

## Nintedanib for non-IPF progressive pulmonary fibrosis: 12-month outcome data from a real-world multicentre observational study

Raman, L., Stewart, I., Barratt, S. L., Chua, F., Chaudhuri, N., Crawshaw, A., Gibbons, M., Hogben, C., Hoyles, R., Kouranos, V., Martinovic, J., Mulholland, S., Myall, K. J., Naqvi, M., Renzoni, E. A., Saunders, P., Steward, M., Suresh, D., Thillai, M., ... George, P. M. (2023). Nintedanib for non-IPF progressive pulmonary fibrosis: 12month outcome data from a real-world multicentre observational study. *ERJ Open Research*, [ERJOR-00423-2022.R1]. https://doi.org/10.1183/23120541.00423-2022

Link to publication record in Ulster University Research Portal

Published in: ERJ Open Research

#### Publication Status:

Published online: 03/01/2023

DOI: 10.1183/23120541.00423-2022

Document Version

Peer reviewed version

#### **General rights**

Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

#### Take down policy

The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.



THE BEST IN OPEN ACCESS BASIC, TRANSLATIONAL & CLINICAL RESPIRATORY RESEARCH

Early View

Original research article

### Nintedanib for non-IPF progressive pulmonary fibrosis: 12-month outcome data from a real-world multicentre observational study

Lavanya Raman, Iain Stewart, Shaney L Barratt, Felix Chua, Nazia Chaudhuri, Anjali Crawshaw, Michael Gibbons, Charlotte Hogben, Rachel Hoyles, Vasilis Kouranos, Jennifer Martinovic, Sarah Mulholland, Katherine J Myall, Marium Naqvi, Elisabetta A Renzoni, Peter Saunders, Matthew Steward, Dharmic Suresh, Muhunthan Thillai, Athol U Wells, Alex West, Jane A Mitchell, Peter M George

Please cite this article as: Raman L, Stewart I, Barratt SL, *et al.* Nintedanib for non-IPF progressive pulmonary fibrosis: 12-month outcome data from a real-world multicentre observational study. *ERJ Open Res* 2022; in press (https://doi.org/10.1183/23120541.00423-2022).

This manuscript has recently been accepted for publication in the *ERJ Open Research*. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online.

Copyright ©The authors 2022. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

## Nintedanib for non-IPF progressive pulmonary fibrosis: 12-month outcome data from a real-world multicentre observational study

\*Lavanya Raman (MBBS, 1. Royal Brompton Hospital, 2. National Heart and Lung Institute, Imperial College London)

\*Iain Stewart (PhD, National Heart and Lung Institute, Imperial College London, London, SW3 6LY)

Shaney L Barratt (PhD, North Bristol NHS Trust, Southmead, BS105NB)

Felix Chua (PhD, Royal Brompton Hospital, London, SW3 6NP)

Nazia Chaudhuri (PhD, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Manchester)

Anjali Crawshaw (PhD University Hospitals Birmingham NHS Foundation Trust)

Michael Gibbons (PhD 1College of Medicine & Health, University of Exeter; 2 Royal Devon University Healthcare NHS Foundation Trust, Exeter)

Charlotte Hogben (Royal Brompton Hospital, London, SW3 6NP)

Rachel Hoyles (PhD Oxford University Hospitals NHS Foundation Trust)

Vasilis Kouranos (PhD, Royal Brompton Hospital, Royal Bompton Hospital, Sydney Street, London SW3 6NP))

Jennifer Martinovic (MBBS Guys & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH)

Sarah Mulholland (North Bristol NHS Trust)

Katherine J Myall (MBChB, Guys & St Thomas' NHS Foundation Trust)

Marium Naqvi (MScPP, Guys & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH)

Elisabetta A Renzoni (PhD, Royal Brompton Hospital)

Peter Saunders (PhD, Oxford University Hospitals NHS Foundation Trust)

Matthew Steward (BMBS, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK)

Dharmic Suresh (MD, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Manchester)

Muhunthan Thillai (PhD, Royal Papworth Hospital NHS Foundation Trust, ILD unit Royal Papworth Hospital. Cambridge. CB2 0AY)

Athol U Wells (MD, Royal Brompton Hospital)

Alex West (MBBS, Guys & St Thomas' NHS Foundation Trust)

Jane A Mitchell (PhD, Imperial College London, National Heart and Lung Institute, Imperial College Road, London SW72AZ)

# Peter M George (PhD, 1. Royal Brompton Hospital, Guy's and St Thomas' NHS Trust. 2. National Heart and Lung Institute, Imperial College London) Email: <u>p.george@rbht.nhs.uk</u>

\* Joint first authors

# Corresponding Author

#### ABSTRACT

#### **Background**

Nintedanib slows lung function decline for patients with non-IPF progressive pulmonary fibrosis (PPF) in clinical trials, but the real-world safety and efficacy are not known.

#### **Methods**

In this retrospective cohort study, standardised data was collected across 8 UK centres from patients in whom nintedanib was initiated for PPF between 2019 and 2020 through an early access programme. Rate of lung function change in the 12 months pre- and post-nintedanib initiation was the primary analysis. Symptoms, drug safety, tolerability, and stratification by interstitial lung disease (ILD) subtype and CT pattern were secondary analyses.

#### **Results**

126 patients were included; 67(53%) females, mean age  $60(\pm 13)$  years. At initiation of nintedanib, mean FVC was 1.87L (58%) and DLco 32.7% predicted. 68% of patients were prescribed prednisolone (median dose 10mg) and 69% prescribed a steroid sparing agent. In the 12 months after nintedanib initiation, lung function decline was significantly lower than in the preceding 12 months; FVC -88.8ml vs -239.9mL respectively, (p=0.004) and absolute decline in DLco -2.1% vs -6.1% respectively; (p=0.004). Response to nintedanib was consistent in sensitivity and secondary analyses. 89/126 (71%) of patients reported side effects but 86 of the surviving 108 patients (80%) were still taking nintedanib at 12 months with patients reporting a reduced perception of symptom decline. There were no serious adverse events.

#### **Conclusion**

In PPF, the real-world efficacy of nintedanib replicated that of clinical trials, significantly attenuating lung function decline. Despite the severity of disease, nintedanib was safe and well tolerated in this real-world multicentre study.

#### 1. Background

Progressive pulmonary fibrosis (PPF) occurs across a range of interstitial lung diseases (ILDs) including fibrotic hypersensitivity pneumonitis (fHP) and connective tissue disease-associated ILD (CTD-ILD) (1-4). The natural history of PPF mirrors idiopathic pulmonary fibrosis (IPF)(5, 6) ultimately leading to respiratory failure and early mortality(4). It is estimated that 18-40% of patients with ILD develop PPF despite conventional therapy(6-8). The PROGRESS study(6) reported substantial progression of disease in patients with PPF despite 91.4% of patients receiving immunosuppressive therapy, highlighting the urgent need for effective treatment.

Nintedanib, a tyrosine kinase inhibitor(10), slows the annual rate of lung function decline in patients with IPF(11) and most recently in patients with progressive non-IPF fibrosing lung diseases (12, 13).

The INBUILD study and subsequent sub-analyses confirm the antifibrotic efficacy of nintedanib independent of ILD diagnosis once progression despite optimal management has occurred. (12) (14, 15). This study has shown that participants who experience PPF despite conventional management over the preceding 24 months demonstrate subsequent disease progression with the same magnitude of decline as untreated IPF (11, 16, 17).

Whilst there is randomised controlled trial evidence supporting the use of nintedanib for non-IPF PPF (12, 13), the extent to which the benefits observed in trials translates into real-world efficacy, safety and tolerability for patients is unknown.

Nintedanib was offered for the treatment of patients in the United Kingdom with a diagnosis of non-IPF PPF in a national early access programme between May 2019 and August 2020. The aim of this multicentre study was to assess the impact of nintedanib on the clinical course of patients with PPF in a real-world setting.

#### 2. <u>Methods</u>

#### **2.1 Patient population**

The study was granted ethical approval (IRAS ID 292810, REC reference 21/LO/0091) and was registered locally at each participating centre. Applications for access to nintedanib were submitted by specialist ILD physicians for eligible patients ( $\geq$ 18 years of age) meeting the following INBUILD criteria for PPF(12) over the preceding 24 months;

- Relative decline in forced vital capacity (FVC)  $\ge 10\%$ 

- Relative decline in FVC of 5% - 10% with worsening respiratory symptoms or increased extent of fibrosis on high resolution CT (HRCT) scan

- Worsening respiratory symptoms and increased extent of fibrosis on HRCT

All applications were centrally reviewed and only approved for patients meeting the above criteria. A case report form (CRF) collected retrospective and prospective data for each patient (Supplementary appendix 1). Lung function data were obtained annually. Other data to suggest clinical worsening, including increasing oxygen requirements were collected as a descriptor within the CRF but were not used to inform eligibility for nintedanib. Participating centres were responsible for monitoring blood tests and documenting adverse events. Data were collected as per clinical practice from electronic patient records by each participating centre and anonymised prior to collation.

