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Abstract. Compressed Σ-Protocol Theory (CRYPTO 2020) presents
an “alternative” to Bulletproofs that achieves the same communication
complexity while adhering more elegantly to existing Σ-protocol theory,
which enables their techniques to be directly applicable to other widely
used settings in the context of “plug & play” algorithmics. Unfortunately,
their techniques are restricted to arithmetic circuits over prime fields,
which rules out the possibility of using more machine-friendly moduli
such as powers of 2, which have proven to improve efficiency in applica-
tions. In this work we show that such techniques can be generalized to
the case of arithmetic circuits modulo any number. This enables the use
of powers of 2, which can prove to be beneficial for efficiency, but it also
facilitates the use of other moduli that might prove useful in different
applications.
In order to achieve this, we first present an instantiation of the main
building block of the theory of compressed Σ-protocols, namely compact
vector commitments. Our construction, which may be of independent in-
terest, is homomorphic modulo any positive integer m, a result that was
not known in the literature before. Second, we generalize Compressed
Σ-Protocol Theory from finite fields to Zm. The main challenge here is
ensuring that there are large enough challenge sets as to fulfill the nec-
essary soundness requirements, which is achieved by considering certain
ring extensions. Our techniques have direct application for example to
verifiable computation on homomorphically encrypted data.

1 Introduction

Zero knowledge proofs, introduced in [37], constitute an important tool used all
across cryptography to build several other powerful constructions, and they also
find applications outside cryptography thanks to their considerable flexibility
and high potential. In a nutshell, a zero knowledge proof enables a prover to
⋆ Work partially done while Daniel Escudero was at Aarhus University
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convince a verifier that a given statement belongs to certain language, without
revealing anything else beyond this fact. In addition, in a zero knowledge proof
of knowledge the verifier gets convinced that the prover actually knows certain
information, without leaking the information itself.

Zero knowledge proofs are used thoroughly in several cryptographic construc-
tions such as secure multiparty computation and other distributed protocols to
prove, without leaking sensitive information, that certain messages are “well
formed” (e.g. [35,11]). In many cases this turns out to be essential to be able to
support “active adversaries”, which model real-world attackers who can deviate
from the specification of the cryptographic construction at hand. Furthermore,
thanks to a rich and fruitful series of works [33,38,15,16,20,2,44,10,46], several
zero knowledge protocols with a wide range of desirable properties and trade-offs
exist today.

Typically, zero knowledge techniques operate by somehow translating general
statements to arithmetic statements, ultimately dealing with additions and mul-
tiplications over some algebraic structure. Traditionally, this arithmetic happens
over what is known as a finite field, such as Zp, the set of integers modulo p,
for prime p. The tendency to use this type of structures is also present in other
areas such as secure multiparty computation [24,1,26,18] and, in essence, this
is due to the fact that these structures possess very nice properties that make
them “easy” to work with.

Finite fields, on top of being simple and well-structured algebraic construc-
tions, can be used in a wide range of applications. For instance, the set {0, 1}
with the XOR and AND operations is a finite field (Z2, integers modulo 2), so any
binary circuit as traditionally known from electrical engineering can be expressed
in terms of arithmetic over the field Z2. Additionally, by choosing p to be large
enough so that wrap-around modulo p does not occur, Zp can be used to emu-
late integer arithmetic, which facilitates numerical applications. However, from
a mere use-case standpoint, the choice of arithmetic modulo a prime number
may seem a bit arbitrary; after all, what is so special about prime numbers? 7

Depending on the context, other moduli may be considered equally or per-
haps even more important. A natural example is the case of arithmetic modulo
powers of two like 264 or 2128, since this corresponds to the type of basic arith-
metic performed by arithmetic logic units and is expected to lead to improve-
ments in efficiency, as is the case for secure multiparty computation [24,26], or
certain zero-knowledge protocols [7]. Some other examples may include moduli
structured in specific ways, such as RSA integers N = p · q for large prime num-
bers p and q, and variants of this, which could benefit applications making use
of these constructions. Finally, we observe that, in mathematics, it is customary
and quite enlightening to gradually reduce/abstract the required properties of
a given construction to see, in essence, what are the features or patterns that
enable certain propositions or constructions to hold. It is in this direction that it

7 Of course, within mathematics, prime numbers hold a special throne, but from an
application point of view modular arithmetic is essentially the same regardless of
the chosen modulus.
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becomes natural to wonder if nice and well-behaved algebraic structures such as
finite fields are really “necessary” within the context of zero knowledge proofs,
or if they are simply more “convenient” to deal with.

Compressed Σ-protocols. Of particular importance among existing zero knowl-
edge proof techniques is the concept of Σ-protocols [22]. These tools constitute
honest verifier zero knowledge proofs of knowledge, meaning that they enable a
verifier to be convinced that a prover knows certain secret data, and this data is
not leaked assuming that the verifier behaves honestly. Σ-protocols have proven
to be an essential tool for building more complex protocols, like actual malicious
verifier zero knowledge proofs, but also more elaborate systems such as proofs
of disjunctions and proofs of some-out-of-many statements [25], identification
schemes [43], among many others. They have also been used in contexts such as
maliciously secure multiparty computation with a dishonest majority (e.g. [11]).

In [3], the authors presented a series of techniques for compressing Σ-
protocols, in a way that adheres to the existing theory of Σ-protocols and there-
fore inherits all the results and applications from the field. Other works such
as [16] achieved similar results in terms of communication efficiency, but were
presented as a replacement for standard Σ-protocol theory and, as a result, do
not serve as a building block for constructions making use of Σ-protocols, or at
least not without any (typically non-trivial) adaptation.

The results in [3] shed an important light on the expressibility and efficiency
of the Σ-protocol framework. However, as is the case with most of the literature
on interactive proofs and zero knowledge proofs, their techniques are restricted
to finite fields, which is made evident from the fact that they use several tools
restricted to finite fields such as polynomial interpolation or Pedersen commit-
ments, among others. Given the importance of this general theory, a worthy goal
is then to extend the results in [3] to the setting in which the algebraic structure
under consideration is not necessarily a finite field Zp. This would enable the use
of these tools in a much wider range of applications and scenarios, and it could
also potentially boost its efficiency by considering rings of the form Z2k , as seen
in works such as [7]. In addition, as discussed earlier, such study would make
more clear what is the inherent reach and limitation of the theory on compressed
Σ-protocols, in terms of the underlying algebraic structure.

1.1 Our Contribution

In this work we explore an extension of the compressed Σ-protocol framework
from [3], from the case in which the algebraic structure is a field of the form Zp,
to the more general setting of Zm, for an arbitrary positive integer m. Our results
show that compressed Σ-protocols for partial openings over Zm, where a prover
shows that it knows how to open a commitment to a vector that maps to a given
value under certain Zm-linear map, are possible in a direct and efficient manner,
without the need to “emulate” arithmetic using existing field-based techniques.

Our techniques inherit all the “plug & play” applications of [3], and in par-
ticular, they can be used in a wide range of settings in which Σ-protocols prove



4 Attema, Cascudo, Cramer, Damgård and Escudero

useful, without the restriction of having a prime modulus. As an example of
this, we show in Section 6 an application to the domain of efficient verifiable
computation schemes on encrypted data, where [14] offered a framework that
can deal efficiently with the general case in which the ciphertext space of the
homomorphic encryption scheme is a polynomial ring with coefficients in a ring
Zm. Some of their constructions require commit-and-prove arguments for cer-
tain statements (mainly linear) defined over Zm and over extension Galois rings.
They leave open the existence of succinct arguments that work directly over such
rings. Our results are well suited for this application and can be directly plugged
in that framework.

At a high level, our results are obtained as a combination of the following
two main contributions.

Compact Vector Commitments over Zm. One of the core ingredients in the con-
text of zero-knowledge proofs, and in particular [3], are (vector) commitment
schemes allowing a prover to commit to long vectors of (secret) information.8
These must be homomorphic over the given algebraic domain, which is Zm for
an arbitrary integer m in our setting. In [3] different instantiations of this con-
struction are considered, namely Pedersen commitments and also RSA-based
commitments. However, these constructions are restricted to m being a prime,
and, besides a few exceptions that will be discussed in Section 1.2 below, no
construction of a compact vector commitment scheme with homomorphism over
Zm for an arbitrary m is known. To tackle this issue we present in Section 4,
as a contribution of potential independent interest, an efficient construction of
said commitment schemes. This is achieved by first abstracting and generaliz-
ing a template present in several previous schemes like Pedersen’s to obtain a
compact vector commitment scheme from a single-value construction, and then
focusing on instantiating the latter type of commitments. Simply using homo-
morphic commitments over the integers, such as the one by Damgård and Fu-
jisaki [27], does not achieve the properties needed for their application in the
context of Σ-protocols: we need to guarantee that opening a commitment to a
linear combination modulo m of committed messages does not reveal any addi-
tional information about the initial messages. Integer commitments would reveal
too much, namely the same linear combination over Z. Instead, we show a con-
struction where, depending on the parity of m, we either rely on the hardness
of finding roots over RSA groups, or factoring.

