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Abstract

Patients with heart failure (HF) often suffer from multimorbidity. Rapid assessment of mul-

timorbidity is important for minimizing the risk of harmful drug-disease and drug-drug inter-

actions. We assessed the accuracy of using the electronic health record (EHR) problem

list to identify comorbid conditions among patients with chronic HF in the emergency

department (ED). A retrospective chart review study was performed on a random sample

of 200 patients age �65 years with a diagnosis of HF presenting to an academic ED in

2019. We assessed participant chronic conditions using: (1) structured chart review (gold

standard) and (2) an EHR-based algorithm using the problem list. Chronic conditions were

classified into 37 disease domains using the Agency for Healthcare Research Quality’s

Elixhauser Comorbidity Software. For each disease domain, we report the sensitivity,

specificity, positive predictive value, and negative predictive of using an EHR-based algo-

rithm. We calculated the intra-class correlation coefficient (ICC) to assess overall agree-

ment on Elixhauser domain count between chart review and problem list. Patients with

HF had a mean of 5.4 chronic conditions (SD 2.1) in the chart review and a mean of 4.1

chronic conditions (SD 2.1) in the EHR-based problem list. The five most prevalent

domains were uncomplicated hypertension (90%), obesity (42%), chronic pulmonary dis-

ease (38%), deficiency anemias (33%), and diabetes with chronic complications (30.5%).

The positive predictive value and negative predictive value of using the EHR-based prob-

lem list was greater than 90% for 24/37 and 32/37 disease domains, respectively. The

EHR-based problem list correctly identified 3.7 domains per patient and misclassified 2.0

domains per patient. Overall, the ICC in comparing Elixhauser domain count was 0.77
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(95% CI: 0.71-0.82). The EHR-based problem list captures multimorbidity with moderate-

to-good accuracy in patient with HF in the ED.

Introduction

Patients with heart failure (HF) often suffer from a heavy burden of multimorbidity (i.e., the

co-occurrence of two or more chronic medical conditions). On average, patients with HF

have 4 to 8 chronic medical conditions in addition to their HF [1–3]. Worsening burden of

multimorbidity is predictive of increased healthcare costs, polypharmacy, and risk of both

hospitalization and death among patients with HF [1, 4, 5]. Potential mechanisms by which

multimorbidity worsens outcomes include poor care coordination, polypharmacy and drug

interactions, and conflicting medical recommendations across disease-specific guidelines [6–

9]. Common chronic conditions that are recognized as complicating the care of patients with

HF include anemia, sleep disordered breathing, respiratory disease, renal impairment, type 2

diabetes, thyroid disease, musculoskeletal disorders, arrhythmias, depression, and cognitive

impairment [2, 10]. Despite the emerging importance of multimorbidity, there is a lack of sys-

tematic approaches to measure co-occurring chronic conditions, particularly in the setting of

emergency care [11–13]. In clinical practice, physicians use the shared mental model of the

‘problem list’, a written list of medical problems requiring management, to rapidly communi-

cate the overall burden of medical illness in a patient (Fig 1). The problem list is particularly

important for emergency department (ED) physicians who routinely care for unfamiliar and

undifferentiated patients. Given its importance in clinical practice, the problem list has been

widely implemented in various types of electronic health records (EHRs) [14, 15]. The EHR-

based problem list provides structured data that can be readily extracted in the pursuit of

studying multimorbidity. Unfortunately, problem lists are not traditionally used for research

due to the perception that they are mostly managed by primary care physicians and often

incomplete or inaccurate [14, 16, 17]. However, advances in health informatics—including

problem-based charting, clinical decision support, and linkage to payment mechanisms in the

her [18–20]—as well as federal mandates for providers to demonstrate meaningful use of

health information technology—have improved documentation of conditions within problem

lists [21, 22]. In the context of these advances, EHR-based problem lists may provide an accu-

rate picture of overall disease burden in multimorbid patients.