#### 2.2 Outcomes and Analyses

The primary outcome measure was the difference in FVC change (millilitres (ml)) in the 12 months (+/- 6 months) post-nintedanib initiation relative to the change in the 12 months (+/- 6 months) preinitiation of nintedanib. Secondary outcomes were change in the % predicted diffusing capacity of the lungs for carbon monoxide (ppDLco) and ppKco post-initiation relative to pre-initiation. All reported lung function variables were pre-bronchodilator measurements.

Secondary analyses assessed differences in lung function change in individual patient groups (sex, diagnosis and radiological pattern on CT), based on the difference between lung function changes in the preceding and proceeding 12 months from nintedanib initiation.

Change in symptoms of shortness of breath, exercise tolerance and cough at initiation of nintedanib and at 12 months follow up were recorded as worsened, no change, or improved based on clinical review of patient records, and included as an additional secondary outcome. Adverse effects including 12-month mortality and side effects as well as compliance data were collected to ascertain the overall tolerability and safety of nintedanib in this population.

#### **2.3 Statistical methods**

Multilevel models for repeat measures were employed to account for all lung function tests recorded across the cohort, restricted linear splines were used to compare rate of change in the year pre- and post-nintedanib with a knot at initiation.

In secondary analyses of between group differences, multilevel models were adjusted for a-priori covariates age, sex, diagnostic group (fHP, CTD-ILD, other), radiological pattern (usual interstitial

pneumonia (UIP) pattern of fibrosis on high resolution CT) and early cessation of nintedanib treatment (prior to 12 months).

Sensitivity analyses were performed using percent predicted FVC (ppFVC), timing of ppFVC from nintedanib initiation as a continuous variable instead of discrete, and three single imputation strategies for missing ppFVC data assumed not missing at random: median imputation at time point, a carried forward or backward rule, and a 10% relative decline imputation. Sensitivity analyses were also performed in a restricted cohort of patients with complete lung function at all three time points, including paired t-test of pre and post changes in lung function, as well as unpaired tests of differences in change between sex, radiological pattern and diagnostic group.

To compare symptom changes at initiation of nintedanib and at follow up after 12 months of treatment, dichotomised categories of 'worse/no change' or 'improved' were included in McNemar's tests on discordant pairs. Relationships between early cessation of nintedanib treatment and patient characteristics were tested using Fisher's exact tests and Wilcoxon rank sum tests. Similar tests were performed to assess for bias in patients with complete lung function. All analyses were performed in Stata SE16, p-value<0.05 was considered significant for all outcomes.

#### 3. <u>Results</u>

Data were collected from 126 eligible patients who received nintedanib across 8 UK ILD centres (Figure 1, Supplementary Table 1). There were 67/126 females (53%), mean age was 60 ( $\pm$ 13) years (Table 1). At initiation of nintedanib, mean FVC was 1.86L ( $\pm$  0.70L; 57.62%  $\pm$  18.56%) and mean ppDLco was 32.66% ( $\pm$ 11.04%). 5 patients who were approved for nintedanib declined to commence therapy.

The most frequent diagnoses were fHP (n=44/126; 35%) and CTD-ILD (n=44/126; 35%). For the purposes of the secondary analyses, the remainder of patients were categorised as "other" diagnoses and these included unclassifiable IIP (n=9/126; 7%), fibrotic non-specific interstitial pneumonia (NSIP) (n=8/126; 6%) and fibrotic organising pneumonia (OP) (n=4/126; 3%) (Table 1). The CTD-ILD group comprised 24 patients with systemic sclerosis-associated ILD (SSc-ILD), 7 patients with rheumatoid arthritis-associated ILD (RA-ILD) and 13 patients with other connective tissue diseases.

The radiological pattern of fibrosis was definite UIP in 30/126 (24%) patients. Amongst those with non-UIP, the CT was most commonly reported as fHP (n=35) and fibrotic NSIP (n=33).

At the time of nintedanib initiation the most prescribed immunosuppressive drugs were prednisolone and mycophenolate mofetil (MMF) in 86/126 (68%) and 70/126 (56%) patients respectively. The median dose of prednisolone was 10mg (IQR 9-10) and the median dose of MMF was 2g (IQR 1.5-

2g) per day. In total 87/126 (69%) of patients were prescribed a steroid sparing agent and 79/126 (63%) patients were prescribed oxygen. At the time of data collection, 44/126 (35%) patients had been or were currently being assessed for lung transplantation. Six patients were active on the lung transplant list, an additional 19 patients were undergoing assessment and 19 patients had previously been assessed and declined for transplantation.

#### 3.1 Primary lung function analysis

In 123 people with lung function available, it was obtained a median of 346.5 days (IQR 281 to 429) prior to initiation, at nintedanib initiation, and 340 days (IQR 267 to 396) post-initiation. Incorporating all lung function time point data available, mean FVC was 2.10L (95%CI 1.97-2.22) pre-initiation, 1.86L (95%CI 1.73-2.00) at drug initiation and 1.77L (95%CI 1.63-1.90) post-initiation. The mean ppDLco was 38.8% (95%CI 36.4-41.2) pre-initiation, 32.7% (95%CI 28.9-35.4) at initiation of nintedanib and 32.4% (95%CI 29.5-35.4) post-initiation.

In 123 people with an FVC recorded, mean FVC change was -239.9ml (95%CI -292.7 to -187.0) in the year (±6 months) pre-initiation and -88.8ml (95%CI -156.2 to -21.3) in the year (±6 months) post-initiation with a significant attenuation of 151.2ml (95%CI 47.5 to 255.0, p=0.004) (Figure 2A, Supplementary Table 2).

In 114 people with ppDLco recorded, mean ppDLco change was -6.1% (95%CI -7.4 to -4.8) preinitiation and -2.1% post-initiation (95%CI -4.1 to -0.2%), with significant attenuation between rates of 3.93% (95%CI 1.3 to 6.6, p=0.004) (Fig 2B, Supplementary Table 2). In 108 people with ppKCO recorded, there was a mean ppKco change of -5.7% (95%CI -8.4 to -3.0) pre-initiation with a postinitiation change of -1.3% (95%CI -5.2 to +2.7) and a non-significant reduction in rate of change of 4.43% (95%CI -1.0 to 9.9; p=0.109) (Figure 2C, Supplementary Table 2).

Results of the sensitivity analyses were similar to the overall analysis (Supplementary Table 3, Supplementary Figure 1). Patients experienced a mean ppFVC change of -6.6%/year (95%CI -8.5 to -4.8) pre-initiation and -3.0%/year (95%CI -5.2 to -0.7) post-initiation, with an attenuation of 3.7%/year (95%CI 0.3 to 7.0, p=0.032). Sixty four patients (64/126; 51%) had complete lung function at all three time points, patients with incomplete lung function (n=62/126) were older (mean age 62.7 v 57.8 years, p=0.034) and had more severe MRC dyspnoea scores (p=0.002), but there was no difference in gender, baseline FVC or ppDLco, diagnosis or CT pattern. Strategies for handling missing lung function suggested a similar attenuation of decline post-nintedanib.

#### 3.2 Secondary lung function analyses

Regardless of diagnosis, patients experienced a similar reduced rate of decline in FVC with nintedanib, however statistical significance was not reached (Figure 3, Supplementary Table 2). The difference between the 12-month post-nintedanib and pre-nintedanib rate of FVC change was +125.4ml/yr (95%CI -18.4 to +269.1, p=0.087) in patients with fHP, +122.5ml/yr (95%CI -47.7 to +292.7, p=0.158) in patients with CTD-ILD and +172.7ml/yr (95%CI -25.8 to +371.2 p=0.088) for the 'other' diagnosis group. A significant attenuation in the rate of ppDLco change was observed in individuals with fHP (+5.0%/yr, 95%CI+1.1 to +8.9; p=0.013) and the 'other' diagnosis grouping (+6.6%/yr, 95%CI +1.9 to +11.4; p=0.006), but not in those with CTD-ILD (+0.6%/yr, 95%CI -3.9 to +5.1; p=0.803). No significant difference in ppKco change was observed across diagnoses.

