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 The collapse of buildings caused by destructive earthquakes often leads to severe casualties 
and economic losses. After an earthquake, an accurate assessment of building damage will be 
essential in making plans of emergency responses. Four-polarimetric synthetic aperture radar 
(PolSAR) data have advantages over synthetic aperture radar (SAR) imaging data, because they 
are not occluded by sunlight or clouds. They also contain the most abundant information of four 
polarimetric channels. Therefore, a single PolSAR image can be used to identify post-earthquake 
building damage. It is easy to overestimate the number of collapsed buildings and the degree of 
damage by earthquakes when using only a traditional polarimetric decomposition method for 
PolSAR data. In urban areas, buildings can stand in parallel in typical SAR imaging with strong 
scattering features, and there are also some oriented standing buildings with lower scattering 
intensity or similar scattering characteristics to collapsed buildings; thus, these oriented standing 
buildings are often misconstrued as collapsed buildings. In this study, we propose a new texture 
feature, namely, the mean standard deviation (MSD) index based on the gray-level co-occurrence 
matrix (GLCM), to solve the overestimation of building damage caused by earthquakes. 
Moreover, on the basis of the improved Yamaguchi four-component decomposition method and 
the MSD index, we develop a method of identifying the damage of buildings using only a single 
post-earthquake PolSAR image. In our study case, 75000 undamaged and damaged building 
samples are used in the experiment. The proposed method has greatly improved the accuracy 
and reliability of extracted building damage information. The experimental results show 
identification accuracies of 82.43 and 80.30% for damaged and undamaged buildings, 
respectively. Compared with the traditional polarimetric decomposition method, 66.89% 
standing buildings are successfully isolated from the mixture of collapsed buildings using our 
method.
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1. Introduction

 Over the past decade, earthquakes have occurred frequently throughout the world, and 
devastating earthquakes have caused huge losses of human life and property.(1) In urban areas, 
post-earthquake casualties are mainly caused by the collapse of buildings.(2) In the search and 
rescue of people buried in rubble, the sooner the information about the collapse of buildings is 
obtained, the more likely it is that people will survive.(3) Therefore, after an earthquake, one of 
the high-priority tasks will be calculating the distribution of collapsed buildings in the 
earthquake region quickly and accurately. This information will provide a guideline for making 
emergency plans for response to an earthquake.(4) Traditionally, the main method of obtaining 
post-earthquake damage information has been through field survey. Although information 
obtained by this method is highly credible, this method often has a heavy workload and low 
efficiency over a large area.(5) Remote sensing technology enables the swift monitoring of the 
disaster situation over a large range; thus, it has become an important means of earthquake 
emergency response and post-earthquake disaster assessment.(6) Because earthquakes tend to 
occur at night or are often accompanied by clouds, rain, snow, and other severe weather 
conditions, optical remote sensing is not always effective.(7) In contrast, as radar waves are 
highly penetrable and unaffected by sunlight, they can easily pass through thick clouds to obtain 
information from disaster areas.(8) Synthetic aperture radar (SAR) remote sensing can effectively 
obtain ground images under various weather conditions.(9) After an earthquake, radar remote 
sensing is reliable for monitoring disasters. In the past, multitemporal pre-earthquake and post-
earthquake SAR data were often collected after an earthquake for use in estimating the 
difference between post-earthquake and pre-earthquake situations and in determining the 
affected location. However, because it is labor-intensive to collect pre-earthquake SAR data, 
there is almost no pre-earthquake data archived in most remote areas. In this study, we only use 
the single-temporal post-earthquake SAR data to identify the degree of damage of buildings in 
disaster areas, whereby we can avoid the multitemporal data registration operation.(10) Four-
polarimetric SAR (PolSAR) data contain more information than remote sensing data of a single-
polarimetric or dual-polarimetric radar, because PolSAR data comprise four polarimetric 
channels: HH, HV, VH, and VV, where H represents horizontal polarization and V represents 
vertical polarization. In cases where only the single post-earthquake SAR data can be used for 
assessing post-earthquake building damage, we select to use PolSAR data to achieve a higher 
accuracy of damage identification and a more reliable post-earthquake damage assessment.(11)

 With the increasing abundance of PolSAR data sources, many scholars have applied PolSAR 
to post-earthquake disaster identification because of its effectiveness in identifying ground 
objects.(12–14) In remote areas, it is difficult to obtain PolSAR data sources in pre-earthquake 
images, but the information contained in PolSAR data is sufficient for the task of damage 
identification of earthquakes based on single-temporal data; hence, recently, a continuously 
increasing number of scholars are beginning to use only the single-temporal post-earthquake 
data to identify the damage of buildings. Moreover, many experiments show that the 
identification results of this method can meet the accuracy and speed requirements of earthquake 
damage identification, and the identification accuracy is comparable to that of multitemporal 



