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Abstract— Losses of nitrogen (N) from dairy cattle farming 
system cause environmental pollution and impact human 
health. A number of statistical models for predicting manure N 
excretion from lactating dairy cows have been developed based 
on regression analysis. In this study, we proposed a Bayesian 
network-based approach to modelling relationships among 
factors influencing manure N excretion of lactating dairy cows 
using a dataset collated from total diet digestibility studies 
undertaken at Agri-Food and Biosciences Institute in Northern 
Ireland. The preliminary results indicate that Bayesian 
network model can be used to capture relationships among 
factors that influence N utilization efficiency and can be used 
to establish causal influence among predictors. These may 
provide an effective tool for optimizing the management of feed 
N resource for current dairy production and developing 
strategies to reduce N excretion in dairy production systems. 
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I. INTRODUCTION 
Dairy cattle losses a large proportion of consumed 

nitrogen (N) to environment, causing environment pollution 
through volatilizing nitrogenous gases (e.g., ammonia, 
nitrous oxide and nitrogen oxides) to the atmosphere and 
leaching nitrate, ammonium and organic N to waters sources 
[1]. In Europe, dairy cattle farming accounts for 47% of 
ammonia emissions within the agriculture sector [2]. The 
surplus of anthropogenic N in the ecosystem can cause 
global warming, acid rain and eutrophication [3]. In addition 
to the environmental pollution, N-related pollutants are 
linked to lung diseases, chronic bronchitis and premature 
mortality [4], [5]. With regard to above concerns, growing 
interest has been received over the past decades in 
developing strategies for reducing N excretion in dairy cattle. 
Among those strategies, improving the efficiency of feed N 
utilization with less manure N excretion is the most effective 
approach to reduce N losses from dairy farms [6]. Improving 
N utilization efficiency of dairy cows can generate various 
co-benefits, including farm profitability from reduced feed 
costs (N is the most expensive component of purchased 
feeds) and environmental improvements from reduced N 
excretion in manure [7], [8].  

It has been well documented that both dietary and animal 
factors had major influences on N utilization efficiency in 
dairy cattle [9]-[11]. For example, statistical analysis of a 
large dataset of 564 lactating dairy cows [12] found that 
manure N excretion was positively and significantly related 
to milk yield, diet N content, N intake and animal live 
weight. Increasing milk yield or decreasing diet N content 
resulted in decreased manure N excretion per kilogram of 
milk yield. In addition to the factors mentioned above, 

previous studies have indicated that dairy cow genotypes 
(various genetic merits) had significant influence on N 
utilization efficiency of dairy production [11], [13], [14]. For 
example, N utilization efficiency of modern Holstein-origin 
dairy cows utilized consumed N more efficiently than their 
earlier populations over 30 years ago [11].   

Prediction of N excretion by lactating dairy cows are 
critical  for dairy production industries to develop sustainable 
nutrient management plans for enhancing economic stability 
and reducing environmental impacts of dairy farming. So far, 
a number of statistical models have been developed for 
mitigation of manure N excretion from lactating dairy cows, 
which are principally based on simple and multiple 
regression and mixed model analysis [12], [15]-[17]. A range 
of such prediction models for lactating dairy cows have 
established using N intake, body weight and milk yield as 
primary predictors, either alone or combined. These 
modelling works found that equations had higher prediction 
accuracy for manure N excretion when using N intake as 
primary predictor and body weight and milk yield as 
supporting predictors, whereas, body weight alone is not an 
accurate predictor [12]. However, N intake is not always 
available in commercial dairy farms and it’s not possible to 
assess N excretion using models developed using N intake as 
predicator. An alternative predictor instead of N intake is 
dietary N content which has been used for evaluating manure 
N excretion from dairy cows [12]. In recent years, increased 
computational power and accessible tools have contributed 
to enhancing the performance of modelling cattle nutrition 
and energy balance, such as Bayesian Networks (BN) which 
has been applied to address factors affecting methane 
emissions from lactating dairy cows and demonstrated that 
BN had great potential to capture relationships among 
variables [18]. Therefore, the objective of the current study 
was to model factors affecting N utilization efficiency of 
lactating dairy cows using a BN approach and to establish 
causal influence among predictors. The main contributions 
are summarized below: 

• To our best knowledge, this is the first study that 
applies Bayesian network-based approach to 
modelling the nitrogen utilization efficiency of 
lactating dairy cows. 

