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Abstract.  Seniors are the fastest growing segment of populations not only in 

many parts of Europe, but also in Japan and the United States. ICT technologies 

are not  very popular among many elderly and also are not designed around 

their cultural necessities and ergonomic needs. The risk is that in the very near 

future this growing segment will be digitally isolated, in a society that is more 

and more based on ICT as infrastructure for service, and communications. 

Easy Reach Project proposes an ergonomic application to break social isola-

tion through social interaction to help the elderly to overcome  barrier of the 

digital divide.   This paper focuses its attention on the development of the tech-

nology and algorithms used as Human Computer Interface of the Easy Reach 

Project, that exploits inertial sensors to detect gestures. 

Many experimental algorithms for gesture recognition have been developed 

using inertial sensors in conjunction with other sensors or devices, or by them-

selves, but they have not been thoroughly tested in real situations, they are not 

devoted to adapt to the elderly and their way of executing gestures. The elderly 

are not used to modern interfaces and devices, and – due to aging – they can 

face problems in executing even very simple gestures.  

Our  algorithm based on Pearson index and Hamming distance for gestures 

recognition has been tested both with young and elderly, and was shown to be 

resilient to changes in velocity and individual differences, still maintaining  

great accuracy of recognition (97.4%  in user independent mode;  98.79% in us-

er dependent mode). The algorithm has been adopted by the Easy Reach con-

sortium (2009-2013) to pilot the human machine gesture-based interface. 
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1 Introduction 

The goal of this work is to develop an innovative and low cost HMI (Human Machine 

Interface) to exploit gestures to control a TV Set for smart applications. The HMI 

interface is part of the "Easy Reach" project, partially supported by AAL JP (Ambient 

Assisted Living Joint Program). The Easy Reach Project has the aim to help the elder-

ly to interact with each other using ICT technology to break social isolation while at 
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the same time coping with the ergonomic and cultural difficulties related to aging and 

the digital divide [1]. Seniors are the fastest growing part of the population in Europe 

[2], in Japan and in the United States: on one side ICT technologies are not popular 

among many elderly and on the other ICT applications are not designed around their 

mentality in order to solve their needs [1]. The risk is that in the very near future the 

elderly - who are becoming the most numerous segment of the population - will be 

digitally isolated in a society that is more and more based on ICT as infrastructure 

both for service, and communications. Easy Reach proposes a solution for social in-

teraction, which is easy from the ergonomic point of view, that help the elderly break 

the barrier of the digital divide barrier. We use a device with inertial sensors that is 

handled by the user, to  interpret the gestures that pilot the interface. This paper focus 

his attention about these algorithms and their accuracy. 

 

 

 

 

Fig. 1. Gestures: young vs elderly. In black the ideal gesture in red the actual execution. More 

variations, noise and errors are present in elderly gestures.  

The general purpose is to identify gestures considering the time feature, normaliz-

ing acquisitions, and making the system robust to variations in gesture execution, 

introduced both by individual variance and senile deterioration, while maintaining a 

high accuracy. As we shall see, the proposed method achieves an accuracy of 97.39% 

on the dataset 1 (8 gestures) in user independent mode and an accuracy of 98.79% in 

user dependent mode on the same dataset (both with a threshold of 58%), exploiting 

only inertial sensors information. The algorithm has been adopted by the Easy Reach 

consortium to pilot the “Easy Reach” Human Computer Interface.  

2 Former Works 

One of the first dynamics gesture recognition systems based on HMM and inertial 

sensors  was created by Hofmann et al. in the mid-90s [3]. The application included 

the use of discrete Hidden Markov Models to reduce complexity, but the recognition 

algorithm took hours to arrive to its end. The work of  Mäntylä et al. [4] is one of the 

first that uses only accelerometers to recognize both static and dynamic gestures using 

a sensor box installed on a portable device. The algorithms used for the recognition 

exploit the HMM and SOM  (Self Organizing Map) of  Kohonen, the first for dynam-

ics gesture, the second for static ones. The recognition accuracy of the dynamic ges-

tures is quite high, around 97% on average; it is to emphasize that this system use a 

dataset based on only two people1.  

