classes, in 
which the number of individuals is less than N/K.

Specialist Solutions Selection

If the algorithm is in islands phase, the selection is made 
with roulette wheel or tournament selection, as in a stand-
ard GP. If the algorithm is in demes phase, the special-
ists selection algorithm works with two individuals at a 
time. Algorithm 2 shows the PIC GP specialists’ selec-
tion method for the demes phase. To keep the balance of 
specialists in the population, the first parent is selected 
with roulette wheel or tournament selection from a spe-
cific deme. The second parent is selected with roulette 
wheel or tournament over the entire population, but the 
fitnesses of the specialists are weighted by means of the 
cooperation intensity rate parameter (see the paragraph 
below). This parameter controls the quantity of coopera-
tion between individuals from different specialisations.

It is worth mentioning that the selection does not 
determine the class of the second parent. Moreover, it is 
not guaranteed that the offspring individuals will belong 
to the same specialisation class as the parents. Conse-
quently, in the end of a generation, the proportion of 
individuals in each specialisation may change. Despite 
this, it is enough to control the class of the first parent to 
keep the number of individuals in specialisation groups 
approximately balanced. 

Fig. 1   A simplified graphical 
representation of the PIC GP 
system, for an ideal 3-classes 
classification problem. Two 
populations (the specialists 
population and the teams popu-
lation) are evolved at the same 
time. The specialists population 
is, in turn, partitioned into a 
number of subpopulations equal 
to the number of classes. Each 
individual in the teams popula-
tion contains one specialist 
coming from each one of these 
subpopulations.
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where �g is the CIR at generation g, �g−1 is the CIR at gen-
eration g − 1 and �dec ∈ [0, 1] is the CIR decrease rate. The 
decrease rate reduces constantly, at each generation, the rate 
of cooperation among specialists. However, if using tourna-
ment selection, even with � = 0 this process cannot convert 
the algorithm into an island approach. As the first step in 
tournament selection is purely random, it can happen that 
only individuals with fitness equal to zero are chosen to take 
part in the tournament, and so even a zero-fitness individual 
can be selected. In other words, decreasing the fitness of an 
individual to zero does not guarantee that the individual will 
not be selected. Consequently, it is not guaranteed that with 
� = 0 individuals with different specialisation will not coop-
erate. Therefore, to transform the specialists subpopulations 
from demes to islands, a phase change parameter is needed. 
The value of this parameter corresponds to the generation in 
which the specialists subpopulations should be transformed 
from demes to islands. Notice that this parameter also allows 
a transformation of the demes into islands without having 
the CIR equals to zero.

With these three parameters (CIR, CIR decrease rate 
and phase change), the specialised subpopulations can 
begin the evolution with a defined level of cooperation, 
that is reduced over the generations, up to a moment in 
which they do not cooperate anymore.

PIC GP Parameters: CIR, CIR Decrease Rate and Phase 
Change

The main parameter to control the intensity of the coop-
eration among specialists is the cooperation intensity 
rate (CIR). It is indicated by � and assumes values in the 
[0, 1] interval. When the algorithm is in the demes phase, 
as mentioned in Sect. 3.1.3, the second step of special-
ists selection selects individuals from the entire special-
ists population. The CIR is used to lower the fitness of 
individuals from other specialisations according to Eq. 1.

where f ′
i
 is the new fitness of specialist i, fi is the usual fit-

ness of specialist i, �g is the CIR ate generation g, ki is the 
specialisation class of the specialist i and k1 is the specialisa-
tion class of the first parent. Therefore, if CIR is equals to 
1.00, the cooperation between different specialists is maxi-
mum. As CIR decreases, the fitnesses of the specialists of 
other classes become smaller and they will have a lower 
probability of being selected to make crossover with the par-
ent that was selected in the first step of the selection method.

The CIR can be decreased over the evolution by the 
CIR decrease rate parameter, according to Eq. 2.

(1)f �
i
=

{

fi × �dec if ki ≠ k1
fi otherwise

(2)�g = �g−1 × �dec,
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Specialist Solutions Genetic Operators

For specialists crossover and mutation, in this work the 
PIC GP uses one point crossover with two offspring and 
one-point mutation [1]. However, the method is general 
and, in principle, any existing tree-based GP genetic oper-
ator can be used. When the algorithm is in demes phase, 
the offspring will be assigned to the class for which it 
works better. So, it does not depend on the parents spe-
cialisation class(es). When the algorithm is in islands 
phase, the specialisation class of the offspring is automat-
ically the same as the specialisation class of the parents.