Sensors and Materials, Vol. 34, No. 12 (2022) 4453

SAR data.(15,16) Since polarimetric features are the main information source of PolSAR data, the 
extraction of information of damaged buildings from single-temporal post-earthquake PolSAR 
data is mainly based on the polarimetric target decomposition model and polarimetric features 
parameters.(17–19) However, because texture features of PolSAR images are as important as 
polarimetric features in PolSAR data, they have an even higher identification efficiency than 
polarimetric features in many cases. Therefore, many scholars identify the damage of buildings 
from the texture features when using the polarization information in PolSAR data; this can yield 
better identification results of building damage caused by earthquakes.(20,21) More recently, with 
the rapid advancement of deep learning technologies, many scholars have used convolutional 
neural network (CNN) algorithms to integrate various polarimetric and texture features of 
PolSAR data to identify building damage caused by earthquakes.(22)

 After a destructive earthquake, the collapse of building walls results in the damage of 
dihedral structures formed between the walls and the ground, so that double-bounce scattering 
characteristics of SAR images with higher scattering intensity cannot be formed; then, the 
scattering mechanism is no longer dominated by double-bounce scattering, but rather by volume 
scattering. Because of this characteristic, collapsed buildings would have a lower scattering 
intensity than standing buildings. However, there is also a unique phenomenon in SAR images: 
the orientation of some standing buildings is not parallel to the SAR flight path. Such buildings 
are called oriented buildings. Since the polarization basis of oriented buildings is rotated, such 
buildings have a strong depolarization effect, and their predominant scattering mechanism is 
volume scattering, making their scattering intensity low. Therefore, oriented and collapsed 
buildings have similar scattering mechanisms and scattering intensities and are easily confused 
in SAR images, which often results in the excessive assessment of damaged buildings. To solve 
this problem, we propose a novel texture feature parameter based on the statistical texture 
features of PolSAR data, namely, the mean standard deviation (MSD) index of texture features, 
in this paper. The MSD index is used to design an identification scheme for assessing the degree 
of building damage caused by earthquakes. Our experimental results show that the use of the 
proposed MSD index can significantly improve the accuracy of identifying post-earthquake 
building damage. The research design and experiment will be detailed in the following sections.

2. Materials and Methods

2.1 Study earthquake and data

 In this study, the Ms7.1 Yushu earthquake, which occurred in Yushu County, Qinghai 
Province, China on April 14, 2010, is used as the case study. The epicenter of the earthquake was 
at 33.1°N, 96.6°E. Yushu County is at a high altitude and has a dry and cold climate. The urban 
area has a small amount of sparsely distributed vegetation, which has little influence on building 
identification in the earthquake region. Therefore, the vegetation type was not considered in this 
experiment. The boundary .shp data of Yushu County was used to mask the mountains around 
the urban area, and the experiment of extracting information of building damage caused by the 
earthquake was carried out only for the urban area. 
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 The experimental data are obtained from P-band airborne high-resolution PolSAR images 
acquired using the Chinese airborne SAR mapping system SARMapper on 15 April 2010, one 
day after the earthquake. The range and azimuth spatial resolutions of the experimental data are 
both about 1 m. The illumination direction is upward from the bottom, and the SAR flight path 
is level flight from east to west. Figure 1 shows the Pauli RGB image of the PolSAR data used 
for the experiment. The Pauli RGB image is a color composite image with (|HH-VV|) as the red 
band, (|HV|) as the green band, and (|HH+VV|) as the blue band, and the image is composed of 
8192 × 4384 pixels. To verify the accuracy of the proposed method, 25000 samples are selected 
from Google Earth for collapsed, oriented, and parallel buildings respectively marked in red, 
blue, and green in Fig. 1. 