We hypothesized that problem lists may be reasonably accurate among ED patients with a

previously documented diagnosis of chronic HF for two reasons: (1) temporal trends in

Fig 1. Depiction of the electronic health record-based problem list. Used with permission of 2021 Epic Systems

Corporation.

https://doi.org/10.1371/journal.pone.0279033.g001
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increased use of health information technology and (2) patients with HF often have routine

outpatient encounters in which EHR-based problem lists may be updated. Measurement of

multimorbidity from the problem list requires the application of a categorization system. We

sought to assess the accuracy of applying the Elixhauser comorbidity index, a widely studied

clinical classification system traditionally applied to administrative and hospital billing data

[23], that collapses thousands of diagnoses into 38 meaningful co-morbid domains.

Materials and methods

Study design

We performed a retrospective chart review study on a random sample of 200 patients with a

known diagnosis of HF who presented to an ED. All patient encounters occurred at a south-

eastern academic medical center between January 1, 2019 and December 31, 2019. Data was

obtained from the Carolina Data Warehouse for Health (CDW-H), a central data repository

sourced from two electronic health records within the University of North Carolina Health

Care System (UNC-HCS). The study was approved and granted a waiver of consent by the

UNC Institutional Review Board (IRB #21–0002). Study reporting followed the 2015 STARD

Guideline for Reporting Diagnostic Accuracy Studies [24].

Participants

Patients were eligible for inclusion based on a documented diagnosis of HF on the EHR-based

problem list. A comprehensive list of International Classification of Diseases, Tenth Revision,

Clinical Modification (ICD-10-CM) diagnostic codes to identify HF were based on the Agency

for Healthcare Research and Quality’s (AHRQ) Elixhauser Comorbidity Software v2021.1

[25]. These codes included: I50x, I0981, I110, I130, I132, I5181, I97130, I97131, O2912x, R570,

Z95811, Z97811, Z95812. Similar codes have had high specificity (98.8%), though moderate

sensitivity (78.7%), in identifying patients with HF in administrative datasets [26]. More

importantly, the application of the I50x diagnostic codes to EHR-based problem lists has been

demonstrated to identify patients with HF with a high positive predictive value (PPV) of 96%

[27]. Given that multimorbidity is predominantly a problem in older adults, we restricted our

study population to patients�65 years old. Finally, only a patient’s index ED visit in 2019 was

eligible for random selection into the study cohort (i.e., repeat ED visits were excluded). Ran-

dom selection was performed, using a random number sequence generator by the R Core

Team [28]. To assess the quality of the random selection, patient characteristics of all eligible

patients were compared to the characteristics of patients selected for chart review.

Measuring multimorbidity

Although there is no consensus on the optimal approach to measure multimorbidity [29, 30],

the Elixhauser comorbidity index has been validated for use with both ICD-9 and ICD-10-CM

diagnostic codes [23, 31]. Though the Elixhauser index was originally intended to prognosti-

cate future mortality based on 29 disease domains, the recent release of the AHRQ’s updated

Elixhauser comorbidity software for ICD-10-CM diagnostic codes (v2021.1) has expanded the

number of disease domains to 38, thus providing a more comprehensive description of disease

burden in patients [25]. As the AHRQ Elixhauser software is routinely updated and provided

at no cost to researchers, the proposed methods provide an optimal clinical classification sys-

tem to apply in the study of multimorbidity.

Chart review was performed as a gold standard measurement in capturing multimorbidity

at the time of the ED encounter. A research assistant (BK) was trained in structured chart
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review to extract data on chronic conditions from five areas in the EHR including: (1) ED pro-

vider documentation, (2) admission summary if available, (3) outpatient encounters and dis-

charge summaries prior to the ED encounter of interest, and (4) ‘Care Everywhere’, which is a

tool for health information exchange between healthcare systems. Height and weight were

directly reviewed from EHR flowsheets to determine the presence of obesity. All documented

conditions were mapped back to ICD-10-CM diagnostics codes and categorized into the 38