Teams Evolution Components

Teams Structure and Their Fitness

In PIC GP, a team is a tree with a prediction function at 
its root node, with arity equal to K, being K the number 
of target classes in the dataset, and with one specialist of 
each class (the team members) in each one of the root’s 
subtrees.

The teams fitness used in the present work is the accu-
racy of the final algorithm classification (Eq. 3).

where TP is the number of true positives, TN is the number 
of true negatives, FP is the number of false positives and FN 
is the number of false negatives. The accuracy was chosen 
to make it possible to compare the PIC GP with the results 
of other classification algorithms from the literature. None-
theless, any metric that assesses the performance of a clas-
sification algorithm, like the f-score used here as the fitness 
of the specialists, can be used.

Teams Initialisation

The teams population starts with one special team, cre-
ated deterministically with the elite of each specialists 
subpopulations (i.e. the best individual in each special-
ists’ subpopulation). The other teams are created with 
specialists selected with a roulette wheel selection from 
the specialists’ subpopulations.

Teams Genetic Operators

The crossover of teams exchanges entire specialists 
between parents. At each crossover operation, one class is 
randomly selected with uniform distribution and the team 
members of this class are exchanged between the team 

(3)acc =
TP + TN

TP + FP + TN + FN

parents. Mutation substitutes the weaker specialist of the 
team, i.e. the team member with the lowest fitness, by 
an individual with the same specialisation selected from 
the specialists population with a roulette wheel selection.

Teams Prediction

When working with teams for MCC, if only one of its 
members gives the positive prediction, the specialisation 
class of this member becomes the team prediction. How-
ever, when there is more than one positive result among 
team members or if none of them provides a positive 
prediction, a disambiguation procedure is needed. In the 
present work, the team prediction is given by one of the 
following options in such cases:

–	 softmax: the logistic outcomes of the team members 
are standardised in a probability distribution with the 
softmax function (Eq. 4). The class with highest prob-
ability is the team outcome. 

 where � is the K-dimensional vector of the specialists 
logistic outcomes for each i=1,2,...,K.

–	 weighted softmax: the logistic outcomes of the team 
members are weighted according to the quality of their 
fitness (Eq. 5). 

 where l′ is the weighted logistic value of the ith member 
of the team, li is its original logistic outcome, fi its fitness 
and sf is the sum of the fitnesses of all team members. 
These weighted values are standardised in a probability 
distribution with the softmax function and the class with 
highest probability is the team outcome. In few words, 
this team prediction method takes into consideration 
that not all the team members have the same quality in 
their predictions. Therefore, before using the specialists 
logistic outcomes in the softmax function, the logistic 
outcomes of the team members are weighted by their 
respective fitness, which is a measure of the quality of 
their individual prediction.

–	 hierarchical: the binary predictions of the team mem-
bers are used sequentially, giving precedence to indi-
viduals with higher fitnesses, until the first positive 
result is achieved. The team outcome is the speciali-
sation class of its member with the first positive out-
come. This team prediction method also takes into 
consideration that not all the team members have the 

(4)�(�)j =
ezj

∑K

k=1
ezk

, j = 1, 2,… ,K

(5)l�
i
=

�

(li − 0.5) ×
fi

∑K

k=1
fk

�

+ 0.5
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same quality in their predictions. However, it gives 
more importance to the individual fitness of the team 
members than the weighted softmax method.

Experimental Study

Test Problems and Experimental Settings

All experiments were run 30 times, each with a different 
data partition, in which 80% of the observations were 
selected randomly with uniform distribution to form the 
training set, 10% to form the validation set and 10% the 
test set. The validation set was used for parameter tuning 
(the parameter setting chosen for the final experiments 
was the one that returned the best results on the valida-
tion set), while the (unseen) test set was used to report 
the final results. This is exactly the same data partition-
ing scheme as the one used in [26]. Table 1 shows the six 
MCC datasets from the UCI Machine Learning Reposi-
tory [27] that were studied.

The IRS was used to explore the PIC GP dynamics and 
how it is influenced by its parameters. IRS is a widely 
studied dataset, with 3 target classes (three flower spe-
cies) and the simplicity of the data structure in this data-
set is beneficial to the comprehension of the algorithm 
dynamics. The target class setosa is the easiest to classify, 
since it is linearly separable from the other two species, 
based on petal length and width. The versicolor is the 
hardest to classify, because the values of its features are 
overlapped by the values of the other two classes. The 
PGB, SHT, THY, WNE and the YST datasets were used 
to compare PIC GP with other state-of-the-art classifica-
tion algorithms.