Compressing Mechanism over Zm. In order to compress a basic three-move Σ-
protocol, the work of [3] resorts to using an efficient proof of knowledge to handle
the last message in such a protocol, which constitutes the prover’s response to
the verifier’s challenge. In [3], the proof of knowledge used is an adaptation of

8 We note that [19] additionally requires a vector commitment scheme to admit a
protocol for opening individual coordinates of the committed vector. We do not
impose this requirement and refer to a vector commitment scheme simply as a scheme
for committing to vectors.
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Bulletproof’s folding technique [15,16]. This is not restricted to finite fields per
se, but it does require large enough exceptional sets, also known as challenge
sets, for it to obtain reasonably small soundness error. If m is prime, and in
general, if m does not have small prime factors, then such sets over Zm exist,
but if m is divisible by a small prime then this does not hold. To address this
issue, we resort to considering ring extensions of the form Zm[X]/(f(X)) for a
polynomial f(X), which increases the sizes of the required exceptional sets. We
show in Section 5 that our commitment construction is compatible with this
type of arithmetic, and that this leads to a natural adaptation of the results
from [3] from the field setting to Zm, for an arbitrary m.

1.2 Related Work

Compressed Σ-protocol theory [3] presents a Σ-protocol for proving knowledge
that a vector underlying a given commitment satisfies certain linear relation. The
linear communication complexity of this initial Σ-protocol is then compressed
down to logarithmic by adapting the techniques from [15,16]. Additionally, in [3]
it is shown how to linearize non-linear relations, showing that arbitrary NP
statements can be proven with logarithmic communication complexity by using
compressed Σ-protocols. As we have already mentioned, the techniques in the
references cited above are mostly suitable when the computation domain is a
finite field Zq.

An instantiation of compressed Σ-protocol theory in the context of lattices is
presented in [4]. Lattice-based (compressed) Σ-protocols allow provers to prove
knowledge of a short homomorphism preimage, i.e., a preimage of bounded norm.
However, these protocols have the additional complication that the norm bound
β of the secret witness, known by an honest prover, differs from the norm bound
τ · β that the prover ends up proving. The factor τ is referred to as the sound-
ness slack. In most practical scenarios, this relaxed functionality is sufficient.
However, due to the soundness slack, lattice-based compressed Σ-protocols have
polylogarithmic, instead of logarithmic, communication complexity. More pre-
cisely, lattice-based compressed Σ-protocols require the prover to send logarith-
mically many messages to the verifier, but due to the soundness slack, which
grows with the size of the witness, larger protocol parameters are warranted.
For this reason, the size of individual messages grows (logarithmically) with
the size of the witness. These complications would be attenuated by using ring
extensions as we do here, so their techniques do not directly fit our purpose.

Further, [17] presents an adaptation of Bulletproofs defined over the integers
Z. Their techniques allow a prover to prove knowledge of a vector of bounded inte-
gers satisfying arbitrary constraints captured by a circuit over Z. However, Block
et al. [13] recently found a gap in the analysis of [17]. A non-trivial adaptation,
increasing the communication complexity from logarithmic to polylogarithmic,
was required to overcome this issue [13].

By appropriately encoding vectors x ∈ Znm as (bounded) integers, we thus
obtain a zero-knowledge proof system for relations defined over the ring Zm for
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an arbitrary m ∈ N. However, this indirect approach results in polylogarith-
mic communication complexity, while our construction works directly over Zm
and achieves O(logn log logn) communication complexity. Moreover, it cannot
harness the efficiency improvements foreseen when the arithmetic takes place in
rings Zm, with m = 264 or m = 2128, corresponding to machine computations.
These efficiency improvements have already been demonstrated in multiparty
computation applications [24,26], and in zero-knowledge proof systems [7].

Zero knowledge for more general rings has not been studied in great detail,
to the best of our knowledge. The only works we are aware of are Rinocchio [31],
which presents a succinct non-interactive arguments of knowledge (SNARK) pro-
tocol for statements represented as circuits over general commutative rings hav-
ing large enough exceptional sets, and the “Appenzeller to Brie” zero-knowledge
protocol from [8]. None of these works are based on Σ-protocols.

Finally, in terms of homomorphic and compact vector commitments, to the
best of our knowledge, no previous work has tackled the case in which the under-
lying algebraic structure is Zm, for an arbitrary m. Most existing constructions
only work for m a prime, as is the case with Pedersen commitments [42] and also
constructions based on homomorphic encryption such as ElGamal [28]. Further-
more, schemes such as Paillier [41] or Okamoto-Uchiyama [40] operate over non-
prime modulus, but these are still very structured (e.g., N = PQ or N = P 2Q).
Even many lattice-based homomorphic commitments such as [9,12] require a
prime modulus so that their associated algebraic structure factors nicely. Homo-
morphic commitments over Z2k exist, such as the Joye-Libert construction [39],
but it is not clear how to generalize this approach to other m and moreover it
requires RSA moduli whose bitlength is linear on k, while in our instantiation
we use standard RSA moduli of length independent of k.

2 Technical Overview

As a starting point, we begin with the theory of compressed Σ-protocols pre-
sented in [3], and analyze in detail which parts are inherently dependent on
the underlying algebraic structure being Zp for a prime number p. Let us begin
with a short overview of the techniques in [3], which will be followed by the
aforementioned analysis.

Overview of the Techniques in [3]. The basic “pivot” presented in [3], from
which most of their results are derived, is a Σ-protocol that enables a prover to
convince a verifier that, given a commitment and certain value, he knows how
to open that commitment to a vector that maps, under a some public linear
mapping, to the given value. More precisely, let G be a finite abelian group of
prime order q. Let P be a Pedersen commitment P = hγ

∏n
i=1 g

xi
i to a vector

x = (x1, . . . , xn) ∈ Znq , where the g1, . . . , gn, h are uniformly random elements
from G sampled in a setup phase. Also, let L : Znq → Zq be a linear form, and
let y ∈ Zq be a given value. The authors of [3] devise a communication efficient
Σ-protocol that enables a prover to prove knowledge of x, the vector underlying
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the commitment P , while proving that this vector satisfies L(x) = y. At a high
level, such protocol is achieved by first considering a basic and natural three-
move Σ-protocol for this relation, which would involve the prover sending a long
response to the challenge provided by the verifier, and then optimizing this last
step by making use of a more efficient proof of knowledge of this response, which
is derived from the techniques in Bulletproofs [15,16].

The basic three-move Σ-protocol looks as follows:

1. The prover samples r ← Znq and ρ ← Zq, and sends t = L(r) and A =
hρ

∏n
i=1 g

ri
i to the verifier;

2. The verifier samples a challenge c← Zq to the prover;
3. The prover responds with z = cx + r and ϕ = cγ+ ρ, and the verifier checks

that hϕ
∏n
i=1 g

zi
i = AP c and L(z) = cy + t.

In the second part, instead of the prover sending z and ϕ as the last step
of the protocol above, the prover uses a more efficient proof of knowledge to
prove to the verifier that he knows z and ϕ satisfying hϕ

∏n
i=1 g

zi
i = AP c and

L(z) = cy+ t. This proof has logarithmic (in n) communication complexity, and
it is based on the core pivot of the Bulletproof protocol [15,16]. It is quite difficult
to provide a general intuition on these techniques in a few paragraphs but, in a
nutshell, they consist of splitting the data into two halves, and combining them
via a new challenge that makes it hard for the prover to cheat. This can be
recursed to obtain logarithmic communication.

Dependencies on Zq for a Prime q. At this point, we can identify two main
locations in the protocol from [3] that seem to depend heavily on the algebraic
structure being Zq for a prime q.

– Challenges and soundness. To ensure low cheating probability, challenges
are sampled by the verifier to somehow “randomize” the response the prover
needs to provide. Ultimately, to show special soundness, one must show that
successfully replying to multiple challenges enables us to extract a witness.
This is typically done by solving a linear equation, or more generally, a set
of linear equations. Such approach proves difficult when not operating over
a field given the lack of invertible elements.

– Homomorphic commitments. The techniques from [3] depend on a commit-
ment scheme that is homomorphic over the desired algebraic structure. We
considered above Pedersen commitments, but the results from [3] include
other constructions whose security depends on different assumptions such
as Strong RSA and Knowledge-of-Exponent, and Lattices were considered
in [4]. All of these techniques, however, require a specific type of modulus.
For instance, Pedersen commitments are defined over cyclic groups, and the
construction from [3] based on the Strong RSA assumption only allows for
RSA moduli.
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Our Approach to Extend to Zm for any m.

