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Object-Aware SLAM Based on Efficient Quadric Initialization and Joint
Data Association

ZhenZhong Cao1, Yunzhou Zhang1∗, Rui Tian1, Rong Ma2, Xinggang Hu1,
Sonya Coleman3, Dermot Kerr3

Abstract— Semantic simultaneous localization and mapping
(SLAM) is a popular technology enabling indoor mobile robots
to sufficiently perceive and interact with the environment. In this
paper, we propose an object-aware semantic SLAM system, which
consists of a quadric initialization method, an object-level data
association method, and a multi-constraint optimization factor
graph. To overcome the limitation of multi-view observations
and the requirement of dense point clouds for objects, an efficient
quadric initialization method based on object detection and surfel
construction is proposed, which can efficiently initialize quadrics
within fewer frames and with small viewing angles. The robust
object-level joint data association method and the tightly coupled
multi-constraint factor graph for quadrics optimization and joint
bundle adjustment enable the accurate estimation of constructed
quadrics and camera poses. Extensive experiments using public
datasets show that the proposed system achieves competitive
performance with respect to accuracy and robustness of object
quadric estimation and camera localization compared with state-
of-the-art methods.

I. INTRODUCTION
Object representation is a key issue within object-level

semantic SLAM, and appropriate representation can not only
promote the robustness and accuracy of localization but also
enhance the information of a semantic map oriented for
human-robot interactions. There are many kinds of object
representation methods, including preset models and general
models, where prior object point clouds, cubes and quadrics
are three kinds of common representation methods utilized for
object-level semantic SLAM [1]–[9]. SLAM++ [1] presents
an object-oriented 3D SLAM paradigm, which requires prior
CAD models of objects. CubeSLAM [2] models objects as
cubes, which is the first example of object-oriented SLAM.
Compared with the cube methods, the quadric approach has a
more compact mathematical form of a direct projection model
which facilitates the update of model parameters, hence there
is much research on quadric-based SLAM systems [3]–[9].
The approaches to quadric initialization can be broadly divided
into two categories: methods based on object detection [3]–[6],
[9], and methods based on point cloud fitting [7], [8].
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QuadricSLAM [3] was the first approach to introduce a
quadric representation of objects as landmarks and presented a
novel method of initializing quadrics using 2D object detection
results from multi-view frames. Subsequently, Hosseinzadeh
et al. [4] used the idea of the quadric initialization in [3]
but improved the optimization of quadrics by introducing
plane landmarks and constructing tangent constraints between
quadrics and planes. They further enhance this work in [5]
and introduced a deep learning network [10] to estimate
the point cloud distribution of the object to constrain the
scale of the quadric. Ok et al. [6] addressed the problem of
vehicle quadric construction, and reduced the difficulty of the
quadric initialization with object detection, image texture, and
prior semantic scale to jointly estimate the parameters of the
quadric. However, the disadvantage of the above methods is
that multiple frames of large viewing angles are required to
initialize the quadrics.

The limitation of methods based on point cloud fitting are
that a complete point cloud segmentation of the object is
required, which can be difficult due to occlusions and noise.
Liao et al. [7] introduced the hypothesis of symmetry, which
is used to complement the point clouds of the object when
fitting a more complete quadric. They also proposed a hybrid
quadric estimation method based on point cloud segmentation
and object detection, and extended the non-parametric data
association method to the quadric for the first time [8]. Chen
et al. [9] focused on scenes of outdoor forward translational
motion and proposed a fast initialization method of quadrics
based on sparse map points, which provided the inspiration
for quadric initialization under small viewing angles.