Elixhauser domains using the AHRQ’s reference files [25]. All charts with unclear documenta-

tion or conflicting documentation were reviewed by an ED physician (MFC) for final adjudi-

cation. Except for echocardiogram reports, labs and radiographic data were not directly

reviewed unless unclearly documented diagnoses required further adjudication. To assess the

reliability of our gold standard measurement, 15% of the study sample was reviewed by a

nurse practitioner (KHR) who was similarly trained in structured chart abstraction. Both

chart reviewers were unblinded to the EHR-based problem list as most provider notes used

pre-populated templates that extract data directly from the problem list. /par In parallel, multi-

morbidity was measured in the problem list by extracting ICD-10-CM codes tied to chronic

conditions on the EHR-based problem list. Codes had to have a designation of active on the

non-hospital problem list (i.e., presumably requiring outpatient management) at the time of

the ED encounter. All active ICD-10-CM diagnostic codes were then entered into the Elixhau-

ser comorbidity software for categorization into the 38 disease domains (including HF). The

data analyst (TB) and research assistant (SVC) who measured multimorbidity from the prob-

lem list were blinded to the process and results of the chart review.

Finally, the AHRQ Elixhauser software calculates two summary indices, based on a patient’s

multimorbidity, to prognosticate a patient’s risk of in-hospital mortality and readmission [32].

The weights were extracted from the software and used to calculate each index based on the

data abstracted from the chart review. Similarly, the AHRQ software automatically calculated

the indices based on the ICD-10-CM codes provided from the EHR-based problem list.

Analysis

Descriptive statistics were used to characterize prevalence of each domain and distribution of

disease burden as measured by chart review. To assess the reliability of the chart review, the

prevalence-adjusted bias-adjusted kappa (PABAK) was calculated for each domain across the

two chart reviewers (BK, KHR). In comparing the accuracy of the EHR-based problem list

against chart review, we report the sensitivity, specificity, PPV, and negative predictive value

(NPV) for each Elixhauser domain. Overall agreement between chart review and the EHR-

based problem list was assessed by measuring the intraclass correlation coefficient (ICC) on

three summary measures of multimorbidity including: (1) Elixhauser domain count, (2) Elix-

hauser readmission index, and (3) Elixhauser in-hospital mortality index. To obtain the ICC,

we used a two-way, mixed effects models to obtain ICCs on consistency of agreement. We also

report ICCs on absolute agreement as they provide complementary information [33]. Thresh-

olds for reporting PABAK and ICC (values less than 0.5, between 0.5 and 0.75, between 0.75

and 0.9, and greater than 0.90 represent poor, moderate, good, and excellent agreement,

respectively) were based on established guidelines [34, 35]. Bland-Altman analysis was per-

formed to further characterize the degree of agreement between the two approaches in mea-

suring Elixhauser domain count [36]. Finally, diagnostic accuracy by threshold classification

was performed using receiver operating characteristic (ROC) curve analysis. A gold standard

binary classification of Elixhauser domain count was created using the presence of multimor-

bidity (i.e., presence of 2 or more additional chronic conditions in accord with prior studies)

as observed in the gold standard chart review [11]. Similar, Elixhauser readmission and
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mortality indices were dichotomized into high or low scores based on the median value

observed in the study population. Area under the curve (AUC) is reported as the measure of

accuracy of the EHR-based problem list in characterizing the Elixhauser domain count, read-

mission index, and mortality index in accord with the binary classifications discussed above.

All statistical analyses were performed in Stata MP/16.1 and SAS 9.4.

Results

Participants

A total of 66,600 ED encounters between January 1, 2019-December 31, 2019 were assessed for

study eligibility. After identifying index visits by older patients (ie,�65 years old) with HF,

there were 1,130 ED encounters eligible for random selection for further chart review (S1 Fig).

In the study cohort, the mean age was 78.3 years (standard deviation [SD] 9.2) and 52.5%

patients were female (Table 1). Most patients were white (65%), non-Hispanic (95.5%), and

used Medicare as their primary payor (95.5%). The most prevalent HF phenotype observed in

the study cohort was HF with preserved ejection fraction (60%). Patient characteristics in the

study cohort were similar to those found in 1,130 ED encounters eligible for random selection

(S1 Table).