• Differing from statistical models based on 
regression analysis which have been developed for 
prediction of manure N excretion, the approach 
introduced in this study has the advantage of 
exploring the dynamic association between factors.  

• This study also explored the application of data 
discretization, learning algorithms, and whitelist 



and blacklist function on incorporating domain 
knowledge in structure learning of BN. 

 

II. METHODOLOG 

A. Datasets 
Data used were collated from total diet digestibility 

studies with 956 lactating dairy cows undertaken at Agri-
Food and Biosciences Institute in Northern Ireland. The 
information on numbers of experiments, treatments, and cow 
breeds, and forage types offered are presented in TABLE I. 
The dataset used in the present study showed a broad range 
in energy corrected milk yield (5.1 – 40.2 kg/d), diet N 
content (19.0 – 38.0 g/kg DM), and manure N output as a 
proportion of N intake (0.495 – 0.893 kg/kg), which 
represents typical dairy production condition managed within 
grassland-based dairy systems in UK (TABLE II). 

Four main factors were included in this study to model 
the interaction among them. The main factors are: 

• Cow breed: Breed (Categorical variable) 

• Energy-corrected milk yield (kg/d): ECMY 
(Continuous variable) 

• Diet N content (g/kg DM): DNC (Continuous 
variable) 

• Manure N output as a proportion of N intake 
(kg/kg): MN/NI (Continuous variable) 

Before processing the Bayesian network, outliers in the 
database were screened using the interquartile range  method. 
In this study, a factor of 1.5 for extremes was used in 
constructing markers to identify outliers. As a result, a 
refined complete dataset (n = 891), containing complete 
information on breed, ECMY, DNC and MN/NI were used 
for modelling. 

The probability densities of the 3 continuous variables 
are showed in Fig. 1 and they appear to follow the normal 
distribution. 

 

B. Bayesian networks 
Bayesian networks are graphical representations, 

representing dependence and independence information [19].  
A BN includes two parts: (1) a directed acyclic graph (DAG) 
that represents dependences and independences in a domain 
of concern, in which nodes and arcs (edges) denote variables 
and dependencies, respectively, and arrows represent 
directions of relationships between variables (nodes), and (2) 
a joint probability distribution of a set of random variables 
that is associated with the vertices.  

Let X be the node set (random variables) of a BN which 
is a DAG. The DAG defines a factorization of joint 
probability distribution of X = {X1, X2,…, Xn} into a set of 
local probability distributions, one for each variable. The 
form of the factorization states that every random variable Xi 
directly depends only on its parents:  

 
(1) 

TABLE I.  INFORMATION ON EXPERIMENT, COW BREED AND FORAGE 
TYPES IN THE DATASET USED IN THE PRESENT STUDY 

 Dataset 

Number of experiments 39 

Number of treatments 208 

Number of individual cow data 891 

Cow breeds  

Holstein 736 

Holstein Cross 72 

Norwegian 57 

Swedish Red 16 

Forage types Grass silage, fresh grass, maize 
silage, whole crop wheat silage 

 

where denotes the set of parents of Xi and is 
the conditional probability of Xi given its parents. 

The main process of BN learning consists of structure 
learning and parameter estimation. The structure learning 
involves the identification of real dependencies between 
measurable variables and the algorithms for BN structure 
learning can be grouped in two categories: constraint-based 
and score-based algorithms. The parameter estimation aims 
to find the most probable values for parameters and involves 
the estimation of conditional probability values. 

 
Fig. 1. The probability densities of diet N content, Energy-Corrected milk 
yield and manure N as proportion of N intake. The red line is the 
corresponding normal curve. 



C. Implementations 
A constraint-based structure learning algorithm, Growth-
Shrink, was used to implement structure learning by using R 
package bnlearn [20]. Both knowledge-driven and data-
driven were incorporated as the processing of structure 
learning. Function of whitelists and blacklists was used to 
pre-define the arcs and its directions according to domain 
knowledge. Visualisation and inference of BN were 
performed using GeNIe Modeler 
(https://www.bayesfusion.com/) developed by BayesFusion 
LLC (Pittsburgh, USA).  

The strength of influence was calculated from the 
conditional probability table of the child node and essentially 
expresses as distance between the various conditional 
probability distributions over the child node conditional on 
the stats of the parent node [21]. The metric Euclidean was 
used as measure of distance between distributions. The 
strength of influence between the nodes that they connected 
in the BN was presented by the thickness of arc. 