In all runs, the trees were initialised with an initial 
maximum depth equal to 3. Specialists elitism and teams 
elitism (i.e. copy of the best individual in these popula-
tions, into the next generation, without modification) were 
always used. The primitive functions used to build the 
specialists were + , −, × and protected ÷ (the denomina-
tor was replaced by the constant 10e−6 when it was zero). 
The terminal set was composed by ephemeral constants 

Table 1   Summary of the 
benchmark datasets from UCI 
machine learning repository 
used in the experiments

Dataset Number of 
classes

Number of 
features

Training set size Validation set 
size

Test set size

Iris (IRS) 3 4 120 15 15
Page block (PGB) 5 10 4378 547 548
Shuttle (SHT) 7 9 46400 5800 5800
Thyroid (THY) 3 21 5760 720 720
Wine (WNE) 3 13 142 18 18
Yeast (YST) 10 8 1187 148 149

Table 2   PIC GP base settings 
used in the experiments. T2 and 
T3 are Tournament selection, 
respectively with sizes 2 and 3, 
and RW is the Roulette Wheel 
selection method

Sfm is the team prediction method called Softmax. Hrc is the team prediction method called Hierarchical

PIC GP settings IRS PGB SHT THY WNE YST

Specialists evolution
  Trees maximum depth 6 24 12 10 12 10
  Population size 90 250 240 90 200 120
  Parent 1 selection T3 T2 T2 T3 T2 T3
  Parent 2 selection T3 T2 T2 T2 T2 RW
  Crossover probability 0.8 0.2 0.2 0.8 0.2 0.8
  Mutation probability 0.2 0.8 0.8 0.2 0.8 0.2
  Maximum generations 250 250 500 250 500 300
  Phase change 200 200 400 200 375 240
  Initial CIR 1.00 1.00 1.00 1.00 1.00 1.00
  CIR decrease 0.00 1e

−4
1e

−4 0.00 1e
−4 0.00

Teams evolution
  Population size 0 12 24 0 25 0
  Crossover probability 0 0.5 0.5 0 0.3 0
  Mutation probability 0 0.5 0.5 0 0.7 0
  Prediction method Sfm Sfm Sfm Sfm Hrc Sfm
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from [0, 1), in addition to the dataset features. The other 
default parameter settings are presented in Table  2. They 
were decided in a preliminary experimental tuning phase, 
choosing the configuration that was able to return the best 
fitness on the validation set. The modified settings for 
each experiment on the IRS dataset are presented in the 
corresponding section.

Experimental Results

Dataset Imbalance

To train the specialists of each class, the full dataset was 
divided into two parts, the positive cases (with instances 
that belong to the specialisation class of the individual to 
be evaluated) and the negative cases (with the instances 
that do not belong to that target class). One problem that 
can arise from this procedure is that it may produce train-
ing data with significant imbalance between the positive 
and negative classes. In this scenario, the class with fewer 
observations is more likely to be misclassified than the 
class with more observations [28].

When working with teams, the data imbalance created 
or increased by the one-vs-all approach does not impact 
directly the final algorithm prediction ability, since the 
algorithm prediction results from the combination of the 
specialists outcomes. Only if the data imbalance worsen 

significantly the specialists performance, it will have an 
effect on the quality of the final algorithm prediction.

To evaluate this issue, the individual datasets used to 
train the specialists of each target class were balanced 
back with undersampling. The experiment was run with 
all default parameters presented in Table 2. The data bal-
ancing procedure did not improved the final algorithm 
accuracy. Without balancing the individual datasets, the 
mean accuracy of the 30 runs was 0.967(±0.042) in the test 
set and with the balanced datasets it was 0.964(±0.049) . In 
addition to the fact that the individual datasets imbalance 
were not expected to impact the accuracy of the team, two 
other factors may have contributed to this result: (i) the 
imbalance in the one-vs-all datasets was modest (33.33% 
of positive and 66.67% of negative instances) and (ii) the 
fitness of the specialists used in all experiments was the 
f-score. This measure is the harmonic mean of precision 
and recall of a target class (see Sect. 3.1.1) and, therefore, 
it makes the specialists more robust to dataset imbalance.

