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Highlights 

 Islets of Langerhans are comprised of various cell types whose primary function is 
producing hormones involved in blood glucose control and the regulation of nutrient 
metabolism. 

 Enteroendocrine cells present in the intestine produce a wide variety of peptide 
hormones which regulate islet function and metabolism. 

 Many of these gut peptides are also produced in islets, thereby impacting glucose 
sensing and insulin secretion as well as proliferation, survival and transdifferentiation 
of islet cells. 
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Abstract 

The dual role of the pancreas as both an endocrine and exocrine gland is vital for food digestion 

and control of nutrient metabolism. The exocrine pancreas secretes enzymes into the small 

intestine aiding digestion of sugars and fats, whereas the endocrine pancreas secretes a cocktail 

of hormones into the blood, which is responsible for blood glucose control and regulation of 

carbohydrate, protein and fat metabolism. Classical islet hormones, insulin, glucagon, 

pancreatic polypeptide and somatostatin, interact in an autocrine and paracrine manner, to fine-

tube the islet function and insulin secretion to the needs of the body. Recently pancreatic islets 

have been reported to express a number of non-classical peptide hormones involved in 

metabolic signalling, whose major production site was believed to reside outside pancreas, e.g. 

in the small intestine. We highlight the key non-classical islet peptides, and consider their 

involvement, together with established islet hormones, in regulation of stimulus-secretion 

coupling as well as proliferation, survival and transdifferentiation of β-cells. We furthermore 

focus on the paracrine interaction between classical and non-classical islet hormones in the 

maintenance of β-cell function. Understanding the functional relationships between these islet 

peptides might help to develop novel, more efficient treatments for diabetes and related 

metabolic disorders. 

 

 

Abbreviations 

CCK, cholecystokinin; CNS, central nervous system; EEC, enteroendocrine cells; FFA, free 

fatty acid; GIP, glucose dependent insulinotropic peptide; GLP, glucagon-like peptide; PYY, 
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Peptide Tyrosine Tyrosine; PP, Pancreatic polypeptide; NPY, neuropeptide Y; GABA, γ-

aminobutyric acid. 

Keywords: Islet, β-cell, insulin secretion, transdifferentiation, autocrine, paracrine. 

 

 

Introduction 

Herophilus of Chalcedon, often known as the father of anatomy, first recognised the pancreas 

as an organ approximately 2000 years ago [1]. Claude Bernard’s work on pancreatic juice and 

digestion solved the mystery of the physiological role of the pancreas leading to rapid 

acceleration of research in this area [2]. In 1869, Paul Langerhans, a medical student, 

discovered clusters of cells within pancreas which later were named islets of Langerhans [3]. 

Human pancreas harbours between 3.2 and 14.8 million islets [4, 5], each functioning as a 

micro-organ with its own vasculature, innervation and complement of different hormone-

producing cells. Islets are comprised of five main secretory cell types: most populous (60%) 

insulin-secreting β-cells, α-cells that secrete glucagon (30%), somatostatin secreting δ-cells 

(10%), γ-cells (also referred as PP-cells, <1%) that produce pancreatic polypeptide and ϵ-cells 

(trace number) that secrete ghrelin [6, 7]. 

It was the major role of the classical islet hormones, insulin, glucagon and somatostatin, in the 

glucose homeostasis that inspired several generations of diabetes researchers in their efforts to 

dissect the mechanisms of islet glucose sensing. These efforts suggested that, apart from their 

intrinsic glucose-sensing machinery, islets utilise signals from other sources such as 

enteroendocrine (EE) cells. Residents of the small intestine, these cells secrete a wide variety 

of peptide hormones in a glucose-dependent manner, which significantly assist glucose 

handling by the body [8]. These include but are not limited to gastric inhibitory peptide (GIP), 
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glucagon-like peptide-1 (GLP-1), ghrelin, oxyntomodulin (Oxm), Peptide YY (PYY), 

cholecystokinin (CCK), xenin and gastrin. Remarkably, the small intestine is the main but not 

the exclusive site to produce these gut peptides. Various islet cell populations have been 

reported among the multiple auxiliary sources of the peptides above, which won the latter a 

reputation of non-classical islet peptides [9-11]. A perfect example of a peptide first isolated 

from extra-pancreatic tissues, which is now recognised as an islet hormone, is ghrelin. The 

non-classical islet peptides can thereby exert important intra-islet effects on β-cell function, 

thus representing potential target(s) for the treatment of type 2 diabetes. 

