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Abstract: Many governments enforced physical distancing measures during the COVID-19 pandemic to avoid
the collapse of often fragile and overloaded health care systems. Following the physical distancing measures,
school closures seemed unavoidable to keep the transmission of the pathogen under control, given the poten-
tially high-risk of these environments. Nevertheless, closing schools was considered an extreme and the last
resort of governments, and so various non-pharmaceutical interventions in schools were implemented to re-
duce the risk of transmission. By means of an agent-based model, we studied the efficacy of active surveillance
strategies in the school environment. Simulations settings provided hypothetical although realistic scenarios
which allowed us to identify the most suitable control strategy to avoid massive school closures while adapting
to contagion dynamics. Reducing risk by means of public policies explored in our study is essential for both
health authorities and school administrators.

Keywords: Agent-Based simulation, SARS-CoV-2, Non-Pharmaceutical Interventions, Surveillance testing,
School.

Introduction

Physical distancing measures enforced to control the spread of COVID-19 were adopted by many governments
to avoid the collapse of often fragile and overloaded health care systems. School closures were often considered
as unavoidable control measures to reduce the transmission of SARS-CoV-2, because educational settings were
considered potentially high-risk activities. Schools are characterized by close-contact settings, with students
spending many hours close to each other in confined and enclosed spaces. In addition, compared with adults,
children and adolescents infected with SARS-CoV-2 tend to be more commonly asymptomatic or have mild,
non-specific symptoms, escaping early identification and isolation and potentially favouring the spread of the
virus both inside and outside the school (Comar et al.|2021).

By late spring 2020, 80% of EU countries had fully or partially closed preschools, 90% had closed primary
schools and 100% secondary schools or higher education establishments (ECDC, European Center for Disease
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Prevention and Control[[2020). However, following the first two pandemic waves, it was generally observed
that SARS-CoV-2 transmission in school settings was not the primary determinant of community transmission,
leading to the hypothesis that cases observed in school settings mainly reflect SARS-COV-2 transmission in
the general population (Ludvigsson|[2020; |[ECDC, European Center for Disease Prevention and Control/2021).
Furthermore, school closures are not cost-free and can, in turn, have dramatic social, economical, and health
consequences. School closures can have detrimental effects on children’s physical and mental health and well-
being and have the potential to increase inequality. School systems also provide significant social support,
particularly for single parent and economically disadvantaged households (Maani|2020).

In the light of emerging epidemiologic evidence and potential social impact of school closures, governments
implemented various non-pharmaceutical interventions (NPIs) in school settings, such as face masks, restricted
entry to school, daily symptom checking, and reduced class sizes. These policies aimed to reduce the risk of
transmission, leaving closure as an extreme and last resource.

However, large outbreaks in schools were observed, especially when prevention strategies were not fully im-
plemented (Stein-Zamir et al.[2020;Im Kampe et al.2020). The upsurge of new highly transmissible SARS-CoV-
2 variants, such as the Delta variant, together with an elevated proportion of susceptible individuals among
children, not fully targeted by the 2021 vaccination campaign, may have lead to an increase infection among
children (Riley et al.[2021). Thus, a combination of NPl measures is still considered imperative to keep the risk
of SARS-CoV-2 transmission as low as reasonably achievable in the educational settings. Thus, passive (syn-
dromic) and active (molecular) surveillance strategies in schools have also been suggested to ensure the isola-
tion of cases, tracing and quarantine of their contacts. Here, we used Agent-Based Modelling (ABM), which is
particularly well-suited in cases of systems requiring a highly granular description of the population, to sim-
ulate the behaviour of a school environment. These modelling approaches have been already exploited to
study the SARS-CoV-2 pandemic from different points of view (Lorig et al.|2021). This is especially so within
school environment, such as (Phillips et al.|2021) where virus transmission was modelled considering schools
and households in Ontario, or (Panovska-Griffiths et al.[2020) in which different school and society reopening
strategies were simulated in the UK. Therefore, with our ABM, we aimed to evaluate the risk of infection associ-
ated with school activities and the effect of possible control strategies by simulating the behaviour of a school
environment after the introduction of one infective case under various control strategies scenarios.