Specialists Selection Methods

In this set of experiments, we are interested in compar-
ing between each other several different selection meth-
ods for the specialists populations. The methods used in 
these experiments were: tournament of size 3 for the first 
parent and roulette wheel for the second (T3_R); rou-
lette wheel for the first parent and tournament of size 3 

Fig. 2   Effect of the selection method of the second parent on the evolution of mean and standard deviation of the amount of the specialists coop-
eration (i.e. crossovers between specialists of different classes) against generations, for each specialists selection method
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for the second  (R_T3); tournament of size 3 for both 
parents (T3_T3); tournament of size 5 for the first par-
ent and roulette wheel for the second (T5_R); roulette 
wheel for the first parent and tournament of size 5 for 
the second (R_T5); and tournament of size 5 for both 
parents  (T5_T5). For all these selection methods, the 
best accuracy for the test partition was 1.000. The accu-
racy mean for the test partition was 0.978 ± (0.036sd) 
for T5_T5, 0.967 ± (0.042 sd) for R_T5 and T3_T3, 
0.953 ± (0.056 sd) for R_T3, 0.953 ± (0.047 sd) for T3_R 
and 0.951 ± (0.068 sd) for T5_R. The differences were not 
significant (p value 0.267 for a one-way ANOVA test).

The selection methods for first and second parents 
have different effects in PIC GP. The selection of the 
first parent just controls the selection pressure inside the 
subpopulation of one single specialisation class. Besides 
the selection pressure, the selection of the second parent 
also controls the cooperation among specialists of differ-
ent classes. This can be seen in Fig. 2, which shows the 
evolution of the amount of cooperation between special-
ists from different classes, for the tested selection meth-
ods. More in particular, this figure shows the average and 
standard deviation of the number of events in which indi-
viduals belonging to two different specialists subpopula-
tions are selected for crossover.

Independently of the selection method used for the 
first parent, the amount of cooperation among specialists 
of different classes was the same for the same selection 
method used in the second parent (T3_R is very similar 

to T5_R; R_T3 to T3_T3; and R_T5 to T5_T5). Moreo-
ver, the bigger the tournament for the second parent, the 
more cooperation among different specialists happened 
in each generation. The first step of tournament selection 
is completely random, i.e. it is not related with the indi-
viduals’ fitnesses. However, the number of individuals in 
each class subpopulation affects the selection pressure, 
favouring individuals of the more abundant subpopula-
tion. In addition to the fact that the first parent is chosen 
to balance the number of individuals among the speciali-
sation classes, favouring the more abundant class in the 
second parent selection increased the cooperation among 
classes. Since the setosa class is the easiest to discrimi-
nate, its specialists tend to have higher fitness and, hence, 
to be predominant in the population. This can be seen in 
Fig. 3, which shows the mean of the number of individu-
als in each class subpopulation for each generation of the 
T3_T3 and T5_T5 experiments.

These plots show that in the demes phase of the algo-
rithm, for both tournament sizes, the number of versicolor 
specialists tended to decrease, while the number of setosa 
specialists tended to increase. The number of virginica 
specialists tended to decrease for the tournament size 3 
and to decrease in the beginning of the evolution process 
but to increase afterwards for the tournament size 5. So, 
in a situation under higher selection pressure, the differ-
ence in the fitnesses of versicolor and virginica special-
ists was more decisive for the selection method outcome.

Fig. 3   Evolution of the number of specialised individuals in each class subpopulation against generations for each specialists selection method



SN Computer Science (2022) 3:119	 Page 11 of 16  119

SN Computer Science

Cooperation Intensity Rate

The objective of this second part of our experimental 
study is to understand the influence of the CIR parameter 
on the dynamics of PIC GP. The following values of CIR 
were tested: 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. For all experi-
ments, the CIR was kept constant for the entire PIC GP 
evolution. The best runs of all CIR experiments achieved 
accuracy of 1.000 for the test set for CIR0.6 and CIR 0.8. 
The highest mean accuracy in the test set was obtained for 
CIR 0.6, 0.973 ± (0.041 sd) . Nevertheless, the differences 
among the accuracies obtained in the CIR experiments 
were not statistically significant (p value 0.843 for a one-
way ANOVA test).

As shown in Fig. 4, the amount of specialists coopera-
tion presented different behavior for different CIR values. 