Below, we focus on recent advances in our understanding of the role of classical and non-

classical islet peptides and their contribution to the regulation of β-cell function and fate. The 

progress in this vibrantly developing field [12] is hoped  to result in improved therapeutic 

approaches to diabetes and related disorders, thereby improving patient care. 

Islet Architecture: rodent vs human 

The unique cellular organisation of pancreatic islet adapts to metabolically demanding 

situations, such as pregnancy and obesity, to maintain glucose homeostasis. [13]. A dense intra-

islet vascular network [14] as well as presence of autonomic nerve fibres [15] and immune 

Figure 1: Islet architecture sketched, with different cell types and vessels. 
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cells [16] contribute to a well-orchestrated endocrine signalling mini-organ, functionally fine-

tuned by autocrine and paracrine interactions. 

The dominating population of β-cells is tightly coupled electrically in 30-40 cell clusters [17, 

18], via connexin-36 gap junctions [19], thereby guaranteeing a strong collective all-or-nothing 

response to metabolic stimulus. Likewise, frequently clustered, appear α- and δ-cells [20], 

possibly due to the developmental reasons. Vital for supplying islet cells with oxygen and 

metabolic nutrients, the inter-islet vasculature is at the same time a critical avenue for 

conveyance of locally secreted peptides to their intra-islet targets [21]. The density of the 

vascular network was found to correlate positively with islet glucose sensing ability [22] and 

proliferation of islet cells [23]. 

The rodent islet arrangement is straightforward (Figure ); however, morphological analysis of 

human islets suggest a more complex intermingling of islet cell types. Whilst earlier studies 

reported close similarity to the rodent counterparts as for the α- and β-cell content but with 

more heterotypic cell contacts [7], recent works revealed a substantially higher proportion of 

α-cells within the human islets [24], with a greater percentage of β-β-cells contacts [25-27]. 

The capacity for β-cell proliferation is low for adult human islets [28], therefore the heterotypic 

cell arrangements within human islets are believed to set at the early stage of development [29, 

30]. Likewise, the vascular network has been reported to be much denser in mouse islets [31], 

possibly due to the age-dependent degradation of inter-islet vasculature, induced by the 

inflammation and fibrosis, likely leading to dysfunction of islets within the ageing human body 

[32]. 

Islet hormones 

Classical islet peptides and their function 

The overwhelming majority of islet studies to date have focused on β-cell function, although 

these multi-faceted micro-organs are more than just insulin-producing factories. The body’s 
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only hypoglycaemic hormone, insulin is derived from a precursor proinsulin, via an enzymatic 

cleavage, yielding equimolar amounts of insulin and C-peptide. Whereas the primary function 

of insulin in humans is to regulate the sequestering of the elevated plasma glucose into liver, 

muscle and adipose tissue, the function of C-peptide within the body is still a matter of 

speculation [33]. Beyond debate is the utilitarian role of this mysterious post-translational 

proinsulin product, which has been successfully used as a surrogate to report the portal levels 

of its ‘non-identical twin’ insulin, - an otherwise very challenging task, given high rates of 

clearance for insulin by peripheral tissues, such as liver [34, 35].  

Apart from its role in glucose homeostasis, insulin regulates lipid uptake, synthesis, reduces 

the lipolysis [36] and promotes protein synthesis [37]. At the same time, insulin secretion by 

β-cells is triggered almost exclusively by elevations in plasma glucose and gets enhanced by 

other nutrients, incretin hormones, parasympathetic nervous stimulation and several regulatory 

peptides [38]. In contrast, factors like somatostatin, epinephrine, galanin, ghrelin, and leptin 

inhibit insulin secretion [38, 39]. 

α-Cells produce the hyperglycaemic hormone glucagon, which is derived from a larger 

proglucagon precursor molecule. Interestingly, the latter is expressed in many tissues within 

the body but gets processed in different, tissue-specific ways, yielding a variety of peptide 

products [40]. Glucagon is secreted in response to stress [41], hypoglycaemia [42], and various 

hormonal stimuli [43] plus amino acids [44] circulating in the blood under fasting conditions. 

In turn, the inhibition of glucagon release has been attributed to insulin [45], γ-aminobutyric 

acid (GABA) [46] and, naturally, hyperglycaemia [47]. Glucagon predominantly targets a Gs 

protein-coupled receptor on hepatocytes thereby elevating cytosolic cAMP, which in turn 

switches glucose metabolism from utilisation to production via gluconeogenesis [48]. The 

cAMP signal also favours phosphorylation of the polymeric inactive form of glucose, 

glycogen, into monomeric glucose-1-phosphate (glycogenolysis) [49]. Additionally, glucagon 
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regulates uptake of amino acids [44], production of ketone bodies [50] by the liver and the 

breakdown of stored triglycerides into free fatty acids and glycerol in mouse but not in human 

models [51]. 