Material and Methods

Model description

Agent-based models (ABMs) are defined as data structures, where agents are modelled by a set of variables
and interaction rules stated consistently with the programming language used for the simulations, in which
they act and adapt their internal and external behaviour. These rules are defined by the modeller to obtain
realistic simulations of behaviour within the system under consideration. Furthermore, ABMs can also include a
description of the spatial domain, either discrete or continuous. In such cases, agents might be allowed to move
throughout the environment and to interact with other agents depending on their physical proximity. Providing
an accurate description of the scenario through rules, agents and environmental variables, we aimed to study
the individual (micro) and aggregate (macro) effects that emerge from agents’ activities and interactions.

This paper proposes an ABM, developed in the multi-agent programmable modeling environment NetLogo ver-
sion 6.1.1 (Wilensky1999), to study the spread of COVID-19 infections within an explanatory scholastic environ-
ment, and to evaluate the effectiveness of non-pharmaceutical interventions (NPIs), such as distancing require-
ments, screening testing, and environment ventilation in such an environment.

The model components include:

« the environment including both physical spaces and social contact structure of the population,
« the COVID-19 progression model,
« the NPIs’ logic modeled to contain the COVID-19 spread.
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Figure 1: Graphical representation of a generic school.

The aim of this paper is to understand the effects of contacts arising in a typical school environment as the
disease spreads, and to provide insights on possible containment policies. To accomplish this aim, we did not
target a specific school but modelled a typical Italian middle-sized secondary school. For generality, the mod-
elled environment is a school of 12 classrooms (arranged on three floors), shared spaces (i.e., entrance, gym,
corridors, bathrooms, stairs, medical room, teachers’ office and the principal’s office). More specifically, each
floor consisted of one corridor connecting all the rooms and one bathroom only for students. The school en-
trance, the medical room, the gym, the principal’s office, the teachers’ office and the teachers’ bathroom are
all on the first floor. Moreover, each classroom is characterized by twenty-four desks (equally distanced from
each other), one teacher’s desk and the blackboard. A graphical representation of the environment and agents’
categories (i.e., students, teachers, principal and janitors) is shown in Figure[t]

In our study, the school is open from Monday to Friday and students can arrive at school from 7.35 a.m, with
the first class beginning at 8:10 a.m. A school day consists of six lessons of 50 minutes each and two breaks. The
first break is between the second and the third lessons, while the second one is after the fourth lesson.

Following the organization of middle schools in Italy, students stay in the same classroom and with the same
classmates all day long. To limit social interaction we defined the behaviour of the agent as follows: While in
class, students stay at their desks unless the teacher asks them to go to the blackboard. Other movements
are not allowed. Outside classrooms, the only activity allowed is movement to the gym and to the principal’s
office. Teachers move from classroom to classroom according to the class schedule. They can also go to the
staffroom when they have no scheduled classes in the upcoming hour. Teachers and students can go to the
bathroom on the same floor. Moreover, during breaks, students can stay in their classrooms or hallways close
to their classroom and go to the bathroom. Janitors are responsible for checking students’ body temperature
in addition to their usual tasks. Therefore, at the beginning of each school day they are in the medical room,
while during classes they deal with their usual activities, such as cleaning and mopping floors. Table[2]reports
all rates associated with agents’ actions.

At the beginning of each simulation, depending on the agent-order generation, students are allocated to class-
rooms (i.e., the first twenty agents are allocated to one classroom, and so on), and this association lasts for the
whole simulation. Timetables for teachers are chosen in the same way following global scheduling, which is an
adapted version of real teachers’ scheduling. This defines the weekly scheduling of classes for all teachers.

JASSS, 25(3) 2, 2022 http://jasss.soc.surrey.ac.uk/25/3/2.html Doi: 10.18564/jasss.4830



2.8

2.9

2.10

2.11

2.12

P —

Susceptible Exposed Infected Recovered

Figure 2: COVID-19 progression model (SEIR).