The specialists cooperation decreased slightly along the 
evolution in experiments with CIR from 0.0 to 0.4. For 
CIR equal  to 0.6 and 0.8, they reached a maximum in 
the early generations, decreasing afterwards. For CIR 
equal to 1.0, in contrast, they steadily increased along 
the evolution. In general, the specialists cooperation 
increased with the increase of CIR. However, this cor-
relation was not linear, because it also depends on the 
number of individuals in each class specialisation, since 
tournament was used as selection method. The bigger 
the difference in the number of individuals among the 
specialised subpopulations, the more the individuals of 
different specialisations cooperate when using the tourna-
ment selection for the second parent. For CIR values from 
0.0 to 0.4, the number of individuals in each speciali-
sation subpopulation was stable and balanced. For CIR 

Fig. 4   Evolution of the mean and one standard deviation of the specialists interactions against generations for each CIR values experiment

Table 3   Mean of differences 
between the mean fitnesses 
of the class subpopulations 
50 generations before and 50 
generations after the phase 
change

Class CIR Before After Diff CIR Before After Diff

Setosa 0.845 0.913  0.086 0.873 0.897  0.024
Versicolor 0.0 0.671 0.757  0.077 0.6 0.754 0.793  0.039
Virginica 0.741 0.818  0.064 0.780 0.818  0.038
Setosa 0.856 0.910  0.054 0.873 0.893  0.020
Versicolor 0.2 0.743 0.791  0.049 0.8 0.752 0.780  0.028
Virginica 0.780 0.816  0.037 0.802 0.816  0.013
Setosa 0.843 0.902  0.059 0.893 0.892  −0.001
Versicolor 0.4 0.756 0.794  0.038 1.0 0.799 0.811  0.012
Virginica 0.763 0.799  0.035 0.796 0.809  0.014
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equal to 0.60 and 0.8m the setosa specialists started to 
prevail at the expense of versicolor and virginica special-
ists. But this pattern tended to smooth with the algorithm 
evolution, more intensely for CIR equal to 0.6 and less for 
CIR equal to 0.8. For CIR equal tp 1.0, the prevalence of 
setosa individuals lasted for the entire demes phase. The 
CIR value was also important for the mean fitness of class 
subpopulations during the evolution: with higher CIR 
values, i.e. with more cooperation between specialists of 
different classes, the mean fitness of the class subpopu-
lations increased earlier for all classes. Furthermore, the 
mean fitness of the specialised subpopulations increased 
more with the phase change for smaller values of CIR, as 
Table 3 shows.

Before the phase change, the subpopulations of spe-
cialists of the classes setosa and versicolor had higher 
mean fitness for CIR equal to 1.0 and the virginica class 
for CIR equal to 0.8. Comparing only the values before 
the phase change, the weakest class subpopulation (ver-
sicolor, which is the hardest to separate) presented the 
greatest difference (0.128) between the mean fitness 
with CIR equal to 0.0 and with CIR equal to 1.0. For the 
virginica class subpopulation, this difference was 0.055 
and for the setosa, it was 0.048. After the phase change, 
setosa had the higher mean fitness with CIR equal to 0.0 
(0.913), versicolor with CIR equal to 1.0 (0.811) and vir-
ginica with CIR equal to 0.0 and 0.6 (0.818).

Table 3 also shows that the smaller the CIR value, the 
bigger the difference between the subpopulations mean 
fitness before and after the phase change. This is due to 
both smaller mean fitness values before the phase change 
and higher values after the phase change. Although with 
CIR equal to 0.0 the mean fitness of the specialised sub-
populations increased more with the phase change, for the 
weakest classifier subpopulation (versicolor) the highest 
mean fitness was reached with CIR equal  to 1.0, after 
phase change. This was not observed for the strongest 

classifier subpopulation (setosa), for which the highest 
mean fitness was reached with CIR equal  to 0.0, after 
phase change. Thus, a higher CIR value favoured an 
improvement of the subpopulation of weaker classifiers.

Two interesting conclusions can be drawn from the 
results presented above. First, before the change of phase 
(i.e. in the demes phase) the cooperation among the spe-
cialists of different classes was helpful, especially for 
the weaker classifiers. Second, the islands phase is also 
important for subpopulations to evolve. Both demes and 
islands seem to be important for achieving the best algo-
rithm performance.

Cooperation Intensity Decrease Rate

Now, we study the influence of the CIR decrease rate on 
the PIC GP dynamics. The following values of the CIR 
decrease rates were tested: 8.2e−4 , 5.3e−4 and 2.6e−4 , to 
decrease the CIR from 1.00 respectively to 0.85, 0.90 and 
0.95 at the end of the demes phase. The constant decrease 
of the CIR worsened the algorithm final accuracy from 
0.967 with no CIR decrease, to 0.920 with final CIR 
equal to 0.85 (p value equal to 0.017 in a Tukey HSD test 
for this pair of means). For final CIR values equal to 0.90 
and 0.95, the mean was also smaller than for the experi-
ments without CIR decreasing (0.931 and 0.942, respec-
tively), but the difference was not statistically significant.

