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ABSTRACT 

Bethany L. DiPrete: Prescription opioid use, opioid overdose, and links to syphilis 
diagnoses in North Carolina 

(Under the direction of Brian W. Pence) 
 

The United States is facing both a devastating opioid epidemic and increasing 

syphilis incidence. Duration of opioid therapy influences risk of nonmedical opioid use 

and overdose, and drug use is associated with behaviors that facilitate infectious 

disease transmission. Therefore, the opioid epidemic may have a role in recent 

increases in syphilis diagnoses. This dissertation investigates how initial indication and 

duration of prescription opioid therapy is associated with risk of opioid overdose and 

uses spatial regression methods to examine spatiotemporal links between opioid 

overdoses and rising syphilis rates.  

 We analyzed claims data of 492,983 patients initiating opioid therapy for pain 

management in North Carolina (NC) from 2006 through 2018. We identified patients 

exposed to long-term opioid therapy (LTOT) using a conservative definition requiring 

consistent exposure prescription opioids. In this cohort of opioid-naïve patients initiating 

opioid therapy, 1.7% of patients went on to have LTOT and 381 opioid overdoses were 

observed. The three-year risk of opioid overdose was 0.7 percentage points (RDw= 

0.007, 95% CI: 0.001, 0.013) higher in the LTOT group compared to patients with 

shorter durations of use. Sensitivity analyses revealed a dose-response relationship 
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between duration of opioid therapy and risk of opioid overdose. We did not find 

meaningful modification by clinical indication for opioid therapy.  

 Next, we used surveillance data of diagnosed syphilis cases and emergency 

department visits for probable opioid overdose in NC from 2008 through 2017. Using 

spatial regression methods of aggregate zip code-level rate data, we found that recent 

increases in early syphilis cases in North Carolina may be spatiotemporally associated 

with the opioid epidemic. This relationship held in an ancillary pseudo-causal analysis 

that adjusted for relevant population-level confounders. 

 Future work using rigorous causal inference techniques to further disentangle the 

key points in clinical decision-making around duration of opioid therapy could provide 

additional insights on how to mitigate risks of opioid use disorders and opioid overdose 

in pain patients. Further, future analyses of individual-level data to investigate possible 

causal mechanisms linking opioid use and syphilis incidence are warranted. 
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CHAPTER I: SPECIFIC AIMS 
 

Opioid overdoses account for >66% of drug-related deaths in the United States 

(US) (1, 2) and 33% of emergency department (ED) visits for nonfatal drug overdoses 

(3). Prescription opioid use remains a significant contributor to opioid-related mortality 

(4), and often precedes initiation of heroin and illicit synthetic opioids (5-12). However, 

pain diagnoses are common in US adults (13, 14), and prescription opioids maintain an 

important role in pain management (15). In 2016, the Centers for Disease Control and 

Prevention (CDC) released prescribing guidelines that include minimizing the duration 

of opioid therapy in pain patients (16).  

Long-term opioid therapy (LTOT) often begins with treatment of acute (17-20) 

and post-surgical pain for which opioid prescriptions are intended to be time-limited (17, 

21-23). LTOT has been shown to be associated with opioid use disorders and opioid 

overdose (24, 25). The definition of LTOT varies widely across studies (26, 27), with 

many studies not requiring consistent exposure to prescription opioids (27). 

Furthermore, few studies have examined the relationship between opioid therapy 

duration and opioid overdose according to the initial pain management indication (28). 

Chronic pain patients may initiate opioid therapy with a clinical goal of long-term 

therapy, but poor pain management can result in withdrawal symptoms or return of pain 

symptoms (29); patients may then seek treatment through illegitimate sources (7).  
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Opioid use can also be associated with behaviors that can lead to transmission 

of infectious diseases (30-32). There is a “converging public health crisis” as a result of 

the opioid epidemic driving increases in both viral and bacterial infectious diseases (33). 

US syphilis rates have steadily increased (34, 35). While the majority of diagnosed 

syphilis infections occur in men who have sex with men (35), recent increases have also 

surfaced among women and in men who have sex with women (MSW). The CDC has 

noted recent trends in reporting injection drug use, heroin use, and sex with a person 

who injects drugs among women and MSW newly diagnosed with syphilis (34, 36).  

Therefore, the opioid epidemic might have played a role in recent rises in new syphilis 

diagnoses, particularly in women and MSW. Spatial regression methods may provide 

insights into potential correlations between the opioid epidemic and rising syphilis rates, 

since both opioid use (37) and syphilis infections (38-40) can be spatially dependent. 

In this study, we used multiple large, diverse datasets to examine associations 

between duration of opioid therapy, opioid overdose, and diagnosed cases of early 

syphilis by addressing the following specific aims: 

Aim 1: Among privately insured patients with an indication for opioid 

management for pain, estimate the risk of opioid overdose by duration of opioid 

therapy.  