The next component of the ABM is the COVID-19 progression model, which is based on the Susceptible-Exposed-
Infected-Recovered (SEIR) (Pernice et al.2020) epidemiological model, showed in Figure[2] Thus, each agent
is labeled with a specific status of the disease progression, which is updated as follows: (1) from the suscepti-
ble state to the exposed one, and consequently to virus exposure, (2) from the exposed state to the infection
when the incubation period ends, and agents become contagious, (3) from an infected state to recovered one
when the infectious period ends. Specifically, there is no distinction between symptomatic and asymptomatic
infections, because we are interested in representing the worst-case scenario in which all infected students are
asymptomatic. In Figure[2]solid lines represent transitions in disease progression, while the dashed line indi-
cates that a susceptible individual can catch the infection only from already infected individuals. Clearly, such
interaction represents the main requirement for the infection to spread. Specifically, the virus exposure is mod-
elled through two different drivers: either close-range contacts (Hoertel et al.|2020) between susceptible and
infected agents, or through aerosol (Gkantonas et al.[2021), within an indoor environment.

Considering the former case, the probability of successful contagious contact is associated with each suscepti-
ble agent (S;) when it remains in an area (A) of 4.41m? around an infected agent. This probability is defined by
the following function (Hoertel et al.2020):

Cs,
N (1

where ¢, is the contamination risk, and C's, is the total time (in minutes) during which the S; agent stays in the
area of an infected one.

Ps

:CT

On the other hand, the pathogen’s spread by aerosol is computed from the quanta concentration in each room.
A quanta is defined as the dose of airborne droplet nuclei required to cause infection in 63% of susceptible
people (Buonanno et al.2020). Therefore, based on (Gkantonas et al.2021), we counted the number of quanta
inhaled in a specific room (e.g., classrooms, bathrooms, etc.) by each agent to obtain the probability of being
infected without directly entering in contact with an infected agent, which is defined by the following function:

B Nvirus
Pg,=1—¢ kp ()

where k, represents the reciprocal of the probability that a single pathogen will initiate the response
ftonas et al.|2021;Watanabe et al.[2010), and N ;s is the quantity of inhaled quanta by each susceptible agent
in a time interval At. Its value is described by solving in At the differential equation

deirus = (1 - nmaskfmask) C(t)anh dt (3)

where 7,45k is the masks efficacy, fmask is the proportion of agents that wear correctly the mask, C(¢) is the
quanta concentration at time ¢ and @Q);,,, is the inhalation rate. Note that quanta concentration at time ¢t mainly
depends on the number of people within a room, the number of infections and the room’s ventilation.

The third model component is related to NPIs. As suggested from Equation[3 the modeled NPIs are: distancing
requirements, masks and increasing rooms’ air ventilation. In particular, we assumed in all the experiments
that masks are used correctly for all school time (i.e. fmask = 1), and a ventilation process to replace contam-
inated with clean air is carried out constantly at a constant pace of 3 Air Changes per Hour (ACH). This airflow
is maintained by keeping the door and windows of a classroom open (without ventilation systems), to reduce
guanta concentrations in classrooms.

Various strategies for screening tests were considered in the model to control COVID-19 spread in the school
by providing early detection of infected students. Moreover, we evaluated how different levels of efficacy in
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teachers’ vaccination (e.g., due to the spread of different variants) could impact COVID-19 spread in the school.
Indeed, teachers in various classrooms might be important vectors of diffusion between classrooms, playing
the role of shortcuts as in Watts-Strogatz’s model of random graphs (Watts & Strogatz|1998).

Verification and validation

Model validation and verification are two essential steps to make a model suitable to support high-consequence
decision-making. The former aims to evaluate how the model accurately represents the typical behaviour of
the system under study. To validate the logic describing the complex phenomena represented in the model, we
analysed our model under extreme parameter configuration. For instance, we found that if no infected agents
were initially introduced into the system, then no outbreak would ever occur. In the second step, the model
verification, we ensured that the parameters fed into the model would produce the expected outcomes. For
instance, we verified that the average exposition time and infection time obtained by our model agreed with
the literature, see Table[2] Different scenarios considering only one of the two virus infection drivers (via con-
tact or aerosol) were performed to identify the primary infection driver in the model. In accordance with the
information released by the World Health Organization (WTO), we observed that aerosol transmission is the
primary infection driver. The first two boxplots in the first row of Figure report the Ry variability over 200
simulation traces for the two drivers, clearly showing the greater strength of aerosol transmission compared to
the transmission due to direct contacts.