                                                           
1 It must be highlighted that results presented must be weighed according to dimension, com-

plexity and cardinality of the dictionaries. 
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3 

 

In more recent works Schlömer et al. [5] created a classifier for four distinct ges-

tures using a Nintendo Wiimote exploting a K-means, HMM, and  Bayes classifier 

pipeline, reaching an accuracy of  89.72% on average (84.0%-93.4%). Prekopcsák [6] 

has an accuracy of 97.4% using an HMM, and 96.0 % using SVM (Support Vector 

Machines) interpreting the accelerometers data of a Sony Ericcson W910i. These 

accuracies are high, unfortunately very few is explained about the gestures used,  a 

part from the fact that they involve the wrist and the arm, that is not very informative. 

Also, these results are obtained on datasets of only four different users. One interest-

ing result is obtained by [7] which has an accuracy of 99.2% on average, using a 

Bayesian network model on a dataset of  13 different classes of gestures created by 15 

people. These results are influenced by an appropriate choice of form of the gestures, 

adaptably modified to make them easily discernible from each other. For example, the 

number 7 and 1 are designed to be easily separable, and the number  4 is written  not 

in the usual natural way. Another notable work is [8] that identifies the feature in the 

frequency domain. The authors reach an accuracy of 98.93 % in a group of 4 gestures, 

and an accuracy of  the 89.29% in a set of 12 gestures using a method called FDSVM 

(Frame-based Descriptor and multi-class SVM) in user independent mode. In the 

document it is also shown that DTW (Dynamic Time Warping) and Naive Bayes have 

lower accuracy than FDSVM  in groups of gestures of larger cardinality. Regarding 

recent papers that describe recognition methods based only on inertial data, we can 

report the work of Kratz and Rohs [9] that have the accuracy of 80%  using 10 ges-

tures created by 12 users, and Chen et al. [10] with an accuracy of  98.8% in user 

dependent mode using only inertial sensors (implicit) and 85.24 % in user independ-

ent mode using only the inertial sensors.   

3 Euler Angles 

Inertial sensors usually provide two different types of data i) acceleration, angular 

velocity, magnetic north, or ii) Euler angles. The first type of information is useful to 

determine the strength and quality of a gesture, for example, to verify the presence of 

tremors,  apparent forces, peaks (e.g. for the identification of falls). This type of data 

are particularly suited to recognize the dynamic aspects of an action and its quality 

(cfr. [4] [5] [11]). In this work we use only the Euler angles to detect and classify the 

executed gestures. 

3.1 Individual Variance and Noise 

The execution of a gesture is conditioned by three factors: 

• Thermal noise: each sensor produces a Gaussian noise due to temperature and 

electromagnetic fluctuations.  

• Position of the sensor: slightly differently modifications of device handling or 

sensor position sensitively affect data of tilting and positioning of the sensor  

• Model noise (articulated body complexity): the body varies and changes from day 

to day and react differently all the time, this introduces a significant change in the 



  

execution of any gesture. The same gesture repeated in consecutive times, even by the 

same person, with the same device positioned in the same way, always looks different 

(see Fig. 2). It is the same effect we have when one person signs his name on paper.  

 

       
 

Fig. 2. On the left: same gesture executed by different people. Right: the same gesture executed 

by the same person. Every gesture is different even if repeatedly executed by the same person. 

4 Correlation Methodologies 

To correlate gestures we test three different algorithms. The first exploits a Pearson 

correlation on Euler Angles’ Yaw and Pitch. The other two are Hamming and Le-

venshtein distance. To increase the accuracy we have combined Pearson alternatively 

with one of the other two algorithms. The correlation algorithms are used both during 

the extraction phase of the centroids
2
 , and the recognition phase. Any new gesture is 

compared with the previously extracted centroids, and the higher scored centroid is 

referred to as  “the recognized gesture”.  If we do not pass a certain score of confi-

dence (see 5.1, Rejection Threshold) the gesture is consider invalid, this is interpreted 

as a poorly performed gesture or as a non-intentional gesture. 