δ-Cells, constituting a substantially smaller proportion of islet endocrine cells than alpha cells, 

secrete a potent Gi receptor ligand somatostatin that reduces secretion of every pancreatic 

hormone, inclusive of insulin and glucagon, by decreasing the cytosolic cAMP and attenuating 

late events in vesicle exocytosis [52]. In this way, somatostatin may counteract large variations 

in circulating hormone levels [53]. Morphological analysis has shown a unique neuron-like δ-

cell structure, which contributes to its effective communication with neighbouring α- and β-

cells [54-56]. Principally activated by increases in plasma glucose [57], δ-cells nevertheless 

express receptors for insulin, GLP-1, GIP and ghrelin suggesting the importance of these local 

islet interactions [58] as well as plasma ionic composition [59].  

A minor islet population of PP cells secrete pancreatic polypeptide, which is regulated by 

vagal and enteric nervous input [60]. Despite a substantial postprandial increase in PP [61], 

PP-cells do not respond well to direct action of glucose or other nutrients [62]. Historically, PP 

has been viewed as a principal inhibitor of exocrine pancreatic secretion [63], however it has 

been demonstrated to inhibit secretion of endocrine hormones, such as insulin [10, 64] and 

glucagon [65]. ϵ-Cells, the smallest islet cell population, produce ghrelin [66, 67] which is also 

secreted by enteroendocrine cells of the stomach [68]. The ‘hunger hormone’ ghrelin regulates 

appetite at the systemic level, in line with its intra-islet role of inhibiting insulin release [69], 

most likely via stimulating the release of somatostatin [66].  

Non-classical islet peptides and their receptor expression in endocrine pancreas 

The non-classical islet peptides are a family of regulatory peptides which are conventionally 

produced in extra-pancreatic sites but have been reported to be expressed in subsets of islet 

cells. The incretin peptide GLP-1, is predominantly secreted by intestinal L-cells [70] where 
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it is cleaved from proglucagon by the tissue-specific prohormone convertase PC1/3. The 

expression of GLP-1 in pancreatic α-cells, controlled by the glucagon-oriented proconvertase 

2 (PC2), is low under physiological conditions but may increase under stress such as depletion 

of β-cells [71], associated with type 1 diabetes [72-75]. GLP-1 potentiates glucose-induces 

secretion of insulin, just like its ‘sister’ peptide, gastric inhibitory peptide (GIP). GIP is 

synthesized from the proGIP precursor, processed by PC1/3 and is secreted in a glucose-

dependent manner by enteroendocrine K-cells in duodenum [76]. Historically reported as an 

inhibitor of gastric acid secretion, GIP exerts ‘global’ anabolic effects on both adipose tissue 

and bone [77]. The local expression of GIP within the islet, attributed to α-cells [11, 78, 79] is 

expected to target neighbouring β-cells as well as α-cells, in an autocrine fashion. 

Another preproglucagon splicing variant, GLP-2 is conventionally expressed in L-cells within 

the distal small intestine and is believed to target the intestinal mucosa. Similarly to GLP-1, 

GLP--2 is the product of PC1/3 processing, which has been detected to express in the islet α-

cells, under the β-cell stress [80, 81]. The latter has been shown to upregulate PC1/3 expression 

in α-cells [71, 74, 75, 82]. 

Another gut peptide, PYY (Peptide tyrosine-tyrosine), co-localises with GLP-1 in the secretory 

vesicles of intestinal L-cells and is co-secreted with this incretin [83]. Two main bioactive 

forms of this peptide, PYY(1-36) and PYY(3-36), are believed to impact islet function [84] 

and appetite regulation [85], which might help convey the glucoregulatory benefits of  Roux-

en-Y bariatric surgery. Appreciable amounts of PYY have been detected in the islets [86] and 

PYY immunoreactivity has been reported in a subset of rodent α-cells [9, 87]. In our hands, 

PYY attenuated glucose-induced insulin secretion on the acute timescale [9].  

Hypothalamic neuropeptide Y (NPY), a 36 amino acid peptide homologous to PYY and PP, is 

recognised for its role in the regulation of energy balance by central nervous system [88]. 

Expression of NPY in islet PP-cells and sympathetic nerve fibres of the pancreas have been 
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reported in rodents [10, 89]. In diabetes models, the intraislet site for NPY expression changes 

from PP cells to δ-cells [10, 89]. Similarly to PYY, NPY attenuates glucose-induced insulin 

secretion [10], but was reported to have little in vivo effect in humans [90]. 