– Challenges and soundness. Fortunately, we can address the issue of sound-
ness and non-invertibility by sampling challenges from an exceptional set,
which consists of elements whose non-zero pairwise differences are invertible.
This approach has been used in quite a few works in the context of secure
multiparty computation [1], but also recently in zero-knowledge proofs [31].
For some choices of m, Zm may not admit large enough exceptional sets,
but this can be fixed by considering a ring extension of Zm of large enough
degree.

– Homomorphic commitments. Arguably, the biggest difficulty in extending
the techniques in [3] to any ring of the form Zm lies in efficiently and securely
instantiating the homomorphic commitment scheme used to hide/bind the
vectors on which statements are proved. Traditionally, most commitment
schemes that support any notion of homomorphism, do so modulo very
structured integers. For example, constructions based on discrete-log-type
assumptions typically work modulo a prime, since operations are carried out
over a cyclic group. Alternatively, systems based on RSA-type assumptions
tend to operate either modulo a prime, or modulo products of two primes.
To address this difficulty we present, as a contribution of potential indepen-
dent interest, a novel construction of a vector commitment scheme that is
homomorphic modulom, for an arbitrary integerm. Our construction follows
a two-step approach. First, we show how to derive a compact vector commit-
ment scheme from any single-value commitment scheme. This consists, in a
nutshell, of committing using the single-value scheme to a uniformly random
linear combination of the coordinates of the desired vector, making sure to
randomize the commitment with a commitment to zero. This approach is
already present in other compact commitment schemes such as Pedersen’s,
and in this work we present an abstraction of this “compactification” tech-
nique, together with a generalization to the setting in which the modulus is
any integer m.
Second, we provide an instantiation for the homomorphic single-value com-
mitment scheme. We provide two constructions depending on the parity
of m. For odd m we propose a generic template based on what we call
commitment-friendly groups, which are essentially groups where exponenti-
ating to all primes dividing m leads to a collision-resistant function. These
groups can be used to obtain a single-value commitment scheme defined as
Compk=a(x, r) = (am)xrm. This is clearly hiding, and it can be proven to be
binding under the assumption that p-th roots are hard to find, for any prime
p dividing m. Furthermore, we instantiate commitment-friendly groups with
an RSA group Z∗N .
The template above does not directly work for m even given that the result-
ing group cannot be commitment-friendly: raising to a square power clearly
leads to collisions since x2 = (−x)2. To address this complication, we instead
work on a subgroup of Z∗N , containing all elements in Z∗N having Jacobi sym-
bol 1. This way, even though it still holds that x2 = (−x)2 in this group, we
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can carefully choose N in such a way that this does not play any effect into
the binding property.

3 Preliminaries

Some general notation. Let m be a positive integer. The ring of integers modulo
m is denoted by Zm. Vectors are denoted by bold letters, like x and y, and their
coordinates will be denoted by the same letter with normal font, e.g. xi and yi.
The notation x + y mod m represents addition modulo m coordinate-wise. We
will omit the “mod m” when it is clear from context. Given a finite set A, a← A
denotes sampling a uniformly random value a from A.

3.1 Vector Commitments

At a high level, a vector commitment over Znm enables a party to compute some
data from an n-dimensional vector over Zm in such a way that (1) the derived
data does not reveal anything about the original vector and (2) if the party
decides to “open” the vector (e.g. announce it to other parties) at a later point,
then the additional computed data ensures he cannot “change his mind” by
announcing a different vector.

Definition 1 (Vector commitments). A homomorphic vector commitment
scheme for Znm is a tuple (G,Com, R), where G is a probabilistic polynomial time
algorithm, called the key generation algorithm, and Com, R are polynomial time
computable functions, satisfying the following syntax.

– G(m,n, κ) outputs a public key pk.
– Compk takes as input the public key pk, a vector x ∈ Znm and a uniformly

random r sampled from R, and produces a string c. We assume that the
image. of Compk is a finite group, and that the group operation (for which
we use multiplication notation) can be computed efficiently given pk.

– Rpk takes as input the public key pk and produces as output an element
of R. It receives different possible inputs which will be clarified below. We
abbreviate by R when clear from the context.

Let pk← G(m,n, κ). We require the following properties.

– Perfect Hiding. For any x,x′ ∈ Znm, the distributions of Compk(x, r) and
Compk(x′, r′) for uniformly random r, r′ ∈ R are identical.

– Computational Binding. For any PPT A, consider the following experi-
ment: Send pk to A, who wins the game if it outputs (x, r,x′, r′) such that
x 6= x′ and Compk(x, r) = Compk(x′, r′). Then A wins with negligible prob-
ability (over the choice of pk and the random coins of A).

– Homomorphic property. It holds that9 Compk(x, r) · Compk(x′, r′) =
Compk(x+x′, R(x,x′, r, r′)), and Compk(x, r)−1 = Compk(−x, R(x,−1, r)).

9 Note that we allow the R-function to take both 1 (zero-openings), 3 and 4 arguments.
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– Randomized property. For any x′,x ∈ Znm, if at least one of r or r′ is
chosen uniformly at random in R, then R(x,x′, r, r′) is uniform in R.

Note that the homomorphic property implies that for commitment c =
Compk(x, r) and integer a, ca can be opened as a·x (modulo m). We write the as-
sociated randomness as R(x, a, r), i.e., Compk(x, r)a = Compk(a · x, R(x, a, r)

)
.

On the other hand, the randomization property will enable us to randomize
commitments by multiplying by a random commitment: if one opens a product
commitment Compk(x+x′, R(x,x′, r, r′)), then, as long as one of r, r′ is uniform,
the only information this reveals on x,x′ is x + x′ mod m. The combination of
these two facts will be essential in the Sigma-protocols where, given a commit-
ment to secret x, the prover first commits to random x′ and then opens x+a ·x′
for challenge a. This should not give information about x. We remark that using
an integer commitment such as the one in [27] falls short in our scenario for a
similar reason: given commitments to x, x′ opening their sum over Z, x + x′,
reveals more information about x,x′ than opening x + x′ mod m.

Single-Value Commitment. We consider the notion of single-value commit-
ment scheme. A single-value commitment scheme is a vector commitment scheme
that only allows n = 1. However, for our needs, we impose the following addi-
tional condition on single-value commitment schemes.

Definition 2. A single-value homomorphic commitment scheme for Zm is a
homomorphic vector commitment scheme for Znm that only allows n = 1, and
has the following additional property.

– Zero-commitment opening. For any single-value commitment c, the
commitment cm can be opened as zero. More specifically, we have that10

cm = Compk(0, R(c)).

This property implies that cm can be opened by a party who possibly
did not create c. The fact that cm is a commitment to 0 is already implied
by the homomorphic property implies given that, if c = Compk(x, r), then
cm = Compk(m · x, R(x,m, r)) = Compk(0, R(x,m, r)); but the above prop-
erty further ensures that the corresponding randomness can be derived from c
alone. Intuitively, the reason why this property is needed is the following. The
commitment schemes we consider in this work are homomorphic modulo m, i.e.
their message space forms a module over Zm, and (linear) operations over com-
mitments should correspond to the analogue operations over the message space.
Nevertheless, we are only assuming that the set in which the commitments live
is a finite group, and we do not assume anything about its order. The zero-
commitment property ensures that, even though this group’s exponent may not
be a divisor of m (so cm may not equal the identity of the group), raising to m
still leads to commitments that can be easily dealt with. We use this property,
for example, in Theorem 2 when we prove the homomorphic property of our
vector commitment scheme.
10 Here we, once again, abuse notation and let R take a commitment as input.
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3.2 Interactive Proofs

In this work we consider interactive proofs that, given an NP-relation R, enable
a prover to prove, to a verifier, knowledge of a witness w with respect to a given
statement x, i.e., (x;w) ∈ R. In this work we consider public coin interactive
proofs in which the messages sampled by the verifier are uniformly random.
An interactive proof is (perfectly) complete (or satisfies completeness) if for all
inputs (x;w), if (x;w) ∈ R, then the verifier outputs accept with probability
1. Further, informally, an interactive proof is said to be knowledge sound with
knowledge error κ if a dishonest prover without knowledge of a witness can not
succeed is convincing the verifier with probability larger than κ. For a formal
definition we refer to [34].

We also consider the notion of (k1, . . . , kµ)-special-soundness or more pre-
cisely (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-soundness. We follow the nota-
tion of [4]. To this end, let (P,V) be a (2µ + 1)-move public-coin interactive
proof. Moreover, we assume the verifier to sample its i-th challenge from a
challenge set Ci of cardinality Ni. The following defines a (k1, . . . , kµ)-tree of
transcripts for (P,V) to be a set of K = k1 · · · kµ protocol transcripts of the
form (a1, c1, a2, . . . , cµ, aµ+1) that are in a certain tree structure. For a graphical
representation see [4].