Table 1. Demographics of study sample and level of multimorbidity by subgroup.

N (%) Mean number of Elixhauser domains (SD) Minimum-maximum number of domains

Total 200 (100%) 5.4 (2.1) 1–10

Age

65–69 48 (24%) 5.6 (2.1) 2–9

70–74 27 (13.5%) 6.2 (2.0) 3–9

75–79 35 (17.5%) 5.5 (2.1) 1–9

80–84 32 (16%) 5.1 (2.1) 2–10

85+ 58 (29%) 5.1 (2.1) 1–10

Gender

Female 105 (52.5%) 5.6 (2.1) 1–10

Male 95 (47.5%) 5.3 (2.1) 1–10

Race

White 130 (65%) 5.6 (2.1) 1–10

Black 57 (28.5%) 5.4 (2.0) 2–10

Other 13 (6.5%) 4.5 (1.9) 2–8

Ethnicity

Non-Hispanic 191 (95.5%) 5.5 (2.1) 1–10

Hispanic 9 (4.5%) 4.8 (1.4) 3–8

Primary Payer

Medicare 191 (95.5%) 5.4 (2.1) 1–10

Non-Medicare 9 (4.5%) 5 (2.1) 2–8

HF Phenotype

Reduced EF 65 (32.5%) 5.4 (2.0) 1–9

Preserved EF 120 (60%) 5.6 (2.2) 1–10

Unspecified 15 (7.5%) 4.7 (1.9) 2–9

SD = standard deviation; HF = heart failure; EF = ejection fraction

https://doi.org/10.1371/journal.pone.0279033.t001
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Multimorbidity by chart review (Gold standard)

There was a mean number of 5.4 Elixhauser domains identified in each patient with HF (SD

2.1; range: minimum 1 to maximum 10; Table 1). The mean Elixhauser readmission and mor-

tality index scores were 18.0 (SD 7.5) and 19.0 (SD 13.2), respectively. The distribution of mul-

timorbidity followed similar patterns when stratified by patient demographics including age

group, race, ethnicity, and primary insurer. The top 10 most prevalent domains included:

uncomplicated hypertension (90%), obesity (42%), chronic pulmonary disease (38%), defi-

ciency anemia (33%), diabetes with chronic complications (30.5%), cerebrovascular disease

(28%), depression (27%), valvular disease (26%), moderate renal failure (25.5%), and periph-

eral vascular disease (24%; Table 2). Among 37 possible domains, interrater reliability of struc-

tured chart review across reviewers was found to be moderate, good, and near perfect in 5, 8,

and 18 domains, respectively (PABAK ranged between 0.67 to 1.0; S2 Table). PABAK was

indeterminate for 6 domains as perfect alignment in either positive or negative cases results in

a denominator of 0 in the calculation of kappa.

Accuracy of EHR problem list

Extraction of multimorbidity data using ICD-10-CM diagnostics codes from the problem list

identified a mean of 4.1 Elixhauser domains per patient with HF (SD 2.1; range: minimum 0 to

maximum 11). The mean Elixhauser readmission and in-hospital mortality index scores of

16.4 (SD 6.7) and 19.5 (SD 11.7), respectively.

Table 2. Diagnostic accuracy of measuring Elixhauser comorbid domains from the EHR-based problem list for the ten most prevalent disease domains.

Prevalence by chart review (gold standard) Sensitivity Specificity PPV NPV

Elixhauser domain 1 % (N) % % % %

(95% CI) (95% CI) (95% CI) (95% CI)

Cerebrovascular disease 28% (56) 57.10% 99.30% 97.00% 85.60%

(43.2%-70.3%) (96.2%-100.0%) (84.2%-99.9%) (79.4%-90.6%)

Chronic pulm. disease 38% (76) 76.30% 99.20% 98.30% 87.20%

(65.2%-85.3%) (95.6%-100.0%) (90.9%-100.0%) (80.6%-92.3%)