Cholecystokinin (CCK) and gastrin are neuroendocrine peptides produced in small intestinal 

I-cells and gastric G-cells, respectively, whose effects are mediated through CCKA and CCKB 

receptor subtypes. Both CCK (CCK-8) [91-93] and gastrin [91, 92, 94] immunoreactivity have 

been observed in pancreatic islet α- and β-cells. Metabolic stress such as obesity [95], type 1 

diabetes [91], compromised immune response [91] defective leptin signalling [96] and 

subsequent pancreatic regeneration serve as a putative trigger for the expression of the two 

peptides. 

Xenin-25, co-expressed with GIP in K-cells of duodenum, and neurotensin, secreted by N-

cells within the distal intestine and hypothalamus, are structurally related small peptides, 

believed to act via a common receptor [97]. Both peptides have been reported in pancreatic 

islets, alongside all major neurotensin receptor subtypes (NTSs)  [98-100]. Xenin-25 has an 

acute insulinotropic effect [98], which is believed to be mediated via NTS1 or NTS3/sortilin; 

the peptide may also serve as a competitive antagonist of NTS2 [101-103]. Secretin, a gut 

hormone that triggers flow of pancreatic juice into the duodenum, has also been reported in the 

islets and shown to exert acute insulinotropic effects [104].  

Two small neuropeptides traditionally viewed as pituitary hormones, vasopressin [105] and 

oxytocin [106] have been reported in pancreatic islets with an insulinotropic as well as 

proliferative and antiapoptotic effect on the β-cell.  

Recently, cocaine- and amphetamine-regulated transcript (CART) and apelin have been 

reported to express within islets. CART, a neurotransmitter and hormone, to augment insulin 

secretion and alter β-cell morphology [107].  The expression of apelin is upregulated by insulin 
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[108], whereas this adipokine inhibits insulin secretion [109]. This feedback regulation 

suggests a paracrine or autocrine regulatory role for apelin within the islets [110, 111]. 

Non-classical islet peptides regulate β-cell function 

Acute effects on insulin secretion. As a highly differentiated ‘professional’ glucose sensor, the 

pancreatic β-cell couples the concentrations of the sugar in blood to the amount of secreted 

insulin. Glucose enters the cell via Glut2 (Glut4 [112], Glut1 or Glut3 [113], in humans) 

transporter and is rapidly converted into glucose-6-phosphate by low-Kd glucokinase, which is 

then either metabolised along the glycolytic pathway [114] or deposited in the “inactive” form, 

glycogen [115]. The glucose flux is strongly coupled to mitochondrial metabolism [116], 

resulting in a remarkably efficient (>85%) oxidation of glucose carbons [114, 117, 118]. 

Consequently, an increase in blood glucose is rapidly translated into a sustained elevation of 

ATP levels in the β-cell cytosol [119, 120]. This signal inhibits the ATP-sensitive K+ channels 

[121], which depolarises the plasma membrane [122], opening voltage-gated Ca2+ channels. 

The resulting Ca2+ influx into the cytosol triggers insulin exocytosis. The fast, triggering, stage 

of insulin release is followed by a less prominent but more sustained amplification stage [123]. 

Whereas the former is vastly regulated by the Ca2+ (that initiates the vesicle fusion) and cAMP 

(that substantially enhances the Ca2+-sensitivity of the vesicle pool) [124], the latter is shaped 

by a number of signals of predominantly metabolic (mitochondrial) nature [125]. 

The great variety of systemic signals targeting specific receptors expressed on the islet cells 

converges, at the intracellular level, to a very limited set of G-protein receptor-mediated 

signalling pathways. Glucagon, GLP-1 and GIP exert the ‘incretin effect’ to potentiate insulin 

release following feeding [126], by binding to specific Gs receptors (Gs α-subunit of a G-

protein coupled receptor) expressed on the membrane of pancreatic β-cells thereby activating 

adenylyl cyclase and elevating cytosolic cAMP. At physiological concentrations, this 
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secondary messenger is practically unable to trigger insulin secretion per se [127]. It, however, 

substantially enhances the exocytosis triggered by Ca2+ [128], acting via its downstream 

targets, protein kinase A (PKA) [129] and Epac2 [130, 131], to enhance the Ca2+-sensitivity of 

the intracellular vesicles. Similarly to GLP-1, GLP-2 has been reported to target a Gs receptor 

thereby elevating cytosolic cAMP [132], selectively in α-cells [80]. 

