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Abstract—Multi-objective evolutionary algorithms can
be categorized into three basic groups: domination-based,
decomposition-based, and indicator-based algorithms. Hybrid
multi-objective evolutionary algorithms, which combine
algorithms from these groups, are gaining increased popularity
in recent years. This is because hybrid algorithms can
compensate for the drawbacks of the basic algorithms by adding
different operators and structures that complement each other.
This paper introduces a hybrid-multi objective evolutionary
algorithm (R2-HMEWO) that applies hybridization in the form
of structure and operators. R2-HMEWO is based on the whale
optimization algorithm (WOA) and equilibrium optimizer (EO).
Elite individuals of WOA and EO are selected from a repository
based on the R2-indicator and shifted density estimation-
based method. In order to improve solutions’ diversity, a
reference points method is devised to select next-generation
individuals. The proposed multi-objective algorithm is evaluated
on 19 benchmark test problems (ZDT, DTLZ, and CEC009)
and compared with six state-of-the-art (SOTA) algorithms
(NSGA-III, NSGA-II, MOEA/D, MOMBI-II, MOEA/IGD-NS,
and dMOPSO). Based on the inverted generational distance
(IGD) metric (mean of 25 independent runs), R2-HMEWO
outperformed other algorithms on 14 out of 19 test problems
and revealed a highly competitive performance on the other test
problems. Also, R2-HMEWO performed statistically significant
better than MOEA/D and dMOPSO in 15/19 and 14/19
test problems, respectively (p<0.05), and reached significant
performance in 4 test problems (from ZDT and CEC09)
compared to other algorithms.

Index Terms—evolutionary algorithm, multi-objective opti-
mization, whale optimization algorithm, equilibrium optimizer,
reference directions, R2 indicator, shifted density estimation

I. INTRODUCTION

Dealing with multi-objective optimization problems (MOPs)
has recently come under the spotlight of many researchers.
Two well-known approaches of mathematical-based and
evolutionary-based/swarm-based optimizations are considered
to tackle MOPs. Evolutionary algorithms (EAs) and swarm
intelligence (SI) are more versatile in solving MOPs (MOPs
with non-differentiable and discontinuous characteristics) than
mathematical optimizers. The application of multi-objective
evolutionary algorithms (MOEAs) is prevalent in real-world
problems [1]–[6], and they have received promising results in

recent years. MOEAs can be classified into three categories:
domination-based, decomposition-based, and indicator-based,
and each category has advantages and disadvantages.

The domination-based method is one of the most popular
methods in MOEAs. Non-dominated sorting genetic algorithm
(NSGA-II) [7] and NSGA-III [8] are two famous algorithms
that apply a non-dominated sorting operator (NSO) and a
distribution operator for producing Pareto front (PF) solutions.
The main modification in NSGA-III compared to NSGA-
II is the distribution operator, which helps the algorithm
reach well-distributed solutions, specifically in many-objective
problems (MaOPs). The crowding distance operator selects the
distributed solutions in NSGA-II, whereas NSGA-III improves
solutions’ diversity based on a reference point method [9].
The main drawback of domination-based methods is poor
convergence, particularly in dealing with MaOPs.

On the other hand, decomposition-based methods utilize the
concept of a scalarization function to divide MOPs into sev-
eral single-objective problems. The first algorithm using this
concept is a multi-objective evolutionary algorithm based on
decomposition (MOEA/D) [10]. Decomposition is performed
by the scalarization (aggregation) functions, of which weighted
sum (WS), Tchebycheff (TCH), penalty-based intersection
(PBI), and more recently, achievement scalarization function
(ASF) are the most popular of these. Aggregation functions
ease the process of optimization by not utilizing the concept
of Pareto dominance. However, on the downside, choosing a
proper scalarization function that meets the problem’s charac-
teristics adds another parameter to the problem. In decompo-
sition methods, weight vectors should be defined to improve
the diversity of solutions. Also, each individual is updated
considering the number of its neighbors. Therefore, defining
the weight vector and the appropriate number of neighbors
increases the complexity of this method.