Deficiency anemias 33% (66) 69.70% 97.80% 93.90% 86.80%

(57.1%-80.4%) (93.6%-99.5%) (83.1%-98.7%) (80.3%-91.7%)

Depression 27% (54) 51.90% 98.60% 93.30% 84.70%

(37.8%-65.7%) (95.1%-99.8%) (77.9%-99.2%) (78.4%-89.8%)

Diabetes with chronic comp. 30.5% (61) 85.20% 97.80% 94.50% 93.80%

(73.8%-93.0%) (93.8%-99.6%) (84.9%-98.9%) (88.5%-97.1%)

Moderate renal failure 25.5% (51) 68.60% 98.70% 94.60% 90.20%

(54.1%-80.9%) (95.2%-99.8%) (81.8%-99.3%) (84.5%-94.3%)

Obesity 42% (84) 28.60% 97.40% 88.90% 65.30%

(19.2%-39.5%) (92.6%-99.5%) (70.8%-97.6%) (57.7%-72.4%)

Peripheral vascular disease 24% (48) 77.10% 96.70% 88.10% 93.00%

(62.7%-88.0%) (92.5%-98.9%) (74.4%-96.0%) (87.9%-96.5%)

Uncomplicated hypertension 90% (180) 77.80% 100.00% 100.00% 33.30%

(71.0%-83.6%) (83.2%-100.0%) (97.4%-100.0%) (21.7%-46.7%)

Valvular disease 26% (52) 80.80% 98.60% 95.50% 93.60%

(67.5%-90.4%) (95.2%-99.8%) (84.5%-99.4%) (88.5%-96.9%)

EHR = electronic health record; PPV = positive predictive value; NPV = negative predictive value

https://doi.org/10.1371/journal.pone.0279033.t002
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The diagnostic accuracy of the EHR problem list as compared to chart review—as measured

by sensitivity, specificity, PPV, and NPV—for the ten most prevalent domains is presented in

Table 2. Among the top ten most prevalent domains, sensitivity ranged widely from 28.6% to

80.8%. Most conditions were above 75% sensitive with the exceptions of cerebrovascular dis-

ease (57.1%), deficiency anemia (69.7%), depression (51%), and obesity (28.6%). Conversely,

reported specificities occurred within a narrow range of 96.7% to 100%. Correspondingly, the

PPV of the ten most prevalent conditions ranged from 88.1% to 100%. The NPV also varied

widely ranging between 33.3% to 93.8%. However, most domains had a NPV above 85%

with the exceptions of uncomplicated hypertension (33.3%), obesity (65.3%), and depression

(84.7%).

Similar variability (or lack thereof) was seen in the sensitivities and specificities among

lower prevalence disease domains (S3 Table). In total, 13 domains had a PPV lower than 90%

including: obesity (88.9%), peripheral vascular disease (88.1%), mild liver disease (87.5%), sei-

zure disorder (85.7%), diabetes without chronic complications (81.8%), peptic ulcer disease

(75%), paralysis (75%), other neurologic disorders (72.7%), weight loss (69.2%), complicated

hypertension (54.5%), psychoses (33.3%), blood loss anemia (28.6%), and cancer-solid tumor

without metastasis (28.6%). None of the lower prevalence domains had a NPV below 90%.

Perfect alignment between chart review and the problem list was observed in 35 patients

(17.5%; Table 3). The EHR-based problem list correctly identified 3.7 Elixhauser domains per

patient. Conversely, there was an average of 2 misclassified (i.e., either false positive or false

negative) domains per patient. The average number of misclassified domains was observed to

increase among patients with higher multimorbidity (i.e., higher domain count as reported by

chart review). In measuring the agreement on Elixhauser domain count between chart review

and EHR-problem list, we observed a consistency ICC of 0.77 (Table 4). Similar consistency

ICCs were reported in the comparison of Elixhauser readmission (ICC 0.81) and in-hospital

Table 3. Overall accuracy of the EHR-based problem list stratified by level of multimorbidity reported in chart review.

