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ABSTRACT 

Andrew G. Allmon: The Lasso and the Monkey: Feature Selection, Extraction, and Testing in 
Repeated Low-Dose Challenge Data 

(Under the direction of Michael G. Hudgens) 

Progression of technology and computational power have led to a new age in data where 

the number of variables, 𝑝𝑝, is greater than the number of observations, 𝑛𝑛. These types of data, 

commonly called High-Dimensional Low Sample Size (HDLSS) data, are becoming prominent 

in statistical applications. One such HDLSS application where small samples are unavoidable is 

in the development and pre-clinical assessment of new drugs, such as in repeated low-dose 

challenge (RLC) studies. In RLC experiments, animals are assigned to an active or placebo 

candidate vaccine and then are repeatedly challenged (exposed) with some target pathogen, 

either until infection or some maximum number of challenges is reached (Nolen et al., 2015).  

Many times, the number of animals 𝑛𝑛 in an RLC study is small (e.g. ≤ 20) and number of 

features 𝑝𝑝 is large (e.g. ≥ 100), due to the high cost of each animal and the high number of 

antibody and functional measure features of interest (Chaudhury et al., 2018; Choi et al., 2015). 

Penalized regression techniques, like the lasso, are sometimes used in RLC experiments 

where 𝑛𝑛 is typically small and 𝑝𝑝 is large. However, the performance of such methods is not well 

established for this experiment setting. The performance of the lasso, elastic net, and a newly 

proposed discrete survival time penalized regression model is assessed via a simulation study. 

These methods are also applied to a recent RLC study evaluating a candidate HIV vaccine. All 

three methods rarely selected true positives regardless of the effect size, number of predictors, or 
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the number of non-zero coefficients, with many models containing only false positives. Thus, 

penalized regression models should be used cautiously in the RLC setting when 𝑛𝑛 is small and 𝑝𝑝 

is large. 

To improve upon penalized regression in the RCL setting, a recently-developed high-

dimensional test known as the direction-projection-permutation (DiProPerm) test is suggested 

and adapted to the RLC setting. The DiProPerm test was designed specifically for the HDLSS 

setting and has many alluring qualities. The DiProPerm test is applied to the RLC setting to test 

whether animals are more likely to become infected early (i.e., before the median infection time) 

as opposed to late, given a set of antibody and functional measurements. The DiProPerm test has 

never been implemented in RLC settings as a valid tool for inference until now. Simulation 

processes revealed the advantages of using the DiProPerm test on RLC data when 𝑛𝑛 is small and 

𝑝𝑝 is large. An RLC study evaluating a candidate HIV vaccine is used to demonstrate the 

DiProPerm test on a real-world dataset.   

To help disseminate the DiProPerm test to researchers, an R package was created. The 

diproperm R package can be used to conduct a DiProPerm test, display corresponding plots of 

interest, and look at the loadings of the binary linear classifier. The functionality of the 

diproperm package is explained and demonstrated on a real-world data set. The R package is 

freely available on CRAN and GitHub (https://github.com/allmondrew/diproperm) for anyone to 

use. 
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CHAPTER 1: LITERATURE REVIEW 

Advancements in modern technology and computer software have dramatically increased 

the demand of and feasibility of collecting colossal, high-dimensional data sets. Because of this, 

the desire for novel statistical techniques for high-dimensional data, or big data, has never been 

higher. High-dimensional data present a plethora of challenges that require the creation and 

adaptation of new and existing statistical methods. One such challenge is that big data often has 

many more predictors, 𝑝𝑝, than the number of observations, 𝑛𝑛. However, it is becoming 

increasingly popular in biomedical research to collect data on an immense number of variables in 

relation to a small sample size. These data structures are known as high-dimensional, low sample 

size (HDLSS) data sets, or “small 𝑛𝑛, big 𝑝𝑝.”  

High-dimensional, low sample size data sets emerge frequently in many health-related 

fields. For example, in genomic studies, a single microarray experiment might produce tens of 

thousands of gene expressions compared to the few samples studied, often less than a hundred 

(Alag, 2019). In medical imaging studies, a single region of interest for analysis in an MRI or 

CT-scan image often contains thousands of features compared to the small number of samples 

studied (Limkin et al., 2017). In pre-clinical evaluations of vaccines and other experimental 

therapeutic agents, the number of biomarkers measured (e.g., immune responses) may be much 

greater than the number of samples studies (e.g., mice, rabbits, or non-human primates) (Kimball 

et al., 2018). 

Even though we live in an era of big data for biomedical research, there are many 

applications where small samples in pre-clinical and human assessment are unavoidable, such as 
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in the development of new drugs and vaccines (Aban & George, 2015). One such application is 

repeated low-dose challenge (RLC) studies. In RLC experiments, animals who are assigned to an 

active or placebo candidate vaccine are repeatedly challenged (exposed) with some target 

pathogen, either until infection or until some maximum number of challenges is reached (Nolen 

et al., 2015). Since the maximum number of challenges is typically specified a priori, RLC 

studies can be modeled using a discrete survival time model where each challenge is thought to 

be one discrete time point. Many times, the number of animals in an RLC study is small (e.g. 

≤ 20) and the number of features is large (e.g. ≥ 100) due to the high cost of each animal and the 

high number of antibody and functional measure features of interest (Chaudhury et al., 2018; 

Choi et al., 2015).  

The analysis of these types of HDLSS data sets often requires the creation of new 

methods or alterations to existing methods. Many traditional methods for low dimensional data 

are not appropriate for HDLSS data. One major reason these methods are inappropriate is the 

insufficient number of samples to adequately estimate the underlying covariance. Because of the 

sheer size of HDLSS data sets, it is of great interest to develop methodology that can select 

relevant features associated with the outcome of interest (i.e., feature selection) or reduce 

dimensionality by condensing many features into several features without the loss of much 

information (i.e., feature extraction). A review of popular feature selection and feature extraction 

methods follows in the next section.   

1.1   Feature Selection Methods 

The two most common selection procedures include the least absolute shrinkage and 

selection operator, or lasso, and the elastic net. In the lasso, an L1 penalty constrains the 

coefficient estimates in such a way that variables with little to no effect on the outcome of 

interest “shrink” to zero. The lasso was later improved by the elastic net, which includes a 
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penalty parameter to control the number of L1 and L2 penalties on the coefficients. Since 

penalized regression techniques “shrink” small-effect estimate coefficients to zero, these 

methods are heavily used for variable selection in small 𝑛𝑛 large 𝑝𝑝 study designs. Recently, the 

use of these penalized regression techniques has become popular for antibody and functional 

measure feature selection in assessing the performance of candidate vaccines in pre-clinical HIV 

studies, particularly in repeated low-dose challenge experiments. However, the performance of 

these techniques on discrete survival time models, such as those in RLC experiments, is not well 

established. Nevertheless, scientists continue to use the lasso and elastic net in discrete survival 

time settings. In the original lasso paper, Tibshirani (1996) provided an option for continuous 

survival time models in the glmnet R package, but did not provide an option for discrete survival 

time models. Recently, a new method, denoted glmLassodis, was proposed for variable selection 

in discrete survival models and included a penalty term on the baseline hazard function (Groll & 

Tutz, 2017). More details on the glmLassodis method can be found in Chapter 2.    

1.1.1   The Lasso and the Elastic Net 

To better explain the use of the lasso and elastic net, consider the general linear 

regression scenario. For 𝑛𝑛 observations and 𝑝𝑝 predictors, let 𝑦𝑦𝑛𝑛𝑛𝑛1 be a size 𝑛𝑛 column vector of 

response values, 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 be an 𝑛𝑛 by 𝑝𝑝 matrix of covariates, and 𝛽𝛽𝑛𝑛𝑛𝑛1 = (𝛽𝛽1, … ,𝛽𝛽𝑛𝑛) be a column 

vector of coefficients. For simplicity, do not consider the intercept term in the coefficient vector.  

Based on the model 𝑦𝑦 = 𝑥𝑥𝛽𝛽 + 𝜖𝜖, the elastic net finds �̂�𝛽 = ��̂�𝛽1, … , �̂�𝛽𝑛𝑛�, which solves the objective 

function 

min
𝛽𝛽∈ℝ𝑝𝑝

�
−1
2𝑛𝑛

�(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖𝛽𝛽)2 + 𝜆𝜆��
1
2

(1 − 𝛼𝛼)𝛽𝛽𝑗𝑗2 + 𝛼𝛼�𝛽𝛽𝑗𝑗��
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

� 
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where 𝛼𝛼 ∈  [0,1] and 𝜆𝜆 is the tuning parameter. For logistic regression, 𝑦𝑦~𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 � 𝑒𝑒𝑥𝑥𝑥𝑥

1+𝑒𝑒𝑥𝑥𝑥𝑥
�, 

the elastic net will find �̂�𝛽 = ��̂�𝛽1, … , �̂�𝛽𝑛𝑛�, which solves the objective function 

min
𝛽𝛽∈ℝ𝑝𝑝

�
−1
𝑛𝑛
��𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝛽𝛽 + log�1 + 𝐵𝐵𝑛𝑛𝑖𝑖𝛽𝛽�� + 𝜆𝜆��

1
2

(1 − 𝛼𝛼)𝛽𝛽𝑗𝑗2 + 𝛼𝛼�𝛽𝛽𝑗𝑗��
𝑛𝑛

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

� 

The tuning parameter, 𝜆𝜆, determines the intensity of penalization on coefficients while 𝛼𝛼 controls 

the level of L1 and L2 penalties.   

The elastic net is a generalization of both ridge regression, where 𝛼𝛼 = 0, and the lasso, 

where 𝛼𝛼 = 1. Ridge regression shrinks coefficient estimates towards zero, but they are never 

equal to zero unless 𝜆𝜆 = ∞ (Hoerl & Kennard, 1970). Therefore, ridge regression will always 

select 𝑝𝑝 predictors in the final model. This may not be a problem if prediction accuracy is the 

main objective, but it can complicate model interpretation in studies in which the number of 

variables is very large, such as HDLSS problems. The lasso avoids this major limitation of ridge 

regression (Tibshirani, 1996). The lasso’s L1 penalty, 𝜆𝜆 ∑ |𝛽𝛽|𝑛𝑛
𝑗𝑗=1 , does have the ability to shrink 

coefficient estimates to zero when the tuning parameter 𝜆𝜆 is large enough. Therefore, selecting 

the tuning parameter, 𝜆𝜆, is crucial. Often, K-fold cross-validation is used for selecting the 𝜆𝜆, 

which minimizes the mean squared error (MSE). Other measures have also been used for 

selecting 𝜆𝜆, such as AIC, BIC, or RIC (Akaike, 1998; Foster & George, 1994; Schwarz, 1978). 

Regardless, the lasso results in a sparser model than ridge regression and provides a more 

interpretable result when the number of variables is large. Zou and Hastie (2005) improved the 

lasso with the elastic net, which incorporates both the L1 from lasso and L2 from ridge penalties 

in the objective function (Zou & Hastie, 2005). Each penalty’s contribution to the objective 

function is determined by 𝛼𝛼 ∈ [0,1].   
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The elastic net has several advantages over the lasso, especially when 𝑝𝑝 ≫ 𝑛𝑛.  For 

instance, the lasso is limited by the sample size, 𝑛𝑛, selecting at most 𝑛𝑛 variables before 

saturation, while the elastic net is not limited by this constraint. In addition, if a group of 

predictors are highly correlated with each other, the lasso will typically select one variable from 

the group, often not caring about which variable is selected. However, the elastic net has the 

ability to select entire groups of highly-correlated variables and produce models with better 

predictive performance than the lasso.  

1.2   Feature Extraction Methods 

 Albeit feature selection is a major topic of interest for HDLSS data, feature extraction is 

also of great interest. Feature extraction is the idea of condensing many features into fewer 

features while still capturing most of the relevant information. Feature extraction can be 

classified into two categories: unsupervised or supervised learning. Unsupervised learning 

classifies training data into categories without the use of a labeled data set, while supervised 

learning classifies training data into categories with the help of a labeled data set. For this 

dissertation, general overviews of principal component analysis (PCA) and linear discriminant 

analysis (LDA) methods will be covered. Then, we will explain a machine-learning technique 

known as the DiProPerm test, which we apply to the RLC paradigm in chapter 3.   

1.2.1   PCA and LDA 

Two common feature extraction methods include principal component analysis and linear 

discriminant analysis.  Principal component analysis (Jolliffe, 1986) is an unsupervised learning 

technique that creates linear combinations of the original features. Each linear combination is 

said to be one principal component. The principal components are ranked in order of how much 

variation they explain in the original data. The first principal component, PC1, explains the most 

variance, followed by the second, and so on. Thus, one can reduce the dimensionality of the 
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original data by selecting the principal components subject to a desired cumulative amount of 

variance explained by the components. For instance, one may desire to keep only the principal 

components that cumulatively explain 80% of the original data. Normalizing the data before 

performing PCA is crucial because PCA is heavily sensitive to scale. Otherwise, large-scaled 

variables, such as cell count, will over represent the principal components. Another strength of 

PCA is that the linear combinations are uncorrelated with each other due to the orthogonality 

between components. Principal component analysis is not without limitations, though. Because 

each principal component is a linear combination of original features, the interpretation of the 

components is not clear. Also, PCA is sensitive to outliers, especially when the sample size is 

small (Aoshima et al., 2018). To improve the interpretability and robustness of PCA, sparse PCA 

was proposed (Zou et al., 2006). Sparse PCA reformulates PCA as a regression-type 

optimization problem and then incorporates an elastic net penalization to create sparse 

components. Therefore, sparse PCA not only reduces dimensionality, as does PCA, but also 

reduces the number of loadings, which are the coefficients in the linear combination, for 

interpretability.  

Linear discriminant analysis (Fisher, 1936) is a supervised learning technique that also 

utilizes linear combinations of original features. However, LDA focuses on the separability 

between linear combinations instead of the cumulative explained variance. Linear discriminant 

analysis has become a popular tool for supervised classification because of its predictive 

accuracy, simplicity, and robustness (Hand, 2006). However, LDA does not perform well when 

𝑝𝑝 ≫ 𝑛𝑛 because the within-class covariance of 𝑝𝑝 is singular and not estimable. Also, LDA 

assumes that the separation in the data can be described well with linear boundaries, which is 

often not the case in 𝑝𝑝 ≫ 𝑛𝑛 problems. Because of these limitations, LDA is often not appropriate 
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in HDLSS settings. Linear discriminant analysis was later adapted to 𝑝𝑝 ≫ 𝑛𝑛 problems with the 

creation of sparse LDA (Clemmensen et al., 2011). Sparse LDA has the ability to perform 

feature selection and classification simultaneously by incorporating an elastic net penalty to the 

discriminant problem. Sparse LDA does improve the interpretability of 𝑝𝑝 ≫ 𝑛𝑛 problems. It 

reduces overfitting but has certain limitations. For instance, in sparse LDA, there is no optimal 

procedure for selecting the penalty parameters since the optimization problem is often not 

convex (Y. Wu et al., 2015). Also, when sample sizes are very low, estimates for the within-class 

covariance will often be biased or unstable (Cai & Liu, 2011).   

Although PCA and LDA have evolved to help accommodate several 𝑝𝑝 ≫ 𝑛𝑛 problems, it 

would be helpful to have a procedure designed specifically for the HDLSS setting, which could 

be adapted to the RLC paradigm. One such method proposed for inference on HDLSS data is the 

direction-projection-permutation (DiProPerm) test. The DiProPerm test incorporates elements 

from PCA and LDA but is an exact test for HDLSS data, even in small samples.  

1.3   DiProPerm 

 In analyses of HDLSS data, a common task is to assign data to the correct class by 

building a function that uses the class labels, known as a classifier. Classifiers that use two labels 

and a linear combination of features are known as binary linear classifiers. There are many 

classifiers for use in HDLSS data, such as random forests or neural networks, but these kinds of 

classifiers are complicated and difficult to interpret. Binary linear classifiers are popular for their 

simplicity and interpretability; larger coefficients translate to a more direct impact in the 

separation of the two classes. However, linear classifiers such as LDA have been known to suffer 

from what is called “data piling” in the HDLSS setting (Marron et al., 2007). Data piling occurs 

if data are projected onto some projection direction and many of the projections are the same, or 
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piled on one another. For instance, there could be a case where data is sampled from two 

identical high-dimensional distributions, but the binary linear classifier could find a linear 

combination of features such that the two classes are not identical.   

The DiProPerm was developed to test whether or not a binary linear classifier detected a 

statistically significant difference between two high dimensional distributions. DiProPerm uses 

one-dimensional projections, or linear combinations, on the binary linear classifier, and then uses 

these projections to construct a permutation distribution to test whether the two distributions are 

different.  

To better understand the mechanics of DiProPerm, let 𝑈𝑈 = 𝑈𝑈1, … ,𝑈𝑈𝑛𝑛~𝐹𝐹1 and 

𝑉𝑉 = 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚~𝐹𝐹2 be independent random samples of 𝑝𝑝 dimensional random vectors from 

multivariate distributions 𝐹𝐹1 and 𝐹𝐹2 where 𝑝𝑝 ≫ 𝑛𝑛,𝑚𝑚. The DiProPerm tests 

𝐻𝐻0:𝐹𝐹1 = 𝐹𝐹2 versus 𝐻𝐻1:𝐹𝐹1 ≠ 𝐹𝐹2 

The general idea of the DiProPerm test can be explained in three steps. 

1. Direction:  Find the normal vector to the separating hyperplane between two samples 

after training a binary linear classifier. 

2. Projection:  Project data on to the normal vector and calculate a univariate two-sample 

statistic. 

3. Permutation:  Conduct a permutation test using the univariate statistic as follows: 

a. permute class membership after pooling samples, 

b. re-train the binary classifier and find the normal vector to the separating 

hyperplane, 

c. recalculate the univariate two sample statistic, 
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d. repeat a-c multiple times (e.g., 1,000) to determine the sampling distribution of 

the test statistic under the null 𝐻𝐻0, and 

e. compute p-value by comparing the observed statistic to the sampling distribution. 

Different binary linear classifiers may be used in the first step of DiProPerm. Linear 

discriminant analysis, particularly after conducting principal component analysis, is one possible 

classifier for the direction step. However, using LDA with PCA in the HDLSS setting has some 

disadvantages, including a lack of interpretability, a sensitivity to outliers, and a tendency to find 

spurious linear combinations due to a phenomenon known as data piling (Aoshima et al., 2018; 

Marron et al., 2007). The support vector machine (SVM) is a another popular classifier (Hastie et 

al., 2001). The SVM finds the hyperplane that maximizes the minimum distance between data 

points and the separating hyperplane. However, the SVM can also suffer from data piling in the 

HDLSS setting. To overcome data piling, the distance-weighted discrimination (DWD) classifier 

was developed (Marron et al., 2007). The DWD classifier finds the separating hyperplane 

minimizing the average inverse distance between data points and the hyperplane. The DWD 

performs well in HDLSS settings with good separation and is more robust to data piling. 

In the second step of DiProPerm, a univariate statistic is calculated using the projected 

values on to the normal vector to the separating hyperplane from the first step. Suppose 𝐵𝐵1, … ,𝐵𝐵𝑛𝑛 

and 𝑣𝑣1, … , 𝑣𝑣𝑚𝑚 are the projected values from samples 𝑈𝑈 and 𝑉𝑉 respectively. One common choice 

for the univariate test statistic for DiProPerm includes the difference of means statistic: |𝐵𝐵� − �̅�𝑣|.  

Other two-sample univariate statistics such as the two-sample t-statistic or the difference in 

medians are also possible for use with the DiProPerm.   

The last step of the DiProPerm entails determining the distribution of the test statistic 

under the null hypothesis. In this step, the two samples are pooled, class labels are permuted, and 
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then a univariate statistic is calculated. Repeat this process multiple times (e.g., 1,000) to 

determine the sampling distribution of the test statistic under the null 𝐻𝐻0. P-values are then 

calculated by the proportion of statistics higher than the original value.  