Indicator-based methods evaluate individuals during the
run by measuring convergence and diversity with indicators
such as hypervolume (HV) [11], R2 [12], e+ [13], ∆p [14],
and IGD [15]. Unfortunately, the primary indicator-based
algorithms, such as the indicator-based evolutionary algorithm



(IBEA) [13], suffer from high computational cost. This issue
is explicitly exacerbated when these algorithms are confronted
with MaOPs.

Finding an impeccable algorithm is currently not possible,
and each method has its upside and downside. Combining
different algorithms, known as hybridization, can present a
solution to this problem. In hybridization, algorithms can be
modified by other complementary structures/operators. How-
ever, every algorithm/method is not compatible to be com-
bined, and sometimes solutions are not converged. Operator
hybridization [16]–[18] and method/structure hybridization
[19]–[22] are common among EA publications. Generally,
structure/method hybridization is common among MOEAs,
and operator hybridization is common among single-objective
EAs.

This paper applies hybridization in two stages of structure
hybridization and operator hybridization. We propose a hybrid
MOEA based on the two relatively new algorithms of whale
optimization (WOA) and equilibrium optimizer (EO) (operator
hybridization). These two algorithms complement each other
and accelerate the convergence speed. On the other hand, a
reference points method and a shifted density estimation-based
method are added to improve the diversity of solutions. Also,
an R2 indicator is incorporated into the main structure for
converting the final algorithm into a multi-objective algorithm.
To accelerate the convergence speed, an elite archive is also
designed in which the best WOA and EO solutions are selected
among all archive’s individuals. Finally, our algorithm (R2-
HMEWO) is compared with six well-known MOEAs (NSGA-
III, NSGA-II, MOEA/D, MOMBI-II, MOEA/IGD-NS, and
dMOPSO) on nineteen test problems (from ZDT, DTLZ, and
CEC09). The results reveal the SOTA performance of our
algorithm compared with the other algorithms.

The remainder of the paper is organized as follows: rudi-
ments of MOEA, EO, and WOA are described in Section II.
Section III introduces the structure of R2-HMEWO. Experi-
mental settings are explained in Section IV. Finally, results
and conclusions are provided in Section V and Section VI,
respectively.

II. BACKGROUNDS

A. Multi-Objective Optimization Problem - MOP

A multi-objective problem of F(x) with the ”m” objective
functions of (f1(x), ..., fm(x)) is shown in Equation. 1 :

minimize F(x) = (f1(x), ..., fm(x))T (1)
∀x ∈ Ψ (Ψn → Ωm)

where x = (x1, x2, ..., xn) is the n-dimensional vector (where
n is the number of decision variables), and Ψn and Ωm are
the search/decision space and objective space, respectively. An
MOEA finds non-dominated solutions, which represent the
optimal trade-off between objectives. Based on the domination
definition, arbitrary vector b = (b1, b2, ..., bm)T is dominated
by vector a = (a1, a2, ..., am)T iff ∀i ∈ 1, 2, ...,m, ai ≤ bi

and a 6= b and it can be presented as a ≺ b. The Pareto
front (PF) is the set of objective vectors of the non-dominated
solutions among the variable space and can be shown as: PF
= {F(x)|x ∈ PS}. PS is Pareto optimal solutions and the
projection of PS in objective space makes PF (PS = {x ∈
Ψ | @y ∈ Ψ,F(y) ≺ F(x)}).

B. Reference Point Method

The main problem associated with NSGA-II is the low
diversity of solutions, especially where there are a high number
of objectives. NSGA-III solved this issue by replacing the
crowding distance operator [7] by adding pre-defined and well-
spread points on the normalized hyperplanes in the objective
space. Das and Dennis’s method [9] is the most popular
method for generating these points, but the curse of dimen-
sionality is the main deficiency of this method. Therefore,
other methods such as Riesz s-energy [23] are suggested trying
to overcome the drawback of Das and Dennis’ approach.
In NSGA-III, each normalized non-dominated individual is
associated with a reference point at the end of each generation.
The association criterion is the nearest orthogonal distance
between an individual and other reference points. Finally, a
niching operator is applied, and the population for the next
generation is selected [8].