2.2 Polarimetric decomposition method

 The polarimetric decomposition method can decompose different scattering components. In 
a post-earthquake PolSAR image, different scattering components correspond to buildings in 
different states. For example, for a standing building that is parallel to the SAR flight path, the 
dominant scattering components are double-bounce scattering components; thus, the resulting 
identification of the building in the earthquake region can be directly accomplished by the 
polarimetric decomposition method. On the other hand, both the collapsed buildings in the 
earthquake region and the standing buildings, as oriented buildings, have predominantly volume 
scattering components. In our research design, to identify standing buildings (including parallel  
and oriented buildings) more completely, the improved Yamaguchi four-component 
decomposition (IYFD) method(23) was adopted for the polarimetric decomposition of PolSAR 
data. The IYFD method was developed by Yamaguchi et al.(23) by improving the Yamaguchi 

Fig. 1. (Color online) Pauli RGB color composite image of the urban area in Yushu County with marked 
verification samples of three types of buildings in earthquake region.
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four-component decomposition model to enhance the identification accuracy of oriented 
buildings with the aim of identifying oriented buildings completely and accurately.(23)

2.3 MSD index of texture feature 

 The volume scattering components produced by the polarimetric decomposition method can 
be used to render oriented and collapsed buildings. It can be seen from Fig. 2 that histogram 
curves of the total intensity of PolSAR data for the oriented and collapsed buildings highly 
overlap. This indicates that the scattering intensities of the two types of buildings are 
significantly similar. Although they have similar scattering mechanisms and scattering 
intensities, they still have different texture features in PolSAR images. The oriented buildings 
have a regular and finer texture, while the collapsed buildings have a more messy and coarse 
texture. The texture feature index can better reflect the difference in scattering characteristic 
between the two types of damaged buildings, thereby distinguishing them. We have designed a 
feature parameter, the MSD index, that can be applied to classify and identify the two types of 
buildings in earthquake zones, improve the overclassification phenomenon of collapsed 
buildings, and restrain the overcorrection of oriented buildings. The MSD index can reveal the 
texture differences between the oriented and collapsed buildings to identify these buildings 
accurately. It can be seen from Fig. 2 that the MSD indices of the oriented buildings are generally 
smaller than those of the collapsed buildings. Compared with the total intensity of PolSAR data 
without extracting texture features, the use of the MSD index enables a better identification of 
the two types of buildings.
 The total power of a PolSAR image (termed SPAN image) comprises the intensity information 
of all polarimetric channels. The SPAN image contains the most intensity information. 
Therefore, we use the SPAN image to calculate the MSD index of PolSAR data. The calculation 
method of SPAN is as follows:

Fig. 2. (Color online) Histograms of (a) MSD index and (b) total intensity of PolSAR data for oriented and 
collapsed buildings.

(b)(a)
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 SPAN = HH2 + HV2 + VH2 + VV2, (1)

where HH represents the horizontal-to-horizontal (H-H) polarization combinations for 
transmitting and receiving H signals, HV denotes the cross-polarized combinations (H-V) with 
transmitting H and receiving V signals, VH denotes the cross-polarized combinations (V-H) 
with transmitting H and receiving V signals, and VV represents vertical-to-vertical (V-V) 
polarization combinations for transmitting V and receiving V pulses. The gray-level co-
occurrence matrix (GLCM)(24) is a very popular and widely used texture feature extraction 
method based on statistical methods. In general, the eight commonly used second-order 
statistical texture parameters of GLCM-based texture features are mean, variance, contrast, 
homogeneity, entropy, dissimilarity, correlation, and second moment. We propose to define the 
MSD index of the texture feature using the features of mean and variance as follows:

 ( ) ( )MSD mean SPAN variance SPAN= − , (2)

where mean(•) and variance(•) represent the mean and variance values calculated on the basis of  
GLCM for (•), respectively. The specific calculations of mean and variance are detailed in Ref. 
24.

2.4	 Identification	of	building	damage	due	to	earthquake

 As shown in Fig. 3, the process of extracting the information of damaged buildings mainly 
includes four steps. Firstly, the improved Yamaguchi four-component decomposition method is 
used for the polarimetric decomposition of PolSAR data to extract the double-bounce and 
volume scattering components. Secondly, the ground objects to be identified in the PolSAR 
image corresponding to the double-bounce components are classified as parallel buildings. 
Thirdly, the SPAN image of the PolSAR data is calculated and extracted using Eq. (1), and the 
MSD values of the PolSAR data are calculated using Eq. (2). Fourthly, an appropriate threshold 
value is selected for the MSD index. According to the classification rules shown in Eq. (3), the 
collapsed and oriented buildings are classified on the basis of the volume scattering components 
obtained by polarimetric decomposition. It can be seen from Fig. 2 that the overall MSD values 
of the collapsed buildings are greater than those of the oriented buildings. Therefore, the 
classification rules of the MSD index can be expressed as

 
      if 
          collapsed buildings,
      if 
          oriented buildings,

volume_dominated buildingsx
MSD
x
MSD
x

ε

ε

∈
≥

∈
<

∈

 (3)

where ε represents a threshold value for classifying collapsed and oriented buildings using the 
MSD index. ε is calculated as
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 ( ) ( )
2

mean CB mean OB
ε

+
= , (4)

where mean(•) represents the calculated average value of (•), and CB and OB represent the 
collapsed and oriented building sample sets, respectively. Finally, the oriented and parallel 
buildings are combined into undamaged buildings, and the collapsed buildings are defined as a 
category of damaged buildings.