At low concentrations, GLP-1 was reported to signal via a PKC-dependent pathway to activate 

PKA indirectly [133], a mechanism typical for Gq receptor signalling that culminates in a 

‘bolus’ release of luminal Ca2+ into the cytosol. Gq-mediated signalling and a rapid elevation 

of cytosolic Ca2+ are typical features of CCK- [134, 135] and gastrin-induced [136] insulin 

release. CCK and gastrin bind to the Gq-type CCK receptors (CCK1, CCK2) expressed by the 

islet β-cells [137]. Of note, there is no direct confirmation of the insulinotropic effects of 

endogenous CCK and gastrin as the studies [92, 134-136] used supraphysiological levels of 

exogenous peptides. Whilst the insulinotropic effects are unattainable for endogenous systemic 

CCK and gastrin, the local intraislet production of the two peptides may lead to the higher 

topical levels of CCK and gastrin within the islets. 

The mechanism of the acute glucose-dependent insulinotropic effect of xenin-25 in rodent β-

cells [98, 138-140] as well as indirect augmentation of PP secretion and synergism with GIP 

[141] is still unclear. The peptide is known to interact with NTSR Gq receptors [142], which is 

expected to induce a bolus increase of cytosolic Ca2+, via the release from the luminal depot. 

This is however at odds with our observation of the effect on the plasma membrane potential 

[98], that suggests an inhibition of K+/activation of Ca2+ conductance. The homologue of 

xenin-25, neurotensin, which is expected to target a NTSR2/NTSR3 receptor complex [143], 

elevated cytosolic Ca2+ in INS-1E β-cells, but was in contrast reported to impose no acute 

effects in other systems [144]. 
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PYY, NPY and PP bind to five known types of Y-receptors that are conventionally classified 

into the Gi type [145], imposing an inhibition on the target cell by attenuating the adenylyl 

cyclase activity and hence the cytosolic levels of cAMP. However, the acute insulinostatic 

effect of supraphysiological concentrations of PYY in rodents [146, 147] as well as the 

inhibitory effects of PYY and NPY in isolated islets and human β-cells [9, 10, 146] are 

putatively linked to an interference with plasma membrane electrical potential, suggesting an 

ion channel (such as Girk) association of the peptide receptor on these cells. These inferences 

are however contrasted by the reports of acute [148] and chronic [149] insulinotropic effects 

of PYY. 

Vasopressin and oxytocin receptors belong to Gq (V1A, V1B, OT) and Gs (V2) types, although 

coupling of OT to Gi proteins has also been reported [150]. The data from a β-cell line [105, 

106] demonstrating large [105] and small [106] additive effects of the phosphodiesterase 

inhibitor isobutylmethylxanthine for vasopressin and oxytocin, respectively, suggest an 

opposite pattern: the former peptide is likely to act by inducing a Ca2+ release from the 

endoplasmic reticulum whereas the latter seemingly acts by elevating cytosolic cAMP levels. 

Chronic effects on β-cell biology: proliferation and survival. Diabetes mellitus is an umbrella 

term for several diseases of different aetiology, however increased apoptosis [151] and 

impaired maintenance [152] of pancreatic β-cells are common traits of different types of 

diabetes. The therapeutic reversal of β-cell degradation is seemingly set to rely on tissue 

engineering strategies, such as differentiating induced pluripotential stem (iPS) cells into new 

β cells [153, 154] or attenuating β-cell senescence [155], whereas one can regard the fast 

peptide-based signalling to be too evanescent to induce long-term effects. However therapeutic 

interventions aiming at prolonging the GLP-1 receptor agonism, either by using synthetic long-

lasting analogues of GLP-1  or via inhibition of GLP-1 degradation [156], reported an increase 

of β-cell proliferation and neogenesis as well as antiapoptotic action. 
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Likewise, chronic exposure to GIP had pro-proliferative and anti-apoptotic effects in β-cells 

[70, 156], supposedly mediated via the activation of CREB and suppression of both p38 

mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) [157, 158] 

reducing the impact of the endoplasmic reticulum stress [159]. Alongside GLP-1 and GIP, 

GLP-2 has been shown to augment rodent β-cell proliferation [80] thereby echoing its role in 

the expansion and/or renewal of intestinal epithelium [160]. The effect on β-cells is likely to 

be mediated via the activity of  α-cells directly targeted by GLP-2 [80]. 