The continuous variable of ECMY was discretized into 3 
categories (i.e. lower than 20.0, between 20.0 and 30.0, 
higher than 30.0 kg/d) supported by the domain knowledge 
[18]. The other two continuous variables, DNC and MN/NI, 
were discretized by Hartemink’s Information-preserving 
Discretization function [22]. It relies on minimizing the loss 
of pairwise mutual information between each two real-
valued vectors (variables). The mutual information between 
two random variables X and Y with joint distribution p(X,Y) 
and marginal distributions p(x) and p(y) is defined as: 

 
(2) 

 

The ranges of discretization are as follows: 

• DNC (g/kg DM): 3 categories, Low (19.0, 25.3]; 
Medium (25.3, 29.9]; and High (29.9, 38.0]. 

• MN/NI: 3 categories, Low (0.495, 0.637]; Medium 
(0.637, 0.745]; and High (0.745, 0.893].  

 

III. RESULTS 

A. Bayesian networks constructed 
The structure of BN was learned by the Grow-Shrink 

algorithm using the R package bnlearn and the nodes were 
presented by rectangles (Fig. 2). The bar chart displayed in 
each rectangle represents the corresponding probability 
distribution values of the node. The causal influence between 
variables is denoted by arrows and the thickness of arrow 
reflects the strength of influence one node has on the other. 
The thicker arrow means a greater influence. 

 

B. Causal influence between nodes 
The network showed in Fig. 2 demonstrates that: 

• The MN/NI was influenced directly by DNC, 
ECMY and cow Breed. The DNC and Breed had 
influences on MN/NI and ECMY. 

• The DNC has a strongest influence on MN/NI, 
irrespective of measures used. Meanwhile, both 
Breed and ECMY also show a strong influence on 
MN/NI. For ECMY, DNC has a stronger influence 
than Breed. All of these relationships were consistent 
with previous studies showing that manure N 
excretion rates and efficiency of conversion of 
dietary N into milk are affected by DNC [7]-[10], 
[23].  

• The impact of DNC. The DNC has a clear and 
positive influence on ECMY. The higher N 
consumed the more milk produced by lactating dairy 
cattle, which is consistent with previous studies [6], 
[12], [15]. In this study, when cows were fed at high 
DNC levels, the probability of ECMY less than 20 
kg/d drops from 46% to 29% while the probability of 

 

 
Fig. 2. Bayesian network constructed based on the discretization of the dataset. Nodes are presented by rectangles. The bar chart displayed in each rectangle 
represents the corresponding probability distribution values of the node. Arrows denote causal influence from one feature to another. The thickness of arrow 
reflects the amount of influence one node has on the other. The thicker arrow indicates a greater influence. 



ECMY higher than 30 kg/d is increased 9% to 17% 
(TABLE III). The DNC had a positive effect on 
MN/NI. As shown in Table IV, the probability of 
MN/NI higher than 0.745 kg/kg increases by 20% 
when DNC  change from less than 25.3 g/kg DM to 
higher than 29.9 g/kg DM. 

• The influence of cow breed: The impact of Breed on 
ECMY and MN/NI is not straightforward (TABLE 
V, VI), although previous studies have shown that 
cow breed merits had significant influence on milk 
yield and N utilization efficiency of lactating dairy 
cows [11], [13]. This might have been caused by the 
imbalance in number of cow data in the two breeds 
in the current dataset ( 736 Holstein and 145 others). 

• Influence of ECMY on MN/NI: The ECMY has 
significant impact on MN/MI and the higher milk 
yield the lower MN/NI, which is in line with other 
researches [12]. For example, when ECMY 
increased from less than 20 kg/d to more than 30 
kg/d, the probability of MN/NI higher than 0.745 
kg/kg dropped from 30% to 9% (TABLE VII). 

 

C. The dynamc of the network 
• GeNIe is a development environment for building 

graphical decision-theoretic models and it provides 
numerous tools. The belief updating is based on the 
probability distribution of nodes and the constructed 
structure of the BN model. The posterior probability 
distribution of a child node over all parent nodes can 
be performed after setting evidence at this child 
node.  