4.1 Pearson Correlation  

This measure expresses a linearity correlation between the covariance of two random 

variables and the product of their standard deviations.  The coefficient range in the 

interval [-1, 1],  where 1  indicates a  complete  correlation  between  the two varia-

bles, and -1 indicates the random variables are inversely related. The higher the corre-

lation, the more probable it is that two gestures are reciprocally similar. 

4.2 Hamming and Levenshtein Distance 

The Hamming and Levenshtein distance are the well know algorithms for string 

comparison, used to calculate the grade of difference of two gesture. The algorithm 

divides the signals in sub-segments, the segmentation algorithm find the local maxima 

and minima to determine beginning and end of every segment, then it builds up a 

string in which the four combinations of  the Yaw and Pitch directions (up-up; up-

down; down-up; down-down) are associated to an equivalent symbol (A,B,C,D) . 

Then, we use Hamming or Levenshtein to calculate the minimum number of changes 

required to transform one signal into the other: the resulting value reflects the edit 

distance between two gestures, i.e. to their “geometrical similarity”. 

                                                           
2 We assumes that gestures of the same class follow a Gaussian distribution with similar vari-

ance:  the centroid is the gesture that has the greater intra-class similarity 
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4.3 Pearson-Hamming and Pearson-Levenshtein 

To increase the accuracy we combine Pearson with Hamming and Levenshtein. Given 

a gesture, at first we “eliminate” all the dictionary centroids that are under the rejec-

tion threshold (see section 5.1) in the Pearson correlation, then we extract the best 

gesture assuming the Levenshtein or  Hamming distance. In case of even results, we 

consider valid the gesture-centroid having the higher Pearson correlation.  

5 Datasets 

We carried out our tests on two data sets. The first one formed by 8 gestures inspired 

by the commands of a video player. The second one that contains 14 gestures repre-

senting the digits "0 to 9 ", and the symbols "plus", "minus", "multiply", and "divide". 

These two datasets have been created by 8 people between the ages 22 and 75, that 

performed every gesture 7 times. It was decided to acquire data without allowing the 

user to familiarize with the device, to simulate the same condition in which the appli-

cation will be used. 

In section 5.1 we present the results of tests by varying the rejection threshold 

(both in user dependent and user independent mode) to measure the effect on the ac-

curacy. In section 5.3, more detailed results are presented in the form of a Confusion 

Matrix using the rejection threshold of 58%. In the Conclusions (see paragraph 6) we 

discuss our results. 

Dataset 1 –Multimedia Player.  The first dataset is the smallest one and is formed by 

a set of 8 natural gestures to interact with a video player.  Legends are: (-1)-Rejection 

class; 1-Play, 2-Stop, 3-Previous, 4-Next, 5-Volume Up, 6-Volume Down, 7-Rewind, 

8-FastForward. 

 

 

Fig. 3. The eight gestures of dataset-1 ordered 1 to 8 from left to right. 

Dataset 2 – Numbers and Operations.  The second dataset contains 14 gestures. 

Legends are: (-1)-Rejection class; 1-One, 2-Two, 3-Three,  4-Four; 5-Five, 6-Six, 7-

Seven, 8-Eight, 9-Nine, 10-Zero, 11-Plus, 12-Minus, 13-Multiply, 14-Divide. 

 

 

Fig. 4. The 14 gestures ordered 1 to 14 left to right. Leftmost “1-one”, rightmost “14-Divide”. 