However, during the model validation phase, we measured the predictive accuracy of our model comparing
its outcomes with empirical data and results already reported in the literature. First, we validated the aerosol
transmission in our model compared to that proposed in|Gkantonas et al.|(2021) reproducing the same set-
tings in our ABM. Indeed, Figure [3|compares the number of infected individuals after two hours lessons in a
room with 20 participants and with only the teacher being infected obtained by our model compared to that
reported by|Gkantonas et al.[(2021). More specifically, the red line and histogram represent the mean and em-
pirical distribution of such a measure derived by 1000 simulation traces of our model, while the dashed blue line
represents the mean computed in|Gkantonas et al.|(2021). From this, it is clear that the two measures strongly
agreed. Secondly, to evaluate the overall infection process, we decided to verify the accuracy of the basic repro-
duction number Ry estimated by our model. Unfortunately, to the best of our knowledge, we did not find any
other work studying Ry in a similar context, therefore we decided to compare our results with those proposed in
Rocklov et al.[(2020) and|Lai et al.|(2021), in which the basic Ry is estimated considering the data generated by
the COVID-19 outbreak in Diamond Princess Cruise Ship. Of course, the environment and age of the populations
in these two works are quite different, although we believe that similar remarks on R values could be applied
in our model. Specifically, both these works strongly suggest the R of this disease in the enclosed areas should
be higher compared with that estimated by the WHO ranging from 2 to 3. Indeed, both works report thatan Ry
between 2 and 3 would not be able to account for the soaring number of infection cases reported in the short
period of the Diamond Princess Cruise Ship. Thus, these works using different modelling approaches estimated
greater R, values (i.e., ranging from 4 to 7 in|Lai et al.|2021|and 15 in|Rocklov et al.|2020) justified by the fact
that people in tightly enclosed environments can easier gather and enter into contact. The R, values obtained
by our model for different scenarios are showed in Figure[d} The three boxplots in the first row report the Ry
variability over 200 simulation traces considering the following three different scenarios: (i) Without Contact,
the close-range contacts are not considered and NPIs measures are not used, (ii) Without Aerosol, the infec-
tion via aerosol is not considered and NPIs measures are not used, and (iii) Both Drivers, both the drivers are
considered and NPIs measures are not used. These results wholly agree with the consideration proposed in
Rocklov et al.[(2020); Lai et al.|(2021). For instance, the Both Drivers scenario is characterized by a mean Ry
around 15.
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Figure 3: Distribution of the number of infected students computed from the results of 1000 simulation experi-
ment representing an event lasting 2 hours with 20 attendee and one infected speaker.
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Figure 4: Box-plots representing the variability of number of new infected students generated from one initial
infected student (i.e., Rg), considering 200 simulations for each scenario.

® Experiment Design

3.1 Theresults presented here consider the spread of COVID-19 infections in a school and aim to evaluate the effec-
tiveness of NPIs in this environment. To achieve this, we analyzed 21 different scenarios obtained as reported
in Table[Iby considering or not the use of face masks and room ventilation, and varying the screening policy,
the number of participants to the screening and the vaccination effectiveness for the teachers. Specifically, we
considered the following three screening test strategies:
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« Policy Al: to test on all participants every week;

« Policy D1: to test on 1/4 of the participant in each class every week, on a rotating basis (i.e., all students
enrolled in the screening would be tested over a month);

« Policy D2: to test on 1/4 of the participant in each class every week, on a rotating basis, divided into two
weekly days.

We should note that, to make these screening strategies independent of the starting day, we considered the av-
erage values obtained by repeating the simulations varying the starting day of the strategy (Monday, Tuesday,
etc).