These results indicate that for the IRS dataset, the 
maximum cooperation among specialists over the entire 
demes phase was beneficial.

Phase Change

We now present the experiments aimed at understand-
ing the influence of the phase change on the dynamics 
of PIC GP. Four values of the phase change were tested: 

Fig. 5   Evolution of team fitness using three different teams prediction methods. The solid line is the mean fitness (accuracy) over 30 runs and 
the envelope is the region of the mean plus and minus one standard deviation
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0 (full islands evolution), 125, 200 and 250 (full demes). 
The accuracy mean was 0.980 ± (0.036 sd) for the phase 
change at generation 125, 0.967 ± (0.042 sd) for the phase 
change at generation 200, 0.962 ± (0.049 sd) for the phase 
change at generation 0 (full islands) and 0.960 ± (0.057 sd) 
for the phase change at generation 250 (full demes). These 
results indicate that combining the demes and islands 
phases can be convenient.

Teams Prediction Method

The teams prediction method defines how the special-
ists will collaborate to give the final algorithm predic-
tion. Three methods were studied: hierarchical, weighted 
softmax and softmax, as described in Sect. 3.2.4. They 
all performed similarly for the IRS dataset: the mean 
test accuracies using the hierarchical, the weighted soft-
max and the softmax methods were 0.933 ± (0.129 sd) , 
0.960 ± (0.045 sd) and 0.967 ± (0.042 sd) , respectively. The 
differences were not significant (p value 0.258 for a one-
way ANOVA test). However, it is interesting to notice 
that the standard deviation of the hierarchical prediction 
method was much higher than those of the weighted soft-
max and softmax methods. This can be seen also in Fig. 5, 
which shows the mean and standard deviation of the fit-
ness of the team solution over the algorithm evolution. 
It is clear from these plots that the hierarchical predic-
tion gave more unstable results, while the two methods 
using the softmax function were more consistent, with 
the pure softmax prediction method providing the most 
stable results.

The collaboration among team member solutions is a 
type of ensemble of algorithms. The hierarchical method 
is the one that prioritises the most the stronger members 
of the team. Conversely, the other two give the algorithm 
the chance to create a greater collaboration amongst the 
team members. It is interesting to observe that the lower 
the degree of collaboration among team members (hier-
archical prediction << weighted softmax < softmax), the 
highest the variability of the team fitness. These results 
are expected considering that the collaboration among the 
team members works like an ensemble of the specialist 
classifiers and ensembles make the system more robust 
[29].

Performance Indicators

In addition to the experiments to study the behaviour of 
the PIC GP in relation to its hyperparameters, in this sec-
tion we present some indicators of the algorithm perfor-
mance. Using the IRS dataset as a benchmark, the aver-
age time of the train phase was 17 min and 55 s with 
standard deviation of 2 min and 35 s. The running time 

of population-based optimisation algorithms tend to be 
high exactly because there are many solutions to be evalu-
ated over the optimisation process, and this is the case of 
PIC GP. In addition, the one-vs-all approach increases the 
number of individuals needed to the optimisation. How-
ever, the demes phase allows the algorithm work with 
less individuals. Thus, even with a high computational 
cost, the PIC GP can represent a good strategy to improve 
the GP performance for a one-vs-all approach in MCC 
problems.

Considering the data of all experiments, the average 
of trees sizes in the whole population at the last genera-
tion ranged from 32.48 to 171.86, with mean 63.04 and 
standard deviation 15.56. The genotype diversity, evalu-
ated for each subpopulation as the number of different 
tree structures in a population divided by the number of 
individuals in the population, ranged from 0.53 to 0.99, 
with mean 0.83 and standard deviation 0.08. The pheno-
type diversity, evaluated for each subpopulation as the 
variance of the fitnesses of the individuals of the whole 
population, ranged from 0.01 to 0.15, with mean 0.07 and 
standard deviation 0.03.