• In this study, the updated beliefs (Fig. 3) indicates 
that the probability of producing milk less than 20 kg 
per day of non-Holstein cows increases sharply 
(35% vs. 70%) when diets with lower N contents 
were offered, meanwhile, the probability of MN/NI 
at medium level (0.637 - 0.745 kg/kg) increases from 
56% to 87%. In addition, Holstein cows offered high 
N content diets (> 29.9 g/kg DM) slightly increases 
the probability of producing milk more than 20 kg 
per day but enhances the probability of MN/NI at 
high level (> 0.745 kg/kg) by 12%. This is in line 
with previous studies as less N partitions into milk 
will result in more N excretes from manure [10]. 

TABLE II.  THE CHARACTERISTICS OF 3 CONTINUOUS VARIABLES 

Variable 
ECMY DNC MN/NI 

kg/d g/kg DM kg/kg 

Mean 22.8 28.6 0.699 

Standard deviation 6.23 3.48 0.0705 

Maximum 40.2 38.0 0.893 

Minimum 5.10 19.0 0.495 

 

TABLE III.  THE INFLUENCE OF DIET N CONTENT ON MILK YIELD 

Diet N content 
(g/kg DM) 

The probability of ECMY 

Low 
(<20) 

Medium 
(20-30) 

High 
(>30) 

Observation-free 0.35 0.51 0.14 

Low (<25.3) 0.46 0.45 0.09 

Medium (25.3-29.9) 0.36 0.52 0.12 

High (>29.9) 0.29 0.54 0.17 

 

TABLE IV.  THE INFLUENCE OF DIET N CONTENT ON MN/NI 

Diet N content 
(g/kg DM) 

The probability of MN/NI 

Low 
(<0.637) 

Medium 
(0.637-0.745) 

High 
(>0.745) 

Observation-free 0.18 0.56 0.25 

Low (<25.3) 0.35 0.51 0.14 

Medium (25.3-29.9) 0.15 0.63 0.22 

High (>29.9) 0.14 0.52 0.34 

 

TABLE V.  THE INFLUENCE OF COW BREED ON MILK YIELD 

Breed 
The probability of ECMY 

Low 
(<20) 

Medium 
(20-30) 

High 
(>30) 

Observation-free 0.35 0.51 0.14 

Holstein 0.34 0.51 0.15 

Others 0.35 0.53 0.12 

 

TABLE VI.  THE INFLUENCE OF COW BREED ON MN/NI 

Diet N content 
(g/kg DM) 

The probability of MN/NI 

Low 
(<0.637) 

Medium 
(0.637-0.745) 

High 
(>0.745) 

Observation-free 0.18 0.56 0.25 

Holstein 0.17 0.55 0.28 

Others 0.26 0.59 0.15 

 

TABLE VII.  THE INFLUENCE OF MILK YIELD ON MN/NI 

Energy-Corrected 
Milk Yield (kg/d) 

The probability of MN/NI 

Low 
(<0.637) 

Medium 
(0.637-0.745) 

High 
(>0.745) 

Observation-free 0.18 0.56 0.25 

Low (<20) 0.11 0.60 0.30 

Medium (20-30) 0.21 0.52 0.26 

High (>30) 0.32 0.59 0.09 

 



 

IV. A CORRELATIONAL STUDY  

A. The impact of discretization 
To test the impact of discretization, we compared the 

structure and strength of arcs by adjusting interval 
boundaries of DNC which had the strongest influence on 
MN/NI and dividing continuous variables DNC and MN/NI 
into 4 categories. The Akaike information criterion (AIC) 
was used to measure the strength of arcs with R function 
arc.strength. The strength is measured by the AIC score 
gain/loss which would be caused by the arc’s removal. 
Negative AIC values correspond to decreases in the network 
score and positive AIC values correspond to increases in the 
network score (the stronger the relationship, the more 
negative the difference). 

• Adjusting interval boundaries and different 
discretization did not alter the structure of BN.  

 

TABLE VIII.  IMPACT OF DICRETIZATION ON MODEL 

Arcs AIC values 

From To 
Old boundary 

with three 
categories 

New 
boundary 

Four 
categories 

DNC ECMY -16.2 -15.6 -13.9 

DNC MN/NI -28.9 -20.8 -13.1 

Breed ECMY -9.12 -4.17 -4.67 

Breed MN/NI -9.38 -11.3 -7.98 

ECMY MN/NI -19.4 -26.0 -20.8 

• Compared to previous BN, adjusting interval 
boundaries only slightly altered the strength of arcs 
(TABLE VIII) while the classification error was 
increased by 60% if variables were dividing into 4 
categories. 