Definition 3 (Tree of Transcripts). Let k1, . . . , kµ ∈ N. A (k1, . . . , kµ)-tree
of transcripts for a (2µ + 1)-move public-coin protocol (P,V) is a set of K =∏µ
i=1 ki transcripts arranged in the following tree structure. The nodes in this tree

correspond to the prover’s messages and the edges to the verifier’s challenges.
Every node at depth i has precisely ki children corresponding to ki pairwise
distinct challenges. Every transcript corresponds to exactly one path from the
root node to a leaf node.

Definition 4 ((k1, . . . , kµ)-out-of-(N1, . . . , Nµ) Special-Soundness). A
(2µ + 1)-move public-coin protocol (P,V) for relation R, where V samples the
i-th challenge from a set of cardinality Ni ≥ ki for 1 ≤ i ≤ µ, is (k1, . . . , kµ)-out-
of-(N1, . . . , Nµ) special-sound if there exists a polynomial time algorithm that,
on input a statement x and a (k1, . . . , kµ)-tree of accepting transcripts outputs a
witness w such that (x;w) ∈ R. We also say (P,V) is (k1, . . . , kµ)-special-sound.

It is well known that, for 3-move protocols, k-special-soundness implies
knowledge soundness, but only recently it was shown that more generally, for
public-coin (2µ + 1)-move protocols, (k1, . . . , kµ)-special-soundness tightly im-
plies knowledge soundness [4].

Theorem 1 ([4]). A (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-sound interactive
proof is knowledge sound with knowledge error

κ = 1−
µ∏
i=1

(
1− ki − 1

Ni

)
.
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With regards to zero-knowledge, as typical with Σ-protocols, we restrict
our attention to special honest-verifier zero-knowledge (SHVZK), which requires
that, given a statement x and a set of uniformly random verifier messages, it is
possible to produce (without knowing any witness) an accepting transcript that
follows the same distribution as an honest interaction between the prover and
the verifier.

4 Vector Commitments over Zm

In this section we present one of our main contributions, namely the construction
of a compact modulo-m homomorphic vector commitment scheme. In Section 4.1
we show a generic method to obtain a compact vector commitment scheme from
any single-value commitment scheme. In Section 4.2, we present a construction
of a single-value commitment scheme based on what we call commitment friendly
groups. We also present an instantiation of commitment friendly groups that,
unfortunately, is restricted to odd values of m, since a similar instantiation for
even m would require an expensive set-up. To address this issue, we present in
Section 4.3 a construction of single-value commitment schemes for the case in
which m is even.

4.1 Vector Commitments from Single-value Commitments

Let (G′,Com′, R′) be a single-value commitment scheme for Zm. The goal of
this section is to derive from this scheme, for any integer n > 0, a compact
vector commitment scheme (G,Com, R). At a high level, our construction
generalizes the approach followed in Pedersen’s construction to obtain compact
commitments to long vectors, by taking a “random linear combination in the
exponent”.

VCm,n: Vector Commitment Scheme for Znm

(G′, Com′, R′) is a single-value commitment scheme for elements over Zm

– G, on input n, m, κ, proceeds as follows.
1. Run pk′ = G′(m, κ).
2. For i = 1, . . . , n, sample ai ← Zm and ri ←R. Set gi = Com′

pk′ (ai, ri)
3. Output pk = (pk′, g1, . . . , gn).

– Given x = (x1, . . . , xn) and r ∈ R as input, Compk outputs Com′
pk′ (0, r) ·∏n

i=1 gxi
i .

We remark that in some cases, including our instantiations, the gi’s can be
sampled obliviously (without knowing ai) and hence without a trusted set-up. As
we shall see in a moment, there is a very efficient reduction that shows that the
binding property holds in VCm,n, assuming that it holds on the underlying single-
value commitment scheme, with only a 1/2 factor loss (which is independent of
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n) in terms of the success probability of the adversary attacking the binding
property, i.e., the adversary trying to output two different openings for the same
commitment. In addition, observe that the vector commitment scheme VCm,n is
compact, given that a commitment is made of a homomorphic combination of
single-value commitments.

Theorem 2. When based on a single-value homomorphic commitment scheme
for Zm satisfying Definition 2, VCm,n is a homomorphic vector commitment
scheme for Znm, according to Definition 1.

Proof. To see that the perfect hiding property holds, begin by observing that,
by construction of the gi’s and the homomorphic property of the single value
scheme, we have Compk

(
x, r

)
= Com′pk′

(∑n
i=1 aixi, s

)
· Com′pk′(0, r), for some

s that can be computed by applying the R-function of the single value scheme
several times on inputs x and r1, . . . , rn. Perfect hiding now follows immediately
from the perfect hiding property of the underlying single-value scheme, together
with its randomization property, which ensures that the randomness appearing
in the overall commitment above is uniformly random.

For the the binding property, assume the existence of an adversary A that
wins the binding experiment for VCm,n with probability ϵ. We will show that
such an adversary can be used to build an adversary B that breaks binding
experiment of the original single-value scheme with probability at least ϵ/2.
Since ϵ is negligible, given that the underlying single-value scheme satisfies the
binding property, we obtain that VCm,n satisfies the property as well.

We define the algorithm B as follows. B gets a public key pk′ as input, and
then expands this to a public key pk = (pk′, g1, . . . , gn) following the definition
of G. Then B runs A on input pk. Now, assume that A wins, which means that
A outputs (x, r,x′, r′) with x 6= x′ and Compk(x, r) = Compk(x′, r′). As we did
with the hiding property, we can write both sides of the expression above in
terms of single-value commitments, as follows: the left-hand side equals

Com′pk′(
n∑
i=1

aixi, s) ·Com′pk′(0, r),

while the right-hand side is

Com′pk′(
n∑
i=1

aix
′
i, s
′) ·Com′pk′(0, r′)

for values s, s′ that can be efficiently computed. Using the homomorphic property
of the original scheme once more, we get

Com′
pk′

( n∑
i=1

aixi, R′
( n∑

i=1

aixi, 0, s, r
))

= Com′
pk′

( n∑
i=1

aix
′
i, R′

( n∑
i=1

aix
′
i, 0, s′, r′

))
.

If
∑
i aixi 6=

∑
i aix

′
i mod m, this clearly means that B can break binding of

the original scheme by outputting these values together with the corresponding
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randomness used for the commitments above. To finish the proof of our main
claim, it suffices then to show that

∑
i aixi 6=

∑
i aix

′
i mod m happens with

probability at least 1/2.
To see this, assume that

∑
i ai(xi − x′i) = 0 mod m. Since we are assuming

that A wins, we have xi0 −x′i0 6= 0 mod m for some i0. From this, it must be the
case that xi0 − x′i0 6= 0 mod p for at least one prime factor p in m. Additionally,
notice that

∑n
i=1 ai(xi−x′i) = 0 mod p, given that the corresponding congruence

holds modulo m, so we can rewrite ai0 = −(xi0−x′i0)−1 ·
∑
i 6=i0 ai(xi−x

′
i) mod p.

Now, notice that by the hiding property of the single-value scheme, the gi’s
included in the public key of VCm,n follow a distribution that is independent of
the ai’s, so, in particular, the xi − x′i values produced by A are independent of
these ai’s. From this, we see that the right-hand side of the previous expression is
independent of the left-hand side, which is uniformly random, so the probability
of this equation being satisfied is at most 1/p, or, in other words, B wins the
binding experiment with probability 1− 1/p ≥ 1− 1/2 = 1/2. This implies that
B succeeds with an overall probability of at least ϵ/2, which proves the binding
property of the vector commitment scheme.

To establish the homomorphic property, consider commitments

Compk(x, r) = Com′pk′(0, r) ·
n∏
i=1

gxii

and

Compk(x′, r′) = Com′pk′(0, r′) ·
n∏
i=1

g
x′
i
i .

Using the homomorphic property of the single-value scheme, we can write

Compk(x, r) ·Compk(x′, r′) =
n∏
i=1

g
xi+x′

i
i ·Com′pk′(0, r) ·Com′pk′(0, r′)

=
n∏
i=1

g
xi+x′

i
i ·Com′pk′(0, R′(0, 0, r, r′))

=
n∏
i=1

g
xi+x′

i mod m
i gℓimi ·Com′pk′(0, R′(0, 0, r, r′)),

where ℓi is defined by xi + x′i =
(
(xi + x′i) mod m

)
+ ℓim. Now, recall that

the zero-commitment opening property from Definition 2 of the single-value
commitment scheme enables, for any commitment c, to open cm to zero. Since
gℓii is a valid commitment (to ℓi · ai mod m, but this is irrelevant), we have that
(gℓii )m = Com′pk′(0, R′(gℓii )). Inserting this in the above is easily seen to imply
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that
Compk(x, r)·Compk(x′, r′)

=
n∏

i=1

g
xi+x′

i mod m

i Com′
pk′ (0, R′(gℓi

i )) ·Com′
pk′ (0, R′(0, 0, r, r′))

=
n∏

i=1

g
xi+x′

i mod m

i Com′
pk′ (0, s) = Compk(x + x′, s) ,

for some s ∈ R that can be computed by applying the randomness function R′
of the single value scheme several times on inputs x,x′, r, r′, g1, . . . , gn. This (im-
plicitly) defines the randomness function R of the vector scheme. In a very sim-
ilar way, one proves that Compk(x, r)−1 can be opened as −x mod m. Namely,
if we insert the expression for Compk(x, r), we get −xi’s appearing in the ex-
ponent, but these are equal to −xi mod m except for a multiple of m which
can “absorbed” into the randomness factor in the commitment using the zero-
commitment opening property.