There was a reduced rate of FVC and ppDLco decline in those with a non-UIP pattern and similar in UIP although this did not reach significance (Figure 4, Supplementary Table 2). There was a significant FVC decline in males but not females, whilst a significant ppDLco decline in females but not males, estimates were in the same direction for both sexes (Supplementary Figure 2, Supplementary Table 2).

All secondary subgroup analyses were comparable in restricted analysis of the difference in delta FVC across subgroups (Supplementary Figure 3).

#### 3.3 Symptoms, safety and tolerability

#### Patient symptoms

Of those surviving to follow-up (n=108/126), the proportion of patients who reported an improvement in symptoms increased after nintedanib treatment. Improvements in shortness of breath were reported in 25.9% (28/108) of people after 12 months of nintedanib compared to 12.0% (13/108) in the 12 months prior to drug initiation (relative difference 15.8%, 95% CI 7.5 to 24.0, p=0.0007). Reported exercise tolerance was similarly improved in 29.6% (32/108) after nintedanib compared to 13.0% (14/108) at initiation (relative difference 19.1%, 95%CI 10.0 to 28.3, p=0.0003). No change was observed in reported cough symptoms (relative difference 3.0%, 95%CI -11.1 to 17.1, p=0.839).

#### Drug side effects and tolerability

Across the entire cohort (n=126), at least one side effect was experienced by 89/126 (71%) patients (Table 2). Diarrhoea was the most common side effect (n=49/126; 39%). Hepatotoxicity was reported in 8/126 (6%) patients and was not more commonly reported in patients on steroid sparing agents (p=0.702). No serious adverse events associated with nintedanib treatment were recorded. Eighteen patients (18/126; 14%) died during the study period, for which complications or progression of ILD accounted for 8/18.

The dose of nintedanib was reduced in 37/126 (29%) patients, most commonly due to diarrhoea (n=23/37; 62%). Patients whose nintedanib dose was reduced experienced a similar benefit in lung function stabilisation (Supplementary Figure 4, Supplementary Table 4). Fifty patients (50/126; 40%) underwent a change in immunosuppressive treatment in the year following nintedanib initiation, but this was not associated with a difference in rate of lung function change (Supplementary Table 5).

#### Drug discontinuation

Nintedanib was discontinued before 1 year of treatment in 40/126 (32%) patients due to death (n=18),side effects (n=21), or other reasons (n=1). Patients who stopped nintedanib before 12 months of treatment were non-statistically older (mean difference 4.9 years; 95%CI -0.02 to 9.87, p=0.051). No difference was observed in FVC or DLco at treatment initiation in those who discontinued nintedanib but these patients had a lower Kco (mean difference -11.70%; 95%CI -21.28 to -2.12, p=0.017). Patients with higher MRC scores were less likely to continue treatment for 12 months; 19 of the 29 patients (66%) who survived but stopped treatment before 12 months had an MRC score of 4 or 5 at drug initiation compared to 24/62 patients (39%) who continued treatment to 12 months (p=0.027).

#### 4. Discussion

This study has demonstrated that for patients with non-IPF PPF in a real-world setting, the decline of lung function is significantly attenuated following the introduction of nintedanib. Although it is challenging to directly compare real world data with that acquired from highly protocolised clinical trials, patients experienced a mean FVC decline of -240 ml in the 12 months prior to nintedanib treatment as compared with -89 ml in the 12 months after treatment initiation (difference of 151 ml per year) mirroring the results of the INBUILD trial (FVC decline of -187ml per year with placebo vs -80ml per year with nintedanib)(12). Furthermore, there was also parallel attenuation in ppDLco decline associated with nintedanib, an effect which has historically been challenging to observe in multi-centre clinical trials due to inter-laboratory variability. The early access nature of this study meant that the patients had more advanced disease at drug initiation compared to those recruited to INBUILD (mean FVC 1.86L vs 2.34L and DLco 32.7% vs 44.4% respectively). Despite this, the observation that nintedanib is effective in slowing the rate of lung function decline is highly reassuring. Previous real-world studies have shown that nintedanib slows the progression of IPF (18-20), however this is the first real-world study assessing its efficacy in non-IPF PPF.

The attenuating effect was observed across diagnostic sub-groups, HRCT patterns and sex to similar extents. Nintedanib was safe and well tolerated when prescribed alongside a broad range of immunosuppressive regimes, some of which were restricted in previous clinical trials. This supports data from subgroup analyses data of the SENSCIS study showing no adverse interaction between

nintedanib and mycophenolate mofetil(21). Most patients were prescribed corticosteroids and at least one steroid sparing agent with infrequent reports of hepatoxicity or debilitating gastrointestinal side effects. Although 71% of patients reported at least one side effect, most commonly diarrhoea, 80% of surviving patients were still taking nintedanib at 12 months. Dose reductions were required in 29% of patients but did not appear to reduce the efficacy of nintedanib. 17% of patients discontinued nintedanib before 12 months due to side effects; these patients had greater baseline dyspnoea and a lower ppKco that may reflect additional comorbidity.

In this prevalent PPF population with severe disease at initiation, nintedanib was potentially associated with a reduced perception of symptomatic decline with a greater proportion of patients reporting improvements in shortness of breath and exercise tolerance following nintedanib initiation than before treatment. This finding is hypothesis generating and may be explained by the placebo effect of a new therapy or indeed concomitant introduction of palliative treatments. Although data regarding pulmonary rehabilitation were not available, the study period coincided with the height of the COVID pandemic when services were highly restricted making it less likely that widespread uptake of rehabilitation could explain these results. These observations have implications for patient selection as advanced age, frailty and disease severity should not necessarily preclude antifibrotic treatment. The lack of patient reported impact on cough does however highlight an unmet need.

#### 4.1 Strengths and Limitations

Eight specialist ILD centres contributed to the study with only 10/126 (8%) of patients not meeting newly published official ATS/ERS/JRS/ALAT Clinical Practice Guideline for patients with PPF(3), supporting the generalisability of the results. The breakdown of ILD diagnoses in this study paralleled INBUILD; the most common diagnoses were fHP and CTD-ILD (12, 14). There were more patients with SSc-ILD (24%) than in INBUILD (<7%)(12) but the proportion was similar to the PROGRESS study(6) and thus may be a more accurate reflection of the real-world population. The INBUILD cohort had a higher proportion of UIP scans incorporating both definite and probable UIP(3) whereas in our study only definite UIP was classified as such. Almost all patients who were eligible received treatment with only a small number (n=5) electing not to start nintedanib – this means that selection bias is unlikely to have skewed the results.

As this was a real-world study of patients treated with nintedanib through an early access programme, data was acquired through routine clinical care as opposed to a protocolised clinical study, which resulted in missing data, particularly of lung function records. Study recruitment and follow-up was conducted between May 2019 and August 2021, therefore the Covid-19 pandemic further compounded the issue as recommended shielding guidance and repositioning of health resource impacted lung function visits, hospitalisations and acute exacerbations. Comparisons drawn between lung function decline pre- and post-treatment exposure may therefore be limited by the time and

progression course. Patients not providing lung function data at the final time point could overestimate the benefit of the drug due to survivorship bias.

To ensure that all patients entered onto the early access programme were represented in primary analyses, multilevel models for repeat measures were used. Sensitivity analysis restricted solely to those patients who provided lung function data at three timepoints demonstrated a similar magnitude of effect with nintedanib. Routine clinical lung function is frequently missing not at random due to the effort required in severe disease. Further sensitivity analyses were performed with alternative single imputation strategies for data missing not at random,(22) and continued to support an attenuation in lung function decline.

The secondary analysis was limited by small numbers in subgroups, restricting power to detect between group differences including potential confounding effects of immunosuppression. Patient reported symptom scores were subjectively evaluated from clinic letters and not prospectively assessed using validated questionnaires. Whilst intolerable side effects due to nintedanib were not reported, improvement in symptoms are subject to bias and require independent validation. UIP and non-UIP HRCT patterns were reported by ILD teams based on radiology reports and not centrally evaluated, however all centres are specialist ILD units and local interpretation is considered acceptable for many drug clinical trials.

#### **4.2 Conclusion**

In this first, antifibrotic treated, real-world multicentre study of patients with non-IPF PPF patients, we have demonstrated that nintedanib was safe, well tolerated, and associated with an attenuation of lung function decline despite the severity of ILD in this patient cohort. Nintedanib did not appear to have excess deleterious effects when taken in combination with other immunosuppressants, supporting its use for the pharmacological treatment of non-IPF ILD where progression has occurred despite optimal management.