In this paper, we propose an efficient quadric initialization
(EQI) method based on object detection and surfel construc-
tion, which not only overcomes the limitation of multiple
frames and large-view observations but also reduces the re-
quirement of the object dense point cloud data when compared
with state-of-the-art methods. With the extra constraints of
the surfel construction, the EQI can construct quadrics within
fewer frames and with small viewing angles. As for data
association of object detection results in current frame and
constructed quadrics in the map, we propose a robust object-
level joint data association (JDA) method combining mixed
information, which fully considers the factors of 2D image
plane, 3D map projection, and statistic distributions. The
multi-constraint factor graph including semantic and geometric
constraints is presented for both quadrics optimization and
joint bundle adjustment. Finally, combining the all above
modules, a complete object-aware semantic SLAM system is
formed.
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Fig. 1. Overview of the proposed system. There are two main parts in the system: 1) The Tracking thread extracts features, matches features, estimates
current camera pose, associates detections with quadrics, and initializes the quadrics. 2) The LocalMapping thread optimizes camera poses, points, planes, and
quadrics of the geometric semantic map.

We demonstrate the performance of the proposed system
using public indoor datasets. Experimental results demonstrate
that our system reaches competitive performance compared
with the state-of-the-art methods with respect to both local-
ization accuracy and mapping accuracy.

The main contributions of this work are as follows:
• We propose an efficient quadric initialization (EQI)

method based on object detection and surfel construction
which initializes quadrics using fewer frames with small
viewing angles.

• We propose a robust object-level joint data association
(JDA) method combining multi-dimensional information
and statistic distributions.

• We propose a multi-constraint optimization factor graph
for quadrics optimization and joint bundle adjustment.

• We implement a complete visual semantic SLAM system,
aiming to build a novel object-oriented and semantically-
enhanced map for indoor robot interaction.

II. SYSTEM OVERVIEW

A. Mathematical Representation

The notations used in this paper are as follows:
• Tk,w ∈ R4×4 - The camera pose of image frame Ik in

the global frame, which includes a rotation component
Rk,w ∈ R3×3 and a translation component tk,w ∈ R3×1.
Tk,k−1 ∈ R4×4 represents the relative camera pose
between image frame Ik and image frame Ik−1.

• Qw ∈ R4×4 - The quadric parameter matrix in the global
frame, Q∗

w ∈ R4×4 is the dual form, which are both
symmetric matrices, q∗w ∈ R10×1 is the vector form of
Q∗

w, C
Q∗

w

k ∈ R3×3 represents the dual conic projected
from the quadric Q∗

w to image frame Ik.

• πw ∈ R4×1 - The plane parameter vector in the global
frame, which includes a normal vector n ∈ R3×1 and the
distance to the origin d ∈ R, πk ∈ R4×1 represents the
plane parameter vector in frame Ik.

• Xw ∈ R4×1 - The 3D homogeneous coordinates in the
global frame, Xk ∈ R3×1 represents the 3D homoge-
neous coordinates in frame Ik, uk ∈ R3×1 represents the
2D homogeneous coordinates in frame Ik, lk ∈ R3×1

represents line vector in frame Ik.
• Dk - The bounding box of object detection in frame Ik,

BDk
∈ R4×4 represents the bounding box (BBox) of

object detection Dk, cls(Dk) represents the classification
of Dk.

• Ow - The object of the map in the global frame.
• K ∈ R3×3 - The intrinsics of the pinhole camera model,

Pk,w = K[Rk,w|tt.w] ∈ R3×4 represents projection
matrix from the global frame to frame Ik.

B. System Architecture

The framework of the system we proposed is illustrated
in Fig.1, which is modelled on the RGB-D interface of
ORB-SLAM2 [11]. The depth image is used to obtain depth
information of the scene to avoid the monocular scale problem
[12] and perform plane extraction. However, to highlight our
work, we only present our added or modified parts instead of
showing all details of ORB-SLAM2. The main changes in our
approach are:

• The Tracking thread receives the RGB images and
the depth images and then extracts point features using
the ORB feature extractor, plane features are obtained
using the plane segmentation algorithm [13] and object
detection is performed with YOLOv5. Then the point



features and plane features are matched with map points
and map planes respectively. After using the associated
relationship of points and planes to solve the initial pose,
object-level JDA is used to determine the object detection
results for the current frame and the quadrics that have
been constructed in the map. The EQI is performed for
objects that are associated but not yet initialized and those
that are not associated.