Despite the nominally inhibitory nature of the Y-receptor agonism in β-cells, chronic exposure 

to NPY and PYY was shown to impose a mitogenic effect [161], thereby suggesting an 

involvement of Y-receptors in β-cell proliferation, similarly to their role in olfactory [162], 

hippocampal [163] neuronal precursors. This discrepancy, conventionally explained by 

‘anomalous’ coupling of Y-receptors to Gq subunits [164] or an anomalous activation of PKC 

by the Gi subunit [165], results in an enhancement in β-cell proliferation and survival, in 

response to chronic PYY agonist [9, 166]. In line with the idea of Gq coupling of Y-receptors, 

other Gq agonists, CCK [167] and gastrin [92, 168], induced proliferation of rodent β-cells 

and cell lines [92, 95]. The significance of endogenous gastrin and CCK for β-cell proliferation 

is however challenged by the data from gastrin receptor-knockout mice that displayed unaltered 

islet morphology, which however might be attributable to triggering of compensatory 

mechanisms [169, 170]. 

Similarly to CCK and gastrin, another duo of chemically related Gq agonists, xenin-25 and 

neurotensin, increased β-cell proliferation [98], presumably via NTSR3/sortlin signalling that 

has been reported to enhance cellular growth in other systems [171, 172]. Jo
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Chronic effects on β-cell transdifferentiation. Commonly, β-cell transdifferentiation, 

phenotypic conversion of fully differentiated β-cells into other islet cell types, is observed 

under conditions of stress such as (partial) pancreatectomy, diabetes and pancreatic duct 

ligation [173]. Recently, we have reported that a GLP-1 receptor long-acting agonist, 

liraglutide, countered detrimental β- to α-cell transdifferentiation in mouse models of type 1 

and type 2 diabetes [72, 174]. Likewise, chronic agonism of the islet cell GIP [175] or Y1 [176] 

receptors countered streptozotocin-induced islet cell transdifferentiation and β-cell loss. Sub-

chronic administration of stable analogues of xenin or oxyntomodulin (dual agonist of GLP-1 

and glucagon) induced similar beneficial effects [175, 177]. 

Autocrine and paracrine interactions controlling β cell function 

Islet cells release a number of soluble factors of peptide (insulin, glucagon, glucagon-like 

peptide-1, somatostatin) and non-peptide (ATP, acetylcholine, γ-aminobutyric acid, dopamine, 

Zn2+) nature that have proven effects on insulin secretion [178]. Alongside insulin, the β-cell 

insulin vesicle contains several (poly)peptides, essential for its biogenesis such as 

chromogranin B and C, secretogranin 2, carboxypeptidase E, as well as VGF and islet amyloid 

polypeptide, which may be implicated in the autocrine regulation of glucose-induced 

Figure 2: Summary of classical and non-classical islet peptide expression, their receptors and effect on β-cells. 
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exocytosis [179]. The paracrine regulation of the β-cell secretory performance is accomplished 

in part by somatostatin, secreted by δ-cells. The main product of α-cells, glucagon is also 

involved in physiological regulation of insulin secretion. Apart from the two conventional 

molecules, the-non-β-cells express smaller amounts of a range of non-classical peptides as 

considered above, such as GLP-1, xenin-25, vasopressin, oxytocin or ghrelin. The proximity 

of these locally released peptides to the β-cells may substantially mimic or even exceed the 

conventional effects of these peptides produced predominantly elsewhere in the body. 

Autocrine The most abundant peptide factors secreted by β-cells are the derivatives of 

proinsulin. Whereas the physiological role of C-peptide remains unclear, within islets it 

appears to inhibit insulin release [180]. In contrast, the abundant expression of insulin receptor 

in rodent [181] and human [182] β-cells indicates a significant role for insulin as an autocrine 

signal. Historically, a fast negative feedback loop was proposed for the acute (minutes) effect 

of insulin on β-cell insulin secretion, based on clinical observations [183, 184]. This view, 

however, was contrasted by mutually exclusive data from isolated islet and single β-cells [185, 

186], overall suggesting a dose-dependent acute inhibitory effect of insulin on β-cells [187] 

and/or possible mediator role for other islet cell types [188].  

There is less controversy about the long-term (days) effect of insulin on β-cell biology, as the 

β-cell specific knock-out of insulin receptors in a mouse model induced a type 2 diabetic 

phenotype [189]. Further experiments in the rodents aiming to perturb various components of 

the insulin-signalling pathway in β-cells suggested its critical role in the compensatory 

hyperplasia of islets [190, 191].  Whilst the cancellation of insulin signalling results in a clear 

phenotype, there is a doubt on the physiological regulation of this pathway in β-cells [192]. 