#### Author contributions:

PMG conceived the study, coordinated data collection, analysed the data and drafted the manuscript. LR coordinated data collection, analysed the data and wrote the first draft of the manuscript. IS provided statistical oversight, analysed the data and drafted the manuscript. PMG, LR and IS had direct access to the data. All authors were involved in data collection, critical appraisal and approved the final version of the manuscript.

#### **Role of the funder:**

This study was not externally funded

#### **Conflicts of interest:**

IS receives funding from the Rayne Foundation. NC reports personal fees from Boehringer Ingelheim, Redex, Novartis, Liminal Biosciences, Vicor Pharma, Bridge Biotherapeutics and Roche. FC reports personal fees from Boehringer Ingelheim. CH has received personal fees from Boehringer Ingelheim. MG reports personal fees for advisory boards and support for attending conferences from Boehringer Ingelheim. VK reports personal fees from Boehringer Ingelheim and Novartis. SM reports personal fees from Boehringer Ingelheim. MN reports honoraria from Boehringer Ingelheim, Astra Zeneca and Roche and grant support paid to their institution from an NHSX digital award. EAR reports fees paid to their institution from Boehringer Ingelheim, Novartis Roche and research grants paid to their institution from Boehringer Ingelheim. MT reports personal fees from Boehringer Ingelheim, research grants paid to their institution from Boehringer Ingelheim and support for conference attendance from Boehringer Ingelheim. AUW is president elect of WASOG, reports personal fees from Boehringer Ingelheim and Roche and support for conference from Boehringer Ingelheim. PMG reports personal fees from Boehringer Ingelhein, Roche, Teva, Cipla and Brainomix, research grants paid to their institution from Boehringer Ingelheim and support for conference attendance from Boehringer Ingelheim and Roche. No other authors report any conflicts of interest.

|                           | N 126              | Mean  | SD         |
|---------------------------|--------------------|-------|------------|
| Age (years)               | 126                | 60    | 13         |
| Baseline lung<br>function |                    |       |            |
| FVC (L)                   | 103                | 1.86  | 0.70       |
| FVC (% predicted)         | 102                | 57.62 | 18.56      |
| DLco (% predicted)        | 79                 | 32.66 | 11.04      |
| Kco (% predicted)         | 74                 | 65.85 | 18.97      |
|                           | Category           | Ν     | Percentage |
| Gender                    |                    |       |            |
|                           | Male               | 59    | 47         |
|                           | Female             | 67    | 53         |
| ILD diagnosis             |                    |       |            |
|                           | fHP                | 44    | 34.9       |
|                           | CTD-ILD            | 44    | 34.9       |
|                           | Unclassifiable IIP | 9     | 7.1        |
|                           | Fibrotic NSIP      | 8     | 6.3        |
|                           | Fibrotic OP        | 4     | 3.2        |
|                           | PPFE               | 3     | 2.4        |
|                           | Asbestosis         | 3     | 2.4        |

Table 1. Baseline characteristics and lung function at initiation of nintedanib

|                           | Smoking related ILD                           | 3   | 2.4  |
|---------------------------|-----------------------------------------------|-----|------|
|                           | Familial PF                                   | 1   | 0.8  |
|                           | Fibrotic sarcoid                              | 1   | 0.8  |
|                           | DIP                                           | 1   | 0.8  |
|                           | HIV associated ILD                            | 1   | 0.8  |
|                           | Other                                         | 4   | 3.2  |
| Smoking status            |                                               |     |      |
|                           | Current                                       | 2   | 1.6  |
|                           | Ex                                            | 46  | 36.5 |
|                           | Never                                         | 63  | 50   |
|                           | No data                                       | 15  | 11.9 |
| Hospital                  |                                               |     |      |
|                           | Guy's & St Thomas' NHS Foundation trust       | 10  | 7.9  |
|                           | Manchester University NHS Foundation<br>Trust | 13  | 10.3 |
|                           | North Bristol NHS Trust                       | 3   | 2.4  |
|                           | Oxford University Hospital                    | 16  | 12.7 |
|                           | Royal Papworth Hospital                       | 15  | 11.9 |
|                           | Royal Brompton Hospital                       | 61  | 48.4 |
|                           | Royal Devon & Exeter Hospital                 | 4   | 3.2  |
|                           | University Hospital Birmingham                | 4   | 3.2  |
| MRC Dyspnoea<br>score     |                                               |     |      |
|                           | 1                                             | 4   | 3    |
|                           | 2                                             | 18  | 14   |
|                           | 3                                             | 26  | 21   |
|                           | 4                                             | 27  | 21   |
|                           | 5                                             | 16  | 13   |
|                           | No data                                       | 35  | 28   |
| Home Oxygen (ambul        | atory/LTOT)                                   |     |      |
|                           | Yes                                           | 79  | 62.7 |
|                           | No                                            | 45  | 35.7 |
|                           | Unknown                                       | 2   | 1.6  |
| Fibrotic pattern on<br>CT |                                               |     |      |
|                           | UIP                                           | 30  | 24   |
|                           | Non-UIP                                       | 95  | 75   |
|                           | No Data                                       | 1   | 1    |
| Indication for starting   | Nintedanib                                    |     |      |
|                           | Progressive symptoms                          | 111 | 88   |
|                           | Lung function decline                         | 100 | 79   |
|                           | CT progression                                | 85  | 67   |
| <b>Concurrent Immunos</b> | uppression                                    |     |      |
|                           | Yes                                           | 113 | 90   |
|                           | No                                            | 13  | 10   |
|                           | Prednisolone                                  | 86  | 68   |
|                           | Mycophenolate mofetil                         | 70  | 56   |

|                     | Azathioprine       | 6  | 5  |
|---------------------|--------------------|----|----|
|                     | Hydroxychloroquine | 13 | 10 |
|                     | Leflunomide        | 3  | 2  |
|                     | Rituximab          | 9  | 7  |
|                     | Tacrolimus         | 1  | 1  |
|                     | Methotrexate       | 3  | 2  |
| Change in immunosup |                    |    |    |
|                     | Unchanged          | 76 | 60 |
|                     | Increased          | 29 | 23 |
|                     | Decreased          | 13 | 10 |
|                     | Other              | 8  | 6  |

Table 1 Legend. FVC denotes forced vital capacity; DLco: diffusion capacity of the lung for carbon monoxide; Kco: carbon monoxide transfer coefficient; fHP: fibrotic hypersensitivity pneumonitis; CTD-ILD: connective tissue disease-associated interstitial lung disease; unclassifiable IIP: unclassifiable idiopathic interstitial pneumonia; fibrotic NSIP: fibrotic non-specific interstitial pneumonia; fibrotic OP: fibrotic organising pneumonia; PPFE: pleuroparenchymal fibroelastosis; familial PF: familial pulmonary fibrosis; DIP: desquamative interstitial pneumonia; HIV: human immunodefiency virus; LTOT: long-term oxygen therapy; UIP: usual interstitial pneumonia

|             |                       | N 126          | Percentage          |
|-------------|-----------------------|----------------|---------------------|
| Adverse eff | ects                  |                |                     |
|             | Yes                   | 89             | 71                  |
|             | Diarrhoea             | 49             | 39                  |
|             | Nausea & vomiting     | 31             | 25                  |
|             | Weight loss           | 31             | 25                  |
|             | Abdominal pain        | 22             | 17                  |
|             | Appetite loss         | 11             | 9                   |
|             | Hepatotoxicity        | 8              | 6                   |
|             | Headache              | 8              | 6                   |
|             | Constipation          | 3              | 2                   |
|             | Lethargy              | 3              | 2                   |
|             | Other                 | 2              | 2                   |
|             | None                  | 37             | 29                  |
| Dose reduct | ion nintedanib?       |                |                     |
|             | Yes                   | 37             | 29                  |
| Surviving p | atients who completed | l at least 6 n | onths of nintedanib |
|             | Yes                   | 102            | 81                  |
|             | No                    | 24             | 19                  |
| Surviving p | atients on nintedanib | at 12 month    | s                   |
|             | Yes                   | 86             | 80                  |
|             | No                    | 22             | 20                  |
| Survival at | 12 months             |                |                     |
|             | Alive                 | 108            | 86                  |
|             | Dead                  | 18             | 14                  |

### Table 2. Tolerability, safety and survival related to nintedanib

#### REFERENCES

1.George PM, Spagnolo P, Kreuter M, Altinisik G, Bonifazi M, Martinez FJ, et al. Progressive fibrosing interstitial lung disease: clinical uncertainties, consensus recommendations, and research priorities. The Lancet Respiratory Medicine. 2020;8(9):925-34.