3. Results

 By the identification process of post-earthquake building damage shown in Fig. 3, the 
damaged and undamaged buildings in the PolSAR data were extracted in this experiment. The 
classification parameters, i.e., the MSD indices, of collapsed and oriented buildings in the 
PolSAR data were calculated using Eq. (2), and the two types of buildings were classified in 
accordance with Eq. (3). Using Eq. (4), the classification threshold ε of the two types of buildings 
was calculated with the collapsed and oriented building sample sets marked in Fig. 1. The 
calculated ε is 23.90, which is basically consistent with the value of 24 at the boundary of MSD 
histogram curves of the collapsed and oriented buildings shown in Fig. 2. Therefore, in this 
experiment, when the MSD index was used to classify the collapsed and oriented buildings on 
the basis of Eq. (3), the classification threshold ε was set as 23.90.

Fig. 3. (Color online) Flowchart for extracting information of building damage caused by earthquakes.
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 The result of extracting damage information for buildings is shown in Fig. 4. The 
experimental result only presents the building damage in the urban area after the mountains 
around the urban area were masked by the urban boundary data of Yushu County. Using the 
verification samples of collapsed, oriented, and parallel buildings marked in Fig. 1, we evaluated 
the accuracies of the proposed method for identifying post-earthquake building damage. The 
experimental results are shown in Fig. 4 and the confusion matrix of classification accuracy is 
presented in Table 1. It can be seen from Table 1 that the total number of diagonal samples in 
which the experimental results are consistent with the reference samples accounts for 80.65% of 
the total samples. Therefore, the overall accuracy of the identification of the three types of 
buildings in the study area by the proposed method is 80.65%.

4. Discussion

 From Table 1, we can see that the accuracy of identifying damaged buildings, i.e., the correct 
identification rate of collapsed buildings, by extracting the damage information of the buildings 
by the proposed method is 82.43%, and the accuracy of identifying undamaged buildings, i.e., 

Fig. 4. (Color online) Extraction results of three types of buildings after earthquake in Yushu County.

Table 1
Confusion matrix for evaluating accuracy of identification of three types of buildings.