Elixhauser domain count by chart review (gold standard)

1 2 3 4 5 6 7 8 9 10 Total

Patients (N) 2 13 25 33 31 32 24 24 14 2 200

Proportion of patients with all domains captured by HER problem list (%) 100% 62% 24% 24% 19% 13% 13% 4% 7% 0% 20%

Proportion of patients with perfect agreement between chart review and EHR problem list (%) 100% 54% 24% 24% 13% 13% 13% 0% 7% 0% 18%

Average number of correctly classified domains by EHR-based problem list (%) 1 1.5 1.8 2.4 3.5 4.4 5.2 5.1 6.4 8.5 3.7

Average number of missed domains by EHR-based problem list� 0 0.5 1.2 1.6 1.5 1.6 1.8 2.9 2.6 1.5 1.7

Average number of misclassified domains by EHR-based problem list� 0 0.6 1.6 1.8 2 1.9 2.1 3.3 2.9 2 2

�Rate of misclassified domains = false negative rate + false positive rate; Rate of missed domains = false negative rate alone; EHR = Electronic Health Record System

https://doi.org/10.1371/journal.pone.0279033.t003

Table 4. Comparison Elixhauser multimorbidity measures by chart review and EHR-based problem list.

Multimorbidity meausrement Comparison of measurements

Chart review (gold standard) EHR-based problem list Mean difference Consistency ICC Absolute ICC

Mean (SD) Mean (SD) ICC (95% CI) ICC (95%CI)

Elixhauser domain count 5.4 (2.1) 4.1 (2.1) 1.3 0.77 (0.71–0.82) 0.62 (0.09–0.82)

Elixhauser readmission rate 18.0 (7.5) 16.4 (6.7) 1.6 0.81 (0.75–0.85) 0.79 (0.70–0.85)

Elixhauser in-hospital mortality index 19.0 (13.2) 19.5 (11.7) -0.5 0.76 (0.69–0.81) 0.75 (0.69–0.81)

ICC = intraclass correlation coefficient; CI = confidence interval; SD = standard deviation; EHR = electronic health record

https://doi.org/10.1371/journal.pone.0279033.t004
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mortality index (ICC 0.76). The absolute agreement ICCs was observed to drop to 0.62 in

assessment of Elixhauser domain count, but no significant change in the absolute ICC was

found for the Elixhauser index on readmission (ICC 0.79) and in-hospital mortality (ICC

0.75). Discrepancies between absolute and consistency ICC suggest the presence of non-negli-

gible bias [33]. The occurrence of bias is further supported by the Bland-Altman analysis on

Elixhauser domain count which demonstrated a mean difference of 1.4 domains (95% limits

of agreement: -1.4 to 4.1) between chart review and EHR-based problem list measurement.

The Bland-Altman analysis further demonstrated that only 6 (3.0%) subjects were outside the

95% limits of agreement (S2 Fig), which is within the expected 5% outside the limit of agree-

ment. Lastly, ROC curve analyses yielded AUCs of 0.89, 0.86, and 0.83 in classifying the Elix-

hauser domain count, readmission index, and mortality index (S3 Fig).

Discussion

This study shows that multimorbidity can be measured by applying the Elixhauser classifica-

tion system to ICD-10-CM diagnostic codes stored in EHR-based problem lists. The EHR-

based problem list performed with moderate-to-good accuracy with positive predictive value

and negative predictive value of using the EHR-based problem list greater than 90% in 24/37

and 32/37 disease domains respectively. However, there was a clear bias towards undermea-

surement as the problem list failed to identify 1.7 domains per patient. This result was largely

driven by poor capture of two high prevalence disease domains including: obesity (NPV

65.3%) and uncomplicated hypertension (NPV 33.3). Despite these issues, the proposed meth-

odology performed well overall as supported by high ICCs, Bland-Altman analysis (which only

found 3% of subjects outside the 95% limits of agreement), and high AUCs observed in the

ROC curve analyses.