• The LocalMapping thread performs the multi-constraint
quadric optimization for the objects that have just been
initialized or newly observed in the map. The optimized
quadrics then participate in the tightly coupled joint
optimization of poses and landmarks. Finally, it outputs
a complete geometric semantic map.

III. EFFICIENT QUADRIC INITIALIZATION

The reason why it is difficult to achieve the single frame
initialization of the quadric based on object detection is that
the parameters of the quadric are 10-dimensional, and the
bounding box of an object has only four sides, which can
only provide four tangent plane constraints. However, within
a small viewing angle, even if there are enough constraints,
the relationship between them is approximately linear, which
will cause the solution to be limited by similar observations
or even to be divergent, especially for the position and shape
of the quadric, which is shown in Fig.2. Therefore, following
the work in [9], we also use the map points associated with
objects to find more constraints, but we adopt a more robust
data association strategy, which is lacking in [9]. In this way,
we can obtain sufficient tangent plane constraints for efficient
quadric initialization.

Position 

Divergence

Shape

 Divergence

Fig. 2. The performance of quadric initialization that only uses the tangent
planes provided by object detection within a small viewing angle.

A. Tangent Planes from Object Detection

Object detection can generate a bounding box for each ob-
ject in the image, and the bounding box can be represented by
points U = {u1

k, u
2
k, u

3
k, u

4
k} or lines L = {l12k , l23k , l34k , l41k }.

The relationship between U and L is :

l12k = u1
k × u2

k, l
23
k = u2

k × u3
k

l34k = u3
k × u4

k, l
41
k = u4

k × u1
k

(1)

Through the projection model of the camera, the line can
be back-projected into a plane:

πw = PT
k.wlk (2)

Therefore, one bounding box can be converted to four
tangent planes. With the movement of the camera, there will
be many object detections corresponding to the same object.
To make sufficient use of them, we use the JDA method to
associate detections and objects, which will be introduced in
detail in Section IV.

B. Tangent Planes from Surfel Construction

We have initially accumulated map points for the objects
within the object detection boxes across frames. However,
there are background map points that do not belong to these
objects. As a result, we first use the depth distribution of
points to filter initial outliers and then apply the isolated forest
algorithm mentioned in EAO-SLAM [14] to cluster the map
points and eliminate most of the remaining outliers. Finally,
by referring to the convex polyhedron construction algorithm
proposed in [15], we implement a surfel construction method
that uses a 3D point set to obtain the tangent planes of
the object surface. Fig. 3 shows the performance of surfel
construction from a single frame.

Fig. 3. Surfel construction performance from a single frame. The arrow
associates the object with the corresponding surfels.

C. The Solution of Quadric Parameters

After obtaining the tangent planes {πD
w } and {πX

w } respec-
tively, constructed by object detection and surfel construction,
we define the operation ρ(·):

ρ(π) =
(
π2
1 , 2π1π2, 2π1π3, 2π1π4, π

2
2 ,

2π2π3, 2π2π4, π
2
3 , 2π3π4, π

2
4

) (3)

Using this, we can easily get the overall coefficient matrix:

A(πw) =

 ρ(πD
w )

...
ρ(πX

w )

 (4)

Then, we convert the tangent relationship πT
wQ

∗
wπw = 0

into a linear expression:

A(πw)q
∗
w = 0 (5)

A(πw) ∈ Rnobs×10, nobs is the number of the effective
tangent planes. Then Eq.(5) can be converted to a linear least
squares problem:

(q∗w)
opt = argmin

q∗w

∥A(πw)q
∗
w∥

2
2 (6)