C. R2 Indicator Method

R2 is a unary indicator that evaluates convergence and
diversity [24]. The R family indicator, including R1, R2,
and R3, assesses two arbitrary sets’ relative quality [25].
Compared to other popular indicators such as HV, the main
advantage of this indicator is its low computational cost.
It is classified in the indicator categories that need both
scalarization function and reference point, and scalarization
functions greatly impact on its performance [25]. For example,
based on Equation. 2, the R2 indicator for assessing the quality
of set (W) with the TCH scalarization function, distributed
weight vector of Φ = {φ1, φ2, ..., φm}, and reference point of
z∗ = {z∗1 , z∗2 , ..., z∗m}T is obtained as follows:

R2(W,Φ, z∗) =
1

|Φ|
∑
φ∈Φ

min
x∈W

{
max

i=1,2,...,m

|fi(x)− zi∗|
φi

}
(2)

D. Whale Optimization Algorithm - WOA

WOA [26] is a swarm and nature-based optimization algo-
rithm mimicking the hunting approach of humpback whales.
This approach is known as the bubble-net strategy, based
on the two main sections of encircling prey and bubble-
net attacking. Humpback whales try to trap fish by locating
themselves below a swarm of fish and guiding them to the
surface in a spiral trajectory whilst releasing bubbles (Figure
1).

The whale’s new positions are updated based on the two
methods: 1) searching and encircling for prey and 2) bubble
net attacking. In the first method, to increase exploration
(searching for prey), new positions are obtained using Equa-
tion. 3.



Fig. 1. The bubble-net hunting strategy of the humpback whale [26]

W t+1 = W rand −A ·D (3)

D =
∣∣C ·W rand −W (t)

∣∣
A = 2a · r − a
C = 2 · r

where W (t) reveals the whale position in the current iteration.
W rand is a random whale. | |, and · indicate the absolute value
and pairwise multiplication, respectively. Also, r is a random
vector in the [0, 1] interval, and a is a parameter, decreasing
from 2 to 0. In order to enhance exploitation (regarding the
encircling for prey method), the best solution, reached until
the current iteration (W

∗
(t)), should be chosen (Equation. 4).

W t+1 = W
∗
(t)−A ·D (4)

D =
∣∣∣C ·W ∗(t)−W (t)

∣∣∣
Bubble net attacking also includes two phases consisting

of the shrinking encircling method and the spiral updating
position. These two phases are formulated in Equation. 5,
which tries to simulate shrinking and spiral-shaped whale
trajectories for chasing the fish.

W t+1 =

{
W
∗ −A.D if p < 0.5

ebk. cos(2πk).B +W
∗
(t) if p ≥ 0.5

(5)

where p and k are random numbers located in the [0, 1] and
[−1, 1] intervals. b is a constant parameter specifying the
logarithmic spiral shape, and W ∗ is the best solution, reached
until t (current) iteration.

E. Equilibrium Optimizer - EO
Based on the control volume mass models, Faramarzi et

al. [27] proposed the EO, a physics-inspired algorithm. The
algorithm simulates the mass conservation equation in volume
control and tries to find equilibrium states. EO has four main
steps, and at the first step, particles’ concentrations (solutions’
positions) are generated randomly using Equation. 6:

Pi
initial = Pmin + randi(Pmax − Pmin) (6)

i = 1, 2, ..., n

where n is the number of particles. P initial is the initial
position (concentration) and Pmin and Pmax are the maximum
and minimum dimension’s values, respectively. Also, randi is
a random number in the [0, 1] interval. The ultimate goal is
to find the equilibrium state, known as the global optimum.
However, as the global optimum is not specified, four particles
(this number can be changed based on the problem) that are
the four best particles among all particles in each generation
are selected during the process. These four particles plus
another particle (the average position of the four best particles)
enhance the algorithm’s exploration and exploitation, respec-
tively, and build the equilibrium pool as shown in Equation.
7.

P eq−pool =
{
P eq1, P eq2, P eq3, P eq4, P eq−avg

}
(7)

Particles are updated based on the random pool’s members
in each generation. Particles’ positions are also updated re-
garding the exponential term of F in Equation. 8.