The randomization property follows immediately from the randomization
property of the original scheme.

4.2 Single-Value Commitments via Commitment Friendly Groups
Commitment Friendly Groups. We will assume we have a PPT algorithm
GG which, on input m and security parameter κ, outputs a finite Abelian group
G, whose order does not have to be related to m. For a prime p dividing m,
consider the function ϕp : G 7→ G given by ϕp(g) = gp, where p is a prime factor
in m.
Definition 5 (Commitment friendly groups). We say that GG is commit-
ment friendly if for all primes p | m, the following holds:
1. ϕp is collision intractable, i.e, it is hard to find g 6= g′ such that ϕp(g) =

ϕp(g′). More formally, for any PPT algorithm A, the experiment where GG
is run on input (m,κ) to get G, and then A is run on input G will result in
a collision with negligible probability.

2. Let Gm = {am| a ∈ G}, which is a subgroup of G. For uniformly random
g ∈ Gm, it is hard to find h ∈ G with ϕp(h) = g. More formally, for any PPT
A, the experiment where GG is run on input (m,κ) to get G, g is sampled at
random in Gm, and A is run on input (G, g), will result in a p’th root of g
only with negligible probability.
G can reasonably be conjectured to be commitment friendly if computing the

order of G is hard, which can be the case if G is a class group or an RSA group,
as we discuss in more detail later. Indeed, if ϕp(g) = ϕp(g′) and g 6= g′, then the
order of g′g−1 is p, and finding such an element can be conjectured hard if the
order of G is not known. More precisely, finding an element of known order p
immediately reveals that p is a divisor of the group order. This contradicts the
assumption that the order of the group is unknown. Moreover, notice that ϕp is
collision intractable if gcd(p, |G|) = 1, since in this case ϕp is injective.
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Commitments from Commitment Friendly Groups. We now construct
a single value commitment scheme for Zm, assuming a generator algorithm GG
for commitment friendly groups.

SVm: Single-Value Commitment Scheme over Zm

– Key generation. Run GG on input m and κ to get G. Let g = am for a
uniformly random a ∈ G. Return pk = (G, g).

– Commitment. Set R = G and compute Compk(x, r) = gxrm.

Intuitively, the commitment is hiding because rm is uniformly random in
Gm, the group where the commitments takes values, and it is binding because
of the required properties on ϕp for all p|m: in a nutshell, for any x 6= x′ mod m
there is some prime power pℓ dividing m and not (the integer) x − x′. In these
conditions, we show in the proof of Theorem 3 below that given openings to both
x and x′, and if ϕp is collision intractable, then one can extract s with ϕp(s) = g,
contradicting the second property, since g is uniform in Gm.

Theorem 3. SVm is a single-value commitment scheme over Zm.

Proof. First, observe that the perfect hiding and randomization properties follow
immediately from the fact that a commitment to any value is a uniformly random
element in Gm.

The homomorphic property follows from

Compk(x, r)Compk(x′, r′) = gx+x′
(rr′)m = gx+x′ mod m(gtrr′)m =

Compk(x+ x′ mod m, gtrr′) ,

where t is defined by x + x′ =
(
(x + x′) mod m

)
+ tm. So we can set

R(x, x′, r, r′) = gtrr′.
Likewise, we have that Compk(x, r)−1 = g−x(r−1)m, which in turn equals

g−x mod m(gℓr−1)m, where ℓ is defined by −x =
(
−x mod m

)
+ ℓm, so we

set R(x,−1, r) = gℓr−1. Also, the zero-opening property follows trivially since
Compk(x, r)m = Compk(0,Compk(x, r)).

Finally to argue binding, assume an adversary is able to produce x 6= x′,
r, r′ such that gxrm = gx

′
r′m. Setting s = r′r−1 we get gx−x′ = sm. Since

x− x′ 6= 0 mod m, there must be a prime factor p dividing m such that, if pt is
the maximal p-power dividing x−x′ and pk is the maximal power dividing m, we
have pt < pk. The equation above can be written as (g(x−x′)/pt)pt = (sm/pt)pt .
Since ϕp is assumed collision intractable, we conclude11 that g(x−x′)/pt = sm/p

t .
Now, because pt < pk, we can define a = sm/p

t+1 , and inserting in the equation
gives g(x−x′)/pt = ap.
11 We use that if ϕp is collision intractable, then it is hard to find a 6= b with apt = bpt .

Indeed, given such a and b, there must exist 0 ≤ i < t such that api 6= bpi but
api+1

= bpi+1
which yields the collision (api , bpi) for ϕp.
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Observe that gcd(p, (x − x′)/pt) = 1 and hence we can compute α, β such
that αp+ β(x− x′)/pt = 1. Now set h = gαaβ , and observe that

hp = gαp(ap)β = gαp(g(x−x′)/pt)β = gαp+β(x−x′)/pt = g .

Hence, we have found a p’th root of g. This contradicts the assumption that G
is commitment friendly, and so the binding property of the commitment scheme
holds.

Examples of Commitment Friendly Groups for Odd m. We now dis-
cuss instantiations of commitment friendly groups. A first natural example is
to choose an RSA modulus N and set G = Z∗N . If m is odd, we can choose
N such that m is relatively prime to φ(N). As discussed above, the collision
intractability of ϕp(g) = gp is then trivially satisfied for all p | m. Furthermore,
the assumption about p-th roots being hard to compute is essentially the RSA
assumption. In more detail, even if m is exponentially large, it can only have a
polynomial number of different prime factors, so in contrast to the strong RSA
assumption the adversary cannot choose the “public exponent” freely in the p-th
root finding experiment, which makes this assumption weaker with respect to the
strong RSA assumption. But of course in applications where the adversary can
choose the modulus m, security directly reduces to the strong RSA assumption.

4.3 Single-Value Commitment Schemes for Even m.

If m is even, collision intractability is violated for p = 2 because we have x2 =
(−x)2 mod N . As a result, we cannot use the template presented before with
G = Z∗N in a direct manner.

If N = PQ with P,Q ≡ 3 mod 4, then we could use the template by setting
G to be directly QR(N), the group of quadratic residues modulo N , because its
order is odd and QR(N) satisfies the properties of a commitment-friendly group.
However, this construction has the practical drawback that it requires an expen-
sive set-up to establish g, because membership in QR(N) cannot be efficiently
decided (so rejection sampling on random elements in Z∗N does not work), and
the alternative of sampling an element in Z∗N and squaring it would require a
protocol that keeps the initial value hidden for everybody, only revealing the
squared value, which is possible, but expensive.

Instead, we will describe a slight variant of the single-value commitment con-
struction from Section 4.2 that solves this problem. We will use G = J+(N), the
subgroup of numbers with Jacobi symbol 1 modulo N . This has the advantage
that one can compute the Jacobi symbol efficiently given only N , so member-
ship in J+(N) can be verified efficiently. Moreover, we use N = PQ such that
both P and Q are congruent to 3 modulo 4. With this setup, G has even order
(P − 1)(Q− 1)/2, and also −1 ∈ G; so it is unfortunately still the case that, for
x ∈ G, −x is also in G and x2 = (−x)2 mod N . In fact, squaring maps J+(N)
into QR(N) ≤ J+(N), a proper subgroup (where |J+(N)| = 2|QR(N)|).
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To address this issue, we modify the construction as shown below. Note
that now we sample g directly in G = J+(N) (which can be done by rejection
sampling), rather than as am. The choice of N ensures that the subgroup of
quadratic residues QR(N) has odd order (more precisely, |QR(N)| = (P−1)(Q−
1)/4). Therefore we can choose N in such a way that gcd(|QR(N)|,m) = 1. This
also implies that −1 ∈ J+(N)\QR(N). These facts ensure not only that (−1)brm
is uniform in J+(N), guaranteeing perfect hiding, but still allow us to guarantee
the binding property. For more information, see the proof of Theorem 4 below.

SVm: Single-Value Commitment Scheme over Zm, for even m

– Key generation. Return pk = (G, g), where G = J+(N) and N is chosen as
above, and g ← G.