Using the Singular Value Decomposition (SVD) method,
we can solve the above least squares problem. After obtaining
q∗w, we can get the parameter matrix of the dual quadric Q∗

w



according to the symmetry. Further, the parameter matrix of
the original quadric Qw can be calculated as:

Qw = (Q∗
w|Qw|−1

)−1 = (Q∗
w)

−1 3
√
|Q∗

w| (7)

Due to the existence of noise, we can not completely trust
the calculated Qw. Therefore, after completing the calculation
of the quadric parameters, we use the historical observation
data accumulated in the JDA stage to evaluate Qw. The
specific process is to project the calculated quadric onto the
image planes according to the historical observation poses and
calculate the average 2D IoU with the associated object detec-
tions. If this value is greater than the threshold γ = 0.5 that
we set in our experiment, we trust this initialization, otherwise
we wait for more observations for quadric initialization of
the object. In Alg. 1, we present the complete procedure of
the EQI algorithm, which provides more details regarding the
implementation.

IV. OBJECT-LEVEL JOINT DATA ASSOCIATION

The accuracy of JDA not only affects the accuracy of the
quadric initialization but also has an impact on the back-end
optimization. To fully consider the mixed information in the
scene, we design four kinds of association distance and assign
different weights for them to construct the overall association
distance matrix, where aij is the basic element. We set the
weights kq , kw, ke, and kr to 0.2, 0.2, 0.2, and 0.4 respectively,
in our experiment. Finally, we adopt the Hungarian algorithm
[16] to solve this allocation problem:

aij = kqaqij + kwawij + keaeij + krarij (8)

A. 2D Image IoU Association Distance

Since the JDA has been completed in Ik−1, the object
detection results are all associated with constructed objects in
the map. Therefore, we use the IoU between the i-th bounding
box BDi

k
of Ik and the l-th bounding box BDl

k−1
of Ik−1 that

are associated with the j-th object in the map to indirectly
compute the association distance:

aqij = 1−
BDi

k
∩BDl

k−1

BDi
k
∪BDl

k−1

(9)

B. Object Projection IoU Association Distance

Some objects in the map have obtained the quadric pa-
rameters through the EQI algorithm. For these objects, we
can use the projection model of the quadric to project them
onto the image plane to obtain the quadratic curve, and then
obtain the bounding box, so that we use the IoU between
the projected bounding box BOj

w
and BDi

k
to calculate the

association distance:

awij = 1−
BDi

k
∩BOj

w

BDi
k
∪BOj

w

(10)

Algorithm 1: Efficient Quadric Initialization (EQI)

Input: Object detections {Di
k} and 2D ORB features

{uj
k} of current frame Ik, Objects {Ol

w} of
map

Output: Poses {Tm
w } and shapes {Sm

w } of new
created quadrics {Qm

w }
1 // first filter outliers of points

2 Points{{XDi
k

w }} ← FilterByDepth({Di
k}, {u

j
k})

3 Associations{Di
k, O

Di
k

w } ← JDA({Di
k}, {Ol

w})
4 for each object detection Di

k do
5 Add Di

k and {XDi
k

w } to {D} and {X} of ODi
k

w

6 // second filter outliers of points
7 {X} ← FilterByIsolationForest({X})
8 // count the number of object detections
9 DetsNum← EffectiveDetection({D})

10 // compute angle score among object detections
11 DetsScore← V iewingAngleDiff({D})
12 if ODi

k
w is not initialized then

13 // if detections are not adequate and suitable
14 if DetsNum < α ∨ DetsScore < β then
15 // tangent planes from object detection
16 {πD

w } ← LineBackProjection({D})
17 // tangent planes from surfel construction
18 {πX

w } ← SurfelsConstruction({X})
19 // solve linear least square by SVD
20 Qm

w ← SolveQuadric({πD
w }, {πX

w })
21 end
22 else
23 {πD

w } ← LineBackProjection({D})
24 Qm

w ← SolveQuadric({πD
w })