 

B. The impact of learning algorithms 
Two constraint-based, Grow-Shrink and Incremental 

Association Markov Blankets (IAMB), and two score-based 
structure learning algorithms, Hill Climbing and Tabu 
Search, were used to implement structure learning. Two 
whitelists were incorporated in the structure learning process: 
Breed → ECMY and ECMY → MN/NI.  

• The structure of BN derived based on four kinds of 
learning algorithms with pure data-driven process 
are showed in Fig. 4. Under the pure data-driven 
approach, constrained-based algorithms captured 
more arcs than that of score-based algorithms. The 
directed arc between MN/NI and ECMY was 
reversed with domain knowledge although it was 
leaned by both constrained- and score-based 
algorithms. All the algorithms failed to capture 
information between nodes Breed and ECMY which 
has been confirmed to be affected by breed of cows. 

 
 

Fig. 3. The updated beliefs in the Bayesian network for a Holstein cow 
taking  diet with high N content (A) and for a non Holstein cow taking low 
N content diet (B).  

 

 
Fig. 4. BN structure learned based on different learning algorithms with 
pure data-driven approach corresponding normal curve. 
 

 
Fig. 5. BN structure learned using different learning algorithms with 
whitelists incorporated approach. 

(A) 

(B) 



• The reasonable structures of BN were derived based 
on constrained-based algorithms with two whitelists 
incorporated (Fig. 5). However, the structure learned 
based on score-based algorithms contained two 
directed arcs (Breed → DNC, MN_NI → DNC) that 
did not match with the domain knowledge. 

 

C. The selection of whitelist 
The domain knowledge on data can be integrated in all 

learning algorithms by means of the whitelist which is the 
arc guaranteed to be present from the Bayesian network [20]. 
We compared the structure of BN derived based on Grow-
Shrink algorithm by adding different whitelists as shown in 
Fig. 6. The whitelists included in this comparison are “Breed 
→ ECMY”, “ECMY → MN_NI”, and “Breed → ECMY, 
ECMY → MN_NI”.  

• The structure of BN was influenced by selection of 
whitelist (WL).  Compared to the structure derived 
with pure data-driven (without whitelist, lower right 
figure in Fig. 6), single whitelist incorporated in the 
learning process did not improve the structure. For 
example, adding whitelist “Breed → ECMY” or 
“ECMY → MN_NI” to learning process resulted in 
undirected arcs (between ECMY and MN_NI, 
between ECMY and DNC, respectively).  

• The results imply that ECMY may be the key 
variable in this model because it appeared in all the 
whitelist. It matches with domain knowledge as 
more milk produced less N excreted into manure.  

 

D. The selection of blacklist 
Blacklists are selected based on the domain knowledge. 

The arcs in the blacklists are guaranteed to be missing from 
the Bayesian network. Using the algorithm of Grow-Shrink, 
the structures of BN were derived by adding different 
blacklists as shown in Fig. 7. The blacklists involved are 
“MN_NI → ECMY”, and ECMY → DNC”. It’s failed to 
construct the domain knowledge marched BN structure by 
using blacklist function particularly when pure data-driven 
process did not capture the relationship between nodes, e.g. 
adding blacklists did not help to build the arc between Breed 
and ECMY. 

 

V. CONCLUSIONS  
A number of models have been developed to assess the 

interactions among factors affecting manure N excretion 
from lactating dairy cows over the past decades and most of 
them are based on regression analysis. In the current study, 
we proposed a network-based model to examine and 
inference the effect of three main factors on manure output 
as a proportion of N intake in lactating dairy cows. The 
preliminary results indicate that Bayesian network model can 
be used to capture relationships among factors and to 
establish causal influence among predictors, which may 
provide an effective tool for optimizing the management of 
feed N resource and developing strategies to reduce N 
excretion in modern dairy production systems. In addition, 
the present modelling exercise demonstrates that a BN 
structure can be effectively constructed by incorporating the 
domain knowledge in the structure learning process using 
whitelists and blacklist functions in BN learn package. 

Although the present results indicate that BN modelling 
is an effective approach to evaluate factors influencing N 
utilisation efficiency of lactating dairy cows, more work is 
needed to explore relationships among selected factors for 
prediction of N excretion of dairy production. For example, 
further research is required to investigate the impact of 
selection of parameters on the BN structure for prediction of 
manure N excretion and to compare the performance of BN 
models with that of statistical regression models which are 
commonly used to evaluate N utilization efficiency of dairy 
cows.  
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