Comparison of PIC GP with Other Machine Learning 
Algorithms

The objective of this final part of our experimental study 
is to assess the competitiveness of PIC GP, by comparing 
its performance with a set of state-of-the art classifica-
tion algorithms. In this experiments, the best accuracies of 
PIC GP for the PGB, SHT, THY, WNE and YST datasets 
were compared to other 11 machine learning algorithms 

Table 4   Best accuracy for PIC GP and the achieved accuracy for each 
classifier reported in [26] for the PGB, SHT, THY, WNE and YST 
datasets

(+) indicates the algorithms that performed better than PIC  GP, (−) 
those that performed worse to PIC GP

Algorithm   PGB   SHT   THY   WNE   YST  

PIC GP 0.978 0.997 0.992 0.941 0.642
SCR 0.907

(−)
0.982

(−)
0.903

(−)
0.944

(+)
0.574

(−)

GDBT 0.889
(−)

0.995
(−)

1.000
(+)

1.000
(+)

0.622
(−)

KNN 0.907
(−)

0.986
(−)

0.903
(−)

0.833
(−)

0.574
(−)

RF 0.926
(−)

0.995
(−)

1.000
(+)

0.944
(+)

0.622
(−)

LR 0.926
(−)

0.972
(−)

0.931
(−)

0.889
(−)

0.621
(−)

ELM 0.870
(−)

0.990
(−)

0.903
(−)

0.722
(−)

0.649
(+)

AB 0.889
(−)

0.995
(−)

0.931
(−)

0.889
(−)

0.412
(−)

SVM 0.944
(−)

0.959
(−)

0.903
(−)

0.944
(+)

0.629
(−)

NB 0.907
(−)

0.940
(−)

0.903
(−)

0.944
(+)

0.595
(−)

C4.5 0.926
(−)

0.995
(−)

0.986
(−)

1.000
(+)

0.513
(−)

DL 0.870(−) 0.756
(−)

0.903
(−)

0.278
(−)

0.331
(−)
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for MCC studied by Zhang et al. [26]. The algorithms are: 
stochastic gradient boosting decision trees (GBDT), ran-
dom forests (RF), extreme learning machine (ELM), sup-
port vector machine (SVM), C4.5, sparse representation 
based classification (SRC), KNN, logistic regression (LR), 
AdaBoost (AB), NB and deep learning (DL). Zhang et al. 
[26] do not provide the values of the hyperparameters 
used in their experiments. However, they give information 
regarding the tuning of the hyperparameters. For GDBT, 
they tuned all combinations of learning rate with values 
in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] and of the 
number of nodes in each individual regression tree with 
values in [1, 2, 3, 4]. For RF, they kept the number of trees 
fixed to 100 and they tuned the number of features used by 
the individual classifiers with values from 1 to the number 
of features of the dateset. For ELM, they tested values of 
the regularization coefficient from 1 until 100 and of the 
kernel parameter from 1 until 150, both ranges with step 
of 1. For SVM, they have used they precomputed kernel, 
which does not require other hyperparameters tuning. For 
KNN, they tried different values for the number of clus-
ters. For the other algorithms (C4.5, SRC, LR, AB, NB, 
DL), they used their default parameters.

As Table 4 shows, PIC GP outperformed all other meth-
ods for SHT and PGB datasets. The difference for the sec-
ond best algorithm was small in both problems (0.02 and 
0.034, respectively). Regarding the THY and YST data-
sets, the performance of PIC GP was also excellent: it 
outperformed, respectively, 9 and 10 of the 11 algorithms. 
It is worth to mention that for the THY dataset, it was just 
slightly outperformed only by GDBT and RF. With the 
WNE dataset, PIC GP was outformed by 6 of the algo-
rithms. Again, the difference between the best accuracy of 
PIC GP and the algorithms by which it was outperformed 
was small (0.056 with GDBT and C4.5 and 0.003 with 
SCR, RF, SVM and NB).

PIC GP outperformed some other results found in the 
literature. For example, Tsakonas [30] tested four gram-
mar-guided GP configurations on the THY dataset: with 
decision trees, with fuzzy rule-based training, with fuzzy 
petri-nets and with neural networks. The best obtained 
accuracies were respectively 0.976, 0.941, 0.940 and 
0.940 for the test set. Ionita and Ionita [31] also compared 
methods of machine learning for this dataset. They found 
that the best runs for Naive Bayes (NB), decision trees, 
multilayer perceptron and radial basis function network 
achieved classification accuracies of 0.917, 0.969, 0.951 
and 0.960, respectively. Concerning the experiments on 
the YST dataset, the accuracy achieved by PIC GP is com-
parable with some results found in the literature, again 
confirming the robustness of the algorithm. Muñoz et al. 
[3], for instance, found a median accuracy of 0.562 for this 
dataset, using a MCC GP wrapper algorithm.