25 end
26 // compute evaluation score for quadric
27 QuadricScore← QuadricQualityCal(Qm

w )
28 if QuadricScore > γ then
29 // discompose and parameterize quadric
30 Tm

w , Sm
w ← Discompose(Qm

w )
31 end
32 end
33 end

C. Map-point Projection Frequency Association Distance

During the implementation of EQI, we know that all objects
in the map have obtained associated map points. Hence we
project them onto the current frame and then calculate the
number of map points for each object contained in each
bounding box, and count the total number of map points
associated with each bounding box. We define Numij as the
number of map points of the j-th object projected onto the i-th
bounding box. Finally, we compute the associated distance by
calculating the frequency of map point observations:

aeij = 1− Numij

N∑
n=1

Numin

(11)



D. Nonparametric Probability Association Distance

Referring to [17], we conclude that the posterior probability
of the association between the object detection in the current
frame and the landmark in the map is proportional to the prod-
uct of the prior probability of the Dirichlet Process (DP), the
likelihood probability of the object category, denoted as OC,
and the likelihood probability of the landmark position denoted
as LP. We continue this idea and calculate the nonparametric
probability association distance as:

arij = 1−DP (Oj
w) ·OC(Di

k) · LP (Di
k, O

j
w) (12)

V. MULTI-CONSTRAINT OPTIMIZATION FACTOR GRAPH

We propose a multi-constraint optimization factor graph to
jointly optimize camera poses, quadrics, planes and points.
The overall optimization function can be expressed as:

{Tk,w, Q
∗
w, πw, Xw}opt =

argmin
{Tk,w,Q∗

w}

∑∑
fquadric(Tk,w, Q

∗
w)+

argmin
{Q∗

w,πw}

∑
(ftangent(πw, Q

∗
w) + fvert(πw, Q

∗
w))+

argmin
{Q∗

w}

∑
(fscale(Q

∗
w) + forientation(Q

∗
w))+

argmin
{Tk,w,Xw}

∑∑
fpoint(Tk,w, Xw)+

argmin
{Tk,w,πw}

∑∑
fplane(Tk,w, πw)

(13)

Equation (13) includes the following components:
• Pose-Quadric projection factor:

fquadric(Tk,w, Q
∗
w) =

∥∥∥DQ∗
w

k − η(Tk,w, Q
∗
w)

∥∥∥2
Σq

(14)

where D
Q∗

w

k represents the object detection associated
with Q∗

w and η(·) calculates the projected bounding box
of the quadric, discussed in [3].

• Plane-Quadric tangent factor:

ftangent(πw, Q
∗
w) =

∥∥πT
wQ

∗
wπw

∥∥2
Σt

(15)

We use the distance from the center of the quadric to the
plane in order to associate them.

• Plane-Quadric vertical factor:

fvert(πw, Q
∗
w) =

∥∥∥n(πw)
T
ϕ(Q∗

w)
∥∥∥2
Σv

(16)

where n(·) calculates the normal vector of the plane, and
ϕ(·) calculates the principal axis direction vector of the
quadric, discussed in [18].

• Quadric scale prior factor:

fscale(Q
∗
w) =

∥∥Scale(Q∗
w)− SP (lableQ∗

w
)
∥∥2
Σs

(17)

where Scale(·) calculates the scale vector of the quadric
and SP (·) represents the prior scale vector, which is set to
prevent the optimization from falling into a local optimal
solution rather than optimizing the scale to a fixed value.

• Quadric orientation prior factor:

forientation(Q
∗
w) =

∥∥∥1− |n(πg)
T
ϕ(Q∗

w)|
∥∥∥2
Σo

(18)

where πg represents the prior ground normal vector,
which is used for the objects that do not have associated
planes.