E = e−κ(t−t0) (8)

t0 =

(
1− it

itmax

)(a2 it
itmax

)

where κ is a random vector in the [0, 1] interval, a2 is constant,
controlling exploitation, and it and itmax are the current and
maximum algorithm’s iteration, respectively. In addition, t0
(Equation. 9) tries to manage exploration ability using the
constant a1. Higher values of a1 lead to more exploration and
lower exploitation and vice versa.

t0 =
1

κ
ln
(
−a1sign (r − 0.5) [1− e−κt]

)
+ t (9)

where r is a random vector in the [0, 1] interval. Another
parameter that influences particles’ positions (the most influ-
ential) and controls exploitation ability is the generation rate
(gr) shown in Equation. 10.

gr = gr0e
−κ(t−t0) = gr0E (10)

gr0 = gcp
(
P eq − κP

)
gcp =

{
0.5r1 if r2 ≥ gp

0 if r2 < gp

where gcp is known as the control parameter of generation,
and r1 and r2 are random numbers in the [0, 1] interval. gp
is known as the generation parameter, defining the amount
of exploration and exploitation in each generation (gp : 0.5 is
suggested for a proper exploration and exploitation). Overall, a
particle in EO is updated based on Equation. 11 by considering
all the update equations.

P = P eq +
(
P − P eq

)
.E +

gr

κV

(
1− E

)
(11)

where V is a unit and P eq , E, gr, and gr are obtained based
on the Equation. 7-Equation. 10.



III. PROPOSED ALGORITHM FRAMEWORK

In this section, we explain our algorithm in detail. R2-
HMEWO has applied the synergy of the two algorithms of
EO and WOA. EO and WOA are two relatively new algo-
rithms, demonstrating promising performance in recent works.
Although algorithms’ combination does not always result in
a better mix, EO-WOA receives good results on benchmarks
regarding convergence and diversity criteria. Structures sim-
ilarities can be enumerated as one of the reasons for this
good performance. To convert this combination to an MOEA,
and since EO and WOA are elite-based algorithms, an elite
archive is also applied in R2-HMEWO. The archive’s members
are updated in each generation by considering two crite-
ria of convergence and diversity. Regarding the convergence
metric, all members are ranked based on the R2 indicator.
As achievement scalarization function (ASF) [28] received
increasing attention in recent years, it is devised in the R2
indicator framework. An ASF for arbitrary set S is described
in Equation. 12:

ASF (S|w, z∗) = max
1≤i≤m

{
|fi(x)− z∗i |

wi

}
(12)

where m is the number of objectives. z∗ = (z∗1 , z
∗
2 , ..., z

∗
m)

is a reference vector and w (wi ≥ 0 for 1 ≤ i ≤ m
and

∑m
i=1 wi = 1) is the weight vector. In addition, we

apply a method based on shifted density estimation (SDE)
[29] to increase the chance of archive members selection
with the proper distribution. This method discriminates archive
individuals with an equal R2 rank using their normalized
diversity distance [30]. The normalized diversity distance of
the ith Individual (d) in archive (AR) is calculated as shown
in Equation. 13.

C(di,AR) =
SDE(di)− SDEmin
SDEmax − SDEmin

(13)

SDEmax = max {SDE(d)|d ∈ AR}
SDEmin = min {SDE(d)|d ∈ AR}

where SDE(di) is the shifted density estimation of individual
di, and obtained using Equation. 14.

SDE(di) = min
dj∈AR,j 6=i

√√√√ m∑
l=1

sde (fl(di), fl(dj))
2 (14)

sde (fl(di), fl(dj)) =

{
fl(dj)− fl(di) fl(dj) > fl(di)
0 fl(dj) ≤ fl(di)

where f(·) is the objective function. The sorting structure of
archive individuals is shown in Algorithm. 1, and the sorting
priority (in ascending order) is based on the R2 rank and SDE-
based output, respectively.

The main structure of R2-HMEWO is presented as a
flowchart in Figure 2. At the first step, N random individuals
with the same number of reference points (based on the Riesz

Algorithm 1: Archive ranking structure
input : Archive Members (AR), and weight vector

(U)
output: Ranked Archive’s members (SortedAR)