Our findings have important implications for both practicing ED physicians and research-

ers. Use of the EHR-based problem list is particularly advantageous to ED physicians, whom

have little familiarity with the patients they treat and often must make time-sensitive treatment

decisions. Moreover, many ED patients (such as those with dementia) cannot self-report a

complete medical history; a situation whereby ED physicians are nearly fully dependent on

data in the EHR-problem list. The high specificities reported in this study demonstrate that

reported diseases on the problem list generally represent true positives and may not require

further verification through extended chart review. Regardless, ED physicians should be aware

of underreporting of comorbid conditions and incorporate alternative methods—such as

patient interview, medication reconciliation—to obtain a complete medical history. Secondly,

physicians should be aware of specific patterns in underreporting of high prevalence condi-

tions (i.e., obesity, depression, and hypertension) and seek to augment their documentation

on EHR-based problem lists. Similar patterns in poor EHR capture of obesity and hyperten-

sion have been described elsewhere in the medical literature [17, 37], though the underlining

cause remains unknown.

With regards to the research community, our findings support the use of ICD-10-CM diag-

nostic codes from EHR-based problem lists to serve as a foundation in describing multimor-

bidity. The proposed technique offers the inherent advantage of measuring multimorbidity at

the point of care prior to any interventions being done in the ED. From a quality measurement

perspective (i.e., measuring adherence to evidence-based guidelines), the method clearly delin-

eates multimorbidity data that was available to physicians and advanced practice providers

prior to performing any interventions. Furthermore, the described methodology—given its

reliance on discrete, EHR-based variables—can readily be incorporated into more complex

EHR-based implementation interventions, such as best practice alerts or embedded risk
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stratification calculators. Such interventions have been shown to augment clinical workflow

and improve guideline adherence [38]. Regardless, researchers should be aware of limitations

in poor capture of obesity and hypertension. Augmented EHR-phenotypes incorporating both

ICD-10-CM codes from the problem list as well extraction of additional discreet data elements

—such as documented height & weight, laboratory results, radiographic findings, or ambula-

tory medications—could be incorporated into algorithms to improve the sensitivity and

specificity in detecting the disease domains. Additionally, future algorithms to describe multi-

morbidity may incorporate advanced machine-learning methods, which can account for both

structured data elements in the problem list as well as unstructured data captured in clinical

notes.

Limitations

First, we validated use of the EHR-based problem list in a narrow study population, namely

older adult patients with HF at a single academic institution. This was consistent with our

study hypothesis that patients with HF would have routine healthcare encounters with outpa-

tient physicians, and thus a well-maintained problem list. Regardless, our findings will have to

be validated in a broader population of ED patients and various types of hospitals. Secondly,

we observed interrater variability in our gold standard measurement with moderate and good

agreement in 5 and 7 domains, respectively. The gold standard relied on clinician raters as

they can perform scoping chart reviews, though variability among clinicians is common and

difficult to remove in highly controlled settings such as randomized trials [39]. Despite these

challenges, our raters had near perfect agreement in the majority (18/37) of the domains.

Thirdly, the AHRQ Elixhauser is missing some notable disease domains, specifically coronary

artery disease and hyperlipidemia, that are relatively important in assessment of multimorbid-

ity among older patients with HF. We believe these domains would be excellent additions to

future iterations of the AHRQ comorbidity software. Finally, gold standard measurement of

chronic conditions did not rely upon stringent guideline-based disease definitions (e.g., pul-

monary function testing to confirm obstructive pulmonary disease). The average chart review

was completed in an hour, thus use of stringent definitions for all the 37 disease domains

examined was not feasible in this retrospective study. Further, we used information that is

readily available to ED providers during health encounters. In this regard, the gold standard

implemented in this study pragmatically reflects how physicians accrue multimorbidity data in

clinical practice.

Conclusion

Multimorbidity measurement from EHR-based problem lists can be performed with moder-

ate-to-good accuracy among patients with HF in the ED. The methods do have some limita-

tions with clear underreporting of two high prevalent disease domains (uncomplicated

hypertension and obesity). Further work is needed to validate these findings in a broader array

of ED patients and various types of hospitals.
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