• Pose-Point projection factor:

fpoint(Tk,w, Xw) =
∥∥Pk,wXw − uobs

k

∥∥2
Σpo

(19)

• Pose-Plane projection factor:

fplane(Tk,w, πw) =
∥∥∥T−T

k,wπw − πobs
k

∥∥∥2
Σpl

(20)

The designed factor graph can be solved by the existing
nonlinear optimization library g2o.

VI. EXPERIMENTS AND EVALUATION

We evaluate the performance of our proposed system using
the public TUM RGB-D [19] dataset with respect to the
quality of the quadric, the performance of data association,
and the accuracy of camera localization. The confidence of
the YOLOv5 detector is set to 0.5. All experiments are
conducted using Intel(R) Core(TM) i7-9750H CPU@2.6GHz,
16G memory, and Nvidia GTX 2060 Super.

A. Quantitative Evaluation Criteria

We evaluate the quality of the quadrics from the following
five aspects:

• Number of Constructed Objects (NoCO): We record
the number of objects that are successfully detected and
constructed as quadrics.

• Number of Not-constructed Objects (NoNO): We
record the number of objects that are successfully de-
tected but not constructed as quadrics.

• Number of Frames (NoF): We record the number of
frames that are used for quadric initialization for every
object, and then compute the average number of frames
for all objects.

• 2D IoU: Due to the lack of ground truth for the objects in
the TUM dataset, we propose to use 2D IoU to evaluate
the accuracy of the quadric parameters of the object. We
record the associated 2D object detection results for every
object in the stages of JDA and then compute the average
2D IoU between the 2D object detection result and the
projection of the quadric, and then compute the average
2D IoU for all objects.

• Initial Success Rate (ISR): In the EQI, we set the
thresholds α = 5, β = 0.7, γ = 0.5. If the evaluation
score of the quadric is greater than γ, we treat it as a
successful initialization. As a result, we record the total
initialization count and successful initialization count for
every object and then compute the average initial success
rate for all objects.

B. The Quality of Quadric

Fig.4 shows the qualitative performance of our proposed
EQI method from one single frame, where the object detection
results of the image and associated quadrics in the map have
the same color. We can see that our method has the ability
to use a single frame data to construct most or even all
objects that have been detected in different scenarios. For



Fig. 4. The object detections of one single frame and the corresponding quadrics constructed by EQI on different sequences of TUM dataset. The left part
of every scene presents the results of object detection, and the right part is the semi-dense point cloud map and the successfully initialized quadrics, which
have the same color with the corresponding object detection results.

fair quantitative comparison, we designed two experiments:
one where we disable the various constraint factors that are
discussed in quadric optimization and only retain the pose-
quadric projection factor keeping the approach consistent with
Q-SLAM [3], and a second where we enable all constraint
factors. The results are shown in Table I and Table II where
TIN and TON respectively represent total image number and
total object number of the sequence.

In Table I, we can see that the performance of our proposed
method is better than Q-SLAM on most sequences, especially
on NoF and ISR, which have an average improvement of 8.09
and 46% respectively. The comparison on both NoCO and
NoNO indicates that our method can construct more effective
objects. For 2D IoU, our method has an 8.21% improvement
on average, which benefits from the fact that our proposed
EQI algorithm can initialize quadrics for objects easily, hence
we can have more observations to optimize them. However,
Q-SLAM is better than our proposed method on the sequences
fr1-xyz and fr3-teddy, because in these two sequences we have
constructed more objects than Q-SLAM, but some of them
cannot be further optimized due to the lack of observations,
leading to lower average 2D IoU.

It can be seen from Table II, after enabling the whole
constraint factors, denoted as Ours*, the average 2D IoU
has a 3.78% improvement compared with Ours, and 12.59%
improvement compared with Q-SLAM, which indicates that
our proposed factor graph is effective for quadric optimization.

However, the 2D IoU is slightly decreased in the sequences
fr2-desk and fr3-desk. This is because the two sequences have
a common feature: a large number of objects form a supporting
relationship with planes, which will cause the plane-related
constraint factors to account for a relatively large weight in the
process of quadric optimization, and the projection constraint
factor that directly promotes 2D IoU accounts for a small
proportion of the error.