– Commitment. Set R = {0, 1} × G. Given x ∈ Zm, choose (b, r) ∈ R, and
output Compk(x, (b, r)) = gx(−1)brm mod N .

Theorem 4. Under the assumption that factoring N is hard, the construction
SVm from above constitutes a single-value commitment scheme over Zm.

Proof. Perfect hiding follows because rm is uniform in QR(N) and therefore
(−1)brm is uniform in J+(N). The homomorphic and randomization properties
are easy to verify in much the same way as in Theorem 3.

For binding, we proceed in a similar way as the aforementioned theorem. If
an adversary breaks the binding property this means it would be able to find
x, x′, r, r′, b, b′ such that gx(−1)brm = gx

′(−1)b′
r′
m mod N . There must be a

prime factor p in m such that the maximal p-power pt dividing x− x′ is smaller
than the maximal p-power pk dividing m. If p is odd, we can proceed in exactly
the same way as in Theorem 3, except that in our current case the powers of −1
may lead to the equations being satisfied up to a ±1 factor. We therefore end
up concluding that we can compute h such that hp = ±g mod N . If we have
hp = −g mod N , then since p is odd, this implies that (−h)p = g mod N , so we
get a p’th root of g in any case.

The more challenging case is when p = 2. In this case, the same arguments
will lead to the equation

(
g(x−x′)/2t)2t = ±

(
sm/2t)2t mod N .

First, since both sides are squares and −1 is not a square modulo N , it must
be the case that

(
g(x−x′)/2t)2t =

(
sm/2t)2t mod N. Unfortunately, since G has

even order, we cannot conclude that g(x−x′)/2t = sm/2t . However, we can instead
say that g(x−x′)/2t = sm/2tα mod N , where α2t mod N = 1. In particular, α has
order a 2-power, and by construction of N , the only possible orders of α would
be 1 or 2.

Given the above, one possibility is that α is a non-trivial square root of 1. In
this case, we can use α to factor N easily since (α−1)(α+1) = 0 mod N implies
that gcd(α − 1, N) is either P or Q, which breaks the assumption. Otherwise,
α is plus or minus 1. We can now continue the reasoning in the same way as in
the original proof, and find that we can compute h such that h2 mod N = ±g.
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Computing such a square-root easily implies you can factor N and break the
computational assumption.

Remark 1 (Using class groups). Alternatively, we can take G to be a class group.
Such a group is constructed from a discriminant ∆, and it is a standard assump-
tion that for large enough ∆, the order of the corresponding class group is hard
to compute. If ∆ is a prime, then the order of the group is odd, but otherwise
we do not know any way to efficiently compute information on prime factors in
the order. However, as we have already mentioned, if one finds a collision for ϕp
as defined above, one can find an element of order p, and for odd p one can rea-
sonably conjecture that this is a hard problem in class groups. The assumption
on p’th roots is motivated by the fact that the group order is hard to compute,
in a similar way as for RSA.

The case of p = 2 requires special care. The issue is that if the prime factors
of ∆ are known, one can compute square roots efficiently in the class group.
Therefore, for even m, we need that ∆ is hard to factor. One can of course use
an RSA modulus as discriminant, but this provides little advantage as then it
would be more efficient to do the RSA based solution directly. For an alternative,
see the discussion below on trusted set-up.

Remark 2 (On trusted setup). It can be an advantage in practice if the public
key of the commitment scheme can be chosen in such a way that no one knows
any side information that would allow breaking the scheme. Delegating key gen-
eration to a trusted party will work, but one would clearly prefer a solution
where no trusted party is needed.

For the RSA-based schemes, this cannot be completely satisfied since the fac-
tors of the modulus must be unknown to the committer, and we cannot generate
a correctly formed modulus without access to the prime factors, or using a less
efficient solution based on multiparty computation. However, observe that once
the modulus N is generated, the rest of the public key, namely g, can be chosen
“in public”, since it is in fact just a random group element (either in Z∗N for odd
m, or in J+(N) for even m). The vector commitment scheme we derived in Sec-
tion 4.1 inherits this property since the n commitments in the public key are also
random group elements. This can be useful, e.g., in case we have an RSA-based
PKI. In such a setting we must assume to begin with that the factorization of
the CA’s modulus N is safe, and we can then leverage this modulus to generate
the rest of the public key without trusted setup.

For class groups, one can generate the group G without trusted setup since
the discriminant is public in a first place. In this case, however, it is not possible
to determine whether Gm = G or not, as the order of G cannot be computed
efficiently. Yet, precisely because of this, it seems reasonable to conjecture that,
for odd m, elements in Gm are indistinguishable from random elements in G.
Under this assumption we can choose g randomly in G and get a scheme that
requires no trusted setup at all and still is computationally hiding since a random
g cannot be distinguished from an m’th power.

For even m we need in addition, as mentioned above, that the discriminant
is hard to factor. We can get such a scheme with no trusted setup by using a
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random discriminant large enough that it cannot be factored completely. This
results in a scheme that is not very efficient in practice, but is still interesting
from a theoretical point of view since no trusted setup is required.

Remark 3 (On q-one-way homomorphisms). In [23], the notion of q-one-way
homomorphisms for a prime q is introduced. Informally, this is a homomorphism
f : G 7→ H between two finite groups G and H such that (1) f is hard to
invert and yet, (2) for any y ∈ H it is easy to compute a preimage of yq. A
commitment is constructed based on this notion: the public key is y ∈ Im(f), and
a commitment to x ∈ Zq is of the form yxf(r), where r ∈ G is uniformly random.
It is very easy to see that this scheme satisfies our definition of a single-value
commitment scheme, where m = q, and therefore implies a vector commitment
scheme based on Theorem 2.

One example of a q-one-way homomorphism is f(x) = gx mod p, where p is
prime and g ∈ Z∗p has order q. In this case, we recover the well-known Pedersen
commitment scheme and its vector commitment variant (which in particular
shows that our efficient reduction for proving binding applies to Pedersen vector
commitments). Another example is f(x) = xq mod N for an RSA modulus N .
Unfortunately, these constructions only work when q is prime, so they are not
suitable for our needs, where we require a single-value commitment scheme over
Zm, for any positive integer m.

5 Compressed Σ-Protocol

Let (G,Com, R) be a vector commitment scheme as defined in Section 4.1, allow-
ing a prover to commit to vectors x ∈ Znm. In this section, we consider the prob-
lem of proving knowledge of an opening (x, γ) of a commitment P = Compk(x, γ)
satisfying a linear constraint L(x) = y captured by a linear form L : Znm → Zm.
We construct a compressed Σ-protocol [3] for this problem.

In contrast to the compressed Σ-protocols of [3], our protocols are not defined
over a finite field F but over the ring Zm. Because non-zero challenge differences
are required to be invertible, a challenge set C ⊆ Zm has to be exceptional. Recall
that a subset C of a ring is said to be exceptional if c − c′ is invertible for all
distinct c, c′ ∈ C. The largest exceptional subset of Zm has cardinality p, where
p is the smallest prime divisor of m. Therefore, a straightforward application
of [3] can result in (much) smaller challenges sets and therefore larger knowledge
errors. In many scenarios, this can be overcome by a t-fold parallel repetition
reducing the knowledge error from κ down to κt [5]. However, this parallel repe-
tition approach is sub-optimal and in some cases even insufficient. Namely, since
the compression mechanism is 3-special sound, the challenge set is required to
have cardinality at least 3. This is impossible when 2 | m. For this reason, we
adapt the compressed Σ-protocols of [3] to allow for challenges sampled from an
appropriate extension of the ring Zm.

In Section 5.1, we extend our Zm-vector commitment scheme to a commit-
ment scheme or vectors defined over an extension S of the ring Zm. In Section 5.2,
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we describe a standard Σ-protocol for proving that a committed vector x ∈ Sn
satisfies a linear constraint, whose communication complexity is linear in n. Sub-
sequently, we describe a compression mechanism (Section 5.3) and, as a recursive
composition of the basic Σ-protocol and this compression mechanism, we obtain
the final compressed Σ-protocol (Section 5.4) with logarithmic communication
complexity for a fixed ring extension S.

5.1 Vector Commitments over Ring Extensions

Let f(X) ∈ Zm[X] be a monic polynomial of degree d and let S = Zm[X]/(f(X))
be a degree d ring extension of Zm. Then the commitment scheme (G,Com, R)
for Zm-vectors has an extension to a scheme (G,Com′, R′) for S-vectors12 where
vectors are committed coefficient-wise, i.e.,

Com′pk
(

∑d
i=1 a1,iX

i−1

...∑d
i=1 an,iX

i−1

 ,

γ1
...
γd

)
7→

Compk

(
(a1,1, . . . , an,1), γ1

)
...