For each strategy, we evaluated theirimpact varying the number of participants at the screening test from 100%
to 25%, and two different efficacy levels in teacher vaccination: i) the vaccine is completely effective, and ii) the
vaccine is effective only in 75% of cases. We also assumed that all people who enter into the school wear face
masks in all scenarios, except the first one. This design choice was twofold: it allowed us to model a more
realistic scenario and mitigated the effect of the screening campaign. Furthermore, we considered only asymp-
tomatic infections that could be detected by screening tests.

Finally, all our results were computed on high performance computing infrastructures described inAldinucci
et al/(2017}/2018), and all the model parameters are summarized in Table[2] Furthermore, the time in the sim-
ulation experiments was discrete and each tick corresponds to one minute. Detail on the model code and doc-
umentation is included in Section Model Documentation.

Screening Policy Screening participants  Vaccination Effectiveness
Mask  Ventilation None Al D1 D2 25% 50% 100% 75% 100%
1 X X
2 X X X
3 X X X X X
4 X X X X X
5 X X X X X
6 X X X X X
7 X X X X X
8 X X X X X
9 X X X X X
10 X X X X X
11 X X X X X
12 X X X X
13 X X X X X
14 X X X X X
15 X X X X X
16 X X X X X
17 X X X X X
18 X X X X X
19 X X X X X
20 X X X X X
21 X X X X X

Table 1: Summary of the scenarios simulated.
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Parameter Value Reference

Number of classrooms 12 Assumed
Students per classroom 20 Assumed
Number of initial infected (students) 1 Assumed
Vaccine efficacy 100/75% Assumed
Average number of days of incubation 3 (Zaki & Mohamed|2021), (World Health Organization|2020)
Average number of days of infection 7 (Byrne et al.|2020)
Duration of quarantine in days 14 (Regione Piemonte|2020)
Ventilation 3ACH Assumed
Mask type Surgical Assumed
Screening adhesion 0/25/50/100% Assumed
Screening policy WO0/A1/D1/D2 (Baccini & Ceredal2021)
Fraction of population wearing mask 100% Assumed
Distance learning 0% Assumed
Probability of going to the bathroom (per minute) 8e™ Assumed
Probability of going to the blackboard (per minute) 6e™ Assumed
Probability of going to the principal office (per minute) 1.4e™ Assumed
Probability of going into the hall during interval 0.532 Assumed
Contamination risk (c;) 0.024 (Hoertel et al.;2020)
Duration of the lessons in minutes 50 Assumed
Simulated days for each run 35 Assumed
Number of runs for each experiment 1000 Assumed

Table 2: Model parameters

Results

4.1 Inthe first experiment, we studied how the use of two NPlIs, i.e., facemasks and room ventilation, can mitigate
the spread of infection in a school. Figure [5|shows day by day the cumulative number of infected students
both when face-masks and ventilation of the rooms are not considered (i.e., red line) and when they are taken
into account (i.e., blue line). The higher number of infected students when these two interventions are not im-
plemented is clearly evident. Indeed, after 35 days, most of the students (i.e., 237 out of a total of 240) were
exposed. On the other hand, the use of these two NPIs allowed the average cumulative number of infected stu-
dents to decrease from 237 to 50 cases. Moreover, in the third column of Figure[d]the Ry variability obtained by
simulations with and without these two interventions is plotted. The use of face-masks and ventilation reduced
the average Ry from 15 to 4. Thus, these results highlighted that these two NPIs are a mandatory requirement
to slow infection, allowing screening campaigns to be effective.

4.2 We then considered the use of face masks and ventilation of rooms as a baseline scenario (i.e., namely W0), in
which a third NPI representing a screening campaign is introduced. Figure[6|compares our baseline scenario
with different scenariosin which the three screening policies described in the previous section are implemented
(i.e., A1, D1 and D2)varying the number of participants to the screening campaign in rows and the vaccination
efficacy in columns.