C. The Performance of JDA
We choose the fr2-desk sequence that has the most types

of objects to verify our proposed JDA method. We define
four kinds of data association (DA) methods by changing
the weights of the four association distances proposed in
JDA, including the 2D image plane DA (kq = 1.0), the 3D
map projection DA (kw = 0.5, ke = 0.5), the nonparametric
PDA (kr = 1.0) and our proposed JDA. All other weights are
set to zero. We set 20 sets of different weights for object
mapping, and then calculate the completeness and accuracy of
the constructed map, and finally obtain the PR curve shown in
Fig. 5, where we can see that the weights kq = 0.2, kw = 0.2,
ke = 0.2, and kr = 0.4 are closest to the balance point. As a
result, we use them as the weights of our JDA. Fig. 6 shows
the object mapping performance comparison of four kinds of
data association methods.

We can see that the 2D image plane DA has the worst
performance. There is a large number of repeated quadrics
for the same object, which is due to the omission of object



TABLE I
THE COMPARISON OF QUALITY OF QUADRICS USING TUM RGB-D SEQUENCES.

SEQUENCE TIN TON NoCO NoNO NoF 2D IoU ISR
Q-SLAM Ours Q-SLAM Ours Q-SLAM Ours Q-SLAM Ours Q-SLAM Ours

fr1-desk 573 16 6.00 10.00 10.00 6.00 9.00 2.40 0.74 0.80 0.27 0.75
fr1-desk2 620 17 6.00 11.00 11.00 6.00 9.33 1.82 0.75 0.81 0.36 0.71
fr1-xyz 1352 9 2.00 5.00 7.00 4.00 21.00 6.20 0.86 0.83 0.06 0.64

fr2-room 792 22 5.00 16.00 17.00 6.00 4.00 1.69 0.45 0.66 0.63 0.77
fr2-desk 2893 18 11.00 15.00 7.00 3.00 6.55 1.67 0.79 0.81 0.45 0.92

fr2-dishes 2941 10 5.00 7.00 5.00 3.00 25.60 6.00 0.80 0.84 0.05 0.63
fr3-desk 2488 22 17.00 19.00 5.00 3.00 6.12 3.16 0.74 0.77 0.47 0.67
fr3-teddy 2327 5 1.00 3.00 4.00 2.00 7.00 1.00 0.77 0.73 0.13 1.00

mean 1748 14 6.63 10.75 8.25 4.13 11.08 2.99 0.74 0.78 0.30 0.76

TABLE II
THE COMPARISON OF 2D IOU USING TUM RGB-D SEQUENCES.

SEQUENCE TIN TON 2D IoU Improvement(%)
Q-SLAM Ours Ours* Ours/Q-SLAM Ours*/Q-SLAM Ours*/ours

fr1-desk 573 16 0.74 0.80 0.83 8.11 12.16 3.75
fr1-desk2 620 17 0.75 0.81 0.85 8.00 13.33 4.94
fr1-xyz 1352 22 0.86 0.83 0.84 -3.49 -2.33 1.21
fr-room 792 9 0.45 0.66 0.73 46.67 62.22 10.61
fr2-desk 2893 18 0.79 0.81 0.80 2.53 1.27 -1.23

fr2-dishes 2941 10 0.80 0.84 0.85 5.00 6.25 1.19
fr3-desk 2488 22 0.74 0.77 0.75 4.05 1.35 -2.60
fr3-teddy 2327 1 0.77 0.73 0.82 -5.19 6.49 12.33

mean 1748 14 0.74 0.78 0.81 8.21 12.59 3.78

TABLE III
THE COMPARISON OF ACCURACY OF LOCALIZATION USING TUM RGB-D SEQUENCES

SEQUENCE ORB-SLAM2 [11] Zhang et.al [20] Q-SLAM [3] Hosseinzadeh et.al [4] Ours
fr1-desk 0.0146 0.0178 0.0632 0.0112 0.0109

fr1-desk2 0.0247 0.0265 0.0662 − 0.0227
fr1-xyz 0.0097 0.0099 − 0.0096 0.0095
fr2-desk 0.0083 0.0276 0.0568 0.0066 0.0062
fr3-desk 0.0109 0.0139 0.0765 0.0087 0.0088