Experiment
CB OB PB

(No. of samples)
Reference
CB 20608 4392 0
OB 8293 16717 0
PB 1566 268 23166

OA: 80.65%
OA, CB, OB, and PB represent overall accuracy, collapsed buildings, oriented buildings, and parallel buildings, 
respectively.
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the comprehensive correct identification rate for oriented and parallel buildings, is 80.30%. That 
is, the identification accuracies for damaged and undamaged buildings are both above 80%. The 
identification results are fairly balanced for damaged and undamaged buildings. The 
experimental results show neither the underestimation of undamaged buildings due to the 
overestimation of damaged buildings nor the overestimation of the number of undamaged 
buildings due to the underestimation of the number of damaged buildings. Therefore, the 
identification results obtained by the method proposed herein are effective for assessing building 
damage after earthquakes, because an excessive identification of damaged buildings will lead to 
a waste of rescue resources, while an inadequate identification of damaged buildings will delay 
the timely rescue of buried persons, which may be very tragic. 
 Among the oriented building samples, 66.89% were successfully identified from the volume 
scattering components, which is the ratio of oriented buildings correctly classified into the set of 
oriented building samples. If these oriented buildings were misclassified as collapsed buildings,  
great amounts of rescue manpower and materials would be incorrectly allocated. All the 
corresponding ground objects of the volume scattering components are classified as collapsed 
buildings when using the traditional IYFD method. Although this method can achieve a 99.92% 
identification rate of collapsed buildings, the rate of correctly identifying undamaged buildings 
is only 46.33%. Therefore, when the traditional IYFD method is used to identify the damage of 
buildings, an inaccurate classification of the volume scattering components will sharply reduce 
the correct identification rate of undamaged buildings in order to improve the correct 
identification rate of collapsed buildings.
 Most collapsed and oriented buildings are misclassified at the boundary of the two different 
types of ground objects or at the edges of a certain type of ground object; the interfaces of 
different ground objects are often only 1–2 pixels wide. When the MSD index is applied, it is 
easy to jointly calculate the statistical features of the two types of ground objects at their 
boundaries because of the domain effect. Thus, the MSD values of the two types of ground 
objects are usually similar or the same, such that one type of ground object might easily be 
classified into the other type of ground object. Parallel buildings are misclassified as collapsed  
and oriented buildings because the scattering intensities of the transition areas of some roof 
areas and some layover and shadows are weak. The areas of parallel buildings with low 
scattering intensity are easily misclassified as collapsed and oriented buildings that are 
dominated by the volume scattering mechanism. It can be seen from Table 1 that the number of 
parallel buildings misclassified as collapsed buildings is much larger than that of parallel 
buildings misclassified as oriented buildings because there are many residual walls that can 
form dihedral structures with the ground in the case of collapsed buildings. The scattering 
intensity of such collapsed residual walls is higher than that of oriented buildings. Therefore, it is 
easier to misclassify parallel buildings with high scattering intensity as collapsed residual walls 
with high scattering intensity. In addition, the causes of the misclassification of the three types 
of buildings also include the errors produced by the manual selection of the verification samples. 
For example, in a complete verification sample block, there may be other scattered ground object 
samples not belonging to the verification sample category. In other cases, it is easy for other 
ground objects to appear at the edges of the selected building samples. 
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 Because the MSD values of oriented buildings are generally less than those of collapsed 
buildings, if the segmentation threshold value of the MSD index is set to be smaller, the 
identification accuracy of collapsed buildings will be higher, and more collapsed buildings will 
be misclassified as oriented buildings. As a result, the number of collapsed buildings will be 
overestimated and that of standing buildings will be underestimated. To the contrary, if the 
segmentation threshold value of the MSD index is set to be larger, fewer collapsed buildings will 
be identified and the identification of the damaged areas of the buildings will more easily fail, 
which may delay rescue and incur great risks to the emergency rescue plan. Therefore, the 
segmentation threshold value of the MSD index between the oriented and collapsed buildings 
should not be set too small merely to obtain a high identification accuracy for oriented buildings. 
The segmentation threshold value of the MSD index should be set appropriately on the premise 
of ensuring that the correct identification rate of collapsed buildings is not less than 80%, 
thereby ensuring that the correct identification rate of oriented buildings is also above 80%.

5. Conclusions

 To avoid the overclassification of collapsed buildings caused by the traditional IYFD method, 
the MSD index, which can describe the difference in texture feature between the collapsed and 
oriented buildings, was proposed in this study. The proposed MSD index can better distinguish 
the two types of buildings with the same dominant scattering mechanism, namely, volume 
scattering. The MSD index can well identify the difference in spatial distribution texture 
between the collapsed and oriented buildings. Therefore, in this work, the MSD index was used 
to distinguish a large number of oriented buildings incorrectly classified as collapsed buildings 
by the traditional IYFD method, thus improving the identification accuracy in the assessment of 
building damage caused by earthquakes. The MSD index of the SPAN image was calculated and 
used to further separate the volume scattering components produced by the improved Yamaguchi 
four-component decomposition of the PolSAR data into the collapsed and oriented buildings on 
the basis of the MSD threshold value. In this work, the MSD classification threshold value was 
automatically calculated referrring to the statistical characteristic of the sample space without 
any manual intervention. This method improves the degree of automation of the algorithm and 
simplifies the selection process of the threshold value. It also reduces the errors accompanying 
the manual selection of the threshold value and improves the performance of the algorithm. This 
method overcomes the issue of damage overidentification wherein all the volume scattering 
components generated from the improved Yamaguchi four-component decomposition are 
directly classified as collapsed buildings. The experimental results showed that the proposed 
extraction method of building damage can well identify the damaged and undamaged buildings 
in an earthquake-stricken region with a high identification accuracy of 80.65% for damaged 
buildings. 66.89% of the oriented buildings were successfully separated from the collapsed 
buildings identified by the traditional IYFD method, obviously improving the extraction 
accuracy of building damage information. Because of the limited amount of data available, there 
are no more experimental data available for use in this experiment at present. When more data 
become available in the future, we will further verify the robustness of the proposed method. In 
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further improvement work, we will try to classify some uncertain areas of the collapsed and 
oriented buildings using different damage levels: most likely to be a collapsed building area, 
highly likely to be a collapsed building area, less likely to be a collapsed building area, and 
probably not a collapsed building area. In this way, the risk of some collapsed buildings being 
misidentified as undamaged buildings can be reduced.
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