2.Simpson T, Barratt SL, Beirne P, Chaudhuri N, Crawshaw A, Crowley LE, et al. The burden of Progressive Fibrotic Interstitial lung disease across the UK. European Respiratory Journal. 2021:2100221.

3.Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med. 2022;205(9):e18-e47.

4.Wijsenbeek M, Cottin V. Spectrum of Fibrotic Lung Diseases. N Engl J Med. 2020;383(10):958-68. 5.Brown KK, Martinez FJ, Walsh SLF, Thannickal VJ, Prasse A, Schlenker-Herceg R, et al. The natural history of progressive fibrosing interstitial lung diseases. European Respiratory Journal. 2020;55(6):2000085.

6.Nasser M, Larrieu S, Si-Mohamed S, Ahmad K, Boussel L, Brevet M, et al. Progressive fibrosing interstitial lung disease: a clinical cohort (the PROGRESS study). Eur Respir J. 2021;57(2).

7.Olson A, Hartmann N, Patnaik P, Wallace L, Schlenker-Herceg R, Nasser M, et al. Estimation of the Prevalence of Progressive Fibrosing Interstitial Lung Diseases: Systematic Literature Review and Data from a Physician Survey. Adv Ther. 2021;38(2):854-67.

8.Olson AL, Patnaik P, Hartmann N, Bohn RL, Garry EM, Wallace L. Prevalence and Incidence of Chronic Fibrosing Interstitial Lung Diseases with a Progressive Phenotype in the United States Estimated in a Large Claims Database Analysis. Adv Ther. 2021;38(7):4100-14.

9.Wijsenbeek M, Kreuter M, Olson A, Fischer A, Bendstrup E, Wells CD, et al. Progressive fibrosing interstitial lung diseases: current practice in diagnosis and management. Current Medical Research and Opinion. 2019;35(11):2015-24.

10.Wollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. European Respiratory Journal. 2015;45(5):1434-45.

11.Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. New England Journal of Medicine. 2014;370(22):2071-82.

12.Flaherty KR, Wells AU, Cottin V, Devaraj A, Walsh SLF, Inoue Y, et al. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. New England Journal of Medicine. 2019;381(18):1718-27. 13.Distler O, Highland KB, Gahlemann M, Azuma A, Fischer A, Mayes MD, et al. Nintedanib for Systemic Sclerosis-Associated Interstitial Lung Disease. N Engl J Med. 2019;380(26):2518-28. 14.Wells AU, Flaherty KR, Brown KK, Inoue Y, Devaraj A, Richeldi L, et al. Nintedanib in patients with progressive fibrosing interstitial lung diseases-subgroup analyses by interstitial lung disease diagnosis in the INBUILD trial: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Respir Med. 2020;8(5):453-60.

15.Matteson EL, Kelly C, Distler JHW, Hoffmann-Vold A-M, Seibold JR, Mittoo S, et al. Nintedanib in Patients With Autoimmune Disease–Related Progressive Fibrosing Interstitial Lung Diseases: Subgroup Analysis of the INBUILD Trial. Arthritis & Rheumatology. 2022;74(6):1039-47.

16.King TE, Jr., Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083-92.

17.Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377(9779):1760-9.

18.Brunnemer E, Wälscher J, Tenenbaum S, Hausmanns J, Schulze K, Seiter M, et al. Real-World Experience with Nintedanib in Patients with Idiopathic Pulmonary Fibrosis. Respiration. 2018;95(5):301-9.

19.Wright WA, Crowley LE, Parekh D, Crawshaw A, Dosanjh DP, Nightingale P, et al. Real-world retrospective observational study exploring the effectiveness and safety of antifibrotics in idiopathic pulmonary fibrosis. BMJ Open Respiratory Research. 2021;8(1):e000782.

20.Harari S, Caminati A, Poletti V, Confalonieri M, Gasparini S, Lacedonia D, et al. A Real-Life Multicenter National Study on Nintedanib in Severe Idiopathic Pulmonary Fibrosis. Respiration. 2018;95(6):433-40.

21.Highland KB, Distler O, Kuwana M, Allanore Y, Assassi S, Azuma A, et al. Efficacy and safety of nintedanib in patients with systemic sclerosis-associated interstitial lung disease treated with mycophenolate: a subgroup analysis of the SENSCIS trial. Lancet Respir Med. 2021;9(1):96-106. 22.Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts. BMC Med Res Methodol. 2017;17(1):162.

#### **Figure Legends**

#### Figure 1. CONSORT flow diagram of study population

Study CONSORT demonstrating the number of eligible participants, those initiated on nintedanib, those reaching primary analysis criteria of sequential lung function, adherence to the compassionate access programme.

### Figure 2. Difference in lung function change in the 12 months pre- and post-nintedanib initiation (N=123)

Mean lung function (A) FVC (ml; n=123), (B) ppDLco (% predicted; n=114) and (C) ppKco (% predicted; n=108) values at pre-initiation, initiation and post-initiation, and the difference in rate of lung function change pre and post initiation. Estimates plotted with 95% confidence intervals from multilevel model.

### Figure 3. Difference in lung function change between 12 months pre and post nintedanib according to diagnostic group (N=123)

Adjusted estimates of mean lung function (A) FVC (ml; n=123), (B) ppDLco (% predicted; n=113) and (C) ppKco (% predicted; n=107) values at pre-initiation, initiation and post-initiation, and the difference in rate of lung function change pre and post initiation, according to diagnostic group. Estimates plotted with 95% confidence intervals. fHP – fibrotic hypersensitivity pneumonitis; CTD-ILD – connective tissue disease-associated ILD.

### Figure 4. Difference in lung function change between 12 months pre and post nintedanib according to CT pattern (N=123)

Adjusted estimates of mean lung function (A) FVC (ml; n=123), (B) ppDLco (% predicted; n=113) and (C) ppKco (% predicted; n=107) values at pre-initiation, initiation and post-initiation, and the difference in rate of lung function change pre and post initiation, according to CT pattern. Estimates plotted with 95% confidence intervals.









#### A National study of Nintedanib for Progressive Fibrosing Interstitial Lung Disease

#### 1. AUDIT LOCATION

Name of Hospital.....

#### 2. PATIENT DETAILS AND DEMOGRAPHICS

Local ID/MRN (e.g. RBH 001).....

Patient Initials.....

Audit Number (to be assigned by RBH).....

| Age at initiation of nintedanib (years)                 |            |       |            |               |       |
|---------------------------------------------------------|------------|-------|------------|---------------|-------|
| Sex                                                     | M          | F     |            |               |       |
| Ethnicity                                               | White<br>□ | Black | Asian<br>□ | Mixed<br>□    | Other |
| Smoking                                                 | Current    | Ex    | Never      |               |       |
| Height (m)                                              |            |       |            |               |       |
| BMI (kg/m2)                                             |            |       |            |               |       |
| Known to hospital or community palliative care services | Yes<br>□   |       | No<br>□    | Not Sure<br>□ |       |

#### 3. DIAGNOSES

#### ILD diagnosis:

| Chronic Hypersensitivity Pneumonitis   | Yes | No |                   |                                                    |      |
|----------------------------------------|-----|----|-------------------|----------------------------------------------------|------|
|                                        |     |    |                   |                                                    |      |
|                                        |     |    |                   |                                                    | 1    |
| Autoimmune ILD                         | Yes | No | If yes            |                                                    | Tick |
|                                        |     |    | please<br>specify | Rheumatoid related ILD                             |      |
|                                        |     |    |                   | Systemic sclerosis-associated ILD                  |      |
|                                        |     |    |                   | Mixed connective tissue disease-<br>associated ILD |      |
|                                        |     |    |                   | Other autoimmune ILD                               |      |
| Unclassifiable idiopathic interstitial | Yes | No |                   |                                                    |      |
| pneumonia                              |     |    |                   |                                                    |      |
| Idiopathic non-specific interstitial   | Yes | No |                   |                                                    |      |
| pneumonia                              |     |    |                   |                                                    |      |
|                                        |     |    |                   |                                                    |      |
| Other                                  | Yes | No | Please Spec       | ify                                                |      |
|                                        |     |    |                   | -                                                  |      |
|                                        |     |    |                   |                                                    |      |

#### Comorbidities

| <br> | <br> |  |
|------|------|--|
| <br> | <br> |  |

#### Medication

| Medication (please include<br>Nintedanib and dose) | Dose | Date commenced (Please only<br>complete for immunosuppressive<br>therapy; leave blank if unknown) |
|----------------------------------------------------|------|---------------------------------------------------------------------------------------------------|
|                                                    |      |                                                                                                   |
|                                                    |      |                                                                                                   |
|                                                    |      |                                                                                                   |
|                                                    |      |                                                                                                   |
|                                                    |      |                                                                                                   |
|                                                    |      |                                                                                                   |
|                                                    |      |                                                                                                   |
|                                                    |      |                                                                                                   |
|                                                    |      |                                                                                                   |
|                                                    |      |                                                                                                   |
|                                                    |      |                                                                                                   |
|                                                    |      |                                                                                                   |
|                                                    |      |                                                                                                   |
|                                                    |      |                                                                                                   |
|                                                    |      |                                                                                                   |