Compk

(
(a1,d, . . . , an,d), γd

)
 .

Hence, Com′pk commits to an n-dimensional S-vector x ∈ Sn by committing to
the d coefficient vectors of x (which are vectors in Znm) using d invocations of
the Zm-vector commitment scheme Compk.

This commitment scheme inherits the homomorphic, randomization and zero-
opening properties of (G,Com, R). Additionally, committed vectors can be mul-
tiplied by ring elements a ∈ S, i.e., for c = Com′pk(x, γ) and a ∈ S, the com-
mitment ca is well-defined and can be opened to a · x ∈ Sn. To see this note
that any a ∈ S corresponds to a matrix M(a) ∈ Zd×dm , such that for all b ∈ S,
a ·

∑d
i=1 biX

i−1 =
∑d
i=1 ciX

i−1 ∈ S iffM(a) ·(b1, . . . , bd)⊺ = (c1, . . . , cd)⊺ ∈ Zdm.
By lifting this matrix to Zd×d,13 it follows that the homomorphic operation ca

can be expressed in terms of the standard homomorphic properties of the Zm-
commitment scheme (G,Com, R). As before, we write R′(x, a, γ) for the ran-
domness required to open ca to a ·x ∈ Sn. We say that this commitment scheme
is S-homomorphic. Finally, a Zm-vector commitment P can also be viewed as a
S-vector commitment (P, 1, . . . , 1), now with S-homomorphic properties.

Notice that, in contrast, committing by concatenating all coefficients over
Zm would only be Zm-homomorphic and not S-homomorphic.

5.2 Standard Σ-Protocol

The reason for considering vectors defined over S = Zm[X]/(f(X)) is that when
this extension is appropriately chosen it contains larger exceptional subsets than
the ring Zm. Namely, if f(X) is irreducible modulo all prime divisors of m,
12 Note that in Section 3.1 we only defined commitments for vectors over Zm, while here

we need commitments for vectors over S, which are homomorphic as a S-module.
This notion is defined in a similar manner as the one in Section 3.1.

13 We lift to Zd×d because the homomorphic properties are defined over Z.
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then S contains an exceptional subset of cardinality pd where p is the smallest
prime dividing m. This allows us to design (compressed) Σ-protocols with larger
challenge sets and therefore smaller knowledge errors. We will assume f(X) to
be of this form and C ⊆ S to be an exceptional subset of cardinality pd.

Protocol 1, denoted by Π1, is a standard Σ-protocol, with challenge set C,
for proving knowledge of a commitment opening satisfying a linear constraint,
i.e., it is a Σ-protocol for relation X d given by {(P, y; x, γ) : Com′pk(x, γ) =
P, L(x) = y}, where x ∈ Sn and L : Sn → S is a linear form. The properties of
Π1 are summarized in Theorem 5.

Protocol 1 Standard Σ-Protocol Π1 for relation X d.

Input(P, y; x, γ),
Prover P = Com′

pk(x, γ), y = L(x) Verifier
r←R Sn, ρ←R Rd

A = Com′
pk(r, ρ), t = L(r) A,t−−−−−−−−−−−−−−→

c←R C ⊆ S
c←−−−−−−−−−−−−−−

z = r + cx
ψ = R′

(
r, cx, ρ, R′(x, c, γ)

) z,ψ−−−−−−−−−−−−−−→ Com′
pk(z, ψ) ?= A · P c

L(z) ?= t + cy

Theorem 5 (Standard Σ-Protocol). Protocol Π1 is a Σ-protocol for X d.
More precisely, it is a 3-round protocol that is perfectly complete, special honest-
verifier zero-knowledge and unconditionally knowledge sound with knowledge er-
ror 1/pd, where p is the smallest prime dividing m.

Proof. Completeness follows directly by the homomorphic properties of
Compk(·) and the linearity of L.

SHVZK: We simulate a transcript as follows. Given a challenge c, sample
(z, ψ) ←R Sn × Rd uniformly at random and let A = Com′pk(z, ψ) · P−c
and t = L(z)− cy. By the randomization property of Com′pk it follows that
the simulated transcripts (A, t, c, z, ψ) have exactly the same distribution as
honestly generated transcripts.

Knowledge Soundness: We show that Π1 is special-sound. Knowledge sound-
ness is then implied. Let (A, t, c, z, ψ), (A, t, c′, z′, ψ′) be two accepting tran-
scripts with c 6= c′ ∈ C, and let c̃ = (c − c′)−1. Then define z̃ := c̃(z − z′)
and ψ̃ := R′(c̃z,−c̃z′, R′(z, c̃, ψ), R′(z′,−c̃, ψ′)). By the homomorphic prop-
erties of Com′pk(·) and since the transcripts are accepting, it follows that
Com′pk(z̃, ψ̃) = P c̃(c−c

′) = P · P ℓm for some ℓ ∈ Z. Hence, by the zero-
opening property of Com′pk(·), (z̃, ψ̄) is an opening of commitment P , where
ψ̄ = R′

(
z̃, 0, ψ̃, R′

(
P−ℓ

))
. By the linearity of L, it additionally follows that

L(z̃) = y, i.e., (z̃, ψ̄) is a witness for statement (P, y) ∈ LXd .
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Remark 4 (Proving openings of d Zm-commitments). Protocol Π1 can be used
to prove knowledge of the openings of d different Zm-commitments P1, . . . , Pd,
all satisfying a constraint captured by the same linear form L, by defining P =
(P1, . . . , Pd), i.e., a protocol for proving knowledge of d witnesses for relation X 1.
This compares positively to the alternatives: instantiating d differentΣ-protocols
defined directly over Zm would result in a larger knowledge error; while applying
standard amortization techniques to prove knowledge of d witnesses with the
same communication costs as proving knowledge of only 1 witness (see e.g. [3])
would reduce communication costs by a factor d but again increase the knowledge
error. See Table 1.

Table 1. Properties of different Σ-protocols for proving knowledge of d witnesses for
relation X 1. Columns 2-4 contain communication costs, while the last column contains
knowledge error.

Protocol # Zm-elements # R-elements # Znm-Commitments K. error
d Separate Σ-Protocols d(n + 1) d d 1/p
Amortized Σ-Protocol n + 1 1 1 d/p

Our Σ-Protocol Π1 d(n + 1) d d 1/pd

5.3 Compression Mechanism
The communication complexity of the standard Σ-protocol Π1 is linear in the
dimension n of vector x ∈ Sn. The compression mechanism for Σ-protocols
of [3], based on Bulletproof’s folding technique [15,16], allows the communication
complexity to be reduced from linear down to logarithmic. A key observation
of this compression mechanism is that the final message of protocol Π1 is a
witness for relation X d, i.e., the final message is a trivial proof-of-knowledge
(PoK) for this relation. Therefore, this message can also be replaced by another
PoK for relation X d with a smaller communication complexity. This is the case
of compression mechanism Π2, described in Protocol 2. Protocol 2 is identical to
the compression mechanism of [3], although here we use the notation introduced
in the previous sections. Bulletproof’s folding technique takes an n-dimensional
witness x = (xL,xR) ∈ Sn and, given a challenge c ∈ C, it folds the left and right
halves xL,xR ∈ Sn/2 onto each other obtaining a new message z = xL + cxR
of dimension n/2. This technique reduces the communication complexity by
roughly a factor 2. The properties of this protocol are summarized in Theorem 6.
For more details we refer to [3].

Theorem 6 (Compression Mechanism). Let n be even. Protocol Π2 (as
defined in Protocol 2) is a 3-round protocol for relation X d. It is perfectly com-
plete and unconditionally knowledge sound with knowledge error 2/pd, where p
is the smallest prime diving m. Its communication costs from Prover to Verifier
are 2 S-commitments, n/2 + 2 elements in S and 1 elements in Rd, and from
Verifier to Prover are 1 challenge in C ⊆ S.
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Protocol 2 Compression Mechanism Π2 for Relation X d [3].

Input(P, y; x, γ)
Prover P = Com′

pk(x, γ), y = L(x) Verifier
ρ←R Rd

A = Com′
pk((0,xL), ρ), a = L(0,xL)

B = Com′
pk((xR, 0), ρ), b = L(xR, 0) A,B,a,b−−−−−−−−−→

c←R C ⊆ S
c←−−−−−−−−−

z = xL + cxR
ψ1 = R′

(
(0,xL), cx, ρ, R′(x, c, γ)

)
ψ2 = R′

(
(xR, 0), c2, ρ

)
ψ = R′

(
(0,xL) + cx, c2(xR, 0), ψ1, ψ2

) z,ψ−−−−−−−−−→ Com′
pk

(
(cz, z), ψ

) ?=

A · P c · Bc
2

L(cz, z) ?= a + cy + c2b

Proof. Completeness: Observe that (cz, z) = (0,xL) + cx + c2(xR,0). Com-
pleteness now follows from the homomorphic properties of Com′pk(·) and the
linearity of L.