The saturating insulin levels within the islet vicinity in vivo are highly likely to desensitise the 

receptor [192], an observation that may explain the discrepancy with the in vitro findings.  
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Islet amyloid polypeptide (IAPP, amylin), a 37-amino acid polypeptide co-localising with 

insulin in the vesicles within β-cells [193], is released simultaneously with insulin in glucose-

dependent manner at a ratio of 60:1 (insulin: amylin) [194], which however decreases to 7:1 in 

the circulation [195]. Amylin is believed to play a key role in the pathogenesis of Alzheimer’s 

disease [196], however it has also been proved to target non-neural tissues such as (a subset of) 

β-cells [197], skeletal muscle, kidney, lung [198]. The activation of two β-cell-specific 

isoforms of the amylin receptor (dimers of the G-protein–coupled calcitonin receptor and 

receptor activity–modifying proteins 1 and 3, RAMP1, RAMP3) by supraphysiological 

concentrations of amylin has been reported to mildly attenuate glucose-induced insulin 

secretion in humans [199], whereas the inhibition of the amyloid signalling resulted in an 

opposite effect in human [200] and rodent [201] models. Studies in amylin knockout mice 

reported a perturbation of glucose handling, which was not associated with any defect in islet 

physiology [202]. These findings are echoed by the clinically proven reputation of amylin as a 

potent glucagon inhibitor, apparently utilising a non-islet mechanism for this effect [203]. 

Chronic (48-h) effect of amylin on β-cell biology, modelled in a cell line, was reported to 

depend on the rate of cell proliferation: amylin enhanced the slow (observed at low glucose) 

and attenuated the high proliferation rates (high glucose) [204].   

Urocortin-3 (Ucn-3), a peptide hormone expressed by mature β-cells, enhances glucose-

dependent release of insulin and glucagon [205]; however its potent stimulatory effect on 

somatostatin secretion results in overall inhibition of the islet secretory output [206]. Ucn-3 

binds to corticotropin-releasing hormone receptor 2 coupled to the adenylyl cyclase, resulting 

in a fast elevation of cytosolic levels of cAMP [207], which however is yet to be demonstrated 

in pancreatic islet cells. The long-term effect of Ucn-3 on β-cell biology is unclear as it is likely 

to be obscured by that of somatostatin. The same lab, however, reported an upregulation of 
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proliferation by signalling via homologous corticotropin-releasing hormone receptor 1 [208], 

prompting a similar option for Ucn-3 signal.  

VGF (non-acronymic) has been shown to enhance insulin secretion in glucose-dependent 

manner [209], by regulating the insulin vesicle maturation [210]. Significant oxytocin 

immunoreactivity has been recently reported in β-cells, with the peptide augmenting insulin 

secretion from primary islets and proliferation in β-cell lines [106].  

Paracrine A 3.49-kDa splicing variant of the preproglucagon gene, glucagon is secreted by 

pancreatic α-cells, typically in response to low glucose [41] or increased amino acids in plasma 

[44]. However, the populational secretory pattern is very heterogeneous among the α-cells 

[211, 212]. The glucagon receptor is abundantly expressed in the neighbouring β-cells; in these 

cells, however the elevation of cytosolic cAMP enhances but fails to trigger insulin secretion 

[127]. Thus, glucagon can be viewed as a potentiator of insulin secretion under the ‘borderline’ 

conditions when the release of both hormones has been induced simultaneously. 

Another splicing variant of the GCG (preproglucagon) gene, glucagon-like peptide -1 (GLP-

1) is harboured by a subset of α-cells under conditions of stress such as β-cell depletion [72]. 

GLP-1 secretion has a recognised glucose-dependent insulinotropic action [70] and, although 

the lifetime of the active form of GLP-1 (7-36) is limited by the activity of the intra-islet  

dipeptidyl peptidase-IV, the inactive form of GLP-1 (9-36), has been claimed to elevate 

cytosolic cAMP, at high concentrations [213]. This suggests a potential role for both major 

forms of locally produced islet GLP-1. Similarly to GLP-1, small amounts of α-cell-derived 

GIP are likely to stimulate the ‘borderline’ insulin secretion whereas the α-cell GLP-2 could 

be viewed as a stimulatory autocrine factor for α-cells. Xenin-25 and PYY, reported to be 

expressed in α-cells within mature islets, have an acute insulinotropic and insulinostatic effect, 

respectively [9, 87, 98], further strengthening the cross-talk between α- vs β-cells. 
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A ubiquitous inhibitory peptide, somatostatin is released from pancreatic δ-cells and triggered 

by glucose, alongside insulin, albeit at 1% of the insulin rate [214]. The peptide inhibits 

exocytosis in β- and α-cells, expressing the somatostatin receptor types 2 and 5, in rodent islets 

[215].  

The stomach-derived ‘hunger hormone’ ghrelin is also expressed in islet ε-cells [67], which 

secrete the fully functional bioactive peptide [216]. Ghrelin is believed to impose a stimulatory 

effect mediated via an increase of cytosolic cAMP predominantly in pancreatic δ-cells [66]. 