4.3 Focusing on scenarios with all students involved in the screening campaign (i.e., 100%) and 100% vaccination
effectiveness, i.e., the first plot on the left, it is clear that all screening policies reduced the incidence of infec-
tion in the population compared with W0. Furthermore, although D1 policy performed worst, it still halved
the cumulative number of infections at the end of the observation period. A slight improvement can be ob-
tained by splitting the screening test performed in the D1 policy on two different days of the week as in D2
policy. This design choice allowed us to identify some infections earlier. Indeed, anticipating the discovery of
infected pupils reduced the period in which their classmates were exposed, thus reducing their probability to
be infected. Similar observations were made when the number of students taking part in the screening test was
reduced (i.e. only 75% and 25% respectively) as shown in Figurel] the first column and second and third rows.
In particular, these results highlighted that even with a very limited number of tests, it was possible to control
the spread of the infection. For instance, in the case of student participation of 25% the policy D1, testing only
five students for a week, can halve the total number of infected students w.r.t. W 0. Moreover, Figureshows
the distribution of the average number of days needed to detect an infected student for the different screening
policies and varying the number of participants to the screening policies. From the results showed, we can state
clearly that policy A1 had the lowest total number of infected individuals.
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4.4 However, for policy-makers, the number of infected individuals is only one of many aspects to be considered

4.5

when they make a decision. We therefore carried out a cost-benefit analysis defining a function that took into
account the costs of new infections and overall costs (monetary and psychological) of performing swabs as
follows:

X (t) = kimni(t) + kang(t), (4)

where k1 and k, are constants, 7 is the meantime necessary to unveil a new infected individual, and n;(t), ns(t)
are the number of infected cases at time ¢ and the number of students under screening at time ¢ respectively.
Thus, this cost function measures the performance of a particular screening policy in terms of the meantime of
identification 7, the number of infected cases and the number of swabs. Figure[g|reports the assessment of this
cost function varying the ko : k; ratio for each considered screening policy and the efficacy levels in teachers’
vaccination. More specifically, from upper to bottom the ko : k1 ratio decreases, thus increasing the costs of
new infections, while from left to right efficacy in the teachers’ vaccination is reduced by 25%.

It is interesting to note that independently of the level of efficacy in teacher’s vaccination, when the ratio be-
tween the two costs k5 and k; is greater than % (i.e., the leftmost plot) the policies with a smaller number of
swabs are more profitable compared to A1 policy. Differently, when this ratio is smaller than 2—15, as the impact

of new infections increases, A1 becomes the most effective.

Policy
200 Without NPIs
— With NPIs

Mean cumulative
number of cases (+- sd)
)
o

o Lo
o T} =

. Days

25
30
35

o
A

Figure 5: Cumulative number of infected students considering 35 days. The solid lines represent the mean tra-
jectory considering 1000 simulations, while the band around the mean depends on the standard deviation.
Finally the colour defines the policy used: blue in case of using NPIs (masks and room ventilation), red other-
wise.
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Figure 6: A comparison in terms of infected individuals between the scenario considering only the use of face
masks and ventilation of rooms compared to scenarios in which the three screening policies A1, D1 and D2 are
implemented varying on the rows the number of participants to the screening campaign and on the columns

the vaccination efficacy.
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Figure 7: Boxplot reporting the observed number of days before detection of an infected student, with both
different vaccination policies (from left to right) and adhesion percentages (from top to bottom).
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Figure 8: Cost function evaluation for different screening policy, with both different vaccination effectiveness
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Discussion

In this study, we evaluated the impact of various NPI policies for reducing COVID-19 infections in the school en-
vironment using an ABM approach. Overall, we observed that the combination of different NPIs can drastically
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5.3

5.4

reduce the virus transmission in the school environment after the introduction of an infected case. Our model
showed that, in the absence of containment measures, the introduction of a single infective case can lead to the
infection of the majority of school students. However, the combination of mask wearing and room ventilation
can drastically reduce, on average, viral transmission. In our simulation, after the introduction of one infected
student, the use of these two NPIs decreased the cumulative number of infected students by 79% (from 237 to
50). We also tested the effect of three screening policies under different participation levels (25%, 50%, 100%).
Our model suggests that screening can further reduce viral transmission through early identification and iso-
lation of infective cases. In addition, we found that even with a low participation, screening can still have a
non-negligible impact in terms of COVID-19 cases avoided.