#### Immunomodulators (including steroids)

| Was a new<br>immunomodulator                 | Yes 🗆   |                         | No | Unknown |
|----------------------------------------------|---------|-------------------------|----|---------|
| commenced after<br>Nintedanib initiation?    | Drug(s) | Indication for starting | -  |         |
| Were any                                     | Yes 🗆   | ·                       | No | Unknown |
| immunomodulators                             |         |                         |    |         |
| discontinued after<br>Nintedanib initiation? | Drug(s) | Indication for stopping |    |         |
| Was the dose of                              | Yes 🗆   |                         | No | Unknown |
| immunomodulator                              |         |                         |    |         |
| changed after Nintedanib initiation?         | Drug(s) | Indication for change   |    |         |

#### Severity of disease

| MRC<br>dyspnoea<br>grade (1-5) |                                          |                                          |    | Not Known<br>□ |
|--------------------------------|------------------------------------------|------------------------------------------|----|----------------|
| Home                           | Yes                                      | 5                                        | No | Not Known      |
| Oxygen                         |                                          |                                          |    |                |
|                                | Ambulatory                               |                                          |    |                |
|                                | Commenced prior to Nintedanib initiation | Commenced after Nintedanib initiation    |    |                |
| Was the                        | Yes                                      | Declined                                 | No | Not Known      |
| patient ever                   |                                          | Under assessment                         |    |                |
| transplant?                    |                                          | On active transplant waiting list $\Box$ |    |                |

#### Family history

| Does the                   | Yes | No | Unknown |              | IF YES Specify | / type of ILD   |          |
|----------------------------|-----|----|---------|--------------|----------------|-----------------|----------|
| patient have<br>a familial |     |    |         |              |                |                 |          |
| history of                 |     |    |         | First Degree | e Relatives    | Second Degree R | elatives |
|                            |     |    |         | Yes          | No             | Yes             | No       |
|                            |     |    |         |              |                |                 |          |

## 4. BASIS FOR ENTRY ONTO THE PROGRAMME – Please send anonymised Nintedanib initiation proforma

Date accepted onto the programme.....

Date of initiation of Nintedanib.....

| Indication for entry onto programme (select all that apply) | YES | NO | DETAILS |
|-------------------------------------------------------------|-----|----|---------|
| Progressive symptoms                                        |     |    |         |
| Progressive fibrosis on CT                                  |     |    |         |
| Progressive decline in lung function                        |     |    |         |
| Increasing oxygen requirement                               |     |    |         |
| Other (please specify)                                      |     |    |         |

#### 5. RADIOLOGY- Please attach anonymised reports of all previous CT scans

|                                 | Initial CT preced                                   | ling nintedanib | CT at initiation of nintedanib<br>(leave blank if no CT) |         | Follow up CT scan post<br>nintedanib initiation (leave<br>blank if no CT) |  |
|---------------------------------|-----------------------------------------------------|-----------------|----------------------------------------------------------|---------|---------------------------------------------------------------------------|--|
| Date of CT                      |                                                     |                 |                                                          |         |                                                                           |  |
| CT report                       |                                                     |                 |                                                          |         |                                                                           |  |
| Progression of<br>fibrosis from | YES                                                 | NO<br>□         | YES<br>□                                                 | NO<br>□ | YES                                                                       |  |
| Predominant                     | Usual interstitial                                  | pneumonia (UIF  | <u> </u> )                                               |         | 1                                                                         |  |
| radiological ILD                | Eibrotic non-specific interstitial pneumonia (NSIP) |                 |                                                          |         |                                                                           |  |
| pattern                         | Fibrotic hypersensitivity pneumonitis (HSP)         |                 |                                                          |         |                                                                           |  |
|                                 | Fibrotic organising pneumonia (OP)                  |                 |                                                          |         |                                                                           |  |
|                                 | Fibrotic sarcoid                                    | <u> </u>        | ,                                                        |         |                                                                           |  |
|                                 | Other                                               |                 |                                                          |         |                                                                           |  |

| (specify) |
|-----------|
|-----------|

### 6. LUNG FUNCTION – Please attach serial formal lung function reports including any tests performed prior to those entered in the table below

|                                | 24 months prior to<br>Nintedanib initiation<br>(+/- 6 months) | 12 months prior to<br>Nintedanib (+/- 6<br>months) | At initiation of<br>Nintedanib (+/- 6<br>months) | 12 months after<br>initiation of<br>Nintedanib (+/- 6<br>months) |
|--------------------------------|---------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|
| Date of lung<br>function       |                                                               |                                                    |                                                  |                                                                  |
| Weight at time of test         |                                                               |                                                    |                                                  |                                                                  |
| Height at time of test         |                                                               |                                                    |                                                  |                                                                  |
| FEV <sub>1</sub> (L)           |                                                               |                                                    |                                                  |                                                                  |
| FEV <sub>1</sub> (% predicted) |                                                               |                                                    |                                                  |                                                                  |
| FVC (L)                        |                                                               |                                                    |                                                  |                                                                  |
| FVC (%<br>predicted)           |                                                               |                                                    |                                                  |                                                                  |
| TLco                           |                                                               |                                                    |                                                  |                                                                  |
| TLco (%<br>predicted)          |                                                               |                                                    |                                                  |                                                                  |
| Kco                            |                                                               |                                                    |                                                  |                                                                  |
| Kco (%<br>predicted)           |                                                               |                                                    |                                                  |                                                                  |

#### 7. SYMPTOMATIC PROGRESSION

Please rate the patient's symptoms according to the following scale (leave blank if no data):

- 1: Rapid/severe deterioration
- 2: Mild/moderate deterioration
- 3: No change
- 4: Mild/moderate improvement
- 5: Significant improvement

|                              | 12 months preceding Nintedanib | Since Nintedanib initiation |
|------------------------------|--------------------------------|-----------------------------|
|                              | initiation                     |                             |
| Dyspnoea                     | □ 1                            | □ 1                         |
|                              | □ 2                            | □ 2                         |
|                              | □ 3                            | □ 3                         |
|                              | □ 4                            | □ 4                         |
|                              | □ 5                            | □ 5                         |
| Cough                        | □ 1                            | □ 1                         |
|                              | □ 2                            | □ 2                         |
|                              | □ 3                            | □ 3                         |
|                              | □ 4                            | □ 4                         |
|                              | □ 5                            | □ 5                         |
| Exercise tolerance           | □ 1                            | □ 1                         |
|                              | □ 2                            | □ 2                         |
|                              |                                | □ 3                         |
|                              | □ 4                            | □ 4                         |
|                              | □ 5                            | □ 5                         |
| Other symptom related to ILD | □ 1                            | □ 1                         |
| (specify)                    | □ 2                            | □ 2                         |

| □ 3 |     |
|-----|-----|
| □ 4 | □ 4 |
| □ 5 | □ 5 |

Did the patient have a health-related quality of life score (e.g. K-BILD, EQ 5D)?