When the DiProPerm test is implemented using the DWD classifier, it is common 

practice to look at the loadings of the DWD classifier (An et al., 2016; Nelson et al., 2019). The 

DWD loadings represent the relative contribution of each variable to the class difference. A 

higher absolute value of a variable’s loading indicates a greater contribution for that variable to 

the class difference. Combining the use of the DiProPerm and evaluation of the DWD loadings 

in applications can provide insights into high-dimensional data and be used to generate rational 

hypotheses for future research. 

In RLC studies, one research question can be generally stated as follows: for binary 

classification, given a new sample with functional measurements, can one predict whether an 

animal will become infected with the target pathogen early versus late? In Chapter 3, we answer 

this question using the DiProPerm test to compare individuals who were infected before the 

median time to infection versus those who were infected after the median. The DWD loadings 

are then assessed to pinpoint certain variables that drove the difference between early infection 

versus late. A user-friendly software tool is then introduced for researchers conducting a 

DiProPerm test.   

1.4   Motivating Data Example 

A motivating example used throughout the dissertation is the MIV02 data, a repeated 

low-dose challenge study conducted in collaboration with UNC Chapel Hill, Duke, and UC 

Davis (Eudailey et al., 2018). The MIV02 dataset consists of 𝑛𝑛 = 14 rhesus monkey infants 

assigned to two different treatment groups: 𝑛𝑛 = 7 on an HIV vaccine and 𝑛𝑛 = 7 on a control 
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vaccine.  Infants in each group were challenged weekly with 20 TCID50 of SHIV1157ipd3N4 

with up to seven challenges until infection. If an infant remained uninfected after seven 

challenges, the dose was increased to 40 TCID50. Infants were initially challenged at six weeks 

of age (i.e., baseline). The maximum number of challenges an infant could receive was 20 

challenges. At the end of the study, 12 of the 14 primates became infected with SHIV. 

To create an analysis data set from the MIV02 data, several MIV02 data sets consisting of 

blood and genotype data were merged together into an 𝑛𝑛 = 14 by 𝑝𝑝 = 50 data set, where 𝑝𝑝 is the 

number of week 6 pre-challenge covariates of interest without missing data. Categorical 

variables were coded as dummy variables for each category. After dummy variable coding, the 

final analysis data set was 𝑛𝑛 = 14 by 𝑝𝑝 = 138.  

1.5   Outline 

In Chapter 2, we conduct a simulation study to assess the selection performance of 

penalized regression techniques on HDLSS data with application to an RLC study. Many pre-

clinical studies use the lasso to make associations with certain antibody measures with disease 

infection status. We suggest these techniques should not be used to make claims about 

association with certain antibody measures and HIV infection. Instead, we suggest these methods 

be used as hypothesis-generating methods for larger future experiments.  

In Chapter 3, we explore the use of the DiProPerm test on RLC data. The type I error and 

power of the DiProPerm test on RLC experiments are described in a simulation study. The 

DiProPerm test is then adapted to the MIV02 study to test whether non-human primates are more 

likely to become infected early (i.e., before the median infection time) as opposed to late, given a 

set of antibody and functional measurements. In addition, we evaluate the DWD loadings from 

the test to observe which variables had the most influence on median time to HIV infection. The 

DiProPerm has never been implemented in the RLC paradigm as a valid tool for inference until 
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now. Simulation processes and real data applications reveal the advantages of the DiProPerm test 

on RLC data. The DiProPerm will help medical professionals conducting pre-clinical 

experiments in RLC studies to make better claims on which type of functional measures help 

prolong infection time.   

In Chapter 4, we introduce an R package software tool for the analysis of RLC studies 

using DiProPerm. The diproperm R package is a user-friendly computational tool built for use 

by medical investigators with little coding experience. A demonstration for how to use the R 

package is explained, and the tool is used on a real-world data set. The R package can be used to 

conduct a DiProPerm test, display corresponding plots of interest, and look at the loadings of the 

binary linear classifier. The diproperm R package is freely available on CRAN and GitHub 

(https://github.com/allmondrew/diproperm) for anyone to use. All analyses for this dissertation, 

unless otherwise stated, were conducted in R version 3.6.1.  
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CHAPTER 2: PENALIZED REGRESSION TECHNIQUES IN SMALL-SAMPLE 
DISCRETE SURVIVAL TIME MODELS 

2.1   Introduction 

In the growing age of big data, there is increasing demand for the use of model selection 

techniques on high dimensional data. The least absolute shrinkage and selection operator, or 

lasso, is one such technique (Tibshirani, 1996). In the lasso, an L1 penalty constrains the 

coefficient estimates in such a way that variables with little to no effect on the outcome of 

interest “shrink” to zero. The lasso was later improved by the elastic net, which includes a 

penalty parameter to control the amount of L1 and L2 penalties on the coefficients. Including 

both the L1 and L2 penalties allows the elastic net to reduce the number of features selected and 

reduce the coefficients that are not important in predicting the outcome to improve the model’s 

prediction over the lasso. Since penalized regression techniques “shrink” small-effect estimate 

coefficients to zero, these methods are often used for variable selection where the number of 

samples is small and the number of features is large. Recently, the use of these penalized 

regression techniques has become popular for antibody and functional measure feature selection 

in assessing the performance of candidate vaccines in pre-clinical HIV studies, particularly in 

repeated low-dose challenge experiments (Ackerman et al., 2018; Bradley et al., 2017; 

Chaudhury et al., 2018; Tomaras & Plotkin, 2017; Vaccari et al., 2016).   

In repeated low-dose challenge experiments, animals are assigned to an active or placebo 

candidate vaccine and then are repeatedly challenged (exposed) with some target pathogen, 

either until infection or until some maximum number of challenges is reached (Nolen et al., 
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2015). Since the maximum number of challenges is specified a priori, RLC studies can be 

modeled using a discrete survival time model where each challenge is thought to be one discrete 

time point. Many times, the number of animals in an RLC study is small (e.g. ≤ 20) and the 

number of features is large (e.g. ≥ 100) due to the high cost of each animal and the high number 

of antibody and functional measure features (Chaudhury et al., 2018; Choi et al., 2015).     

Despite the popularity of the lasso and the elastic net, the performance of these 

techniques on discrete survival time models is not well established. However, scientists continue 

to use the lasso and elastic net in discrete survival time settings, such as repeated low-dose 

challenge studies. In the original lasso paper, Tibshirani et al. (1996) provided an option for 

continuous survival time models in the glmnet package, but they have not yet provided an option 

for discrete survival time models. Groll and Tutz (2017) proposed a model for variable selection 

in discrete survival models by including a penalty on the baseline hazard function. This model 

can be found in the R package glmmLasso (Groll & Tutz, 2014). 

In this paper, we perform a simulation study to assess the variable selection performance 

of the lasso, the elastic net, and the method proposed by Groll and Tutz in discrete survival 

model settings. Data from a repeated low-dose challenge study is used as an example of 

application in real-world study designs. Section 2.2 introduces the notation and the methods used 

for quantifying penalized regression performance across the three scenarios. Section 2.3 explains 

the simulation experiments conducted for assessing performance and summarizes the results 

from every simulation scenario. Section 2.4 demonstrates the application of the three scenarios 

on a real-world RLC data set. Section 2.5 discusses the future implications and limitations of the 

performance assessment and provides closing remarks and a summary of the entire paper. 
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2.2   Methods 

Consider a repeated low-dose challenge study with 𝑛𝑛 animals. Each animal is repeatedly 

challenged with a pathogen of interest (e.g., simian HIV). After each challenge, the animal is 

assessed for infection. If an animal is uninfected, the challenges continue; otherwise, the 

challenges cease. Data from such studies is naturally handled in a discrete time survival analysis 

framework. In particular, 𝑇𝑇�𝑖𝑖 denotes the number of challenges until infection if the animal was 

challenged indefinitely. In practice, challenges typically cease for uninfected animals after a set 

number of challenges, say 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 (in general, 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 may differ between animals, but for simplicity 

here, it is assumed to be same across animals). Thus, the discrete survival time  𝑇𝑇�𝑖𝑖 may be right 

censored. That is, instead of observing 𝑇𝑇�𝑖𝑖, we observe 𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑚𝑚𝑚𝑚𝑛𝑛(𝑇𝑇�𝑖𝑖 , 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚) as well as the event 

indicator 𝑌𝑌𝑖𝑖 = 𝐼𝐼(𝑇𝑇�𝑖𝑖 ≤  𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚). In addition, for each animal, we observe 𝑋𝑋𝑖𝑖 = �𝑋𝑋𝑖𝑖1, … ,𝑋𝑋𝑖𝑖𝑖𝑖�, a 

vector of 𝑝𝑝 baseline covariates. The inferential goal is to characterize the extent to which one or 

more of the baseline covariates 𝑋𝑋𝑖𝑖1, … ,𝑋𝑋𝑖𝑖𝑖𝑖 are associated with the time until infection 𝑇𝑇�𝑖𝑖. Below, 

three methods are considered. 

The first method uses a parametric discrete time survival model. Define the discrete time 

hazard function by  

ℎ�𝑇𝑇�𝑖𝑖 = 𝑡𝑡�𝑇𝑇�𝑖𝑖 ≥  𝑡𝑡,𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖� = 𝑃𝑃�𝑇𝑇�𝑖𝑖 = 𝑡𝑡�𝑇𝑇�𝑖𝑖 ≥ 𝑡𝑡,𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖� for 𝑡𝑡 = 1, … , 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 

that is, the conditional probability for becoming infected given the animal has not been infected 

before time 𝑡𝑡. In general, models for discrete survival problems, given covariate vector 𝑥𝑥𝑖𝑖, have 

the form 

ℎ�𝑇𝑇�𝑖𝑖 = 𝑡𝑡�𝑇𝑇�𝑖𝑖 ≥  𝑡𝑡,𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖� = 𝑔𝑔(𝛾𝛾0𝑡𝑡 + 𝑥𝑥𝑖𝑖𝛽𝛽) 

where 𝛽𝛽 = �𝛽𝛽1, … ,𝛽𝛽𝑖𝑖�
𝑇𝑇
 is a column vector of coefficients and 𝑔𝑔(∙) is an invertible function 

mapping from (−∞,∞) to [0, 1]. For example, 𝑔𝑔(∙) could be the inverse logit function, that is,  
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        ℎ�𝑇𝑇�𝑖𝑖 = 𝑡𝑡�𝑇𝑇�𝑖𝑖 ≥  𝑡𝑡,𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖� =
e𝛾𝛾0𝑡𝑡+𝑚𝑚𝑖𝑖𝛽𝛽

1 + e𝛾𝛾0𝑡𝑡+𝑚𝑚𝑖𝑖𝛽𝛽
= 𝑙𝑙𝑙𝑙𝑔𝑔𝑚𝑚𝑡𝑡−1(𝛾𝛾0𝑡𝑡 + 𝑥𝑥𝑖𝑖𝛽𝛽) (1) 

where 𝑙𝑙𝑙𝑙𝑔𝑔𝑚𝑚𝑡𝑡−1(𝛾𝛾0𝑡𝑡) represents the baseline hazard function at time 𝑡𝑡 corresponding to animals 

with covariates 𝑥𝑥𝑖𝑖 = (0, … ,0).   

A challenging aspect of modern RLC studies is that the vector of baseline covariates 𝑋𝑋𝑖𝑖 

may include a large number of covariates relative to the study's sample size. That is, 𝑝𝑝 may be 

large compared to 𝑛𝑛.  One common technique for analyzing such data is known as penalized 

regression. In penalized regression, the objective is to build a parsimonious predictive model 

with a small number of non-zero estimated regression coefficients. To achieve this objective, a 

penalty is included while minimizing the negative log-likelihood to determine the estimated 

regression coefficients, �̂�𝛽. In the lasso, an L1 penalty constrains �̂�𝛽 in such a way that covariates 

with little to no association with the outcome of interest “shrink” to zero. On the other hand, the 

elastic net incorporates both L1 and L2 penalties. Groll and Tutz (2017)  proposed fitting the 

discrete time model (1) via penalization by adding an additional penalty term to the lasso for the 

baseline hazard, finding  �̂�𝛽 =  ��̂�𝛽1, … , �̂�𝛽𝑖𝑖�
𝑇𝑇
 and  𝛾𝛾� = �𝛾𝛾�1, … , 𝛾𝛾�𝑞𝑞�, which solves 

min
𝛽𝛽∈ℝ𝑝𝑝,𝛾𝛾∈ℝ𝑞𝑞

�− 1
𝑚𝑚
∑ ∑ �𝑌𝑌𝑖𝑖𝑡𝑡(𝛾𝛾0𝑡𝑡 + 𝑥𝑥𝑖𝑖𝛽𝛽) + log�1 + 𝑒𝑒𝛾𝛾0𝑡𝑡+𝑚𝑚𝑖𝑖𝛽𝛽��𝑇𝑇𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜

𝑡𝑡=1 + 𝜆𝜆 ∑ |𝛽𝛽𝑗𝑗| + 𝜈𝜈 ∑ 𝛾𝛾0𝑡𝑡2
𝑞𝑞
𝑡𝑡=1

𝑖𝑖
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 �    (2) 

where 𝑚𝑚 = ∑ 𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛
𝑖𝑖=1  is the total number of challenges across all animals, 𝑌𝑌𝑖𝑖𝑡𝑡 = 𝐼𝐼(𝑇𝑇𝚤𝚤� = 𝑡𝑡) is the 

event indicator of the 𝑚𝑚𝑡𝑡ℎ animal at timepoint 𝑡𝑡, 𝜆𝜆 is the tuning parameter for the 𝛽𝛽 penalty term, 

𝜈𝜈 is the tuning parameter for the baseline hazard penalty term, and 𝑞𝑞 = max�𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜: 𝑚𝑚 = 1, … ,𝑛𝑛� is 

the maximum observed number of challenges across all animals (Groll & Tutz, 2017). Note that 

if at least one animal survives up to 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, then 𝑞𝑞 = 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚. Groll and Tutz recommend choosing 𝜆𝜆 

by minimizing the Bayesian information criterion (BIC) (Schwarz, 1978) across a set of 100 𝜆𝜆s 

and selecting 𝜈𝜈 a priori.  
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The second method considered is penalized logistic regression, where each challenge is 

treated as a separate observation. In particular, for logistic regression, that is, 𝑃𝑃(𝑌𝑌𝑡𝑡 = 1|𝑋𝑋 =

𝑥𝑥)  = 𝑙𝑙𝑙𝑙𝑔𝑔𝑚𝑚𝑡𝑡−1(𝛽𝛽0 + 𝑥𝑥𝛽𝛽), the elastic net penalized regression approach finds �̂�𝛽 =  ��̂�𝛽1, … , �̂�𝛽𝑖𝑖�
𝑇𝑇
 

and  𝛾𝛾� = �𝛾𝛾�1, … , 𝛾𝛾�𝑞𝑞�, which solves  

min
𝛽𝛽∈ℝ𝑝𝑝,𝛾𝛾∈ℝ𝑞𝑞

�− 1
𝑚𝑚
∑ ∑ �𝑌𝑌𝑖𝑖𝑡𝑡(𝛾𝛾0𝑡𝑡 + 𝑥𝑥𝑖𝑖𝛽𝛽) + log�1 + 𝑒𝑒𝛾𝛾0𝑡𝑡+𝑚𝑚𝑖𝑖𝛽𝛽��𝑇𝑇𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜

𝑡𝑡=1 + 𝜆𝜆 ∑ �1
2

(1 − 𝛼𝛼)𝛽𝛽𝑗𝑗2𝛼𝛼�𝛽𝛽𝑗𝑗��
𝑖𝑖
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 � (3) 

where 𝛼𝛼 ∈  [0,1] is the elastic-net mixing parameter chosen a priori and 𝜆𝜆 is chosen via K-fold 

cross validation. More information for how 𝜆𝜆 was calculated for our simulations is included in 

Section 2.3.  

A third method that could be used in this setting entails fitting a continuous time Cox 

model via elastic net penalization. Specifically, we find �̂�𝛽 =  ��̂�𝛽1, … , �̂�𝛽𝑖𝑖�
𝑇𝑇
 which solves 

min
𝛽𝛽∈ℝ𝑝𝑝

�− 1
𝑛𝑛
∑ �∑ 𝑥𝑥𝑗𝑗𝛽𝛽 

𝑗𝑗∈𝐷𝐷𝑡𝑡 + 𝑑𝑑𝑡𝑡log �∑ 𝑒𝑒𝑚𝑚𝑗𝑗𝛽𝛽
 
 𝑗𝑗∈𝑅𝑅𝑡𝑡 �� + 𝜆𝜆∑ �1

2
(1 − 𝛼𝛼)𝛽𝛽𝑗𝑗2 + 𝛼𝛼�𝛽𝛽𝑗𝑗��  𝑖𝑖

𝑗𝑗=1
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡=1 � (4) 

where 𝑅𝑅𝑡𝑡 is the set of indices for those individuals at risk at time 𝑡𝑡. Ties are handled using 

Breslow’s approximation, where 𝐷𝐷𝑡𝑡 is the set of indices of individuals who fail at time 𝑡𝑡, and 

𝑑𝑑𝑡𝑡 = |𝐷𝐷𝑡𝑡| is the number of individuals who fail at time 𝑡𝑡 (Breslow, 1974). 𝜆𝜆 is chosen in the 

same way as for (3) and is described in more detail below.   

The operating characteristics of approaches (2), (3), and (4) on RLC data when 𝑛𝑛 is small 

and 𝑝𝑝 is large were evaluated via a simulation study. For the simulation study, all computations 

were performed in R 3.6.1. The package glmmLasso was used to implement the discrete survival 

selection approach (denoted glmLassodis) for approach (2) (Groll, 2017). The R package glmnet 

was used to implement the lasso and elastic net for approaches (3) and (4) (Friedman et al., 2010; 

Simon et al., 2011). Our simulations only assessed 𝛼𝛼 = 0.5 or 𝛼𝛼 = 1 for the elastic net and lasso 

respectively. In the glmnet function call, the parameter family was set to either “binomial” for 
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logistic regression or “cox” for Cox regression. For logistic and Cox regression, 10-fold cross-

validation was used to determine the value of 𝜆𝜆, chosen to be either the value that minimized the 

mean squared error (MSE) of the predicted responses or the maximum value of 𝜆𝜆 corresponding 

to an MSE within one standard error (1SE) of the minimum. Multiple observations of the same 

subject were constrained to stay together in each fold during cross validation. For the remainder 

of this paper, 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝜆𝜆1𝑛𝑛𝑛𝑛 correspond to methods that use a penalty term based on 

minimum MSE or within 1SE. For glmLassodis methods, 𝜆𝜆 was chosen such that the BIC was 

minimized across a set of 100 lambdas (Schwarz, 1978) and 𝜈𝜈 = 20 was chosen as was 

recommended (Groll & Tutz, 2017).  

2.3   Simulation  

A simulation study was conducted to explore the effects of varying the sample size, 𝑛𝑛; the 

tuning parameter, 𝛼𝛼; true coefficient parameters, 𝛽𝛽; the number of non-zero predictors, 𝑘𝑘; and the 

number of total predictors, 𝑝𝑝, in (2), (3), and (4). Values of 𝑝𝑝 = 50, 100, 500; 𝑛𝑛 = 10, 20, 30; and 

𝑘𝑘 = 1, 3, 5, 7 were used across simulations. The maximum number of challenges was 𝑐𝑐max = 10 

and the number of simulations was 500 for each method. 

In order to represent realistic RLC scenarios, the baseline hazard and parameter 

coefficients were chosen in such a way that the average probability of infection per exposure was 

between 0.2 and 0.3. The various combinations of parameter coefficients and non-zero 

coefficients can be seen in Section 2.7. For 𝑗𝑗 = 1, … ,𝑝𝑝, covariate vectors 𝑋𝑋𝑖𝑖 =  (𝑋𝑋𝑖𝑖1, … ,𝑋𝑋𝑖𝑖𝑖𝑖) 

were drawn from a multivariate normal (MVN) distribution with 𝜇𝜇 = 0 and covariance matrix 𝛴𝛴 

with 1s along the diagonal and 0.05 along the off-diagonals.   