  

5.1 Rejection Threshold Test. 

 We state that a gesture is recognized only if it passes a given threshold T.  The 

threshold value must be at least T  >  1 / ||Dictionary|| to perform better than a random 

algorithm; a  too high value creates too many false negatives. A reasonable number of 

false negative is acceptable (e.g. less than 2%)  if  it contributes to diminish the num-

bers of false positives, but we do not want the user to repeatedly redo gestures, as we 

prefer the use of interface to be easy and “natural”. 

A first test have been done on the given two datasets, changing the threshold value 

in  a range of 48% to 68%, adding 5% at each iteration. Below we can see the most 

significant results related to the maximum (68%), medium (58%), and minimum 

(48%) value of the threshold T. 

5.2 Results 

The results below denote (highlighted in green) that the best accuracies are reached 

using a combination of Pearson and Hamming using a threshold T = 68%, in user 

dependent mode.  

Threshold T Algorithm 
Set 1 Usr-

Indep. 

Set 1 Usr-

Dep. 

Set 2 Usr-

Indep. 

Set 2 Usr-

Dep. 

68% P  0.9596 0.9677 0.8708 0.9262 

  P-L  0.9516 0.9778 0.8642 0.9288 

  P-H  0.9616 1.0 0.9064 0.9433 

58% P  0.9596 0.9677 0.8708 0.9262 

  P-L  0.9717 0.9778 0.8554 0.9380 

  P-H  0.9738 0.9879 0.9288 0.9578 

48% P  0.9596 0.9677 0.8708 0.9262 

  P-L  0.9838 0.9778 0.8906 0.9407 

  P-H  0.9516 0.9798 0.9301 0.9450 

Table 1. Accuracies varying  the rejection threshold T. Used combinations: P: Pearson; P-L: 

Pearson-Levenshtein;  P-H: Pearson-Hamming. 

The values in accuracy, in user independent mode, show a trend towards higher 

values as the threshold is decreased. The user dependent tests, instead show an oppo-

site behavior as regards the two datasets:  in fact, in the dataset 1, the recognition 

accuracy tends to decrease, while in the dataset 2 these values tend to increase. 

On the basis of these results, we chose the Pearson-Hamming combination using a 

rejection threshold of 58% to promote a better balance in the dataset1 and dataset2,  

and in both user modes (dependent and independent), as long as we prefer  maintain a 

certain flexibility in the dictionary choice. 
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5.3 Tests on Dataset1 and Dataset2 with Rejection Threshold of 58% 

In this section we present more in detail the test results using dataset1 and dataset2 

once fixed the threshold T = 58%. Results are presented in the form of a Confusion 

Matrix. Ground truth (GT) are in columns,  while rows represent what has been actu-

ally recognized (R). In diagonal the correct results (true positive,  in green), outside 

the diagonal the invalid recognitions:  in the leftmost column the false negatives (in 

blue), out of this column and not in the diagonal the false positives (red). 

 
GT\R  -1 1 2 3 4 5 6 7 8 

1 0 70 0 0 0 0 0 0 0 

2 0 1 54 0 0 1 2 0 0 

3 0 0 0 52 0 1 2 0 0 

4 0 0 0 0 58 1 0 0 0 

5 0 0 0 0 0 58 0 0 0 

6 3 0 0 0 1 0 55 0 0 

7 0 0 0 0 0 0 0 69 0 

8 1 0 0 0 0 0 0 0 67 
 

GT\R -1 1 2 3 4 5 6 7 8 

1 0 70 0 0 0 0 0 0 0 

2 0 0 58 0 0 0 0 0 0 

3 0 0 0 53 0 0 0 2 0 

4 0 0 0 0 58 0 0 0 1 

5 0 0 0 0 0 55 0 1 2 

6 0 0 0 0 0 0 59 0 0 

7 0 0 0 0 0 0 0 69 0 

8 0 0 0 0 0 0 0 0 68 
 

Table 2. Dataset 1: Pearson-Hamming. Left user-independent; right user-dependent mode 

In dataset 1 (8 gestures)  the best combination using threshold T=58% in user in-

dependent mode is “Pearson and Hamming”. Accuracy is 98.79%,  precision is 

98.17% , recall is 99.178% . We have only 4 false negatives out of 496 instances (cfr. 