1 for u ∈ U do
2 for d ∈ AR do
3 d.Sval← ASF (d.Obj|0, u)
4 # d.Sval: scalarization value
5 #d.Obj: objectives
6 d.C = Compute normalize diversity distance

value using Equation. 13 & Equation. 14

7 SortedAR = Sort(AR, d.Sval1st, 1
1+d.C

2nd)
8 #1st: first priority #2nd: second priority

s-Energy method) are generated. Prior to the first iteration, a
NSO is applied to the initial population, and non-dominated
individuals are ranked regarding the R2 indicator and normal-
ized diversity distance, respectively. Finally, all the ranked
individuals are reserved in the archive. At the next stage,
the algorithm enters into the repetitive process of generating
individuals, and this process will be continued until it meets
the termination criterion. WOA and EO operators are applied
in parallel to the population in each generation. Elite individ-
uals are selected from 10% of high-ranked archive members
regarding the WOA algorithm. The four best particles in EO
(in Equation. 7) are selected based on the 40% of high-ranked
members in the pool. So, for instance, P eq1 is chosen from
the 10% of high-ranked particles, P eq2 is chosen from 10%-
20%, and P eq3 and P eq4 are determined from 20%-30%
and 30%-40% of high-ranked pool members, respectively.
Next, NSO separates non-dominated individuals from the
concatenated population of WOA and EO. Non-dominated
individuals are sorted and ranked by ranking operators and
preserved in the archive. Finally, normalization, association,
and niche-preservation operators separate N individuals from
the concatenated population of WOA and EO. This process
continues until the end of optimization.

IV. EXPERIMENTAL SETTINGS

For assessing the R2-HMEWO, three test functions of
ZDT (ZDT1-ZDT4 and ZDT6), DTLZ (DTLZ1-DTLZ4), and
CEC09 (UF1-UF10) are considered, including problems with
two and three objectives. The characteristics of each test
problem are shown in Table. I [31]. R2-HMEWO is compared
with two domination-based algorithms (NSGA-II and NSGA-
III) [7], [8], a decomposition based algorithm (MOEA/D)
[10], R2, and IGD indicator-based algorithms (MOMBI-II and
MOEA/IGD-NS) [32], [33], and finally, a hybrid swarm-based
algorithm based on the decomposition method and particle
swarm optimization (dMOPSO) [34].

IGD is applied to evaluate the convergence and diversity of
the non-dominated solutions. For a reference point of z∗ =
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Fig. 2. R2-HMEWO flow chart (Pop: population, Ope: operator, NANOpe:
normalization, association, and niching operator)

(z∗1 , z
∗
2 , ..., z

∗
m), IGD computes the average distance of each

point in set S to the reference points (Equation. 15).

IGD(S, z∗) =

∑
x∈z∗ ED(x,S)b

|S|
(15)

ED(s, z∗) = min
z∈z∗

√√√√ m∑
i=1

(si − zi)2

where ED(.) is the Euclidean distance between s ∈ S with
a nearest point in z∗ and b is an arbitrary number (b > 0).
Each algorithm is run 25 times independently to overcome the
problem of randomness. In all the benchmark problems, 100
is considered as the total number of individuals. The number
of function evaluations (NFE) is chosen as the termination
criterion. NFEs are defined based on recent articles [35]–
[38]. Regarding the two-objective test problems of ZDT and

TABLE I
ZDT, UF, AND DTLZ CHARACTERISTICS

Name Obja/Dimb Charc

UF1 2/30 Concave PF, Complex PS
UF2 2/30 Concave PF, Complex PS
UF3 2/30 Concave PF, Complex PS
UF4 2/30 Convex PF, Complex PS
UF5 2/30 Discrete PF, Complex PS
UF6 2/30 Discrete PF, Complex PS
UF7 2/30 Complex PS
UF8 3/30 Concave and Parabolic PF, Complex PS
UF9 3/30 Discrete and Planar PF, Complex PS

UF10 3/30 Concave and Parabolic PF
ZDT1 2/30 Convex PF
ZDT2 2/30 Concave PF
ZDT3 2/30 Discrete PS and PF
ZDT4 2/30 Multifrontal PF
ZDT6 2/30 Concave PF

DTLZ1 3/7 Linear and Multimodal PF
DTLZ2 3/12 Concave and Unimodal PF
DTLZ3 3/12 Concave and Multimodal PF
DTLZ4 3/12 Concave and Biased PF
a Objectives b Dimensions c Characteristics.