The RLC data were simulated as follows. 

For each 𝑚𝑚 = 1, … ,𝑛𝑛, 
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1) Sample 𝑋𝑋𝑖𝑖 from 𝑀𝑀𝑀𝑀𝑀𝑀(0,𝛴𝛴). 

2) For 𝑡𝑡 = 1, … , 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, sample binary event 𝑌𝑌𝑖𝑖𝑡𝑡 from 𝐵𝐵𝑒𝑒𝐵𝐵𝑛𝑛�ℎ(𝑡𝑡|𝑥𝑥𝑖𝑖)�.  

a. If 𝑌𝑌𝑖𝑖𝑡𝑡 = 1, then set 𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑡𝑡 and stop. 

b. Otherwise, if 𝑌𝑌𝑖𝑖𝑡𝑡 = 0 and 𝑡𝑡 = 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, then set 𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 and stop. 

c. Otherwise, increment 𝑡𝑡 by 1 and repeat step 2. 

For approaches (2) and (3), data were structured in such a way that each challenge is an 

observation, that is, 𝑋𝑋𝑚𝑚 𝑚𝑚 𝑖𝑖where 𝑚𝑚 = ∑ 𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛
𝑖𝑖=1 , the total number of challenges across 𝑛𝑛 

animals. For (4), each observation was one animal, that is, 𝑋𝑋𝑛𝑛 𝑚𝑚 𝑖𝑖. For simplicity, a uniform 

baseline hazard, 𝑙𝑙𝑙𝑙𝑔𝑔𝑚𝑚𝑡𝑡−1(𝛾𝛾0𝑡𝑡), was used for all 𝑡𝑡 in (2), (3), and (4) such that the mean infection 

probability per exposure was between 0.2 and 0.3.   

Small, moderate, and large effect true parameter coefficients, 𝛽𝛽, were used for each 

simulation, corresponding to odds ratios of approximately 1.2, 1.5, and 2 respectively. For the 

purpose of this paper, we will focus on the moderate effect scenario. Small and large effect 

scenarios can be seen in the supplemental information document. Table 2.1 shows the true 

coefficients for the moderate effect models and Supplemental Table 2.1 displays the true 

coefficients of small and large effect models. For Table 2.2 and Supplemental Tables 2.2–2.13, a 

true positive was defined as a variable with a non-zero coefficient in both the true model and in 

the predicted model. A false positive was defined as a variable with a coefficient of zero in the 

true model and a non-zero coefficient in the predicted model. In addition, in Table 2.2, the 

percent containing true is the percentage of simulations that included all the possible true 

positives while potentially selecting a few false positives, whereas the percent equal to true is the 

percentage of simulations that selected all the true positives and no false positives. The 

supplemental tables do not include the percent containing true or the percent equal to true 
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because this information was non-informative for most models, often being less than one percent 

as 𝑝𝑝 and 𝑘𝑘 increased. Instead, Supplemental Tables 2.2–2.13 display the average number of true 

positive, average number of false positives, and percent of models with only false positives for 

(2), (3), and (4). Figure 2.1 shows the average number of true positives against the average 

number of false positives when 𝑘𝑘 = 1, while Supplemental Figures 2.1–2.3 show for when 𝑘𝑘 = 

3, 5, and 7. In Figure 2.1, the glmLassodis consistently selected the highest number of true 

positives without selecting a large number of false positives. This is also true for Supplemental 

Figures 2.1–2.3. Because of this, the glmLassodis can be viewed as a compromise amongst all the 

methods in this paper. 

For (3) and (4), the elastic net models selected more true positives and false positives on 

average than the lasso models, and 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 models included more true positives and more false 

positives on average than 𝜆𝜆1𝑛𝑛𝑛𝑛 models. 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 models also had a higher percentage of 

containing only false positives compared to 𝜆𝜆1𝑛𝑛𝑛𝑛 models on average. As the sample size 

increased, the average number of true positives selected in both the lasso and elastic net 

increased for (3) and (4). However, for (3), the average number of false positives selected largely 

increased for 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 models compared to 𝜆𝜆1𝑛𝑛𝑛𝑛 models as sample size increased. For (4), there 

were no consistent trends for the average number of false positives selected between 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

and 𝜆𝜆1𝑛𝑛𝑛𝑛 models relative to sample size.  

For (2), (3), and (4), as the total number of predictors increased, the average number of 

true positives selected decreased, whereas the average number of false positives and the 

percentage of models containing only false positives increased. However, as the sample size 

increased, the average number of true positives selected increased for (2), (3), and (4) while the 

percentage of models selecting only false positives decreased. Also, as sample size increased, the 
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average number of false positives selected decreased for (3), but there were no consistent trends 

for the average number of false positives selected for (2) and (4) relative to sample size. The 

average number of true positives, false positives, and percentage of models containing only false 

positives decreased, on average, as the number of non-zero coefficients, 𝑘𝑘, increased for (2), (3), 

and (4).  

2.4   Application  

In this section, a motivating example is given using the MIV02 data mentioned in section 

1.5. Results for applying (2), (3), and (4) on MIV02 data can be seen in Table 2.3. Index 27 was 

selected most often across all methods, and 85, 99, and 138 were the second most selected. Index 

27 corresponds to activation CD69 total, while 85 is the “23_02” group from MamuDQA 

Haplotype 1, 99 is the “18g2” group from MamuDQB Haplotype 1, and 138 is the “TFP/TFP” 

group from the TRIM5 genotype. Figure 2.2 displays the raw data for CD69 by the number of 

challenges for the 14 primates. From the MIV02 study, CD69 was shown to be an early T-cell 

activation marker for SHIV, and the TRIM5 genotype TFP/TFP has been shown to confer 

resistance to SHIV (F. Wu et al., 2016). However, MamuDQA Haplotype I and MamuDQB 

Haplotype I have never been shown to be associated with SHIV infection. MamuDQA Haplotype 

I and MamuDQB Haplotype I could be new markers, but it is possible that in including every 

single allele marker in the analysis data set, some random associations were detected considering 

the small group sizes.  Therefore, one might want to formulate future hypotheses for studies 

assessing the effects of the MamuDQA Haplotype I and MamuDQB Haplotype I allele on risk of 

HIV infection.       

2.5   Discussion 

Penalized regression techniques are regularly utilized for high-dimensional data variable 

selection, and have been increasingly used for small-sample discrete survival time models, 
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particularly RLC studies (Ackerman et al., 2018; Bradley et al., 2017; Chaudhury et al., 2018; 

Tomaras & Plotkin, 2017; Vaccari et al., 2016). To our knowledge, no prior research has been 

conducted for assessing how the performance of penalized regression techniques changes 

relative to the number of observations and predictors in small-sample discrete survival models. 

In this article, simulated data show that the lasso, elastic net, and glmLassodis methods have a 

low probability of selecting true positives, especially as the number of predictors increases. 

For approaches (3) and (4), the predicted models for the lasso and elastic net were 

dominated by false positives compared to true positives. However, approach (2) was not so 

dominated by false positives relative to true positives. Also, approach (2) selected fewer false 

positives on average than Cox and logistic lasso and elastic net models but selected fewer true 

positives on average as sample size decreased and the number of predictors increased. 

Additionally, 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 models selected more true positives on average than 𝜆𝜆1𝑛𝑛𝑛𝑛and glmLassodis 

models but were plagued with false positives, with the average number of false positives 

increasing as 𝑝𝑝 and 𝑛𝑛 increased. One of the more alarming results is that as sample size 

decreased, effect size decreased, and as the number of predictors increased, lasso models selected  

virtually no true positives on average. This realization demonstrates that the lasso is not 

appropriate for RLC studies and a high level of confidence cannot be placed on the associations 

discovered from the lasso. Continuing to use the lasso in RLC studies could not only waste 

resources to test false positives, but true associations could be undetected, which would harm 

future research.   

The sample size needed for detecting all true positives consistently is heavily dependent 

on the effect size; total number of predictors, 𝑝𝑝; and number of non-zero coefficients, 𝑘𝑘. 

Simulations showed minimal progress in detection as the sample size and effect size increased 
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and the total number of predictors and non-zero coefficients decreased. However, in all models, 

all proposed methods rarely selected true positives regardless of the effect size, number of 

predictors, or the number of non-zero coefficients, with many models containing only false 

positives. Therefore, we conclude the lasso, elastic net, and glmLassodis are not appropriate for 

detecting associations in the small-sample discrete survival data frequently encountered in RLC 

studies.   

Results also vary with the choice of 𝛼𝛼 and 𝜆𝜆. For example, fewer model coefficients will 

be set to zero as 𝛼𝛼 and 𝜆𝜆 decrease. From simulations, the elastic net with 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 contained the 

highest number of true positives and false positives, on average, for approaches (3) and (4). 

However, there is a tradeoff between choosing 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝜆𝜆1𝑛𝑛𝑛𝑛. If a higher true positive rate is 

desired, then 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the better option, but if a lower false positive rate is desired, then 𝜆𝜆1𝑛𝑛𝑛𝑛 is 

preferred. On the other hand, glmLassodis presents a compromise between the lasso and elastic 

net: a higher number of true positives 𝜆𝜆1𝑛𝑛𝑛𝑛 models in (3) and (4) but a much lower number of 

false positives than both 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝜆𝜆1𝑛𝑛𝑛𝑛 models.      

Although the elastic net can improve the detection of true positives and glmLassodis can 

reduce the number of false positives in many scenarios, the lasso is the most cited in scientific 

literature, including RLC studies. However, our simulations show that for small-sample discrete 

survival data there is a high probability of detecting false positives, and possibly all false 

positives, using the lasso. Because one cannot be certain whether or not a detected covariate is a 

true positive or false positive, other models and techniques need to be considered for small-

sample discrete survival time data. For example, one might explore the use of forward stepwise 

regression via bootstrapping to select the most relevant features. However, this technique would 

apply more to the 𝑘𝑘 = 1 setting than to larger 𝑘𝑘 settings. Alternatively, the use of HDLSS  
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techniques should be explored and implemented in the RLC setting since HDLSS techniques 

were developed specifically for the setting where 𝑝𝑝 ≫ 𝑛𝑛. Regardless, penalized regression 

techniques are not recommended for making scientific claims but instead should be used to 

generate hypotheses for future RLC or other small-sample discrete survival studies.  
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Table 2.1. Parameter effect coefficients, 𝛃𝛃, for each number of non-zero coefficients, 𝐤𝐤, in 
the true model with a moderate effect size 

𝑘𝑘 𝛽𝛽 
1 (log(1.5), 0,…,0) 
3 (1, -1, log(1.5), 0,…,0) 
5 (0.5, -0.5, 0.5, -0.5, log(1.5), 0,…,0) 
7 (0.33, -0.33, 0.33, -0.33, 0.33, -0.33, log(1.5), 0,…,0) 

  



 

 26 

Table 2.2. Results comparing logistic, continuous survival time Cox, and discrete survival 
time Cox approaches where 𝒏𝒏 = 𝟏𝟏𝟏𝟏, 𝒌𝒌 = 𝟏𝟏, 𝒑𝒑 = 𝟓𝟓𝟏𝟏 with moderate effect  

Method Average no. of 
True Positives 

Average no. of 
False Positives 

% Containing 
True 

% Equal to 
True 

Logistic Lasso-
minMSE 0.06 1.38 6.40 0.60 

Logistic Lasso-
1SE 0.02 0.22 2.20 0.40 

Logistic Elastic 
Net-minMSE 0.11 2.52 11.20 0.20 

Logistic Elastic-
Net-1SE 0.02 0.28 2.20 0.20 

Cox Lasso-
minMSE 0.09 1.76 8.60 0.60 

Cox Lasso-1SE 0.04 0.49 3.80 0.80 

Cox Elastic Net-
minMSE 0.15 3.41 15.0 0.00 

Cox Elastic-Net-
1SE 0.05 0.74 5.20 0.40 

glmLassodis 0.05 0.48 4.80 2.00 
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Table 2.3. Variables Selected from the MIV02 Study with 𝐧𝐧 = 𝟏𝟏𝟏𝟏, 𝐩𝐩 = 𝟓𝟓𝟏𝟏 
Method Estimate Index 
Logistic Lasso-MinMSE 27 
Logistic Lasso-1SE - 
Logistic Elastic Net-MinMSE 27 
Logistic Elastic Net-1SE - 
Cox Lasso-MinMSE 27, 85, 99, 138 
Cox Lasso-1SE - 
Cox Elastic Net-MinMSE 21, 27, 55, 85, 86, 98, 99, 135, 138 
Cox Elastic Net-1SE 27, 85, 99, 138 
glmLassodis 27 

Note: ‘-‘ : No variables selected   
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Figure 2.1. The average number of false positives versus the average number of true 
positives assuming a moderate effect size with 𝒌𝒌 = 𝟏𝟏 non-zero coefficients. 
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Figure 2.2. Scatterplot of CD69 by the number of challenges. 
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2.7   Supplemental Information 

Supplemental Table 2.1. Parameter effect coefficients, 𝛃𝛃, for each number, 𝐤𝐤, of non-zero 
coefficients in the true model 

Effect Size 𝑘𝑘 𝛽𝛽 

Small 

1 (log(1.2), 0,…,0) 
3 (1, -1, log(1.2), 0,…,0) 
5 (0.5, -0.5, 0.5, -0.5, log(1.2), 0,…,0) 
7 (0.33, -0.33, 0.33, -0.33, 0.33, -0.33, log(1.2), 0,…,0) 

Moderate 

1 (log(1.5), 0,…,0) 
3 (1, -1, log(1.5), 0,…,0) 
5 (0.5, -0.5, 0.5, -0.5, log(1.5), 0,…,0) 
7 (0.33, -0.33, 0.33, -0.33, 0.33, -0.33, log(1.5), 0,…,0) 

Large 

1 (log(2), 0,…,0) 
3 (1, -1, log(2), 0,…,0) 
5 (0.5, -0.5, 0.5, -0.5, log(2), 0,…,0) 
7 (0.33, -0.33, 0.33, -0.33, 0.33, -0.33, log(2), 0,…,0) 
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Supplemental Table 2.2. Results for 𝐤𝐤 = 𝟏𝟏 variables in true model with a small effect 

Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Logistic Lasso-
minMSE 10 5 0.04 1.39 37.4 0.03 1.62 36.6 0.00 1.41 38.6  

Logistic Lasso-
1SE 10 5 0.01 0.17 6.4 0.00 0.25 10.8 0.00 0.18 8.2 

Logistic Elastic 
Net-minMSE 10 5 0.09 2.70 35.8 0.04 2.90 38.8 0.02 3.74 40.0 

Logistic Elastic 
Net-1SE 10 5 0.02 0.30 5.4 0.00 0.31 7.6 0.00 0.22 4.4 

Cox Lasso-
minMSE 10 5 0.05 1.69 50.0 0.03 2.00 54.6 0.01 2.06 60.2 

Cox Lasso-1SE 10 5 0.02 0.42 19.4 0.01 0.58 25.2 0.00 0.53 24.4 
Cox Elastic 

Net-minMSE 10 5 0.08 3.18 53.6 0.06 4.15 58.2 0.02 5.87 67.2 

Cox Elastic 
Net-1SE 10 5 0.02 0.63 18.6 0.01 0.97 25.4 0.00 0.93 19.6 

glmLassodis 10 5 0.02 0.45 28.2 0.01 0.49 29.8 0.00 0.56 32.2 
Logistic Lasso-

minMSE 20 10 0.05 2.16 38.0 0.04 2.82 43.0 0.01 2.82 45.8 

Logistic Lasso-
1SE 20 10 0.01 0.23 4.2 0.01 0.27 7.0 0.00 0.27 6.6 

Logistic Elastic 
Net-minMSE 20 10 0.07 2.56 36.4 0.05 3.63 42.2 0.02 4.41 45.0 

Logistic Elastic 
Net-1SE 20 10 0.01 0.24 3.2 0.00 0.34 5.2 0.00 0.23 4.0 

Cox Lasso-
minMSE 20 10 0.05 1.57 39.6 0.02 1.52 42.0 0.00 1.66 44.2 

Cox Lasso-1SE 20 10 0.00 0.12 4.4 0.01 0.15 6.2 0.00 0.14 5.8 
Cox Elastic 

Net-minMSE 20 10 0.07 2.09 40.6 0.03 2.63 47.8 0.02 2.94 48.6 
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Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Cox Elastic 
Net-1SE 20 10 0.01 0.12 2.8 0.01 0.19 3.6 0.00 0.13 3.2 

glmLassodis 20 10 0.01 0.37 24.6 0.01 0.53 31.4 0.01 0.53 29.6 
Logistic Lasso-

minMSE 30 15 0.11 2.84 37.6 0.05 2.93 41.0 0.02 3.68 44.6 

Logistic Lasso-
1SE 30 15 0.02 0.36 4.4 0.01 0.30 4.0 0.00 0.41 6.6 

Logistic Elastic 
Net-minMSE 30 15 0.12 3.61 38.6 0.06 3.88 41.2 0.03 5.01 44.4 

Logistic Elastic 
Net-1SE 30 15 0.02 0.26 2.8 0.00 0.18 3.0 0.00 0.31 3.6 

Cox Lasso-
minMSE 30 15 0.07 1.44 34.8 0.03 1.70 41.0 0.01 1.64 41.2 

Cox Lasso-1SE 30 15 0.01 0.14 2.2 0.00 0.11 2.2 0.00 0.05 2.8 
Cox Elastic 

Net-minMSE 30 15 0.09 1.94 35.6 0.05 2.43 44.0 0.01 2.55 45.0 

Cox Elastic 
Net-1SE 30 15 0.01 0.05 1.4 0.00 0.08 2.0 0.00 0.02 1.8 

glmLassodis 30 15 0.02 0.35 21.2 0.02 0.44 27.4 0.00 0.76 39.2 
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Supplemental Table 2.3. Results for 𝐤𝐤 = 𝟑𝟑 variables in true model with a small effect 

Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Logistic Lasso-
minMSE 10 5 0.30 1.49 20.0 0.18 1.52 27.8 0.07 1.57 33.8 

Logistic Lasso-
1SE 10 5 0.07 0.25 6.4 0.04 0.27 7.0 0.02 0.31 10.8 

Logistic Elastic 
Net-minMSE 10 5 0.52 3.37 15.0 0.33 3.20 18.6 0.15 4.89 29.8 

Logistic Elastic 
Net-1SE 10 5 0.08 0.37 3.0 0.06 0.38 3.6 0.02 0.47 4.2 

Cox Lasso-
minMSE 10 5 0.43 1.90 30.2 0.28 1.90 37.6 0.10 2.51 56.4 

Cox Lasso-1SE 10 5 0.19 0.61 17.0 0.11 0.54 19.0 0.04 0.67 26.2 
Cox Elastic 

Net-minMSE 10 5 0.73 4.13 21.6 0.54 4.79 29.6 0.24 7.79 57.2 

Cox Elastic 
Net-1SE 10 5 0.27 1.13 13.2 0.15 1.01 15.6 0.08 1.47 22.4 

glmLassodis 10 5 0.23 0.74 29.6 0.16 0.86 42.0 0.06 0.96 48.6 
Logistic Lasso-

minMSE 20 10 1.10 3.54 6.8 0.79 3.42 13.4 0.35 2.89 20.8 

Logistic Lasso-
1SE 20 10 0.39 0.62 2.0 0.21 0.44 3.4 0.11 0.40 3.8 

Logistic Elastic 
Net-minMSE 20 10 1.33 5.82 3.6 0.93 5.80 9.0 0.44 5.54 17.2 

Logistic Elastic 
Net-1SE 20 10 0.35 0.88 1.4 0.19 0.75 2.2 0.08 0.45 1.0 

Cox Lasso-
minMSE 20 10 1.02 2.59 8.2 0.78 2.64 14.6 0.36 2.39 26.0 

Cox Lasso-1SE 20 10 0.31 0.35 2.6 0.16 0.25 3.6 0.08 0.22 4.8 
Cox Elastic 

Net-minMSE 20 10 1.23 4.21 6.8 0.96 4.71 12.8 0.46 4.60 22.2 
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Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Cox Elastic 
Net-1SE 20 10 0.24 0.36 1.2 0.14 0.28 1.8 0.06 0.26 2.4 

glmLassodis 20 10 0.68 0.70 13.8 0.52 0.74 17.4 0.25 1.06 38.4 
Logistic Lasso-

minMSE 30 15 1.74 5.05 1.0 1.43 5.91 4.0 0.85 5.36 11.2 

Logistic Lasso-
1SE 30 15 0.73 0.87 0.4 0.58 1.06 1.6 0.24 0.67 3.2 

Logistic Elastic 
Net-minMSE 30 15 1.85 7.59 0.4 1.54 8.66 3.2 0.96 9.31 7.0 

Logistic Elastic 
Net-1SE 30 15 0.61 0.96 0.4 0.45 1.00 1.0 0.19 0.72 1.6 

Cox Lasso-
minMSE 30 15 1.59 3.48 2.4 1.25 3.88 5.2 0.71 2.92 13.4 

Cox Lasso-1SE 30 15 0.49 0.35 0.2 0.36 0.39 1.0 0.11 0.16 1.2 
Cox Elastic 

Net-minMSE 30 15 1.72 5.23 0.8 1.39 5.75 4.2 0.85 5.19 10.8 

Cox Elastic 
Net-1SE 30 15 0.43 0.37 0.4 0.25 0.27 0.6 0.06 0.19 1.0 

glmLassodis 30 15 1.16 0.78 6.0 0.98 0.97 9.2 0.61 1.18 22.6 
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Supplemental Table 2.4. Results for 𝐤𝐤 = 𝟓𝟓 variables in true model with a small effect 

Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Logistic Lasso-
minMSE 10 5 0.28 1.48 21.6 0.16 1.28 26.8 0.04 1.27 30.2 

Logistic Lasso-
1SE 10 5 0.04 0.26 8.6 0.02 0.17 8.8 0.00 0.14 6.8 

Logistic Elastic 
Net-minMSE 10 5 0.55 2.92 13.8 0.30 2.87 23.8 0.06 3.41 30.2 

Logistic Elastic 
Net-1SE 10 5 0.07 0.39 5.0 0.04 0.30 3.8 0.00 0.30 4.8 

Cox Lasso-
minMSE 10 5 0.40 1.85 32.6 0.24 1.97 44.0 0.06 2.33 58.8 

Cox Lasso-1SE 10 5 0.13 0.55 19.2 0.06 0.55 21.8 0.01 0.65 25.2 
Cox Elastic 

Net-minMSE 10 5 0.78 3.85 23.4 0.48 4.28 34.8 0.15 7.11 60.0 

Cox Elastic 
Net-1SE 10 5 0.19 0.89 15.8 0.12 0.98 19.6 0.04 1.42 23.8 

glmLassodis 10 5 0.17 0.67 31.6 0.10 0.71 36.6 0.03 0.75 39.0 
Logistic Lasso-

minMSE 20 10 0.83 2.47 11.2 0.48 2.54 16.4 0.13 2.78 32.8 

Logistic Lasso-
1SE 20 10 0.15 0.27 2.8 0.09 0.44 4.6 0.01 0.35 8.6 

Logistic Elastic 
Net-minMSE 20 10 1.02 3.60 10.0 0.67 4.27 11.2 0.24 5.08 27.0 

Logistic Elastic 
Net-1SE 20 10 0.17 0.42 1.4 0.08 0.43 2.6 0.03 0.54 5.0 

Cox Lasso-
minMSE 20 10 0.71 1.72 11.6 0.43 1.84 21.4 0.13 1.98 35.6 

Cox Lasso-1SE 20 10 0.10 0.17 2.3 0.07 0.14 3.0 0.01 0.17 5.2 
Cox Elastic 

Net-minMSE 20 10 0.92 2.74 9.8 0.60 3.05 18.2 0.19 3.71 36.6 
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Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Cox Elastic 
Net-1SE 20 10 0.10 0.22 1.2 0.05 0.13 2.2 0.01 0.09 1.8 

glmLassodis 20 10 0.33 0.58 19.6 0.23 0.69 23.8 0.06 0.93 42.2 
Logistic Lasso-

minMSE 30 15 1.28 3.27 7.0 0.89 3.80 11.6 0.36 3.76 22.6 

Logistic Lasso-
1SE 30 15 0.20 0.39 1.0 0.19 0.56 2.2 0.04 0.62 4.4 

Logistic Elastic 
Net-minMSE 30 15 1.55 4.72 5.6 1.13 5.70 8.8 0.45 6.16 17.0 

Logistic Elastic 
Net-1SE 30 15 0.20 0.48 0.6 0.17 0.53 1.0 0.04 0.57 3.2 

Cox Lasso-
minMSE 30 15 0.95 1.86 8.0 0.73 2.23 10.6 0.26 2.13 24.4 

Cox Lasso-1SE 30 15 0.11 0.10 0.4 0.06 0.08 1.0 0.01 0.10 1.4 
Cox Elastic 

Net-minMSE 30 15 1.18 2.74 5.8 0.89 3.25 9.8 0.35 3.59 23.4 

Cox Elastic 
Net-1SE 30 15 0.11 0.12 0.4 0.04 0.07 0.2 0.01 0.05 0.6 

glmLassodis 30 15 0.55 0.60 13.4 0.39 0.75 20.4 0.16 1.05 39.2 
  



 

 

37 
 

Supplemental Table 2.5. Results for 𝐤𝐤 = 𝟕𝟕 variables in true model with a small effect 

Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Logistic Lasso-
minMSE 10 5 0.31 1.34 18.8 0.20 1.61 29.4 0.03 1.37 33.2 

Logistic Lasso-
1SE 10 5 0.04 0.24 6.2 0.03 0.22 6.8 0.00 0.12 5.0 

Logistic Elastic 
Net-minMSE 10 5 0.54 2.50 14.2 0.36 3.18 21.0 0.10 3.93 31.4 

Logistic Elastic 
Net-1SE 10 5 0.04 0.26 3.6 0.02 0.24 4.4 0.00 0.19 3.8 

Cox Lasso-
minMSE 10 5 0.38 1.65 33.0 0.23 1.93 44.6 0.06 2.08 56.4 

Cox Lasso-1SE 10 5 0.12 0.44 14.6 0.07 0.51 20.2 0.02 0.55 23.0 
Cox Elastic 

Net-minMSE 10 5 0.73 3.44 26.2 0.50 4.36 36.4 0.17 6.81 61.0 

Cox Elastic 
Net-1SE 10 5 0.16 0.70 12.0 0.14 0.88 15.8 0.04 1.19 19.6 

glmLassodis 10 5 0.14 0.57 28.0 0.07 0.57 34.0 0.03 0.77 39.8 
Logistic Lasso-

minMSE 20 10 0.72 2.25 11.2 0.47 2.84 20.4 0.10 2.83 36.6 

Logistic Lasso-
1SE 20 10 0.12 0.41 3.0 0.10 0.53 4.8 0.01 0.40 7.2 

Logistic Elastic 
Net-minMSE 20 10 0.98 3.36 9.4 0.72 4.54 15.0 0.18 5.06 31.8 

Logistic Elastic 
Net-1SE 20 10 0.11 0.30 2.0 0.11 0.65 3.8 0.02 0.36 3.8 

Cox Lasso-
minMSE 20 10 0.58 1.49 16.2 0.40 1.92 20.4 0.08 1.85 40.0 

Cox Lasso-1SE 20 10 0.07 0.16 2.0 0.04 0.18 4.4 0.00 0.14 5.0 
Cox Elastic 

Net-minMSE 20 10 0.80 2.34 15.2 0.55 2.84 18.2 0.16 3.23 36.2 
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Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Cox Elastic 
Net-1SE 20 10 0.05 0.11 2.2 0.03 0.13 1.8 0.01 0.07 2.8 

glmLassodis 20 10 0.25 0.52 18.2 0.14 0.53 25.8 0.06 0.86 39.4 
Logistic Lasso-

minMSE 30 15 1.20 3.26 10.2 0.71 3.46 14.0 0.26 3.69 30.2 

Logistic Lasso-
1SE 30 15 0.19 0.50 1.0 0.12 0.45 3.8 0.04 0.35 4.8 

Logistic Elastic 
Net-minMSE 30 15 1.47 4.42 7.4 0.92 4.72 10.8 0.35 5.98 26.4 

Logistic Elastic 
Net-1SE 30 15 0.15 0.42 0.8 0.13 0.49 2.6 0.04 0.61 3.2 

Cox Lasso-
minMSE 30 15 0.84 1.87 13.2 0.53 1.86 15.8 0.17 1.98 32.0 

Cox Lasso-1SE 30 15 0.07 0.09 1.0 0.05 0.13 1.2 0.00 0.06 1.4 
Cox Elastic 

Net-minMSE 30 15 1.11 2.78 10.0 0.69 2.74 13.4 0.23 3.03 32.4 

Cox Elastic 
Net-1SE 30 15 0.07 0.13 0.8 0.04 0.10 0.6 0.00 0.01 0.4 

glmLassodis 30 15 0.32 0.47 16.6 0.26 0.66 26.0 0.11 0.89 38.2 
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Supplemental Table 2.6. Results for 𝐤𝐤 = 𝟏𝟏 variables in true model with a moderate effect 

Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Logistic Lasso-
minMSE 10 5 0.06 1.38 35.2 0.05 1.54 35.0 0.01 1.45 37.2 

Logistic Lasso-
1SE 10 5 0.02 0.22 7.2 0.00 0.21 8.2 0.00 0.19 8.6 

Logistic Elastic 
Net-minMSE 10 5 0.11 2.52 33.4 0.08 3.15 35.4 0.02 3.70 38.6 

Logistic Elastic 
Net-1SE 10 5 0.02 0.28 5.6 0.02 0.40 6.2 0.00 0.23 4.0 

Cox Lasso-
minMSE 10 5 0.09 1.76 45.8 0.06 1.95 52.8 0.01 2.06 59.6 

Cox Lasso-1SE 10 5 0.04 0.49 18.6 0.02 0.51 23.2 0.00 0.51 24.2 
Cox Elastic 

Net-minMSE 10 5 0.15 3.41 47.0 0.13 4.33 53.6 0.04 6.18 67.6 

Cox Elastic 
Net-1SE 10 5 0.05 0.74 17.6 0.03 0.99 24.4 0.00 1.05 21.0 

glmLassodis 10 5 0.05 0.48 27.0 0.01 0.51 31.4 0.00 0.57 32.8 
Logistic Lasso-

minMSE 20 10 0.16 2.41 33.8 0.14 2.79 35.8 0.05 2.51 36.8 

Logistic Lasso-
1SE 20 10 0.02 0.21 3.0 0.02 0.42 6.0 0.00 0.26 5.8 

Logistic Elastic 
Net-minMSE 20 10 0.22 3.59 30.0 0.16 3.95 33.8 0.07 4.30 36.4 

Logistic Elastic 
Net-1SE 20 10 0.02 0.25 3.0 0.03 0.33 3.0 0.00 0.23 2.8 

Cox Lasso-
minMSE 20 10 0.13 1.64 35.0 0.10 1.64 36.6 0.05 1.85 41.4 

Cox Lasso-1SE 20 10 0.02 0.14 4.8 0.02 0.18 5.6 0.00 0.12 4.8 
Cox Elastic 

Net-minMSE 20 10 0.18 2.48 36.6 0.13 2.70 39.8 0.06 2.91 42.4 
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Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Cox Elastic 
Net-1SE 20 10 0.02 0.15 3.8 0.01 0.09 2.4 0.00 0.07 1.6 

glmLassodis 20 10 0.06 0.38 21.6 0.04 0.51 28.2 0.03 0.68 36.0 
Logistic Lasso-

minMSE 30 15 0.25 2.90 25.8 0.20 3.44 33.0 0.11 3.68 36.8 

Logistic Lasso-
1SE 30 15 0.03 0.16 2.0 0.03 0.41 4.2 0.02 0.41 4.4 

Logistic Elastic 
Net-minMSE 30 15 0.31 3.81 23.4 0.24 4.53 31.2 0.13 5.06 35.0 

Logistic Elastic 
Net-1SE 30 15 0.02 0.16 1.4 0.02 0.37 2.6 0.02 0.26 2.4 

Cox Lasso-
minMSE 30 15 0.22 1.55 24.2 0.18 1.99 35.4 0.08 1.70 34.0 

Cox Lasso-1SE 30 15 0.02 0.06 2.0 0.01 0.07 2.0 0.00 0.05 2.2 
Cox Elastic 

Net-minMSE 30 15 0.28 2.12 23.0 0.19 2.38 32.4 0.12 2.66 35.0 

Cox Elastic 
Net-1SE 30 15 0.02 0.10 1.0 0.01 0.10 1.6 0.00 0.01 0.6 

glmLassodis 30 15 0.13 0.41 21.4 0.11 0.45 22.2 0.05 0.72 36.2 
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Supplemental Table 2.7. Results for 𝐤𝐤 = 𝟑𝟑 variables in true model with a moderate effect 

Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Logistic Lasso-
minMSE 10 5 0.31 1.43 21.6 0.23 1.67 26.6 0.06 1.53 34.0 

Logistic Lasso-
1SE 10 5 0.06 0.24 6.8 0.05 0.29 8.0 0.02 0.27 9.4 

Logistic Elastic 
Net-minMSE 10 5 0.54 3.27 14.4 0.39 3.56 17.6 0.15 3.93 26.8 

Logistic Elastic 
Net-1SE 10 5 0.09 0.47 4.8 0.06 0.45 5.0 0.02 0.58 4.8 

Cox Lasso-
minMSE 10 5 0.43 1.85 30.6 0.30 1.93 37.6 0.10 2.16 51.4 

Cox Lasso-1SE 10 5 0.16 0.52 17.0 0.12 0.60 19.6 0.03 0.56 24.2 
Cox Elastic 

Net-minMSE 10 5 0.76 4.10 18.6 0.56 4.91 29.8 0.25 6.88 51.4 

Cox Elastic 
Net-1SE 10 5 0.25 1.01 12.4 0.17 1.06 16.8 0.05 1.17 20.8 

glmLassodis 10 5 0.25 0.72 31.4 0.14 0.90 43.2 0.07 0.95 46.2 
Logistic Lasso-

minMSE 20 10 1.10 3.29 5.6 0.82 3.27 11.6 0.34 3.17 25.8 

Logistic Lasso-
1SE 20 10 0.30 0.53 2.0 0.24 0.49 4.4 0.08 0.42 5.4 

Logistic Elastic 
Net-minMSE 20 10 1.27 5.16 4.2 0.97 5.55 8.0 0.45 5.85 20.0 

Logistic Elastic 
Net-1SE 20 10 0.31 0.74 1.4 0.21 0.64 1.4 0.06 0.51 2.2 

Cox Lasso-
minMSE 20 10 0.99 2.40 7.4 0.76 2.64 15.0 0.32 2.35 27.8 

Cox Lasso-1SE 20 10 0.28 0.35 2.0 0.20 0.30 3.2 0.05 0.24 4.0 
Cox Elastic 

Net-minMSE 20 10 1.20 4.06 4.2 0.96 4.64 13.4 0.44 4.44 26.2 
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Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Cox Elastic 
Net-1SE 20 10 0.29 0.45 0.6 0.16 0.40 2.6 0.05 0.18 1.6 

glmLassodis 20 10 0.69 0.71 12.4 0.53 0.85 21.0 0.23 1.13 40.4 
Logistic Lasso-

minMSE 30 15 1.79 4.79 0.8 1.42 5.05 4.0 0.88 5.44 12.6 

Logistic Lasso-
1SE 30 15 0.67 0.73 1.0 0.47 0.78 1.8 0.25 0.78 2.2 

Logistic Elastic 
Net-minMSE 30 15 1.88 7.03 0.2 1.54 8.07 2.8 1.03 9.35 8.0 

Logistic Elastic 
Net-1SE 30 15 0.60 0.96 0.4 0.38 0.79 1.0 0.20 0.88 1.0 

Cox Lasso-
minMSE 30 15 1.69 3.47 1.2 1.32 3.41 4.8 0.72 3.09 14.0 

Cox Lasso-1SE 30 15 0.46 0.40 0.4 0.30 0.23 1.0 0.11 0.20 2.2 
Cox Elastic 

Net-minMSE 30 15 1.76 4.89 0.8 1.46 5.35 3.2 0.84 5.37 12.0 

Cox Elastic 
Net-1SE 30 15 0.42 0.44 0.8 0.25 0.31 0.2 0.08 0.16 0.6 

glmLassodis 30 15 1.14 0.73 7.0 0.97 1.00 9.8 0.57 1.19 27.0 
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Supplemental Table 2.8. Results for 𝐤𝐤 = 𝟓𝟓 variables in true model with a moderate effect 

Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Logistic Lasso-
minMSE 10 5 0.28 1.31 20.0 0.12 1.44 29.6 0.04 1.40 33.8 

Logistic Lasso-
1SE 10 5 0.05 0.24 7.8 0.01 0.19 8.2 0.01 0.18 7.4 

Logistic Elastic 
Net-minMSE 10 5 0.47 2.47 15.6 0.28 3.10 22.4 0.10 3.73 30.2 

Logistic Elastic 
Net-1SE 10 5 0.07 0.33 3.4 0.03 0.38 5.4 0.01 0.24 3.4 

Cox Lasso-
minMSE 10 5 0.36 1.68 33.6 0.25 1.99 43.4 0.07 2.40 60.6 

Cox Lasso-1SE 10 5 0.12 0.49 18.0 0.08 0.54 21.4 0.02 0.62 25.2 
Cox Elastic 

Net-minMSE 10 5 0.72 3.65 24.8 0.51 4.54 35.6 0.19 7.04 58.8 

Cox Elastic 
Net-1SE 10 5 0.20 0.84 16.0 0.13 1.06 18.2 0.05 1.34 22.0 

glmLassodis 10 5 0.18 0.62 29.2 0.10 0.74 37.4 0.02 0.84 45.0 
Logistic Lasso-

minMSE 20 10 0.81 2.47 13.2 0.53 2.65 16.4 0.13 2.66 33.0 

Logistic Lasso-
1SE 20 10 0.15 0.36 3.4 0.10 0.35 4.2 0.02 0.46 8.0 

Logistic Elastic 
Net-minMSE 20 10 1.08 3.95 9.6 0.69 4.06 11.4 0.25 5.24 28.2 

Logistic Elastic 
Net-1SE 20 10 0.17 0.50 2.2 0.08 0.37 2.6 0.02 0.48 5.2 

Cox Lasso-
minMSE 20 10 0.78 2.01 12.4 0.48 1.98 19.6 0.12 2.13 36.8 

Cox Lasso-1SE 20 10 0.11 0.16 1.8 0.07 0.13 2.4 0.02 0.13 4.0 
Cox Elastic 

Net-minMSE 20 10 1.03 3.09 11.0 0.62 3.15 19.0 0.20 3.91 38.8 
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Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Cox Elastic 
Net-1SE 20 10 0.11 0.22 1.2 0.04 0.12 1.8 0.02 0.10 1.8 

glmLassodis 20 10 0.32 0.45 16.4 0.25 0.71 25.0 0.06 0.96 40.8 
Logistic Lasso-

minMSE 30 15 1.43 3.85 7.0 0.92 3.67 11.2 0.39 4.02 24.8 

Logistic Lasso-
1SE 30 15 0.29 0.45 1.6 0.18 0.50 1.2 0.06 0.48 4.2 

Logistic Elastic 
Net-minMSE 30 15 1.66 5.42 5.2 1.11 5.32 9.0 0.53 6.67 20.2 

Logistic Elastic 
Net-1SE 30 15 0.28 0.48 1.2 0.15 0.45 0.8 0.04 0.44 2.8 

Cox Lasso-
minMSE 30 15 1.13 2.18 8.8 0.74 2.27 14.2 0.27 2.26 26.6 

Cox Lasso-1SE 30 15 0.15 0.10 0.6 0.05 0.07 0.6 0.02 0.11 1.6 
Cox Elastic 

Net-minMSE 30 15 1.39 3.36 6.4 0.92 3.16 11.0 0.43 3.88 22.0 

Cox Elastic 
Net-1SE 30 15 0.14 0.15 0.6 0.05 0.11 0.6 0.01 0.04 1.0 

glmLassodis 30 15 0.53 0.57 13.4 0.43 0.79 23.6 0.18 1.20 40.4 
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Supplemental Table 2.9. Results for 𝐤𝐤 = 𝟕𝟕 variables in true model with a moderate effect 

Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Logistic Lasso-
minMSE 10 5 0.32 1.36 19.4 0.19 1.53 29.0 0.06 1.55 34.6 

Logistic Lasso-
1SE 10 5 0.06 0.32 7.4 0.03 0.25 8.0 0.01 0.18 7.0 

Logistic Elastic 
Net-minMSE 10 5 0.60 2.68 14.2 0.37 3.19 21.8 0.13 4.33 31.4 

Logistic Elastic 
Net-1SE 10 5 0.08 0.36 3.8 0.03 0.26 5.0 0.01 0.33 4.6 

Cox Lasso-
minMSE 10 5 0.39 1.72 33.0 0.23 1.84 39.6 0.08 2.32 56.0 

Cox Lasso-1SE 10 5 0.13 0.48 14.8 0.06 0.46 20.4 0.03 0.61 25.4 
Cox Elastic 

Net-minMSE 10 5 0.80 3.61 25.0 0.50 4.35 34.0 0.20 7.35 58.4 

Cox Elastic 
Net-1SE 10 5 0.19 0.79 12.2 0.14 0.93 15.8 0.06 1.55 24.8 

glmLassodis 10 5 0.18 0.55 27.8 0.11 0.61 31.6 0.02 0.77 39.2 
Logistic Lasso-

minMSE 20 10 0.71 2.07 11.8 0.49 2.75 19.6 0.12 2.57 32.4 

Logistic Lasso-
1SE 20 10 0.10 0.24 2.4 0.08 0.40 6.6 0.01 0.34 7.8 

Logistic Elastic 
Net-minMSE 20 10 1.10 3.42 7.0 0.71 4.21 16.6 0.19 4.85 30.2 

Logistic Elastic 
Net-1SE 20 10 0.11 0.29 1.2 0.08 0.48 3.4 0.02 0.32 3.4 

Cox Lasso-
minMSE 20 10 0.68 1.64 13.0 0.42 1.81 23.2 0.10 1.88 38.2 

Cox Lasso-1SE 20 10 0.09 0.17 1.8 0.04 0.10 3.4 0.01 0.09 3.8 
Cox Elastic 

Net-minMSE 20 10 0.89 2.46 10.2 0.60 2.91 20.0 0.19 3.39 35.8 
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Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Cox Elastic 
Net-1SE 20 10 0.10 0.21 1.6 0.04 0.19 2.2 0.01 0.11 2.0 

glmLassodis 20 10 0.31 0.53 15.2 0.16 0.63 28.6 0.06 0.85 41.4 
Logistic Lasso-

minMSE 30 15 1.28 3.20 7.8 0.82 3.56 13.0 0.35 4.40 25.5 

Logistic Lasso-
1SE 30 15 0.21 0.43 1.2 0.13 0.44 2.6 0.04 0.43 3.8 

Logistic Elastic 
Net-minMSE 30 15 1.65 4.62 5.8 1.06 4.73 9.0 0.44 6.46 21.2 

Logistic Elastic 
Net-1SE 30 15 0.23 0.51 1.2 0.11 0.50 1.4 0.04 0.68 2.6 

Cox Lasso-
minMSE 30 15 0.87 1.74 11.2 0.62 1.91 14.0 0.18 1.82 27.2 

Cox Lasso-1SE 30 15 0.09 0.11 1.2 0.03 0.12 1.2 0.00 0.05 2.4 
Cox Elastic 

Net-minMSE 30 15 1.16 2.60 10.4 0.75 2.74 13.2 0.29 3.11 23.0 

Cox Elastic 
Net-1SE 30 15 0.09 0.12 0.6 0.04 0.15 1.0 0.01 0.05 0.8 

glmLassodis 30 15 0.45 0.47 13.8 0.32 0.66 23.6 0.12 1.05 44.4 
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Supplemental Table 2.10. Results for 𝐤𝐤 = 𝟏𝟏 variable in true model with a large effect 

Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Logistic Lasso-
minMSE 10 5 0.15 1.59 33.4 0.10 1.67 35.6 0.01 1.35 34.4 

Logistic Lasso-
1SE 10 5 0.05 0.24 7.2 0.02 0.34 12.4 0.00 0.13 4.8 

Logistic Elastic 
Net-minMSE 10 5 0.23 2.87 25.4 0.16 3.39 33.8 0.05 4.19 35.2 

Logistic Elastic 
Net-1SE 10 5 0.04 0.21 3.8 0.03 0.47 7.2 0.00 0.24 2.8 

Cox Lasso-
minMSE 10 5 0.18 1.84 40.2 0.13 2.08 53.0 0.04 2.21 57.4 

Cox Lasso-1SE 10 5 0.08 0.49 18.6 0.07 0.48 19.2 0.01 0.61 26.8 
Cox Elastic 

Net-minMSE 10 5 0.27 3.64 39.0 0.22 4.41 51.0 0.08 6.41 64.2 

Cox Elastic 
Net-1SE 10 5 0.11 0.90 16.2 0.09 0.81 17.2 0.02 1.22 23.2 

glmLassodis 10 5 0.10 0.60 33.0 0.05 0.68 37.8 0.02 0.70 41.2 
Logistic Lasso-

minMSE 20 10 0.37 2.66 21.6 0.27 2.71 25.4 0.17 3.11 32.2 

Logistic Lasso-
1SE 20 10 0.05 0.30 3.6 0.06 0.40 5.0 0.03 0.29 6.2 

Logistic Elastic 
Net-minMSE 20 10 0.43 3.80 16.4 0.33 4.14 21.4 0.21 5.32 28.8 

Logistic Elastic 
Net-1SE 20 10 0.05 0.24 2.4 0.04 0.31 2.6 0.02 0.34 3.2 

Cox Lasso-
minMSE 20 10 0.35 1.72 19.0 0.26 1.78 27.4 0.14 1.95 37.8 

Cox Lasso-1SE 20 10 0.05 0.12 2.0 0.05 0.14 4.0 0.02 0.13 4.0 
Cox Elastic 

Net-minMSE 20 10 0.39 2.64 21.8 0.31 2.80 25.0 0.20 3.71 35.2 
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Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Cox Elastic 
Net-1SE 20 10 0.04 0.17 2.4 0.03 0.13 1.4 0.01 0.13 2.8 

glmLassodis 20 10 0.26 0.50 16.6 0.19 0.60 23.8 0.10 0.83 37.0 
Logistic Lasso-

minMSE 30 15 0.62 3.64 11 0.54  3.86 13.4 0.35 5.16 29 

Logistic Lasso-
1SE 30 15 0.13 0.31 2.2 0.10 0.37 2.6 0.07 0.59 5.8 

Logistic Elastic 
Net-minMSE 30 15 0.66 4.79 9.4 0.58 5.49 12.2 0.39 8.13 25.2 

Logistic Elastic 
Net-1SE 30 15 0.11 0.30 1.0 0.09 0.56 1.6 0.05 055 4.6 

Cox Lasso-
minMSE 30 15 0.57 2.40 11.8 0.50 2.33 13.8 0.29 2.29 26.0 

Cox Lasso-1SE 30 15 0.08 0.12 1.6 0.06 0.06 0.4 0.03 0.12 2.6 
Cox Elastic 

Net-minMSE 30 15 0.60 3.43 10.8 0.52 3.46 12.4 0.34 3.97 26.0 

Cox Elastic 
Net-1SE 30 15 0.09 0.12 0.8 0.04 0.08 1.0 0.02 0.09 0.8 

glmLassodis 30 15 0.46 0.50 13.8 0.37 0.67 19.0 0.26 0.86 29.0 
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Supplemental Table 2.11. Results for 𝐤𝐤 = 𝟑𝟑 variables in true model with a large effect 

Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Logistic Lasso-
minMSE 10 5 0.30 1.22 21.0 0.22 1.62 24.6 0.06 1.55 35.2 

Logistic Lasso-
1SE 10 5 0.05 0.23 7.4 0.05 0.31 8.6 0.02 0.27 9.6 

Logistic Elastic 
Net-minMSE 10 5 0.57 3.44 13.6 0.39 3.50 14.2 0.15 4.22 26.4 

Logistic Elastic 
Net-1SE 10 5 0.07 0.42 4.2 0.05 0.47 4.2 0.03 0.63 5.2 

Cox Lasso-
minMSE 10 5 0.44 1.99 29.6 0.34 2.10 37.0 0.08 2.30 58.0 

Cox Lasso-1SE 10 5 0.17 0.59 18.6 0.12 0.59 19.8 0.02 0.58 26.2 
Cox Elastic 

Net-minMSE 10 5 0.76 4.23 22.2 0.61 4.93 29.6 0.25 7.13 54.0 

Cox Elastic 
Net-1SE 10 5 0.27 1.05 13.2 0.20 1.08 15.4 0.05 1.23 21.0 

glmLassodis 10 5 0.30 0.76 29.8 0.18 0.98 41.2 0.06 1.07 51.4 
Logistic Lasso-

minMSE 20 10 1.13 3.26 7.8 0.85 3.37 14.4 0.31 2.88 22.0 

Logistic Lasso-
1SE 20 10 0.34 0.47 1.8 0.25 0.48 4.4 0.07 0.46 7.0 

Logistic Elastic 
Net-minMSE 20 10 1.38 5.29 5.8 1.10 6.08 9.2 0.41 5.58 18.0 

Logistic Elastic 
Net-1SE 20 10 0.31 0.61 1.8 0.20 0.56 1.6 0.06 0.62 4.2 

Cox Lasso-
minMSE 20 10 1.08 2.53 7.4 0.87 2.77 14.0 0.31 2.61 30.2 

Cox Lasso-1SE 20 10 0.30 0.34 2.4 0.18 0.33 3.2 0.06 0.18 4.8 
Cox Elastic 

Net-minMSE 20 10 1.26 4.09 5.4 1.05 4.58 11.2 0.44 4.73 23.0 
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Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Cox Elastic 
Net-1SE 20 10 0.28 0.41 1.8 0.18 0.36 3.0 0.05 0.24 2.6 

glmLassodis 20 10 0.70 0.72 13.0 0.54 0.88 20.4 0.21 1.15 42.0 
Logistic Lasso-

minMSE 30 15 1.97 4.92 1.2 1.61 5.49 3.4 0.85 5.10 13.2 

Logistic Lasso-
1SE 30 15 0.70 0.69 1.0 0.54 0.98 1.6 0.21 0.98 4.2 

Logistic Elastic 
Net-minMSE 30 15 2.08 7.15 0.6 1.74 8.70 2.0 1.03 8.97 8.4 

Logistic Elastic 
Net-1SE 30 15 0.62 1.07 0.6 0.47 0.93 1.2 0.13 0.66 1.6 

Cox Lasso-
minMSE 30 15 1.79 3.34 1.8 1.50 3.89 3.6 0.77 3.25 10.6 

Cox Lasso-1SE 30 15 0.46 0.29 0.4 0.33 0.29 0.8 0.11 0.16 1.2 
Cox Elastic 

Net-minMSE 30 15 1.99 5.17 0.8 1.61 5.59 2.2 0.90 5.18 8.6 

Cox Elastic 
Net-1SE 30 15 0.37 0.36 0.2 0.33 0.44 0.8 0.07 0.12 1.6 

glmLassodis 30 15 1.20 0.86 12.8 1.00 1.02 13.6 0.57 1.38 28.4 
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Supplemental Table 2.12. Results for 𝐤𝐤 = 𝟓𝟓 variables in true model with a large effect 

Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Logistic Lasso-
minMSE 10 5 0.32 1.39 20.8 0.16 1.31 24.0 0.06 1.62 35.4 

Logistic Lasso-
1SE 10 5 0.07 0.22 7.4 0.03 0.19 7.8 0.01 0.21 7.8 

Logistic Elastic 
Net-minMSE 10 5 0.54 2.82 14.8 0.32 2.87 17.6 0.13 4.61 31.2 

Logistic Elastic 
Net-1SE 10 5 0.11 0.46 4.0 0.04 0.29 2.8 0.01 0.32 4.4 

Cox Lasso-
minMSE 10 5 0.42 1.80 30.0 0.31 1.99 38.8 0.08 2.39 58.4 

Cox Lasso-1SE 10 5 0.12 0.45 15.2 0.09 0.55 19.8 0.02 0.55 24.0 
Cox Elastic 

Net-minMSE 10 5 0.82 3.67 21.0 0.62 4.69 30.6 0.23 7.60 56.0 

Cox Elastic 
Net-1SE 10 5 0.22 0.89 13.2 0.16 1.00 15.8 0.04 1.33 24.0 

glmLassodis 10 5 0.20 0.67 31.8 0.13 0.72 36.0 0.04 0.87 43.6 
Logistic Lasso-

minMSE 20 10 0.87 2.56 10.6 0.60 2.99 16.8 0.20 3.13 35.6 

Logistic Lasso-
1SE 20 10 0.19 0.40 3.6 0.12 0.45 5.2 0.03 0.33 7.4 

Logistic Elastic 
Net-minMSE 20 10 1.22 4.14 7.0 0.84 4.89 12.2 0.30 5.80 29.2 

Logistic Elastic 
Net-1SE 20 10 0.17 0.44 1.4 0.13 0.52 2.0 0.03 0.49 4.6 

Cox Lasso-
minMSE 20 10 0.88 1.91 11.0 0.57 2.16 16.4 0.19 2.09 35.4 

Cox Lasso-1SE 20 10 0.15 0.22 2.0 0.10 0.23 3.4 0.04 0.15 4.0 
Cox Elastic 

Net-minMSE 20 10 1.14 3.05 8.4 0.76 3.64 15.4 0.29 4.18 36.0 
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Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Cox Elastic 
Net-1SE 20 10 0.15 0.26 1.8 0.08 0.24 2.6 0.01 0.15 3.2 

glmLassodis 20 10 0.42 0.54 16.8 0.32 0.79 27.0 0.09 1.02 42.6 
Logistic Lasso-

minMSE 30 15 1.79 4.15 4.8 1.18 4.26 6.0 0.49 4.64 23.0 

Logistic Lasso-
1SE 30 15 0.30 0.51 1.8 0.24 0.65 1.6 0.10 0.73 5.2 

Logistic Elastic 
Net-minMSE 30 15 2.11 6.10 3.4 1.44 6.78 4.4 0.64 7.67 16.8 

Logistic Elastic 
Net-1SE 30 15 0.27 0.55 1.0 0.22 0.64 1.0 0.09 0.99 3.2 

Cox Lasso-
minMSE 30 15 1.40 2.51 7.0 0.98 2.63 10.4 0.34 2.46 22.8 

Cox Lasso-1SE 30 15 0.16 0.14 0.6 0.10 0.18 1.6 0.04 0.13 1.2 
Cox Elastic 

Net-minMSE 30 15 1.69 3.76 5.4 1.21 4.05 8.6 0.48 4.24 19.0 

Cox Elastic 
Net-1SE 30 15 0.17 0.19 0.4 0.08 0.14 0.4 0.02 0.07 0.6 

glmLassodis 30 15 0.70 0.60 10.8 0.55 0.78 18.8 0.27 1.20 38.8 
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Supplemental Table 2.13. Results for 𝐤𝐤 = 𝟕𝟕 variables in true model with a large effect 

Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Logistic Lasso-
minMSE 10 5 0.36 1.28 19.0 0.18 1.34 24.0 0.05 1.50 32.2 

Logistic Lasso-
1SE 10 5 0.06 0.20 6.2 0.03 0.19 6.6 0.01 0.15 6.8 

Logistic Elastic 
Net-minMSE 10 5 0.66 2.81 12.2 0.37 2.86 19.0 0.14 4.25 27.8 

Logistic Elastic 
Net-1SE 10 5 0.07 0.32 3.0 0.03 0.26 3.8 0.01 0.28 3.2 

Cox Lasso-
minMSE 10 5 0.44 1.79 30.8 0.27 1.78 41.2 0.07 2.33 58.4 

Cox Lasso-1SE 10 5 0.14 0.44 16.8 0.07 0.42 17.0 0.03 0.64 26.0 
Cox Elastic 

Net-minMSE 10 5 0.89 3.70 20.2 0.58 4.36 33.8 0.24 7.29 54.6 

Cox Elastic 
Net-1SE 10 5 0.27 0.93 14.0 0.15 0.81 16.2 0.06 1.50 24.0 

glmLassodis 10 5 0.24 0.62 28.0 0.14 0.74 33.4 0.02 0.93 47.4 
Logistic Lasso-

minMSE 20 10 0.95 2.57 8.8 0.58 2.51 16.0 0.18 2.67 28.2 

Logistic Lasso-
1SE 20 10 0.21 0.43 1.4 0.14 0.43 4.4 0.02 0.23 5.4 

Logistic Elastic 
Net-minMSE 20 10 1.34 4.12 6.2 0.83 4.17 12.2 0.27 5.12 25.8 

Logistic Elastic 
Net-1SE 20 10 0.21 0.48 0.6 0.12 0.44 2.2 0.02 0.34 3.6 

Cox Lasso-
minMSE 20 10 0.79 1.77 11.8 0.50 2.08 20.2 0.15 1.90 34.6 

Cox Lasso-1SE 20 10 0.11 0.17 1.6 0.11 0.23 2.6 0.03 0.11 3.4 
Cox Elastic 

Net-minMSE 20 10 1.10 2.91 8.8 0.77 3.41 15.2 0.22 3.53 33.8 
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Method N NGroup 

p = 50 p = 100 p = 500 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Avg. no. 
true 

positives 

Avg. no. 
false 

positives 

Models 
w. only 

false 
variables 

Cox Elastic 
Net-1SE 20 10 0.14 0.22 0.8 0.08 0.18 1.2 0.01 0.06 1.0 

glmLassodis 20 10 0.42 0.58 17.6 0.26 0.72 26.4 0.11 0.93 39.6 
Logistic Lasso-

minMSE 30 15 1.55 3.53 6.2 1.06 4.00 10.2 0.41 4.00 24.0 

Logistic Lasso-
1SE 30 15 0.25 0.41 1.8 0.19 0.53 1.6 0.08 0.60 5.2 

Logistic Elastic 
Net-minMSE 30 15 1.88 5.03 4.4 1.30 5.62 7.2 0.53 6.62 19.8 

Logistic Elastic 
Net-1SE 30 15 0.27 0.50 0.6 0.19 0.69 2.0 0.05 0.42 1.6 

Cox Lasso-
minMSE 30 15 1.09 1.95 6.0 0.74 2.16 12.0 0.33 2.27 23.2 

Cox Lasso-1SE 30 15 0.13 0.13 1.0 0.05 0.09 1.4 0.04 0.09 2.0 
Cox Elastic 

Net-minMSE 30 15 1.41 2.93 6.2 0.95 3.23 10.6 0.42 3.58 18.6 

Cox Elastic 
Net-1SE 30 15 0.12 0.13 0.6 0.04 0.09 0.8 0.03 0.10 1.0 

glmLassodis 30 15 0.51 0.51 13.8 0.48 0.70 20.8 0.24 1.17 40.4 
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Supplemental Figure 2.1. The average number of false positives versus the average 
number of true positives assuming a moderate effect size with 𝒌𝒌 = 𝟑𝟑 non-zero 
coefficients. 
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Supplemental Figure 2.2. The average number of false positives versus the average 
number of true positives assuming a moderate effect size with 𝒌𝒌 = 𝟓𝟓 non-zero 
coefficients. 
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Supplemental Figure 2.3. The average number of false positives versus the average 
number of true positives assuming a moderate effect size with 𝒌𝒌 = 𝟕𝟕 non-zero 
coefficients. 
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CHAPTER 3: A MACHINE LEARNING APPROACH TO REPEATED LOW-DOSE 
CHALLENGE EXPERIMENTS  

3.1   Introduction 

Even though we live in an era of big data for biomedical research, there are many 

applications where small samples in pre-clinical and human assessment are unavoidable, such as 

in the development of new drugs and vaccines (Aban & George, 2015). One such application is 

repeated low-dose challenge studies. In repeated low-dose challenge experiments, animals are 

assigned to an active or placebo candidate vaccine and then are repeatedly challenged (exposed) 

with some target pathogen, either until infection or some maximum number of challenges is 

reached (Nolen et al., 2015). Many times, the number of non-human primates in an RLC study is 

small (e.g. ≤ 20) and number of features is large (e.g. ≥ 100) due to the high cost of one non-

human primate and the high number of antibody and functional measure features of interest 

(Chaudhury et al., 2018; Choi et al., 2015). Because of the small sample size, the analysis of 

these types of RLC data requires new statistical methods or adaptations of existing methods.  