Table 2, left). In user dependent mode the accuracy is 98.79% , precision is 98.79% , 

recall  is 100% . We do not have any false negative (cfr. Table 2, right). 

 

 GT\R -1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0 75 0 1 0 0 0 0 0 0 0 0 0 0 0 

2 0 2 45 1 0 0 0 0 0 0 0 1 0 0 0 

3 0 0 1 47 0 0 0 0 0 0 2 0 0 1 0 

4 0 1 0 0 49 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 50 2 0 0 0 0 0 0 0 0 

6 0 0 0 0 1 0 49 0 0 0 0 0 0 0 0 

7 0 1 1 2 0 0 0 49 0 0 0 0 0 1 0 

8 2 0 0 0 0 0 0 0 47 0 0 0 0 1 0 

9 0 0 0 0 0 1 0 0 0 42 0 3 0 1 0 

10 0 0 0 0 0 0 0 1 1 0 59 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 58 0 0 0 

12 0 0 0 0 0 0 0 1 0 0 0 0 50 0 1 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 52 2 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55 

Table 3. Dataset 2: Pearson – Hamming. User-dependent mode. 

 



  

In dataset 2 (14 gestures) the best combination using a threshold T= 58% in user 

independent mode  is the “Pearson and Hamming”, again. The accuracy is 92.885%, 

precision is 94.631% , recall is 98.052%.  In user dependent mode the accuracy is 

95.784%, precision is 96.037%, recall is 99.725% (see Table 3 for user dep. mode)   

6 Conclusions 

Comparing our algorithm to others using only inertial systems in user dependent 

mode our recognitions algorithms obtain a better accuracy. The work of Kratz and 

Rohs 2010 [9] achieves an accuracy of 80% over a 10-gestures dictionary. Our algo-

rithm appears also better in comparison with Chen et al. [10]. In the user independent 

mode their ranking algorithm obtains an accuracy of 85.24% without using optical 

sensors, against our accuracy of 97.4%.  In  user dependent mode their error rate is 

much lower, and their accuracy is 98.8% using only the inertial sensors, against our  

98.79%  (but using threshold 58%).  Using a rejection threshold of 68% in user de-

pendent mode we reached an accuracy of 100%, on the dataset1 of 8 gestures (see 

Table 1). 

Our accuracy results can be also compared to systems that use more complex clas-

sification methods such as SVM , SOM and HMM that are in principle more effec-

tive, but do not allow a recalculation at "real time " of the class representative (cen-

troid). Wu et al. [8] show that their classification algorithm has good results using a 

set of gestures that are very similar to our dataset. They have an accuracy of 99.38% 

in user dependent tests on a dataset of only 4 gestures, against our 100% reached us-

ing P-H with a threshold 68% on dataset1 (8 gestures) in user dependent mode (see 

Table 1). The classifier of Wu et al. has an  accuracy of  95.21% on a dataset of 12 

gestures, against our 95.78% of accuracy on the dataset2 (but with 14 gestures) in 

user dependent mode (see Table 3). Even in user independent tests our algorithm 

outperforms Wu et al. results: we reach an accuracy of 92.88 % on the dataset2 (14 

gesture) against the 89.29% obtained by Wu et al. on their dataset of 12 gestures. 

In conclusion, our classification algorithm obtains good results and performs better 

compared to analog recognition systems based only on inertial sensors and also gives 

better results than most of the multimodal works we found in the literature, reaching 

accuracies useful for a commercial device. The algorithm have quick time of reaction 

(less 0.1 sec), it is flexible, and resilient both to individual variations and to differ-

ences introduced by ageing. The algorithm has been adopted by the Easy Reach con-

sortium to pilot the human machine gesture-based interface of the Easy Reach Project. 
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