YES 🗆 NO 🗆

| Name of score |                                                 |                                               |                                                               |
|---------------|-------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|
|               | 12 months prior to<br>Nintedanib (+/- 6 months) | At initiation of Nintedanib<br>(+/- 6 months) | 12 months after initiation<br>of Nintedanib (+/- 6<br>months) |
| Date of score |                                                 |                                               |                                                               |
| Score         |                                                 |                                               |                                                               |

#### 8. ADVERSE DRUG EVENTS

|                                                                                                                        | YES | NO | Unknown/<br>not<br>applicable | DETAILS/REASON                 |                      |
|------------------------------------------------------------------------------------------------------------------------|-----|----|-------------------------------|--------------------------------|----------------------|
| Did the patient experience adverse effects of Nintedanib?                                                              |     |    |                               | Specify adverse effects        |                      |
| Did the patient develop<br>hepatotoxicity?                                                                             |     |    |                               |                                |                      |
| Did the patient develop GI side effects?                                                                               |     |    |                               | Specify GI effects             |                      |
| Did the patient require anti-<br>diarrhoeal medication?                                                                |     |    |                               |                                |                      |
| Was the dose of Nintedanib reduced?                                                                                    |     |    |                               | Reason for change              |                      |
|                                                                                                                        |     |    |                               | Dose change 1 (inc frequency)  | Duration on new dose |
|                                                                                                                        |     |    |                               | Dose change 2 (inc frequency)  | Duration on new dose |
| Did the patient require dose<br>reduction of other<br>immunosuppressive therapy (e.g.<br>MMF) to improve tolerability? |     |    |                               | Specify drug and reason        |                      |
| Did the patient experience weight loss                                                                                 |     |    |                               | Specify amount                 |                      |
| Did the patient experience bleeding                                                                                    |     |    |                               | Specify                        |                      |
| Did the patient require a change in anticoagulant therapy?                                                             |     |    |                               | Drug, change and reason        |                      |
| Did the patient experience angina<br>or other evidence of ischaemic<br>heart disease                                   |     |    |                               | Specify                        |                      |
| Is the patient still on Nintedanib at                                                                                  |     |    |                               | If NO:                         |                      |
|                                                                                                                        |     |    |                               | Reason for discontinuation     |                      |
|                                                                                                                        |     |    |                               | Duration of treatment (months) |                      |

#### 9. RESPIRATORY HOSPITALISATIONS

|                          | 12 months preceding Nintedanib initiation | 12 months following Nintedanib initiation |
|--------------------------|-------------------------------------------|-------------------------------------------|
| Total number of hospital |                                           |                                           |
| admissions with          |                                           |                                           |
| respiratory symptoms     |                                           |                                           |
| GP attendances with      |                                           |                                           |
| worsening of respiratory |                                           |                                           |
| symptoms                 |                                           |                                           |

#### COVID-19 data

|                                                                               | Yes | No | Unknown |                                                                                                           |
|-------------------------------------------------------------------------------|-----|----|---------|-----------------------------------------------------------------------------------------------------------|
| Was the patient<br>shielding during<br>the national<br>COVID-19 lock<br>down? |     |    |         |                                                                                                           |
| Did the patient<br>suffer from<br>COVID-19<br>infection?                      |     |    |         | IF <b>YES:</b><br>Clinical diagnosis □<br>Confirmed diagnosis (PCR) □<br>Confirmed diagnosis (Serology) □ |

#### 10. ACUTE EXACERBATIONS OF ILD

|                           | 12 months preceding Nintedanib initiation | 12 months following Nintedanib initiation |
|---------------------------|-------------------------------------------|-------------------------------------------|
| Total number of hospital  |                                           |                                           |
| admissions with acute     |                                           |                                           |
| exacerbations of ILD      |                                           |                                           |
| GP attendances with       |                                           |                                           |
| acute exacerbation of ILD |                                           |                                           |

#### 11. SURVIVAL

| h             |
|---------------|
| initiation of |
| d             |











## Supplementary information: Nintedanib for non-IPF progressive pulmonary fibrosis: 12-month outcome data from a real-world multicentre observational study

- 1. Supplementary Document 1: Study CRF
- 2. Supplementary Figure 1: Difference between pre-initiation and post-initiation delta lung function in restricted analysis (N=64).
- 3. Supplementary Figure 2: Difference in change in lung function according to patient sex (N=123)
- 4. Supplementary Figure 3: Difference between pre-initiation and post-initiation delta lung function in restricted analysis according to subgroups (N=64).
- 5. Supplementary Figure 4: Lung function change according to nintedanib dose reduction (N=123)
- 6. Supplementary Figure 5: Timeline figure showing the data collection used for the study analysis at each visit
- 7. Supplementary Table 1: Complete clinical data
- 8. Supplementary Table 2: Rate of Lung function change pre and post-nintedanib, with difference overall and by subgroup (N=123)
- 9. Supplementary Table 3: Sensitivity analyses of rate of ppFVC change per year (N=122)
- 10. Supplementary Table 4: Lung function according to changes in nintedanib dose (N=72)
- 11. Supplementary Table 5: Lung function according to changes in concurrent immunosuppression (N=72)

### Supplementary Table 1: Complete clinical data

|                     | Time point           | N=126 | %     |
|---------------------|----------------------|-------|-------|
| FVC                 |                      |       |       |
|                     | Pre-nintedanib       | 113   | 89.7% |
|                     | Treatment initiation | 103   | 81.7% |
|                     | Post-nintedanib      | 84    | 66.7% |
| ppFVC               |                      |       |       |
|                     | Pre-nintedanib       | 112   | 88.9% |
|                     | Treatment initiation | 102   | 81.0% |
|                     | Post-nintedanib      | 85    | 67.5% |
| ppDLCO              |                      |       |       |
|                     | Pre-nintedanib       | 104   | 82.5% |
|                     | Treatment initiation | 79    | 62.7% |
|                     | Post-nintedanib      | 68    | 54.0% |
| ррКСО               |                      |       |       |
|                     | Pre-nintedanib       | 95    | 75.4% |
|                     | Treatment initiation | 74    | 58.7% |
|                     | Post-nintedanib      | 65    | 51.6% |
| Shortness of breath |                      |       |       |
|                     | Treatment initiation | 113   | 89.7% |
|                     | Post-nintedanib      | 103   | 81.7% |
| Cough               |                      |       |       |
|                     | Treatment initiation | 78    | 61.9% |
|                     | Post-nintedanib      | 78    | 61.9% |
| Exercise tolerance  |                      |       |       |
|                     | Treatment initiation | 112   | 88.9% |
|                     | Post-nintedanib      | 101   | 80.2% |

Complete data available for each of the above fields at the various points

## Supplementary Table 2. Rate of Lung function change pre and post-nintedanib, with difference overall and by subgroup (N=123)

|            | n   | Rate    |                    | Rate   |                   |            |                |       |
|------------|-----|---------|--------------------|--------|-------------------|------------|----------------|-------|
|            |     | pre     | 95%CI              | post   | 95%CI             | Difference | 95%CI          | р     |
| FVC (ml)   |     |         |                    |        |                   |            |                |       |
| Overall    | 123 | -239.86 | -292.71 to -187.01 | -88.79 | -156.23 to -21.34 | 151.23     | 47.45; 255.01  | 0.004 |
| Diagnosis  |     |         |                    |        |                   |            |                |       |
| fHP        | 42  | -232.8  | -313.8 to -151.8   | -109.8 | -219.6 to 0.05    | 125.4      | -18.4 to 269.1 | 0.087 |
| CTD-ILD    | 44  | -190.8  | -276.0 to -105.7   | -66.3  | -179.1 to 46.4    | 122.5      | -47.7 to 292.7 | 0.158 |
| Other      | 37  | -281.1  | -391.0 to -171.2   | -113.1 | -243.6 to 17.4    | 172.7      | -25.8 to 371.2 | 0.088 |
| CT pattern |     |         |                    |        |                   |            |                |       |
| UIP        | 29  | -246.3  | -370.1 to -122.5   | -120.6 | -271.5 to 30.3    | 123.8      | -94.3 to 342.0 | 0.266 |
| Non-UIP    | 93  | -225.5  | -279.8 to -171.2   | -87.1  | -162.5 to -11.8   | 138.1      | 30.7 to 245.4  | 0.012 |
| Sex        |     |         |                    |        |                   |            |                |       |
| Male       | 57  | -295.9  | -379.1 to -212.6   | -100.7 | -198.4 to -2.9    | 193.4      | 27.2 to 359.6  | 0.023 |
| Female     | 66  | -168.3  | -215.3 to -121.4   | -90.2  | -180.7 to 0.3     | 79.9       | -16.0 to 175.8 | 0.102 |
| ppDLco (%) |     |         |                    |        |                   |            |                |       |
| Overall    | 114 | -6.06   | -7.35 to -4.77     | -2.13  | -4.06 to -0.20    | 3.93       | 1.27 to 6.60   | 0.004 |
| Diagnosis  |     |         |                    |        |                   |            |                |       |
| fHP        | 39  | -7.5    | -9.3 to -5.6       | -2.5   | -5.7 to 0.6       | 5          | 1.1 to 8.9     | 0.013 |
| CTD-ILD    | 42  | -3.9    | -5.9 to -1.9       | -3.3   | -6.4 to -0.3      | 0.6        | -3.9 to 5.1    | 0.803 |
| Other      | 33  | -6.7    | -9.2 to -4.2       | -0.1   | -4.4 to 4.2       | 6.6        | 1.9 to 11.4    | 0.006 |
| CT pattern |     |         |                    |        |                   |            |                |       |
| UIP        | 27  | -6.5    | -8.8 to -4.2       | -3.8   | -7.7 to 0.2       | 2.6        | -2.5 to 7.7    | 0.312 |
| Non-UIP    | 86  | -5.8    | -7.2 to -4.3       | -1.7   | -3.9 to 0.5       | 4          | 1.0 to 7.1     | 0.009 |
| Sex        |     |         |                    |        |                   |            |                |       |
| Male       | 53  | -7.2    | -8.9 to -5.4       | -3.8   | -6.4 to -1.1      | 3.4        | -0.6 to 7.3    | 0.092 |
| Female     | 61  | -4.6    | -6.3 to -3.0       | -0.6   | -3.2 to 2.0       | 4          | 0.8 to 7.2     | 0.014 |
| Kco (%)    |     |         |                    |        |                   |            |                |       |
| Overall    | 108 | -5.7    | -8.36 to -3.04     | -1.26  | -5.18 to -2.65    | 4.43       | -0.99 to 9.86  | 0.109 |
| Diagnosis  |     |         |                    |        |                   |            |                |       |
| fHP        | 38  | -8.6    | -13.3 to -4.0      | 0.2    | -6.4 to 6.7       | 9          | -0.8 to 18.7   | 0.071 |
| CTD-ILD    | 39  | -4.4    | -10.2 to 1.5       | -2.1   | -8.35 to 4.1      | 2.3        | -8.2 to 12.8   | 0.666 |
| Other      | 31  | -4.2    | -8.4 to 0.1        | -2.9   | -11.9 to 6.1      | 1.3        | -6.3 to 8.9    | 0.732 |
| CT pattern |     |         |                    |        |                   |            |                |       |
| UIP        | 25  | -6.5    | -11.2 to -1.7      | 1.4    | -6.7 to 9.4       | 8.1        | -2.2 to 18.3   | 0.122 |
| Non-UIP    | 82  | -5.5    | -8.7 to -2.3       | -2.2   | -6.8 to 2.3       | 3.3        | -3.1 to 9.9    | 0.314 |
| Sex        |     |         |                    |        |                   |            |                |       |
| Male       | 51  | -7.3    | -11.2 to -3.4      | -5.4   | -10.8 to 0.02     | 1.9        | -6.1 to 9.9    | 0.647 |
| Female     | 57  | -4      | -7.5 to -0.5       | 2.35   | -2.9 to 7.6       | 6.2        | -0.7 to 13.2   | 0.079 |