Many traditional methods for low dimensional data are not appropriate for RLC data because 

there is an insufficient number of samples to adequately estimate the underlying covariance. In 

addition, dimension reduction techniques such as principal component analysis and linear 

discriminant analysis are not appropriate for RLC studies because of the difficulty of 

interpretation, evidence of data piling in HDLSS settings, and small sample size of the training 

data sets (Aoshima et al., 2018).   
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Here, we explore the use of the direction-projection-permutation (DiProPerm) test on 

RLC data. The DiProPerm test is able to assess if there is a difference between two high-

dimensional distributions. We adapt the DiProPerm to RLC studies to test whether animals are 

more likely to become infected early (i.e., before the median infection time) as opposed to late, 

given a set of antibody and functional measurements. If the DiProPerm test detects a difference, 

then the DWD loadings can be evaluated to assess which variables have the most influence on 

prolonging infection time. We also assess the type I error and power of the DiProPerm test on 

RLC experiments via a simulation experiment. Data from a repeated low-dose challenge study is 

used as an example of application to real-world study designs. 

The remainder of this paper is organized as follows. Section 3.2 introduces notation and 

the methods used for adapting the DiProPerm to the RLC study setting. Section 3.3 presents 

simulation experiments assessing the type I error and power performance of the DiProPerm.  

Section 3.4 demonstrates the application of the DiProPerm test on a real-world RLC data set.  

Section 3.5 discusses the future implications and limitations of the performance assessment and 

provides closing remarks and a summary of the entire paper. 

3.2   Methods 

Before we define the notation for an RLC problem, we first give a brief overview of the 

DiProPerm test. Let 𝑈𝑈1, … ,𝑈𝑈𝑛𝑛1~𝐹𝐹1 and 𝑉𝑉1, … ,𝑉𝑉𝑛𝑛2~𝐹𝐹2 be independent random samples of 𝑝𝑝 

dimensional random vectors from multivariate distributions 𝐹𝐹1 and 𝐹𝐹2 where 𝑝𝑝 ≫ 𝑛𝑛1,𝑛𝑛2 and 𝑛𝑛 =

𝑛𝑛1 + 𝑛𝑛2. The DiProPerm tests 

𝐻𝐻0:𝐹𝐹1 = 𝐹𝐹2 versus 𝐻𝐻1:𝐹𝐹1 ≠ 𝐹𝐹2 

The general idea of the DiProPerm can be explained in three steps. 
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1. Direction:  Find the normal vector to the separating hyperplane between two samples 

after training a binary linear classifier. 

2. Projection:  Project data on to the normal vector and calculate a univariate two-sample 

statistic. 

3. Permutation:  Compare the univariate statistics using a permutation test: 

a. permute class membership after pooling samples, 

b. re-train binary classifier and find the normal vector to the separating hyperplane, 

c. recalculate the univariate two sample statistic, 

d. repeat a-c multiple times (e.g., 1000) to determine the sampling distribution of the 

test statistic under the null 𝐻𝐻0, and 

e. compute p-value by comparing the observed statistic to the sampling distribution. 

In order to transcribe the DiProPerm to the RLC paradigm, consider the following RLC 

setup. Suppose there are 𝑛𝑛 animals in a study. Each animal is repeatedly challenged with a 

pathogen of interest (e.g., simian HIV). After each challenge, the animal is assessed for infection. 

If an animal is uninfected, the challenges continue; otherwise, the challenges cease. Data from 

such studies is naturally handled in a discrete time survival analysis framework. In particular, 𝑇𝑇�𝑖𝑖 

denotes the number of challenges until infection if the animal was challenged indefinitely. In 

practice, challenges typically cease for uninfected animals after a set number of challenges, say 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 (in general, 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 may differ between animals, but for simplicity here, it is assumed to be 

same across animals). Thus, the discrete survival time  𝑇𝑇�𝑖𝑖 may be right censored. That is, instead 

of observing 𝑇𝑇�𝑖𝑖, we observe 𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑚𝑚𝑚𝑚𝑛𝑛�𝑇𝑇�𝑖𝑖, 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚� as well as the event indicator 𝑌𝑌𝑖𝑖 = 𝐼𝐼(𝑇𝑇�𝑖𝑖 ≤

 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚). In addition, for each animal, we observe 𝑋𝑋𝑖𝑖 = (𝑋𝑋𝑖𝑖1, … ,𝑋𝑋𝑖𝑖𝑖𝑖) a vector of 𝑝𝑝 baseline 

covariates.   
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One inferential goal in RLC studies is to characterize the extent to which one or more of 

the baseline covariates 𝑋𝑋𝑖𝑖1, … ,𝑋𝑋𝑖𝑖𝑖𝑖 are associated with the time until infection 𝑇𝑇�𝑖𝑖. The DiProPerm 

is a tool that can be used to describe which baseline covariates contribute the most toward 

prolonging infection time. That is, the DiProPerm test can be applied to RLC data to test whether 

or not, given a set of antibody and functional measures, animals infected early (i.e., before the 

median infection time) differ from those infected late (i.e., after the median infection time). To 

adapt the DiProPerm to RLC data, let 𝑍𝑍𝑖𝑖 = 𝐼𝐼(𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝑇𝑇1𝑜𝑜𝑜𝑜𝑜𝑜, … ,𝑇𝑇𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜)) be an indicator 

for an animal being infected early and let 𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2, where 𝑛𝑛1 is the number of animals 

infected before the median infection time and 𝑛𝑛2 is the number of animals infected after the 

median infection time. In addition, let 𝑈𝑈 = �𝑈𝑈1𝑇𝑇 , … ,𝑈𝑈𝑛𝑛1
𝑇𝑇 � be the covariate matrix for animals 

infected early and let 𝑉𝑉 = �𝑉𝑉1𝑇𝑇 , … ,𝑉𝑉𝑛𝑛2
𝑇𝑇 � be the covariate matrix for animals infected late. 

Therefore, 𝑈𝑈~𝐹𝐹1 and 𝑉𝑉~𝐹𝐹2 where 𝐹𝐹1 and 𝐹𝐹2 are 𝑝𝑝 dimensional multivariate distributions and the 

DiProPerm tests 

𝐻𝐻0:𝐹𝐹1 = 𝐹𝐹2 versus 𝐻𝐻1:𝐹𝐹1 ≠ 𝐹𝐹2 

However, the use of the DiProPerm test requires one to select a direction on which to fit 

the binary classifier and to select a univariate statistic for the projection step. For the direction 

step, the distance-weighted discrimination direction is recommended for HDLSS data (Marron et 

al., 2007). The DWD was developed specifically for 𝑝𝑝 ≫ 𝑛𝑛 problems and has many attractive 

qualities such as being good at separation and robust to data piling. For the projection step, the 

mean difference statistic was selected as our univariate statistic. The mean difference statistic is 

calculated using the projected values on the normal vector separating the hyperplane from the 

direction step. In other words, suppose 𝑢𝑢1, … ,𝑢𝑢𝑛𝑛1 and 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛2 are the projected values from 

samples 𝑈𝑈 and 𝑉𝑉 respectively. The univariate mean difference statistic is calculated as |𝑢𝑢� − �̅�𝑣|. 
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For the permutation step, the infected early indicator, 𝑍𝑍𝑖𝑖, is permuted after pooling the 

two samples, then the mean difference statistic is calculated for the new permuted sample. This 

process is repeated for a set number of permutations (e.g., 1,000 permutations) to produce a 

permutation distribution of mean difference statistics. Two-sided p-values are calculated to be 

the proportion of permuted statistics higher than the observed value. If the p-value is less than 

the level of significance, 𝛼𝛼, the DiProPerm test rejects the null hypothesis and concludes there is 

a significant difference between the distributions of animals infected early and those infected late 

given a set of antibody and functional measures. However, the DiProPerm does not indicate 

explicitly which antibody and functional measures are most associated with being infected early.  

In order to characterized which antibody and functional measures drive the separation between 

the infected early and infected late distributions, one can look at the loadings of the DWD 

classifier (An et al., 2016; Nelson et al., 2019). The DWD loadings represent the relative 

contribution of each variable to the class difference. A higher absolute value of a variable’s 

loading indicates a greater contribution of that variable to the class difference.   

The type I error and power of the DiProPerm on RLC studies when 𝑛𝑛 is small and 𝑝𝑝 is 

large were evaluated via a simulation study. For the simulation study, all computations were 

performed in R 3.6.1. All statistical tests were two-sided with 𝛼𝛼 = 0.05. The R package 

diproperm was created for the purpose of this paper and is freely available on CRAN and GitHub 

(https://github.com/allmondrew/diproperm).  

3.3   Simulation 

A simulation study was conducted to explore the effects of the type 1 error and power of 

the DiProPerm in RLC settings. The simulation study consisted of varying the total sample size, 

𝑛𝑛; the true coefficient parameters, 𝛽𝛽; the number of non-zero predictors, 𝑘𝑘; and the number of 
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total predictors, 𝑝𝑝. Values of 𝑝𝑝 = 25, 50; 𝑛𝑛 = 10, 20, 30, and 𝑘𝑘 = 1, 3, 5, 7 were used across 

simulations. Higher values of 𝑝𝑝 were considered but were limited by computation time. The 

maximum number of challenges was 𝑐𝑐max = 20, the number of permutations was 1,000, and the 

number of simulations was 500 for each scenario. The DWD direction was chosen for the 

DiProPerm direction step, the mean difference univariate statistic was chosen for the projection 

step, and a balanced permutation was conducted in the permutation step. The permutations were 

balanced in the sense that after relabeling, the permuted early-infected group contains 𝑛𝑛1/2 

members from the observed early-infected group and 𝑛𝑛1/2 members from the observed late-

infected group.    

Recall, in the previous chapter, that the hazard function for RLC data can be defined as  

ℎ�𝑇𝑇�𝑖𝑖 = 𝑡𝑡�𝑇𝑇�𝑖𝑖 ≥  𝑡𝑡,𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖� =
e𝛾𝛾0𝑡𝑡+𝑚𝑚𝑖𝑖𝛽𝛽

1 + e𝛾𝛾0𝑡𝑡+𝑚𝑚𝑖𝑖𝛽𝛽
= 𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑡𝑡−1(𝛾𝛾0𝑡𝑡 + 𝑥𝑥𝑖𝑖𝛽𝛽) 

where 𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑡𝑡−1(𝛾𝛾0𝑡𝑡) represents the baseline hazard function at time 𝑡𝑡 corresponding to animals 

with covariates 𝑥𝑥𝑖𝑖 = (0, … ,0) and 𝛽𝛽 is the regression coefficient. In order to represent realistic 

RLC scenarios, the baseline hazard and regression coefficients were chosen in such a way that 

the mean infection probability per exposure was between 0.2 and 0.3. For 𝑗𝑗 = 1, … ,𝑝𝑝, covariate 

vectors 𝑋𝑋𝑖𝑖 =  (𝑋𝑋𝑖𝑖1, … ,𝑋𝑋𝑖𝑖𝑖𝑖) were drawn from a MVN distribution with 𝜇𝜇 = 0 and covariance 

matrix 𝛴𝛴 with 1s along the diagonal and 0.05 along the off-diagonals. 

The RLC data were simulated as follows. 

For each 𝑚𝑚 = 1, … ,𝑛𝑛, 

1) Sample 𝑋𝑋𝑖𝑖 from 𝑀𝑀𝑉𝑉𝑀𝑀(0,𝛴𝛴). 

2) For 𝑡𝑡 = 1, … , 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, sample binary event 𝑌𝑌𝑖𝑖𝑡𝑡 from 𝐵𝐵𝑚𝑚𝐵𝐵𝑛𝑛�ℎ(𝑡𝑡|𝑥𝑥𝑖𝑖)�. 

a. If 𝑌𝑌𝑖𝑖𝑡𝑡 = 1, then set 𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑡𝑡 and stop. 
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b. Otherwise, if 𝑌𝑌𝑖𝑖𝑡𝑡 = 0 and 𝑡𝑡 = 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚, then set 𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 and stop. 

c. Otherwise, increment 𝑡𝑡 by 1 and repeat step 2. 

3) If 𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝑇𝑇1𝑜𝑜𝑜𝑜𝑜𝑜, … ,𝑇𝑇𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜) then 𝑍𝑍𝑖𝑖 = −1, otherwise 𝑍𝑍𝑖𝑖 = 1. 

Small, moderate, and large effect true parameter coefficients, 𝛽𝛽, were used for each 

simulation. Table 3.1 shows the various combinations of linear effects and non-zero coefficients 

used for the small, moderate, and large effect scenarios.   

For assessing type I error, we let 𝑘𝑘 = 0 such that the two distributions between the early 

and late infected animals were identical. The proportion of times the DiProPerm test’s p-value 

was less than 𝛼𝛼 = 0.05 over all simulations was considered the type I error, that is, the number of 

times one incorrectly rejects the null hypothesis when it is true. The results for type I error are 

summarized in Table 3.2. All scenarios in Table 3.2 had a type I error less than or equal to 𝛼𝛼.  

Thus, the DiProPerm preserved type I error regardless of 𝑛𝑛 or 𝑝𝑝. In other words, if the 

DiProPerm detected a difference between the two distributions of early and late infection, then 

the probability this detection was a false positive was at most 𝛼𝛼 = 0.05 even when 𝑛𝑛 is small and 

𝑝𝑝 is large. 

For assessing the power of the DiProPerm in RLC settings, we let 𝑘𝑘 ≠ 0 such that the two 

distributions of early and late infected animals were not identical. Then, the proportion of times 

the DiProPerm test’s p-value was less than 𝛼𝛼 = 0.05 over all simulations was considered the 

power – that is, the number of times one correctly rejects the null hypothesis in favor of the 

alternative that the distributions are not identical. Figure 3.1 shows the power of the DiProPerm 

test across each simulation scenario. 

From Figure 3.1, the power decreased as the number of predictors increased. However, 

the power increased as the sample size, effect size, and number of non-zero coefficients 
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increased for both 𝑝𝑝 = 25 and 𝑝𝑝 = 50. For 𝑛𝑛 = 10, the power of 𝑝𝑝 = 25 was marginally higher 

than 𝑝𝑝 = 50 even as the number of non-zero coefficients and effect size increased. However, for 

𝑛𝑛 = 30, the number of non-zero coefficients had a major impact on the power of 𝑝𝑝 = 25 versus 

𝑝𝑝 = 50, with 𝑝𝑝 = 25 having a roughly 10–20% higher power than 𝑝𝑝 = 50 as 𝑘𝑘 increased.  The 

maximum power achieved across all scenarios for when 𝑛𝑛 = 10 was around 20%, for when 𝑛𝑛 = 

20 was about 30%, and for when 𝑛𝑛 = 30 was about 60%. A power of 80% was achieved when 

𝑛𝑛 = 30, 𝑘𝑘 = 8, and 𝑝𝑝 = 50 with a large effect in one direction. That is, the 𝛽𝛽 vector consisted of 

eight positive large effects. A power of 82% was achieved when 𝑛𝑛 = 50, 𝑘𝑘 = 10, and 𝑝𝑝 = 50 

assuming a large effect size, five positives, and five negatives.   

In order to assess whether the DiProPerm’s power could be improved, we compared the 

DiProPerm’s power to that of the correlation test for when 𝑘𝑘 = 1. Figure 3.2 shows the power 

curves of the DiProPerm versus the correlation test for when 𝑝𝑝 = 25 and 𝑝𝑝 = 50. As the number 

of predictors increased, the power slightly decreased for both the correlation test and the 

DiProPerm. However, as the sample size and effect size increased, the power of the correlation 

test was greater than the DiProPerm’s, especially in the moderate and large effect size scenarios. 

For 𝑛𝑛 = 10, the correlation test’s power was marginally higher than the DiProPerm’s power, 

especially when the effect size was small or moderate. However, when 𝑛𝑛 = 30, the correlation 

test’s power was higher than the DiProPerm’s, achieving a maximum power of 85% compared to 

the DiProPerm’s 16% for when 𝑛𝑛 = 30 with a large effect size. Therefore, when 𝑛𝑛 is really 

small, if one were an oracle and knew which non-zero coefficient was associated with the 

outcome, one would only do a little better than with the DiProPerm, suggesting that minimal 

improvement can be achieved for the DiProPerm when 𝑛𝑛 is small and 𝑝𝑝 is large. 
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3.4   Application 

In this section, a motivating example is given using the MIV02 data mentioned in section 

1.5. The median time until infection was five challenges, with 𝑛𝑛1 = 7 monkeys infected early 

and 𝑛𝑛2 = 7 infected late. Figure 3.3 shows the results of the DiProPerm on the MIV02 data set.  

The top graph is the observed projection score distribution of the two classes, the two middle 

graphs are the projection score distributions of the permutation with the smallest and largest test 

statistic value, and the bottom graph is the test statistic permutation distribution and the observed 

statistic value marked by the red dotted line. The class label “-1” designates monkeys infected 

early and the label “1” indicates monkeys infected late. From the observed projection score 

distribution plot, there is overlap between the two distributions for monkeys infected early and 

those infected late in the DWD direction. Also, the minimum and maximum mean difference 

value graphs overlap, suggesting that the two distributions might be similar. Looking at the 

permutation distribution, the observed mean difference statistic on the DWD direction was 

258.37 (p-value = 0.762). Therefore, the permutation p-value suggests there is no difference 

between the distribution of monkeys infected early and those infected late given their antibody 

and functional features.   

Despite not detecting a difference between the two distributions, we continue with 

caution to assess the loadings of the DWD direction. Table 3.3 shows a list of the five highest 

absolute value DWD loadings along with their names and indexes in the data set. The top five 

loadings were CD3, activation CD69 total, CD20, eosinophil count, and the TFP/TFP category 

of the TRIM5 genotype, in that order. The main target cells for HIV/SIV/SHIV are CD3 and 

CD4 T cells. However, CD3 is a marker of all T cells, including the CD3 and CD8 T cells, which 

cannot be infected. Therefore, it is unknown why CD3 frequencies should help prolong infection 
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when there is no detection of CD4 and CD8 T cells. From the MIV02 study, CD69 was shown to 

be an early T-cell activation marker for SHIV, and the TRIM5 genotype TFP/TFP has been 

shown to confer resistance to SHIV (F. Wu et al., 2016). Thus, the inclusion of CD69 and 

TFP/TFP is not unreasonable, since lower counts of CD69 and the presence of the TFP/TFP 

TRIM5 genotype help prolong infection time. However, CD20 is a surface expressed on all B 

cells. B cells are the cells that produce antibodies, but they also present viral antigens to T cells 

that can then exert antiviral functions. Therefore, if B cells play a role in prolonging infection 

time, it is likely more indirect. For eosinophils, there is no former evidence suggesting 

eosinophils may help prolong infection time.  Some of the top five variables of the DWD 

loadings for prolonging infection time are consistent with what has been shown in the literature, 

while the other variables may or may not help prolong infection time. Therefore, one might want 

to formulate future hypotheses for these five variables in future RLC studies for prolonging 

infection time. 