Among opioid-naïve patients who initiated prescription opioid therapy for pain 

management, we compared three-year risk of opioid overdose between patients 

exposed to long-term opioid therapy (LTOT) and patients exposed to short- to medium-

term opioid therapy (SMTOT) using a rigorous definition of LTOT. We hypothesized that 
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exposure to LTOT increased risk of fatal or nonfatal opioid overdose over three years of 

follow-up. 

Aim 1b: Assess potential modification of the association between duration 

of opioid therapy and opioid overdose by initial derived clinical indication.  

We explored potential modification by derived clinical indication at opioid 

initiation, stratifying by chronic pain versus acute pain or surgery. We hypothesized that 

the association between duration of opioid therapy and opioid overdose would be 

increased among patients with an initial chronic pain indication. 

Aim 2: Estimate the spatiotemporal association between opioid overdose 

rates and syphilis diagnosis rates in North Carolina from 2008-2017.  

We used spatiotemporal regression methods to analyze potential associations 

between opioid overdoses, as a proxy for nonmedical opioid use or heroin use, and 

syphilis diagnoses using surveillance data aggregated by zip code and year. We 

hypothesized that opioid overdose rates would be spatiotemporally associated with 

recent rises in syphilis diagnosis rates. 

Overall, this dissertation combines causal inference methods in insurance claims 

data with innovative spatiotemporal regression methods in surveillance data to better 

understand the contribution of long-term opioid prescribing to the opioid epidemic and 

subsequent links to rising syphilis rates. Recognizing true long-term opioid use and 

reducing the risk of opioid use disorders and opioid overdose early in treatment may 

help curb overdose rates in patients treated for pain. To combat rising rates of new 

syphilis cases and congenital syphilis, identification of individuals known to misuse 

prescription opioids or persons who inject opioids (PWIO) for increased syphilis testing 
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may aid detection of new syphilis cases and allow for initiation of treatment to break the 

chain of transmission. 
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CHAPTER II: BACKGROUND 
 

The opioid epidemic has unfolded as a major public health crisis in the United 

States (US) since the turn of the century due to rapid increases in deaths attributable to 

opioid overdose, with over 440,000 deaths from 1999 through 2018 (1, 41, 42). Deaths 

involving an opioid have surpassed deaths due to motor vehicle accidents as the 

leading cause of death due to unintentional injury. In 2017 and 2018, almost 70% of 

deaths attributable to drug overdose were found to involve an opioid (1, 41). Opioid-

involved overdose deaths in the US peaked in 2017 at 47,600 deaths (15).  

The epidemic has not only resulted in in high mortality rates, but also in high 

rates of misuse, opioid use disorders, and nonfatal poisonings. More than 11 million 

people per year in the US were estimated to have misused opioid prescriptions from 

2015 through 2018, and over 2.1 million people were estimated to have an opioid use 

disorder (OUD) in 2017 (15, 41, 43, 44).  Almost 200,000 people visited an emergency 

department for opioid-related poisonings in 2016 (15). In response, the White House 

declared the opioid epidemic a public health emergency in Fall 2017.  

This public health crisis began as an epidemic of overprescribing of opioid 

analgesics. While the landscape of pain management had been changing for several 

decades, two key events helped set the course that would result in a flooding of the 

market with prescription opioids and surging overdose rates (45). First, between 1995 

and 2001, pain was adopted as the fifth vital sign (26, 45, 46). This placed an emphasis 
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on quantification and treatment of pain. Second, Purdue Pharma obtained approval 

from the Food and Drug Administration for their new prescription opioid analgesic, 

Oxycontin (45). Purdue falsely marketed this long-acting form of oxycodone as a non-

addictive analgesic.  

The United States has experienced three main waves of the opioid crisis. From 

1999 through 2010, prescription opioids, such as Oxycontin, were the main drivers of 

the opioid epidemic (Figure 2.1) (47). While this trend continued through 2015, the 

United States also began to experience surging death rates due to heroin overdose 

starting in 2010, followed by synthetic opioids, such as illicitly manufactured fentanyl, 

starting in 2014. Since 2015, overdose deaths involving heroin or synthetic opioids have 

surpassed death rates from prescription opioids (48-50).   

Figure 2.1. Overdose death rates involving opioids, by type, United States, 1999-
2018 
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Prescription opioids maintain an important role in pain management (46). A large 

2012 survey of American adults found that 55% of US adults reported pain within the 

past 3 months (13), and the Centers for Disease Control and Prevention (CDC) 

estimates that more than 20% of US adults experience chronic pain (14). Many of these 

individuals receive prescription opioids to manage their pain; despite national decreases 

in annual opioid prescribing since 2012, 15% of the US population filled at least one 

prescription for an opioid in 2018 (15). 