CEC09 (UF1-UF7), the maximum NFE is selected at 10k and
60k, respectively. Also, in the three-objective test problems of
CEC09 (UF8-UF10) and DTLZ, the termination criterion is set
at 100k NFE. In R2-HMEWO the repository is known as the
hall of fame in which its members represent the best solution
for each generation. To give a chance to the archive to produce
better individuals and also prevent the algorithm from trapping
in local optimum, simulated binary crossover and polynomial
mutation [39] are applied on the archive. These operators
cause a disturbance in the repository in each 10% of the total
Max NFE. R2-HMTLBO is implemented in Python. The other
algorithms being compared are implemented in Matlab (source
code available in [40])

V. EXPERIMENTAL RESULTS AND DISCUSSION

The average and standard deviation of all 25 runs for each
algorithm are presented in Table. II, in which the best results
are in bold based on the minimum acquired mean. Also, to
demonstrate the algorithms’ significant differences, the Tukey
HSD test with a 5% significance level is applied. Algorithms
with better, worse, and equal performance compared with R2-
HMEWO are shown +, −, and ≈ respectively in Table. II.

R2-HMEWO was significantly better than all algorithms
when applied to the ZDT4, UF3, UF9, and UF10 test prob-
lems. Also, it is shown that R2-HMEWO had significant re-
sults’ similarities with NSGA-III, NSGA-II, MOEA/IGD-NS,
and MOMBI-III, respectively. Regarding the IGD mean, R2-
HMEWO had an outstanding performance in bi-objective ZDT
and CEC09 benchmark functions. R2-HMEWO outperformed
all algorithms in bi-objective ZDT and CEC09 except ZDT6
and UF5 test functions. dMOPSO and MOEA/IGD-NS had a
smaller IGD mean in ZDT6 and UF5, respectively. In three
objective test problems, although our algorithm performed
well in UF8-UF10, in DTLZ tests, it was not successful in
reaching the minimum IGD mean. MOEA/IGD-NS performed



better in DTLZ test problems, except in DTLZ4, in which R2-
HMEWO had the smallest IGD mean. Overall, our algorithm
can deal appropriately with discrete problems. However, based
on the IGD mean, R2-HMEWO is unsuccessful in dealing
with three-objective multi-modal problems such as DTLZ1 and
DTLZ3. This deficiency is eclipsed by its good performance
in parabolic test problems (UF8 and UF10).

VI. CONCLUSION AND FUTURE WORKS

In this work, a hybrid multi-objective evolutionary al-
gorithm is proposed, applying operators from equilibrium
optimizer and whale optimization algorithm. Furthermore,
to convert the algorithm for multi-objective problems and
improve the algorithm’s convergence, an external archive
is devised for selecting elite individuals. To meet conver-
gence and diversity criteria, the archive selection priority is
based on the R2 indicator and a shifted density estimation-
based method, respectively. A reference point-based method
is used to truncate excessive individuals in each generation
and this method also enhances the population diversity. Our
method, R2-HMEWO, was compared with five state-of-the-
art multi-objective EAs, which include reference point-based
(NSGA-III), decomposition-based (MOEA/D), indicator-based
(MOMBI-II and MOEA/IGD-NS), and a hybrid swarm-based
algorithm (dMOPSO). All algorithms were evaluated on three
well-known benchmarks with 19 test functions of ZDT (ZDT1-
ZDT4 and ZDT6), CEC09 (UF1-UF10), and DTLZ (DTLZ1-
DTLZ4). Each algorithm was executed 25 times indepen-
dently, and the IGD mean was applied as the comparison crite-
rion. Except in DTLZ test functions, R2-HMEWO performed
considerably well on ZDT and CEC09 test functions. Although
R2-HMEWO obtained competitive results for three objective
test problems, the performance is more notable in two ob-
jective problems. R2-HMEWO achieved good performance
in discreet and parabolic problems but did not performance
as well in multi-modal problems. In future work, we will
investigate the incorporation of more efficient operators and
structures. For instance, MOEA/IGD-NS revealed promising
results in this paper. Therefore, it is worthwhile to search
for applying better indicators in elite-based MOEAs. Due to
increasing interest in solving problems with more than three
objectives, it is also necessary to investigate the ability of
hybrid algorithms to solve many-objective problems. Also,
evaluating the algorithm performance in dealing with different
performance indicators and constrained problems is one of our
goals for future research.
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