3.5   Discussion 

The DiProPerm test is a machine learning approach for assessing whether or not two 

high-dimensional distributions are identical when the sample size is small and number of 

predictors is large. The DiProPerm test has never before been adapted to the RLC paradigm 

when 𝑛𝑛 is small and 𝑝𝑝 is large. In this article, we suggest a way to adapt the DiProPerm to RLC 

studies by separating animals into two classes (i.e., early vs. late infections) based on median 

infection time. The power and type I error of the DiProPerm were evaluated via a simulation 

study with an application to a real-world RLC data set. Simulated data showed that the 

DiProPerm protected against false positives regardless of the sample size and number of 

predictors. Thus, if the DiProPerm detects that there is a difference between the early and late 

infected distributions, then there is a high probability that this difference is a true positive.    
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The sample size needed for achieving a high power is heavily dependent on the number 

of predictors, the number of non-zero coefficients, and the effect sizes in the data. The 

DiProPerm did not achieve 80% power until either the sample size was as large as 50 and 

number of large effect non-zero predictors was 10 – five positives and five negatives – or the 

sample size was 30 with eight non-zero, large effect positive predictors out of total of 50 

predictors. Simulations showed that the power increased as the sample size, number of non-zero 

coefficients, and effect size increased but decreased as the number of predictors increased. This 

suggests that for RLC problems with a lot of predictors and low sample size, the DiProPerm is 

less powerful. However, compared with the correlation test, we argue that there is not much 

room for improvement for the DiProPerm in these settings when 𝑛𝑛 is small and 𝑝𝑝 is large. That 

is, when 𝑛𝑛 is really small, if one were an oracle and knew which non-zero coefficient was 

associated with the outcome, one would only do a little better than with the DiProPerm using the 

correlation test. Therefore, the DiProPerm improves upon the inference of RLC studies when 𝑛𝑛 

is small and 𝑝𝑝 is large. 

As shown in the previous chapter, penalized regression techniques have a low chance of 

selecting true positives and a high chance of selecting false positives for RLC data when 𝑛𝑛 is 

small and 𝑝𝑝 is large. However, the DiProPerm improves upon penalized regression for RLC data 

by having a higher chance of detecting a true signal and a lower chance of detecting a false 

positive. The DiProPerm also has more power than penalized regression techniques for RLC 

data, detecting fewer false negative signals than penalized regression. Additionally, the 

DiProPerm allows one to explore which variables may contribute most toward prolonging an 

animal’s time until infection, which is information penalized regression techniques cannot 

reliably provide. If the DiProPerm detects a difference between early and late infected animals, 
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then the highest absolute loadings in the DWD direction are the variables that are driving most of 

this separation between distributions.  And because the DiProPerm preserves type I error, one 

can conclude with a high probability that these variables are indeed associated with prolonging 

infection time. The DiProPerm, for RLC studies when 𝑛𝑛 is small and 𝑝𝑝 is large, is a very strong 

tool that can discover potential associations between various antibody and functional covariates 

and prolonged infection time, thereby improving the development of future vaccine candidates.  

The DiProPerm should not be used for making scientific claims in RLC data about which 

variables are associated with time to infection. Rather, the DiProPerm can be used to generate 

rational, data-driven hypotheses for future RLC studies. 
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Table 3.1. Linear effect coefficients, 𝛃𝛃, for each number, 𝐤𝐤, of non-zero coefficients in the 
true model 

Effect Size 𝑘𝑘 𝛽𝛽 

Small 

1 (log(1.5), 0,…,0) 
3 (1, -1, log(1.5), 0,…,0) 
5 (1, -1, 1, -1, log(1.5), 0,…,0) 
7 (1, -1, 1, -1, 1, -1, log(1.5), 0,…,0) 

Moderate 

1 (log(2), 0,…,0) 
3 (1, -1, log(2), 0,…,0) 
5 (1, -1, 1, -1, log(2), 0,…,0) 
7 (1, -1, 1, -1, 1, -1, log(2), 0,…,0) 

Large 

1 (log(3), 0,…,0) 
3 (1, -1, log(3), 0,…,0) 
5 (1, -1, 1, -1, log(3), 0,…,0) 
7 (1, -1, 1, -1, 1, -1, log(3), 0,…,0) 
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Table 3.2. Type I error assessment for the DiProPerm 

𝑀𝑀 𝑝𝑝 = 50 𝑝𝑝 = 100 𝑝𝑝 = 200 
10 0.05 0.05 0.04 
20 0.04 0.04 0.05 
30 0.03 0.03 0.04 
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Table 3.3. Top 5 DWD loadings from fitting the DiProPerm on MIV02 data set 
Variable Index DWD Loading 

CD3 2 0.43 
Activation CD69 Total 27 -0.36 
CD20 1 0.35 
Eosinophils 20 -0.22 
TRIM5 Genotype (“TFP/TFP”) 138 -0.15 
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Figure 3.1. Power assessment of the DiProPerm by varying sample size, effect size, and 
the number of non-zero coefficients. 
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Figure 3.2. Power comparison between the correlation test and the DiProPerm by varying 
sample size, effect size, and the number of predictors for when 𝒌𝒌 = 𝟏𝟏. 
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Figure 3.3. Diagnostic plot for fitting the DiProPerm on the MIV02 study data. The top 
graph is the observed projection score distribution of the two classes, the two middle 
graphs are the projection score distributions of the permutation with the smallest and 
largest test statistic value, and the bottom graph is the test statistic permutation 
distribution and the observed statistic value marked by the red dotted line. 
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CHAPTER 4: DIPROPERM: A SOFTWARE PACKAGE FOR THE DIPROPERM TEST 

4.1   Introduction 

Advancements in modern technology and computer software have dramatically increased 

the demand and feasibility to collect high-dimensional data sets. Such data possess challenges 

which require the creation of new and adaptation of existing statistical methods. One such 

challenge is that we may observe many more predictors, 𝑝𝑝, than the number of observations, 𝑛𝑛, 

especially in small sample size studies. These data structures are known as high-dimensional, 

low sample size (HDLSS) data sets, or “small 𝑛𝑛, big 𝑝𝑝”. 

High-dimensional low sample size data emerge frequently in many health-related fields. 

For example, in genomic studies, a single microarray experiment might produce tens of 

thousands of gene expressions compared to the few samples studied, often being less than a 

hundred (Alag, 2019). In medical imaging studies, a single region of interest for analysis in an 

MRI or CT-scan image often contains thousands of features compared to the small number of 

samples studied (Limkin et al., 2017). In pre-clinical evaluation of vaccines and other 

experimental therapeutic agents, the number of biomarkers measured (e.g., immune responses) 

may be much greater than the number of samples studies (e.g., mice, rabbits, or non-human 

primates) (Kimball et al., 2018). 

One common task in the HDLSS setting entails constructing a classifier which 

appropriately assigns samples to the correct class. For example, in pre-clinical studies 

investigators may wish to predict whether an animal survives to a certain time point based on 

high-dimensional biomarker data. When the data are to be partitioned into two classes, binary 
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linear classifiers have been shown to be especially useful in HDLSS settings and preferable to 

more complicated classifiers because of their ease of interpretability (Aoshima et al., 2018). 

However, linear classifiers may find spurious linear combinations in HDLSS settings (Marron et 

al., 2007). That is, a binary linear classifier may find, for two identical high-dimensional 

distributions, a linear combination of features which incorrectly suggests the two classes are 

different. Thus, it is important to assess whether a binary linear classifier is detecting a 

statistically significant difference between two high-dimensional distributions. 

4.2   DiProPerm 

The direction-projection-permutation (DiProPerm) test was developed to test whether or 

not a binary linear classifier detected a difference between two high-dimensional distributions 

(Wei et al., 2016). DiProPerm uses one-dimensional projections of the data based on the binary 

linear classifier to construct a univariate test statistic, and then permutes class labels to determine 

the sampling distribution of the test statistic under the null. Importantly, the DiProPerm test is 

exact, i.e., the type I error is guaranteed to be controlled at the nominal level for any sample size. 

To better understand the mechanics of DiProPerm, let 𝑈𝑈1, … ,𝑈𝑈𝑛𝑛~𝐹𝐹1 and 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚~𝐹𝐹2 be 

independent random samples of 𝑝𝑝 dimensional random vectors from multivariate distributions 𝐹𝐹1 

and 𝐹𝐹2 where 𝑝𝑝 may be larger than 𝑚𝑚 and 𝑛𝑛. The DiProPerm tests 

𝐻𝐻0:𝐹𝐹1 = 𝐹𝐹2 versus 𝐻𝐻1:𝐹𝐹1 ≠ 𝐹𝐹2 

The general idea of the DiProPerm can be explained in three steps. 

1. Direction:  Find the normal vector to the separating hyperplane between two samples 

after training a binary linear classifier. 

2. Projection:  Project data on to the normal vector and calculate a univariate two-sample 

statistic. 
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3. Permutation:  Compare the univariate statistics using a permutation test: 

a. permute class membership after pooling samples, 

b. re-train binary classifier and find the normal vector to the separating hyperplane, 

c. recalculate the univariate two sample statistic, 

d. repeat a-c multiple times (e.g., 1000) to determine the sampling distribution of the 

test statistic under the null 𝐻𝐻0, and 

e. compute p-value by comparing the observed statistic to the sampling distribution. 

Different binary linear classifiers may be used in the first step of DiProPerm. Linear 

discriminant analysis, particularly after conducting principal component analysis, is one possible 

classifier for the direction step. However, using LDA with PCA in the HDLSS setting has some 

disadvantages, including a lack of interpretability, a sensitivity to outliers, and a tendency to find 

spurious linear combinations due to a phenomenon known as data piling (Aoshima et al., 2018; 

Marron et al., 2007). Data piling occurs if data are projected onto some projection direction and 

many of the projections are the same, or piled on one another. The support vector machine 

(SVM) is a another popular classifier (Hastie et al., 2001). The SVM finds the hyperplane that 

maximizes the minimum distance between data points and the separating hyperplane. However, 

the SVM can also suffer from data piling in the HDLSS setting. To overcome data piling, the 

distance-weighted discrimination (DWD) classifier was developed (Marron et al., 2007). The 

DWD classifier finds the separating hyperplane minimizing the average inverse distance between 

data points and the hyperplane. The DWD performs well in HDLSS settings with good 

separation and is more robust to data piling. 

In the second step of DiProPerm, a univariate statistic is calculated using the projected 

values on to the normal vector to the separating hyperplane from the first step. Suppose 𝑢𝑢1, … ,𝑢𝑢𝑛𝑛 
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and 𝑣𝑣1, … , 𝑣𝑣𝑚𝑚 are the projected values from samples 𝑈𝑈1, … ,𝑈𝑈𝑛𝑛 and 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 respectively. One 

common choice for the univariate test statistic for DiProPerm includes the difference of means 

statistic, |𝑢𝑢� − �̅�𝑣|. Other two-sample univariate statistics such as the two-sample t-statistic or 

difference in medians are also possible for use with the DiProPerm.   

The last step of DiProPerm entails determining the distribution of the test statistic under 

the null. In this step, the two samples are pooled, class labels are permuted, then a univariate 

statistic is calculated. Repeat this process multiple times (say 1000) to determine the sampling 

distribution of the test statistic under the null 𝐻𝐻0. Two-sided p-values are then calculated by the 

proportion of statistics higher than the original value.  

When the DiProPerm test is implemented using the DWD classifier, it is common 

practice to look at the loadings of the DWD classifier (An et al., 2016; Nelson et al., 2019). The 

DWD loadings represent the relative contribution of each variable to the class difference. A 

higher absolute value of a variable’s loading indicates a greater contribution for that variable to 

the class difference. Combining the use of the DiProPerm and evaluation of the DWD loadings 

in applications can provide insights into high-dimensional data and be used to generate rational 

hypotheses for future research. 

The DiProPerm test has been used in several areas of biomedical research including 

osteoarthritis and neuroscience (An et al., 2016; Bendich et al., 2016; Nelson et al., 2019). 

However, currently there does not exist an R package which implements DiProPerm. Therefore, 

we developed diproperm, a simple, free, publicly available R software package to analyze data 

from two high-dimensional distributions. diproperm displays diagnostic plots for a specified 

univariate statistic and calculates p-values for the DiProPerm test. The loadings for the binary 
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linear classifier are also available for display in order from highest to lowest relative to their 

contribution toward the separation of the two distributions. 

The remainder of this paper is organized as follows. Section 4.3 describes the use of the 

diproperm package and provides an example on simulated data. Section 4.4 demonstrates the use 

of the diproperm package on a real-world data set. Section 4.5 provides closing remarks and a 

summary of the entire paper. 

4.3   The diproperm package 

The diproperm package is comprised of three functions: 

• DiProPerm(): Conducts a DiProPerm test 

• plotdpp(): Plots diagnostics from the DiProPerm test 

• loadings(): Returns the variable indices with the highest loadings in the binary 

classification. The absolute values of the loading values indicate a variable's relative 

contribution toward the separation between the two classes. 

4.3.1   diproperm example 

The example below creates a Gaussian data set containing 100 samples, 2 features, 

clustered around 2 centers with a standard deviation of 2. The class labels are then re-classified 

to -1 and 1 to match the input requirements of DiProPerm(). The DiProPerm test is then 

conducted using the DWD classifiers, the mean difference univariate statistic, and 1000 

permutations. The results from DiProPerm() are then displayed with plotdpp(). Last, the top five 

indices of the highest absolute loadings are listed. 

devtools::install_github("elbamos/clusteringdatasets") 
library(clusteringdatasets)  
 
cluster.data <- make_blobs(n_samples = 100, n_features = 2, centers = 2, 
cluster_std = 2) 
 
X <- cluster.data[[1]]  
y <- cluster.data[[2]]  
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y[y==2] <- -1  
 
dpp <- DiProPerm(X,y,B=1000,classifier = "dwd",univ.stat = "md")  
 
plotdpp(dpp)  
 
loadings(dpp,loadnum = 5) 

 
4.3.2   Description 

The main function to be called first by the user is DiProPerm(), which takes in an 𝑛𝑛 × 𝑝𝑝 

data matrix and a vector of 𝑛𝑛 binary class labels both provided by the user. Factor variables for 

the data matrix must be coded as 0/1 dummy variables and the class labels for the vector of 

binary class labels must be coded as -1 and 1. By default the DiProPerm() uses the DWD 

classifier, the mean difference as the univariate statistics, and 1000 balanced permutations. The 

permutations are balanced in the sense that after relabeling, the new -1 group contains 𝑛𝑛/2 

members from the original -1 group and 𝑛𝑛/2 members not from the original -1 group. 

DiProPerm() implements DWD from the genDWD function in the DWDLargeR package (Lam et 

al., 2018a, 2018b). The penalty parameter, C, in the genDWD function is calculated using the 

penaltyParameter function in DWDLargeR. More details on the algorithm used to compute 

genDWD and penaltyParameter can be found in Lam et al. (2018a). Another option included in 

DiProPerm() for the binary linear classifier is "md", mean difference direction.  Users can also 

implement an unbalanced, randomized permutation design if desired. DiProPerm() uses parallel 

processing to delegate computation to the number of cores on the user’s computer for increased 

efficiency. DiProPerm() returns a list of the observed data matrix, vector of observed class 

labels, observed test statistic, projection scores used to compute the observed test statistic, the 

loadings of the binary classification, the z-score, cutoff value for an 𝛼𝛼 level of significance, the 

p-value for the DiProPerm test, a list of each permutation’s projection scores and permuted class 

labels, and a vector of permuted test statistics the size of the number of permutations used.  
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 After fitting the DiProPerm(), the user can use plotdpp() to create a panel plot for 

assessing the diagnostics of the DiProPerm test. plotdpp() takes in a DiProPerm list and the user 

may specify which diagnostics they would like to display. By default, plotdpp() displays a facet 

plot with the observed score distribution, the projection score distribution of the permutation 

with the smallest test statistic value, the projection score distribution of the permutation with the 

largest test statistic value, and the test statistic permutation distribution. For the permutation 

distribution plot, the z-score, cutoff value, observed test statistic and p-value are displayed on the 

graph. Larger, individual graphs may be displayed by using the plots option in plotsdpp().  

Additional graphs include the projection score distributions for the first permutation and second 

permutations. The diagnostic plots show the user the characteristics of their data and facilitate 

the visual assessment of the separation of the two high-dimensional distributions being tested.  

Lastly, after calling the DiProPerm(), the user may call the loadings() function. The 

loadings() function returns the variable indexes in the data matrix which have the highest 

absolute loadings in the binary classification. Higher absolute loading values indicate a greater 

contribution for a particular variable toward the separation between the two classes. By default, 

loadings() returns the indices for all variables sorted by their absolute loading value. Therefore, 

the top variable index is the variable which contributes the most toward the separation of the two 

classes and the last variable is the one which contributes the least. The user may also change the 

number of loadings displayed. 

4.4   Application 

To illustrate use of the diproperm package, consider the mushrooms data set which is 

freely available from the UCI Machine Learning Repository (Dua & Graff, 2019) and within 

diproperm. This data set includes various characterizations of 23 species of gilled mushrooms in 

the Agaricus and Lepiota family.  Each mushroom species is labeled as either definitely edible or 
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definitely poisonous/unknown. There are 𝑛𝑛 = 8124 mushrooms total, and 𝑝𝑝 = 112 binary 

covariates coded as 0/1 corresponding to 22 categorical attributes. Below we demonstrate the 

diproperm package functionality using data from the first 𝑛𝑛 = 50 mushrooms in the data set. 

Step 1:  Load and clean the data 

devtools::install_github("allmondrew/diproperm") 
library(diproperm) 
data(mushrooms) 

 
The above code installs the diproperm package and loads the mushroom data into R.  

Now check the structure of the data to make sure it is compatible with DiProPerm(). 

dim(mushrooms$X) 
[1] 112 8124 
 
table(mushrooms$y) 
  -1    1  
4208 3916 

 
The vector of class labels must be -1 or 1 for DiProPerm() which is the case for this data; 

however, the data set is in 𝑝𝑝 × 𝑛𝑛 format.  For DiProPerm(), the dataset must be in 𝑛𝑛 × 𝑝𝑝 format.  

This can be done using the transpose function from the Matrix package in R (Bates & Maechler, 

2019). After taking the transpose, we subset the data and vector of class labels to the first 50 

observations and store the results. 

X <- Matrix::t(mushrooms$X) 
X <- X[1:50,] 
y <- mushrooms$y[1:50] 

 
Step 2:  Conduct DiProPerm 

Now that the data is in the proper format the call to DiProPerm() is as follows. 

dpp <- DiProPerm(X=X,y=y,B=1000) 
 
 Algorithm stopped with error 2.35e-08 
 
 sample size = 50, feature dimension = 112 
 positive sample = 12, negative sample = 38 
 number of iterations = 51 
 time taken = 0.39 
 error of classification (training) = 0.00 (%) 
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 primfeas = 3.49e-10 
 dualfeas = 0.00e+00 
 relative gap = 2.89e-07 

 
Characteristics of the DWD algorithm used to find the solution for the observed data are 

displayed by DiProPerm(). The algorithm took 51 iterations and 0.39 seconds to converge to the 

tolerance threshold with a zero percent classification error on the training data set. The runtime 

for 1000 permutations was less than 3 minutes on a four-core machine but would be faster on a 

machine with more cores. The dpp object stores the output list from DiProPerm() described in 

the package. Storing the information allows us to plot the diagnostics in the next step.   

Step 3:  Plot diagnostics 

plotdpp(dpp) 

 
Figure 4.1 displays the default diagnostics for a DiProPerm list. From the observed 

projection score distribution, one can see clear separation between the two classes. Also, from 

the projected score distributions of the permutations which yield the smallest and largest test 

statistic, we see the score distributions overlap well so there is some visual justification that the 

distributions in the observed plot are truly different. Lastly, the bottom plot shows the sampling 

distribution under the null is located around 0.4 while the observed test statistic is greater than 2. 