Rate of lung function change estimated from longitudinal multilevel models for repeat measures adjusted for age, sex, diagnostic group, radiologic pattern and early cessation of treatment (<12 months). Difference between groups estimated with restricted linear spline include knot at initiation.

| Sensitivity           | Rate  |                | Rate post |                | Difference |               |       |
|-----------------------|-------|----------------|-----------|----------------|------------|---------------|-------|
| analysis              | pre % | 95%CI          | %         | 95%CI          | %          | 95%CI         | р     |
| ppFVC                 |       |                |           |                |            |               |       |
| 1. Overall            | -6.91 | -8.45 to -5.36 | -2.57     | -4.59 to -0.54 | 4.34       | 1.35 to 7.33  | 0.004 |
| 2. Time continuous/yr | -6.63 | -8.47 to -4.79 | -2.96     | -5.18 to -0.74 | 3.67       | 0.32 to 7.02  | 0.032 |
| 3. Imputation I       | -6.02 | -8.27 to -3.77 | -3.35     | -5.68 to -1.03 | 2.67       | -1.28 to 6.61 | 0.185 |
| 4. Imputation II      | -5.25 | -6.73 to -3.77 | -2.75     | -4.23 to 1.27  | 2.50       | -0.07 to 5.06 | 0.057 |
| 5. Imputation III     | -6.86 | -8.29 to -5.42 | -3.84     | -5.27 to -2.40 | 3.02       | 0.72 to 5.32  | 0.010 |

Supplementary Table 3. Sensitivity analyses of rate of ppFVC change per year (N=122)

1. Overall analysis: identical to primary analysis with use of percent predicted FVC as outcome.

2. Time continuous: timing of ppFVC record from nintedanib initiation modelled as continuous variable rather than discrete time point.

3. Imputation I: missing ppFVC imputed at cohort median per time point (pre, initiation, post).

4. Imputation II: missing ppFVC imputed as carried backward or forward from non-missing time point.

5. Imputation III: missing ppFVC imputed at 10% relative decline from pre-nintedanib to initiation and initiation to post-nintedanib.

| Nintedanib dose | Char                              | nge FVC (%) post-nin | tedanib |       | Difference in FVC change pre vs post nintedanib |                                                  |       |       |  |
|-----------------|-----------------------------------|----------------------|---------|-------|-------------------------------------------------|--------------------------------------------------|-------|-------|--|
|                 | n                                 | mean                 | SD      | р     | n                                               | mean                                             | SD    | р     |  |
|                 |                                   |                      |         |       |                                                 |                                                  |       |       |  |
| Maintained      | 51                                | -3.69                | 7.77    |       | 46                                              | 2.09                                             | 11.38 |       |  |
| Reduced         | 21                                | -0.80                | 7.60    | 0.154 | 17                                              | 4.91                                             | 8.51  | 0.357 |  |
|                 | Change in DLco(%) post-nintedanib |                      |         |       |                                                 | Difference in DLco change pre vs post-nintedanib |       |       |  |
|                 | n                                 | mean                 | SD      | р     | n                                               | mean                                             | SD    | р     |  |
|                 |                                   |                      |         |       |                                                 |                                                  |       |       |  |
| Maintained      | 38                                | -2.89                | 6.49    |       | 33                                              | 3.53                                             | 8.07  |       |  |
| Reduced         | 16                                | -1.53                | 4.94    | 0.456 | 13                                              | 1.38                                             | 8.98  | 0.436 |  |
|                 | Change in Kco(%) post-nintedanib  |                      |         |       |                                                 | Difference in Kco change pre vs post-nintedanib  |       |       |  |
|                 | n                                 | mean                 | SD      | р     | n                                               | mean                                             | SD    | р     |  |
|                 |                                   |                      |         |       |                                                 |                                                  |       |       |  |
| Maintained      | 36                                | -0.88                | 13.91   |       | 31                                              | 6.13                                             | 18.53 |       |  |
| Reduced         | 15                                | -4.16                | 7.66    | 0.395 | 10                                              | -3.71                                            | 14.13 | 0.133 |  |

### Supplementary Table 4. Lung function according to changes in nintedanib dose

|                        | Chan    | ge FVC (%) post-ninte  | danib    |       | Difference in FVC change pre vs post nintedanib  |                          |                 |       |
|------------------------|---------|------------------------|----------|-------|--------------------------------------------------|--------------------------|-----------------|-------|
|                        | N       | mean                   | SD       | р     | n                                                | mean                     | SD              | р     |
| Immunosuppressant dose |         |                        |          |       |                                                  |                          |                 |       |
| Increased              | 9       | -4.19                  | 9.93     |       | 9                                                | -0.60                    | 11.45           |       |
| Maintained             | 40      | -3.55                  | 7.57     |       | 32                                               | 1.89                     | 11.05           |       |
| Reduced                | 23      | -1.11                  | 7.30     | 0.425 | 22                                               | 5.66                     | 9.61            | 0.261 |
|                        | Chan    | ge in DLco(%) post-nii | ntedanib |       | Difference in DLco change pre vs post-nintedanib |                          |                 | nib   |
|                        | N       | mean                   | SD       | р     | n                                                | mean                     | SD              | р     |
| Immunosuppressant dose |         |                        |          |       |                                                  |                          |                 |       |
| Increased              | 6 -1.45 |                        | 7.29     |       | 6                                                | 4.70                     | 11.25           |       |
| Maintained             | 31      | -3.15                  | 6.30     |       | 24                                               | 0.25                     | 5.68            |       |
| Reduced                | 17      | -1.63                  | 5.35     | 0.652 | 16                                               | 6.27                     | 9.49            | 0.065 |
|                        | Chan    | ge in Kco(%) post-nint | edanib   |       | Differ                                           | ence in Kco change pre v | s post-nintedan | ib    |
|                        | N       | mean                   | SD       | р     | n                                                | mean                     | SD              | р     |
| Immunosuppressant dose |         |                        |          |       |                                                  |                          |                 |       |
| Increased              | 6       | 5.08                   | 16.06    |       | 6                                                | 10.53                    | 26.43           |       |
| Maintained             | 28      | -2.31                  | 12.66    |       | 21                                               | 1.60                     | 16.84           |       |
| Reduced                | 17      | -3.52                  | 10.46    | 0.337 | 14                                               | 4.02                     | 15.91           | 0.570 |

# Supplementary Table 5. Lung function according to changes in concurrent immunosuppression