Recall

(0.83, 0.85)

(0.93 0.55)

(0.30, 0.97)
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weights
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Fig. 5. PR curve of the mapping performance with different association
distance weights. The weights of our JDA achieve a balance of completeness
and accuracy for the object mapping.

detection results in false data associations. The performance of
the 3D map projection DA on the object mapping is due to the
fact that many objects have not been constructed, as the objects
need to accumulate a certain amount of observation data before
they are constructed. However, the 3D map projection DA
is easily affected by occlusion and overlap of objects, which
interrupts the accumulation of observation data or results in
incorrect DA results.

(a) 2D Image Plane DA (b) 3D Map Projection DA

(c) Nonparametric PDA (d) Our JDA

Fig. 6. Object mapping performance comparison of 2D Image Plane DA,
3D Map Projection DA, Nonparametric PDA and our JDA. We respectively
integrate these four data association methods into our system, and project the
constructed map onto the XOZ plane to get the four 2D results.

In contrast, the nonparametric PDA proposed by [17] has
achieved much better performance. Although there are still
some cases where the same object is repeatedly constructed,
this is rare, and the objects in the scene are constructed
fairly completely. However, our JDA has achieved the best



performance. In the case of having a complete construction for
the objects in the scene, there is no obvious case of repeated
quadrics for the same object.

D. The Accuracy of Localization

Table III shows the accuracy comparison of camera localiza-
tion between our method and the baseline methods, including
[11], [20], [3], [9], where the average translation error (ATE)
is used as an evaluation metric. Since [11] and [20] are open-
source, we use their code in the local environment to obtain
the data. However, the code for [3] and [9] is not open-
source, hence we directly use the experimental data of camera
localization in their papers. Among the data, − indicates that
there is no data for this sequence in the paper.

We can see that the performance of [3] is the worst because
it only uses quadric-level landmarks to solve and optimize the
poses. The combination of the poor constant noise estimation
of the non-Gaussian bounding box measurement and the object
occlusion will significantly and negatively affect the estimated
trajectory, which leads to the accuracy of localization being
much worse than that of the point-based method.

Our method outperforms all comparison methods on the
sequences fr1-desk, fr1-desk2, fr1-xyz, and fr2-desk, espe-
cially compared with the method proposed by [9], which
also uses the landmarks of planes and quadrics for pose
optimization. The reason why our method is better on most
sequences is that the proposed EQI method allows us to con-
struct more quadrics, which means we can build more object-
level constraints for pose optimization than [9]. However, on
the sequence fr3-desk, [9] performs better, as [9] introduces
Manhattan World constraints between plane variables in the
optimization, which are strong and effective constraints, es-
pecially when there are many plane structures that meet the
Manhattan world assumption, such as in the fr3-desk sequence.

VII. CONCLUSION

In this work, an object-aware semantic SLAM system is
presented. The EQI algorithm which based on object detection
and surfel construction is proposed to reduce the difficulty of
initializing quadrics from a small viewing angle. The robust
object-level data association is solved by the JDA method. As
for back-end optimization, a multi-constraint factor graph is
proposed to jointly optimize the camera poses and constructed
landmarks. Extensive experiments are conducted to show that
the proposed system achieved competitive or even better per-
formance in indoor environments when compared with other
state-of-the-art methods. Further work will focus on using the
constructed geometric semantic map for loop detection and
re-localization.
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