One of the interesting features of the proposed model is that it considers students, teachers and the principal’s
behaviour both in the classroom and in shared spaces, allowing the simulation of the whole school environ-
ment, rather than the infection dynamics of a single class. In addition, the model incorporates two different
ways of viral transmission, namely direct viral transmission occurring through the close-range contacts and the
viral quanta diffusion through aerosolization. Our findings are consistent with the literature. For instance, in
the validation analysis, our model suggests that the viral transmission in the school environment is mainly due
to the aerosolization of viral quanta as already suggested by other studies (Gkantonas et al.[2021). Furthermore,
the estimated effects of mask-wearing and indoor ventilation is consistent with results found in other modelling
studies (Chu et al.|2020).

Different screening plans in the school environment have been compared through a stochastic compartmental
model by [Baccini & Ceredal(2021) and found that testing half of the class on rotation every week was better
than testing all students every two weeks, allowing earlier detection of cases, especially when the rate of con-
tagion in the class is high. Less expensive strategies, such as a weekly test of one-fourth of the students gave
comparable results in terms of sensitivity. The latter is one of the strategies tested using our model. Mass test-
ing and school screening have been criticized (McCartney|2020) by experts, mostly on the basis of insufficient
test accuracy and the risk that the false reassurance of a negative test may lead to more risky behaviour than
would have occurred without the test. However, screening campaigns similar to that modelled in this study
have been adopted and implemented in the real world (Volpp et al.2021; Berke et al.2021). In North-West Italy,
aregional screening programme targeting second and third grade students in first level secondary schools and
based on voluntary participation was implemented in the first quarter of 2021 (Farina et al.[2021). In the study
period, the cumulative incidence in schools participating in the program was nearly 4 times lower than that in
non-participating schools. Models such as the one proposed here may provide insight into under which circum-
stances school screenings can result in less quarantined classes and a lower loss of school days.

The main strength of our model lies in its flexibility and ability to investigate the spread of infection and the effi-
cacy of its containment under different epidemiological scenarios and control strategies. In the current model,
we did not take into account vaccination coverage among school students because until the end of 2021 a large
part of the pediatric population (subjects < 12 years of age) had not been targeted by the vaccination campaign,
and even when it is launched, vaccine hesitancy of children’s parents may result in a high proportion of unvac-
cinated children. Far from being a limitation, the effects of different vaccination coverage proportions could be
easily explored using this model. Similarly, the model could be extended to explore varying initial conditions,
such as a set of schools varying in current disease prevalence in the community, and so with a changing proba-
bility of the introduction of one or more infectious agents at any given time. Furthermore, extending the model
beyond school activities by including additional elements describing the external environment, would allow
us to investigate the reciprocal influence of different social activities. For instance, studying the correlation be-
tween the prevalence of the infection at school and its spread within students’ families would be seminal for
many other considerations, such as the connection between student illness to parental employment. A further
interesting correlation that could be investigated is between the neighbourhood where students live and the
school they attend. Such a correlation certainly has had an impact on the spread of the disease in any given
geographical area. However, the focus of this work was to investigate the effect of containment measures and
actions that can be performed by schools to control internal spread. A broader investigation would require in-
troducing several aspects that could describe interactions among agents outside the school, which is outside
our research scope. Approaching more complex yet more realistic scenarios, the cost-benefit analysis proposed
in this paper could provide extremely useful information about the feasibility and impact of different screening
policies.
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Conclusion

The significance of risk reduction through the policies assessed here is of potential relevance for public health
authorities and school administrators both at a local and national level. Implementation of standard preventive
measures such as mask-wearing and environmental ventilation should be considered necessary in phases of
low viral circulation. Active preventive measures such as screening campaigns can be seen as additional mea-
sures to beimplemented to reduce the viral transmission in the school environment during high viral circulation
period to avoid massive school closures.

Model Documentation

The model was implemented in NetLogo (Wilensky||1999). The model code is available at this link: https:
//github.com/qBioTurin/epischool-abm
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