Thus, the peptide is hypothesised to produce an overall inhibitory effect on insulin secretion, 

albeit supposedly of very limited impact due to the rarity of ε-cells in islets. 

Pancreatic polypeptide (PP) and NPY are produced by a minor (<1%) islet population of PP-

cells residing predominantly in the ‘small lobe’ islets, at the posterior face of the head of the 

pancreas [217]. Although the PP receptor (PPYR1) has been reported to reside on α-cells but 

not β-cells [218], the ex vivo studies revealed an acute inhibitory effect of exogenous PP on 

glucose-induced insulin secretion [10], whereas NPY is likely to act directly on the β-cell [10].  

Integration of autocrine and paracrine interactions. As evident from the above, the intra-islet 

modulation of glucose-induced insulin secretion can be viewed as a counteraction of the 

insulinostatic effect of somatostatin and the insulinotropic effects of the α-cell peptides 

(glucagon, GLP-1, GIP, xenin-25) shaping the level of cytosolic cAMP in the β-cell. The ϵ- 

and PP-cell peptides are likely to provide glucose-independent fine-tuning into this variable, 

with PYY and GLP-2 implementing weak positive feedback on glucagon release. The 

ubiquitously expressed Gq agonists vasopressin, oxytocin, gastrin and CCK could provide an 

alternative, non-electrical, avenue for β-β cell coupling for coordinating their response to the 

nutrient stimulus.  
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Concluding remarks 

In addition to the classical islet hormones (insulin, glucagon, somatostatin and PP), regulatory 

peptides normally associated with the gut and neurons, are present in islets and known to affect 

β-cell function [219]. These include glucagon-like-peptides (GLP-1, GLP-2, OXM), GIP, 

PYY, neurotensin, xenin-25, CCK and gastrin. Conventionally, these bioactive molecules are 

secreted from extra-pancreatic sites but their expression in islet lineage during embryogenesis 

may prove important for understanding islet growth and beta-cell proliferation.  

The highly significant role of islet-derived peptides in β-cell regulation mediated via autocrine 

and paracrine mechanisms (summarised in Figure , Table 1) remains poorly appreciated. 

Manipulation of receptor-ligand interactions mediated locally by these peptides in islets might 

open new avenues for promoting β-cell function, protecting insulin-producing cells and 

restoring β -cell mass in diabetes. 
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Table 1 Classical and non-classical islet peptides and their positive or negative effects on pancreatic 

β-cells. 

 

Peptide Origin 
within the 
islet 

Islet 
content, 
ng/mg  

Systemic 
levels, -log(pM)  

Principal agonist 
in islets 
  

Effect on β-cells 
  

Insulin 
secretion 
(fast) 

Proliferative/antiapoptotic 
(chronic) 

Insulin β-cell 100 [220] 10 - 8.7 [220, 221] Plasma glucose Inhibits Compensatory hyperplasia 

Amylin β-cell 0.5 [222] 11 - 10.7 [223] Plasma glucose Unclear Unclear 

C-peptide β-cell high 9.7 – 8.4 [221] Plasma glucose Inhibits  Unclear  

Glucagon α-cell high  10.7 [221]  
Plasma glucose   

Stimulates Stimulates 

Amino acids 

Somatostatin δ-cell high  11 [221] Plasma glucose Inhibits   

Oxytocin β-cell low  11.5 [224] – 9.5 
[225] 

Plasma glucose? Stimulates Stimulates 

Gastrin β-cell low  10.3 [221] Plasma glucose? Stimulates Unclear  

CCK β-cell low  11.2 [226] Plasma glucose? Stimulates Stimulates 

Urocortin3 β-cell 0.002 
[206] 

 10.3 [227] – 8.5 
[228]  

Plasma glucose Stimulates  Unclear 

VGF  β-cell very low 11.2 – 10.4 [229] Plasma glucose 
[209] 

Stimulates 
[210] 

Unclear 

GLP-1 α-cell low 10.7 [133] Plasma glucose? Stimulates Stimulates 

PYY α-cell low  11 [230] Plasma glucose? Inhibits Stimulates 

PP pp-cell low  10.6 [231] Unclear  Inhibits    

Ghrelin ϵ-cell low  10.15 – 9.5 [232] Plasma glucose? Inhibits    

Xenin-25 unclear low  9.8 [233] Plasma glucose? Stimulates   

Vasopressin Perivascular 
cells [105] 

low 11.3 [234] Plasma glucose? Stimulates Stimulates Jo
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