3-Special Soundness: Let (A,B, a, b, c1, z1, ψ1), (A,B, a, b, c2, z2, ψ2) and
(A,B, a, b, c3, z3, ψ3) be three accepting transcripts for pairwise distinct chal-
lenges c1, c2, c3 ∈ C ⊂ R. Let (a1, a2, a3) ∈ S3 be such that 1 1 1

c1 c2 c3
c2

1 c
2
2 c

2
3

 a1
a2
a3

 =

0
1
0

 .

Note that such a vector (a1, a2, a3) exists because the Vandermonde matrix has
determinant (c2 − c1)(c3 − c1)(c3 − c2) and challenge differences are invertible
modulo in S.

Let z̃ :=
∑3
i=1 ai(cizi, zi). Then, for some ℓ ∈ Z, Com′pk(z̃, ϕ̃) = P · P ℓm,

where ϕ̃ can be computed by a recursive application of the randomness function
R′.

Hence, by the zero-opening property, (z̃, ϕ̄) is an opening of commitment
(P, y) ∈ LR, where ϕ̄ = R′

(
z̃, 0, ψ̃, R′

(
P−ℓ

))
. By the linearity of L, it additionally

follows that L(z̃) = y, i.e., (z̃, ψ̄) is a witness for statement (P, y) ∈ LXd , which
completes the proof.

5.4 Compressed Σ-Protocol

To reduce the communication costs of the Σ-protocol Π1 down to logarithmic the
compression mechanism is applied recursively, i.e., instead of sending the final
message of protocol Π2 the protocol is applied again until the dimension of the
final message equals 4. Note that the compression mechanism could be applied
even further, reducing the dimension of the final message to 2 or 1. However,
since the prover has to send 4 elements in every compression, this would result
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in a sub-optimal communication costs. This recursive composition is referred to
as Compressed Σ-Protocol, it is denoted by Πc = Π2 � · · · �Π2 �Π1 (composition
of Π2 happens dlog2(n)e − 2 times) and its properties are summarized in the
following theorem. In particular the protocol is (2, 3, . . . , 3)-special-sound, which
has recently been shown to tightly imply knowledge soundness [4].

Theorem 7 (Compressed Σ-Protocol). Let n = 2µ ≥ 4. Then, Protocol
Πc is a (2µ − 1)-round protocol for relation X d. It is perfectly complete, spe-
cial honest-verifier zero-knowledge. Moreover, it is unconditionally (2, 3, . . . , 3)-
special-sound and therefore knowledge sound with knowledge error ≤ (2µ−3)/pd,
where p is the smallest prime dividing m. In terms of communication costs, from
Prover to Verifier there are 2µ− 3 S-commitments, 2µ + 1 elements in S and 1
element in Rd, while from Verifier to Prover there are µ− 1 challenges in C ⊆ S.

In practical applications, Πc should be instantiated with knowledge error at
most 2−λ, where λ denotes the security parameter. To this end, we choose a ring
extension S of degree d ≥ (1 + λ+ log logn)/ log p = O(λ+ log logn). Hence, to
obtain a knowledge error negligible in the security parameter, the degree must
depend on the input dimension n. However, thus far we have only considered the
communication complexity for fixed ring extensions S of degree d and thus with
fixed, not necessarily negligible, knowledge error. In fact, the communication
complexity of Πc is only logarithmic in n for fixed S and d. For d = O(λ +
log logn), the communication complexity is actually O(λ logn+ logn log logn),
i.e., it is not logarithmic in n. However, this is still an improvement over the
polylogarithmic communication complexity achieved by the naive approach using
integer commitment schemes.

Further, the knowledge error of Πc shows that we must choose the degree d
of the ring extension such that pd > 2. In particular, if p = 2 the compression
mechanism can not be defined directly over Zm. If p > 2, then the compressed
Σ-protocol could have been defined over Zm directly. However, this would result
in a larger knowledge error. Reducing this knowledge error by a d-fold paral-
lel composition would result in exactly the same communication costs as the
protocol defined over the ring extension S. However, this parallel composition
approach results in a knowledge error that can be bounded by (2µ − 3)d/pd,
which is larger than the the knowledge error of our protocol. Hence, even for
the case p > 2, it is beneficial to define the protocols over the ring extension S.
Moreover, this approach allows a prover to prove d Zm-statements simultane-
ously (coordinate-wise) with exactly the same costs as proving only 1 statement.

Remark 5. The communication complexity of protocol Πc can be further re-
duced with roughly factor 1/2, by incorporating the linear form evaluation
L(x) into the commitment. More precisely, before evaluating the Compressed
Σ-Protocol, the verifier sends a random challenge c ∈ C ⊆ S to the prover, and
relation X is transformed into relation X dc given by {(P, y; x, γ) : Com′pk(x, c ·
L(x), γ) = P}. After this transformation the prover does not have to send the
linear form evaluations a, b in compression mechanism Π2 to the verifier. For
more details see [3].
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Remark 6. With small adaptations to existing work, we can use our Σ-protocols
to prove non-linear constraints. Namely, following [3], we can “linearize” this
type of constraints by an arithmetic secret sharing based technique, after which
the protocols described in previous sections can be used in a black-box manner.
In the lattice-based compressed Σ-protocols of [4] it was already shown how to
adapt this techniques to the ring scenario.14 For a general arithmetic circuit C
over S we can then construct a protocol that can prove the relation {(P, y; x, γ) :
Com′pk(x, γ) = P, C(x) = y}, with communication complexity logarithmic in
the dimension n of x ∈ Sn and the number of multiplication gates m in the
circuit C.

Finally, our protocols are also compatible with the Fiat-Shamir heuristic,
which is discussed in the full version.

6 An Application: Verifiable Computation on Encrypted
Data with Context-Hiding

In this section, we argue that our commitments and compressed Σ-protocols over
rings are useful in the context of proofs of correct computation on homomorphi-
cally encrypted data. We illustrate this concretely by considering the problem
of verifiable computation on encrypted data supporting non-deterministic com-
putations and context hiding from the recent work [14].

In verifiable computation [32], a client wants to delegate a (typically ex-
pensive) computation y = g(x) to a server, which must later prove that the
computation has been carried out correctly. When the client does not want the
server to learn information about the actual inputs x of the computation, we
speak of private verifiable computation. To address this privacy consideration,
several works [29,30,14] have proposed to combine verifiable computation and
homomorphic encryption: the client encrypts the input data with a fully ho-
momorphic scheme and sends the ciphertexts ctx1 , ctx2 , . . . to the server, which
carries out the corresponding computation ĝ(ctx1 , ctx2 , . . . ) on the encrypted
data and proves its correctness via a verifiable computation scheme.

[14] introduced a scheme that provides flexibility in this combination, where
the idea is that the proof of correctness of the computation is done on a “homo-
morphic hash” version of it into a smaller algebraic domain, more specifically a
Galois ring Zq[X]/(h). For this, one can use as succinct argument a version of
the GKR protocol [36] adapted for Galois rings, presented in [21].

However, an additional challenge appears if the privacy of the input data
needs to be preserved with respect to a (public) verifier too. In this case, we
speak of verifiable computation with context-hiding, as introduced in [30], and
[14] proposes to use a commit-and-proof strategy where the client and server
additionally commit publicly to the input and output ciphertexts respectively
14 On the other hand, since they only considered rings with large enough exceptional

sets, their protocol for proving linear statements could be defined over the base ring
and therefore the adaptations of the previous sections were not required in [4].
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(plus some additional blinding encryptions of 0 in the case of the server) and the
server uses a commit-and-proof argument to show that the computation is done
correctly on the hashed values (which, for adequate parameters, can be made
public with no harm to privacy). This strategy even extends to non-deterministic
computations y = g(x; w) which may depend on private randomness w chosen
by the server.

While [14] propose these generic solutions, they leave as an open question
the existence of succinct commit-and-proof arguments that directly handle state-
ments over (Galois) rings, so that there is no need to emulate the ring arithmetic
with an argument over a finite field, which causes considerable overhead in this
application.

Given the type of statements required in this application, our homomorphic
commitments and compressed Sigma-protocols provide a simple and efficient way
of instantiating the type of commit-and-proof arguments needed in this context;
indeed, the statements are of two types: knowledge of ctx with H(ctx) = y,
where H : Zℓm → Zm[X]/(h) is a Zm-linear map, y is public and ctx has been
committed to, which is precisely the situation we have considered in Section 5
(and further, since H is always the same map, we can efficiently batch several
proofs together, as per Remark 4); and statements consisting on proving that a
given commitment hides a correct encryption, which can be reduced to a number
of range proofs and addressed by adapting the efficient protocols for range proofs
described in [3] to a large enough extension ring of Zm.
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