Conclusions

This work presented an empirical study of PIC GP, a 
robust and accurate GP system for MCC. PIC GP com-
bines the advantages of evolving both individuals that 
are strongly specialised in the classification of the sin-
gle target classes, and teams that combine the results of 
those individuals to obtain the final prediction for MCC 
problems. Specialists and teams are evolved at the same 
time, in two independent populations, and the specialists 
population is further partitioned into subpopulations, one 
for each different target class. The algorithm is named 
progressively insular cooperative (PIC) GP because its key 
feature is the possibility to control the level of cooperation 
between specialised individuals from a high level of coop-
eration (where the specialists subpopulations are demes), 
to a complete separation of the specialists subpopulations 
(islands). The modifications made in the standard GP for 
the evolution of specialist individuals were the introduc-
tion of new parameters, changes in the selection step and 
modifications in the individuals’ fitness measures. The 
new parameters that were introduced are the coopera-
tion intensity rate (CIR), the rate of CIR decrease over 
the algorithm evolution and the generation in which the 
algorithm starts working with totally separated specialised 
subpopulations (islands). The selection step was modified 
to control the interaction between specialists of different 
classes, using the introduced parameters. The modifica-
tions made in the team evolution were in the prediction 
of the team individual, the team mutation and crossover 
operators and the teams population replacement. For the 
latter, instead of replacing the teams population only by 
their offspring, at each generation a new team population 
was created with a combination of teams’ offspring and 
new teams formed by evolved specialists. Even though the 
idea of using mixed teams and specialised subpopulations 
is not new, PIC GP contains, at least, the following ele-
ments of novelty: (1) the combination of the demes and 
islands phase in different stages of the evolution; (2) the 
parametrisation to control the cooperation intensity; and 
(3) the functioning of the teams population, in which, at 
each generation, the teams evolution is combined with the 
input of new evolved specialists.

An empirical study was carried out with the Iris dataset 
to explore the impact of the PIC GP parameters on the 
dynamics of the system. The Iris dataset is well-known 
and its characteristics favour the exploration of the role 
of the algorithm parameters on its evolution because one 
of its target classes is linearly separable while another 
is quite hard to discriminate. Therefore, it was possible 
to understand better how competition among individuals 
and cooperation among specialists can boost the algorithm 
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evolution. Importantly, this work clarified a major ques-
tion from literature: team-based GP can benefit both from 
the cooperation among specialists of different classes and 
from a more restricted process, where only an interac-
tion among individuals specialized in the same class is 
allowed. The contribution of each approach to the algo-
rithm’s performance will depend on the performance of 
each group of specialised individuals. A demes approach 
helps weaker groups of specialist classifiers, because they 
may benefit from receiving crucial genetic material from 
stronger groups. An island approach, on the other hand, 
allows strong classifiers to evolve to their best potential. 
The presented results indicate that the combination of both 
approaches may be the best strategy, at least for the studied 
test problems. Starting with a demes approach is impor-
tant to improve the weaker performers. Later, when all 
groups are strong, the algorithm can change to an islands 
approach, to allow all the specialised classifiers to reach 
their best performance.

Additionally, PIC GP was compared to a set of state-
of-the-art classification algorithms using the Page Blocks, 
Shuttle, Thyroid, Wine and Yeast datasets (these five data-
sets are publicly available in the UCI machine learning 
repository [27]). The results presented in this paper show 
that PIC GP outperforms the majority of its competitors.

In the near future, we are planning to begin a vast test-
ing phase of PIC GP on numerous and more complex data-
sets, implementing more sophisticated genetic operators 
for the specialists and for the teams and selection meth-
ods, for the specialists which are expected to improve the 
PIC GP performance. The main limitation of PIC GP is 
its computational cost, but the demes phase can help to 
reduce it. Thus, we are planning to study how to properly 
chose the size of the specialists’ subpopulations, combined 
with the phase change parameter. This study also will take 
into account that subpopulations with higher average fit-
ness may need less individuals. Therefore, the size of the 
subpopulations could be dinamically adjusted over the 
algorithm evolution to reduce the number of individuals 
of the stronger subpopulations and at the same time to 
increase the number of individuals in the weaker subpopu-
lations. This is expected to speed up the learn phase of PIC 
GP. Besides that, a version of the algorithm for regression 
problems will be implemented.
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