Each individual plot can also be output by the following set of commands. 

plotdpp(dpp,plots="obs") 
plotdpp(dpp,plots="min") 
plotdpp(dpp,plots="max") 
plotdpp(dpp,plots="permdist") 

 
The permutation p-value in Figure 4.1 suggests that the two high-dimensional 

distributions of mushroom attributes are indeed different between the two classes. Also displayed 

is a z-score, calculated by fitting a Gaussian distribution to the test statistic permutation 

distribution. The mushroom data z-score 13.2 indicates the observed test statistic is 

approximately 13 standard deviations from the expected value of the test statistic under the null 
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hypothesis. Finally, the cutoff value 0.678 is displayed, corresponding to the critical value for a 

hypothesis test at the 0.05 significance level. 

Step 4:  Examine loadings 

In order to assess which variables contributed most toward the separation in step 3 we 

can print the top five contributors with the following code. 

loadings(dpp,loadnum = 5) 
 
  index sorted_loadings 
1    29       0.5395016 
2    37       0.3170037 
3    36      -0.2481763 
4   111       0.2228389 
5    20      -0.2087244 

 
The top five contributors toward the separation seen in the observed distribution in Figure 4.1 are 

indices 29, 37, 36, 111, and 20. These indices correspond to a pungent odor, narrow gill size, 

broad gill size, urban habitat, and yellow cap color, respectively. These results are similar to 

previous analyses which have also found odor, gill size, habitat, and cap color predictive of 

mushroom edibility (Pinky et al., 2019; Wibowo et al., 2018). 

4.5   Summary  

Binary linear classifiers can suffer from finding spurious separating directions in the 

HDLSS setting, i.e., data may be sampled from two identical distributions but the binary linear 

classifier may find a linear combination of features such that the two classes appear to be very 

different. The DiProPerm test was created to test whether or not the separation induced by the 

binary linear classifier is truly separate or just a result of over-fitting. The diproperm package 

allows the user to visually assess and empirically test if there is a difference between the high-

dimensional distributions of the two classes and, if so, evaluate the key features contributing to 

the separation between the classes.  
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Figure 4.1. The diagnostic plot from plotdpp() for the mushrooms data set.  The top graph 
is the observed projection score distribution of the two classes, the two middle graphs 
are the projection score distributions of the permutation with the smallest and largest 
test statistic value, and the bottom graph is the test statistic permutation distribution and 
the observed statistic value marked by the red dotted line.   
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CHAPTER 5: CONCLUSION 

The exponential growth of modern technology and computational efficiency have 

exacerbated the need and ability to collect large data sets. However, there are many applications 

in public health research where small samples in pre-clinical and human assessment are 

unavoidable, particularly for the development of new drugs and vaccines. One such application 

is the repeated low-dose challenge study. In RLC experiments, animals who are assigned to an 

active or placebo candidate vaccine are repeatedly challenged (exposed) with some target 

pathogen, either until infection or until some maximum number of challenges is reached (Nolen 

et al., 2015). It is becoming increasingly popular in RLC studies to collect an immense number 

of variables in relation to a hyper-small sample size. In this dissertation, the performance of 

penalized regression techniques was described on RLC data when 𝑛𝑛 is small and 𝑝𝑝 is large, a 

novel method known as the direction-projection-permutation (DiProPerm) test was adapted to 

RLC data, and an associated diproperm R package was created and demonstrated on a real-world 

data set. 

Penalized regression techniques, like the lasso, are sometimes used in RLC experiments 

where 𝑛𝑛 is typically small and 𝑝𝑝 is large. However, the performance of such methods is not well 

established for this experiment paradigm. In chapter 2, the lasso, elastic net, and a newly 

proposed discrete survival time penalized regression model were compared using simulated RLC 

data. The performances of these models were evaluated in simulation experiments and applied to 

a recent RLC study evaluating a candidate HIV vaccine. All three models rarely selected true 

positives regardless of the effect size, number of predictors, or the number of non-zero 
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coefficients, with many models containing only false positives. Thus, penalized regression 

models should be used cautiously in the RLC setting. 

In chapter 3, the use of the DiProPerm test on RLC data was explored. The DiProPerm 

test was adapted to the RLC paradigm to test whether animals are more likely to become infected 

early (i.e., before the median infection time) as opposed to late given a set of antibody and 

functional measurements. The type I error and power of the DiProPerm test on RLC experiments 

were described in a simulation study. The classifier’s loadings from the DiProPerm were 

evaluated to determine which variables had the most influence on median time to HIV infection.  

Simulation processes and real data applications revealed the advantages of the DiProPerm over 

penalized regression techniques on RLC data when 𝑛𝑛 is small and 𝑝𝑝 is large. The DiProPerm can 

help medical professionals conducting pre-clinical experiments in RLC studies to generate 

reasonable hypotheses regarding which types of functional measures help prolong infection time. 

The goal of this dissertation was to improve upon the inferences regarding RLC data for 

when 𝑛𝑛 is small and 𝑝𝑝 is large. Simulation studies showed that penalized regression techniques 

like the lasso are unfavorable for use on RLC data because of the low probability of selecting a 

true positive and the high probability of selecting a false positive. Therefore, RLC investigators 

should be cautious when utilizing penalized regression techniques. Next, the DiProPerm test was 

adapted to the RLC paradigm and its characteristics were described by a simulation study. The 

DiProPerm test preserved type I error but had a low power for most scenarios unless all 

covariates had large effects in one direction (i.e., all positive or all negative effects). The 

DiProPerm test was applied to a real-world data set and the implications for the highest absolute 

value loadings of the classifier were described for the data set. Thus, the DiProPerm can be used 

for inference on RLC data when 𝑛𝑛 is small and 𝑝𝑝 is large to derive rational, data-driven 
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hypotheses for future research. Additionally, a DiProPerm R package was created for use by 

RLC investigators and anyone else interested in using the DiProPerm. The diproperm R package 

was demonstrated and applied to a real-world data set. Moving forward, penalized regression 

techniques on RLC studies are not recommended to make claims about the associations between 

covariates and the outcome. The DiProPerm test is a better alternative than penalized regression 

for use on RLC data when 𝑛𝑛 is small and 𝑝𝑝 is large and can be implemented with a user-friendly 

R package to make rational hypotheses for prospective research. 

 

  



 

 91 

REFERENCES 

Aban, I. B., & George, B. (2015). Statistical considerations for preclinical studies. Experimental 
Neurology, 270, 82–87. https://doi.org/10.1016/j.expneurol.2015.02.024 

Ackerman, M. E., Das, J., Pittala, S., Broge, T., Linde, C., Suscovich, T. J., Brown, E. P., 
Bradley, T., Natarajan, H., Lin, S., Sassic, J. K., O’Keefe, S., Mehta, N., Goodman, D., 
Sips, M., Weiner, J. A., Tomaras, G. D., Haynes, B. F., Lauffenburger, D. A., … Alter, G. 
(2018). Route of immunization defines multiple mechanisms of vaccine-mediated 
protection against SIV. Nature Medicine, 24(10), 1590–1598. 
https://doi.org/10.1038/s41591-018-0161-0 

Akaike, H. (1998). Information Theory and an Extension of the Maximum Likelihood Principle 
BT  - Selected Papers of Hirotugu Akaike (E. Parzen, K. Tanabe, & G. Kitagawa (eds.); pp. 
199–213). Springer New York. https://doi.org/10.1007/978-1-4612-1694-0_15 

Alag, A. (2019). Machine learning approach yields epigenetic biomarkers of food allergy: A 
novel 13-gene signature to diagnose clinical reactivity. PLOS ONE, 14(6), e0218253. 
https://doi.org/10.1371/journal.pone.0218253 

An, H., Marron, J. S., Schwartz, T. A., Renner, J. B., Liu, F., Lynch, J. A., Lane, N. E., Jordan, J. 
M., & Nelson, A. E. (2016). Novel statistical methodology reveals that hip shape is 
associated with incident radiographic hip osteoarthritis among African American women. 
Osteoarthritis and Cartilage, 24(4), 640–646. https://doi.org/10.1016/j.joca.2015.11.013 

Aoshima, M., Shen, D., Shen, H., Yata, K., Zhou, Y.-H., & Marron, J. S. (2018). A survey of 
high dimension low sample size asymptotics. Australian & New Zealand Journal of 
Statistics, 60(1), 4–19. https://doi.org/10.1111/anzs.12212 

Bates, D., & Maechler, M. (2019). Matrix: Sparse and Dense Matrix Classes and Methods. 
https://cran.r-project.org/package=Matrix 

Bendich, P., Marron, J. S., Miller, E., Pieloch, A., & Skwerer, S. (2016). Persistent Homology 
Analysis of Brain Artery Trees. The Annals of Applied Statistics, 10(1), 198–218. 
https://doi.org/10.1214/15-AOAS886 

Bradley, T., Pollara, J., Santra, S., Vandergrift, N., Pittala, S., Bailey-Kellogg, C., Shen, X., 
Parks, R., Goodman, D., Eaton, A., Balachandran, H., MacH, L. V., Saunders, K. O., 
Weiner, J. A., Scearce, R., Sutherland, L. L., Phogat, S., Tartaglia, J., Reed, S. G., … 
Haynes, B. F. (2017). Pentavalent HIV-1 vaccine protects against simian-human 
immunodeficiency virus challenge. Nature Communications, 8, 1–15. 
https://doi.org/10.1038/ncomms15711 

Breslow, N. (1974). Covariance Analysis of Censored Survival Data. Biometrics, 30(1), 89–99. 
https://doi.org/10.2307/2529620 

Cai, T., & Liu, W. (2011). A Direct Estimation Approach to Sparse Linear Discriminant 
Analysis. Journal of the American Statistical Association, 106(496), 1566–1577. 



 

 92 

https://doi.org/10.1198/jasa.2011.tm11199 

Chaudhury, S., Duncan, E. H., Atre, T., Storme, C. K., Beck, K., Kaba, S. A., Lanar, D. E., & 
Bergmann-Leitner, E. S. (2018). Identification of Immune Signatures of Novel Adjuvant 
Formulations Using Machine Learning. Scientific Reports, November, 1–12. 
https://doi.org/10.1038/s41598-018-35452-x 

Choi, I., Chung, A. W., Suscovich, T. J., Rerks-Ngarm, S., Pitisuttithum, P., Nitayaphan, S., 
Kaewkungwal, J., O’Connell, R. J., Francis, D., Robb, M. L., Michael, N. L., Kim, J. H., 
Alter, G., Ackerman, M. E., & Bailey-Kellogg, C. (2015). Machine Learning Methods 
Enable Predictive Modeling of Antibody Feature:Function Relationships in RV144 
Vaccinees. PLOS Computational Biology, 11(4), e1004185. 
https://doi.org/10.1371/journal.pcbi.1004185 

Clemmensen, L., Witten, D., Hastie, T., & Ersbøll, B. (2011). Sparse Discriminant Analysis. 
Technometrics, 53(4), 406–413. http://www.jstor.org/stable/41714953 

Dua, D., & Graff, C. (2019). UCI Machine Learning Repository. 
https://archive.ics.uci.edu/ml/datasets/Mushroom 

Eudailey, J. A., Dennis, M. L., Parker, M. E., Phillips, B. L., Huffman, T. N., Bay, C. P., 
Hudgens, M. G., Wiseman, R. W., Pollara, J. J., Fouda, G. G., Ferrari, G., Pickup, D. J., 
Kozlowski, P. A., Van Rompay, K. K. A., De Paris, K., & Permar, S. R. (2018). Maternal 
HIV-1 Env Vaccination for Systemic and Breast Milk Immunity To Prevent Oral SHIV 
Acquisition in Infant Macaques. MSphere, 3(1), 1–21. 
https://doi.org/10.1128/msphere.00505-17 

Fisher, R. A. (1936). Th Use of Multiple Measurements in Taxonomic Problems. Annals of 
Eugenics, 7(2), 179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x 

Foster, D. P., & George, E. I. (1994). The Risk Inflation Criterion for Multiple Regression. Ann. 
Statist., 22(4), 1947–1975. https://doi.org/10.1214/aos/1176325766 

Friedman, J. H., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear 
Models via Coordinate Descent. Journal of Statistical Software; Vol 1, Issue 1 (2010) . 
https://www.jstatsoft.org/v033/i01 

Groll, A. (2017). Package ‘ glmmLasso .’ https://cran.r-
project.org/web/packages/glmmLasso/index.html 

Groll, A., & Tutz, G. (2014). Variable selection for generalized linear mixed models by L1-
penalized estimation. Statistics and Computing, 24(2), 137–154. 
https://doi.org/10.1007/s11222-012-9359-z 

Groll, A., & Tutz, G. (2017). Variable selection in discrete survival models including 
heterogeneity. Lifetime Data Analysis, 23(2), 305–338. https://doi.org/10.1007/s10985-016-
9359-y 



 

 93 

Hand, D. J. (2006). Classifier Technology and the Illusion of Progress. Statist. Sci., 21(1), 1–14. 
https://doi.org/10.1214/088342306000000060 

Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The Elements of Statistical Learning : Data 
Mining, Inference, and Prediction. New York : Springer. 
https://catalog.lib.unc.edu/catalog/UNCb4019902 

Hoerl, A. E., & Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal 
Problems. Technometrics, 12(1), 55–67. https://doi.org/10.2307/1267351 

Jolliffe, I. T. (1986). Principal Component Analysis. New York : Springer-Verlag, 1986. 
https://catalog.lib.unc.edu/catalog/UNCb2119567 

Kimball, A. K., Oko, L. M., Bullock, B. L., Nemenoff, R. A., van Dyk, L. F., & Clambey, E. T. 
(2018). A Beginner’s Guide to Analyzing and Visualizing Mass Cytometry Data. The 
Journal of Immunology, 200(1), 3 LP – 22. https://doi.org/10.4049/jimmunol.1701494 

Lam, X. Y., Marron, J. S., Sun, D., & Toh, K.-C. (2018a). DWDLargeR: Fast Algorithms for 
Large Scale Generalized Distance Weighted Discrimination. https://cran.r-
project.org/package=DWDLargeR 

Lam, X. Y., Marron, J. S., Sun, D., & Toh, K.-C. (2018b). Fast Algorithms for Large-Scale 
Generalized Distance Weighted Discrimination. Journal of Computational and Graphical 
Statistics, 27(2), 368–379. https://doi.org/10.1080/10618600.2017.1366915 

Limkin, E. J., Sun, R., Dercle, L., Zacharaki, E. I., Robert, C., Reuzé, S., Schernberg, A., 
Paragios, N., Deutsch, E., & Ferté, C. (2017). Promises and challenges for the 
implementation of computational medical imaging (radiomics) in oncology. Annals of 
Oncology, 28(6), 1191–1206. https://doi.org/10.1093/annonc/mdx034 

Marron, J. S., Todd, M. J., & Ahn, J. (2007). Distance-Weighted Discrimination. Journal of the 
American Statistical Association, 102(480), 1267–1271. 
https://doi.org/10.1198/016214507000001120 

Nelson, A. E., Fang, F., Arbeeva, L., Cleveland, R. J., Schwartz, T. A., Callahan, L. F., Marron, 
J. S., & Loeser, R. F. (2019). A machine learning approach to knee osteoarthritis 
phenotyping: data from the FNIH Biomarkers Consortium. Osteoarthritis and Cartilage, 
27(7), 994–1001. https://doi.org/https://doi.org/10.1016/j.joca.2018.12.027 

Nolen, T. L., Hudgens, M. G., Senb, P. K., & Koch, G. G. (2015). Analysis of repeated low-dose 
challenge studies. Statistics in Medicine, 34(12), 1981–1992. 
https://doi.org/10.1002/sim.6462 

Pinky, N., Islam, S. M., & Alice, R. (2019). Edibility Detection of Mushroom Using Ensemble 
Methods. International Journal of Image, Graphics and Signal Processing, 11, 55–62. 
https://doi.org/10.5815/ijigsp.2019.04.05 

Schwarz, G. (1978). Estimating the Dimension of a Model. Ann. Statist., 6(2), 461–464. 



 

 94 

https://doi.org/10.1214/aos/1176344136 

Simon, N., Friedman, J. H., Hastie, T., & Tibshirani, R. (2011). Regularization Paths for Cox’s 
Proportional Hazards Model via Coordinate Descent. Journal of Statistical Software; Vol 1, 
Issue 5 (2011)  . https://doi.org/10.18637/jss.v039.i05 

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal 
Statistical Society. Series B (Methodological), 58(1), 267–288. 
http://www.jstor.org/stable/2346178 

Tomaras, G. D., & Plotkin, S. A. (2017). Complex immune correlates of protection in HIV-1 
vaccine efficacy trials. Immunological Reviews, 275(1), 245–261. 
https://doi.org/10.1111/imr.12514 

Vaccari, M., Gordon, S. N., Fourati, S., Schifanella, L., Liyanage, N. P. M., Cameron, M., Keele, 
B. F., Shen, X., Tomaras, G. D., Billings, E., Rao, M., Chung, A. W., Dowell, K. G., 
Bailey-Kellogg, C., Brown, E. P., Ackerman, M. E., Vargas-Inchaustegui, D. A., Whitney, 
S., Doster, M. N., … Franchini, G. (2016). Adjuvant-dependent innate and adaptive 
immune signatures of risk of SIVmac251 acquisition. Nature Medicine, 22(7), 762–770. 
https://doi.org/10.1038/nm.4105 

Wei, S., Lee, C., Wichers, L., & Marron, J. S. (2016). Direction-Projection-Permutation for 
High-Dimensional Hypothesis Tests. Journal of Computational and Graphical Statistics, 
25(2), 549–569. https://doi.org/10.1080/10618600.2015.1027773 

Wibowo, A., Rahayu, Y., Riyanto, A., & Hidayatulloh, T. (2018). Classification algorithm for 
edible mushroom identification. 2018 International Conference on Information and 
Communications Technology (ICOIACT), 250–253. 
https://doi.org/10.1109/ICOIACT.2018.8350746 

Wu, F., Kirmaier, A., White, E., Ourmanov, I., Whitted, S., Matsuda, K., Riddick, N., Hall, L. 
R., Morgan, J. S., Plishka, R. J., Buckler-White, A., Johnson, W. E., & Hirsch, V. M. 
(2016). TRIM5α Resistance Escape Mutations in the Capsid Are Transferable between 
Simian Immunodeficiency Virus Strains. Journal of Virology, 90(24), 11087 LP – 11095. 
https://doi.org/10.1128/JVI.01620-16 

Wu, Y., Wipf, D., & Yun, J.-M. (2015). Understanding and evaluating sparse linear discriminant 
analysis. Artificial Intelligence and Statistics, 1070–1078. 

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of 
the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320. 
https://doi.org/10.1111/j.1467-9868.2005.00503.x 

Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse Principal Component Analysis. Journal of 
Computational and Graphical Statistics, 15(2), 265–286. 
https://doi.org/10.1198/106186006X113430 

 


	THE LASSO AND THE MONKEY: FEATURE SELECTION, EXTRACTION, AND TESTING IN REPEATED LOW-DOSE CHALLENGE DATA
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1: LITERATURE REVIEW
	1.1   Feature Selection Methods
	1.1.1   The Lasso and the Elastic Net

	1.2   Feature Extraction Methods
	1.2.1   PCA and LDA

	1.3   DiProPerm
	1.4   Motivating Data Example
	1.5   Outline

	CHAPTER 2: PENALIZED REGRESSION TECHNIQUES IN SMALL-SAMPLE DISCRETE SURVIVAL TIME MODELS
	2.1   Introduction
	2.2   Methods
	2.3   Simulation
	2.4   Application
	2.5   Discussion
	2.6   Acknowledgements
	2.7   Supplemental Information

	CHAPTER 3: A MACHINE LEARNING APPROACH TO REPEATED LOW-DOSE CHALLENGE EXPERIMENTS
	3.1   Introduction
	3.2   Methods
	3.3   Simulation
	3.4   Application
	3.5   Discussion
	3.6   Acknowledgements

	CHAPTER 4: DIPROPERM: A SOFTWARE PACKAGE FOR THE DIPROPERM TEST
	4.1   Introduction
	4.2   DiProPerm
	4.3   The diproperm package
	4.3.1   diproperm example
	4.3.2   Description

	4.4   Application
	4.5   Summary
	4.6   Acknowledgements

	CHAPTER 5: CONCLUSION
	REFERENCES