High volumes of written prescriptions, high prescribed doses, and longer 

prescription durations have been shown to be associated with increased opioid-related 

morbidity and mortality (28, 37, 51-53). High-volume opioid prescribing is also widely 

thought to be a major source of diverted opioid prescriptions for nonmedical use (7, 51, 

52, 54), since unused opioids are frequently are not disposed of properly and may even 

be shared with family or friends (55, 56). Specifically, opioids are commonly 

overprescribed after surgery and go unused, creating opportunities for pill diversion and 

nonmedical use of prescription opioids (26, 57-59). 

Encouragingly, the annual volume of written prescriptions for opioids has 

declined nationwide since 2012 after years of steady increases (15). However, the 

number of individuals receiving opioid prescriptions each year remains high and 

average days of supply of opioids per prescription has increased since 2006. In 2017, 

the average prescription duration was >18 days (41). The Centers for Disease Control 

and Prevention (CDC) released guidelines for opioid prescribing in 2016, 

recommending that providers minimize the duration of opioid therapy in both acute and 

chronic pain patients (16).  
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Long-term use of prescription opioids often begins with treatment of acute (17-

20) and post-surgical pain (17, 21-23) that then extends past the window of normal 

healing (20, 60). While the effectiveness in opioid therapy in treating short-term and 

severe pain is well recognized, the clinical benefit of long-term opioid therapy (LTOT) for 

chronic non-cancer pain has been disputed (61, 62). Further, LTOT has been shown to 

be associated with multiple negative outcomes, including opioid use disorders (OUD) 

and opioid overdose (24, 25). Much work has been done on incidence and risk factors 

for LTOT in three main contexts: 1) post-surgical settings, 2) chronic pain patients, or 3) 

any opioid prescription regardless of indication. The definition of LTOT varies widely 

across studies (26, 27), with many studies not requiring consistent long-term use of 

prescription opioids following initiation of opioid therapy (27).  

Furthermore, little is known about the relationship between opioid therapy 

duration and opioid overdose according to the initial pain management indication. 

Specifically, patients initiating opioid therapy for chronic pain may be at increased risk of 

opioid-related morbidity and mortality. Additionally, poor pain management can result in 

withdrawal symptoms, relapse, or return of pain symptoms (29), which may lead 

patients to seek treatment through illegitimate sources (7). Among patients addicted to 

opioids, a commonly reported precursor to dependency or misuse is inadequately 

controlled pain (18, 44). While much of opioid epidemic has been fueled in recent years 

by nonmedical use heroin and illicit synthetic opioids, prescription opioids continue to be 

a significant contributor to opioid-related morbidity and mortality (4). Prescription opioid-

involved deaths accounted for >35% of opioid-involved deaths in 2017 (15). 
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Individuals exposed to prescription opioids may also transition to using heroin or 

illicit synthetic opioids; many individuals who use heroin report past nonmedical use of 

opioids that preceded initiation of heroin use (5-11), and prescription opioid use has 

been found to be common prior to heroin overdose (12). Increases in heroin overdoses 

have tracked with increases in prescription opioid overdoses, suggesting an association 

between opioid overdose and surging death rates from heroin and illicit synthetic 

opioids (63). Heroin is pharmacologically similar to oxycodone and often is cheaper and 

easier to find than prescription opioids (7, 8, 52). The availability and low cost of heroin 

and illicit synthetic opioids coupled with high purity of the drug are associated with 

increases in rates of heroin and illicit synthetic opioid use (6, 63, 64). In 2016, >900,000 

people in the US reported heroin use within the last year (65).  

In addition to the risk of overdose and mortality, drug use can also be associated 

with behaviors that can lead to the transmission of infectious diseases (30-32). A recent 

report highlighted a “converging public health crisis” as a result of the opioid epidemic 

driving increases in both viral and bacterial infectious diseases (33). The link between 

injection drug use and HIV and hepatitis C virus (HCV) infection through needle-sharing 

behaviors is well documented, with recent attention focused on HIV and HCV outbreaks 

among persons who inject opioids (PWIO) (66-69). In 2015, Indiana experienced an 

outbreak of HIV and acute HCV that spread rapidly through a network of injection drug 

users who injected oxymorphone (66). Drug use can also be associated with 

condomless sex (31) and exchanging sex for drugs or money (70, 71); these sexual 

behaviors, in addition to sex with a PWIO, may provide opportunities and efficient routes 

for sexual transmission of infectious diseases such as syphilis.  
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Syphilis rates have steadily increased in the US since 2001 (34, 35), increasing 

74% from 2012 to 2016. The majority of diagnosed syphilis infections occurring in men 

who have sex with men (MSM) (35). Since 2013, increases in diagnosed syphilis have 

also surfaced among women and in men who have sex with women (MSW). From 2015 

to 2016 reported cases rose by 36% among women (72). Rising syphilis rates among 

women have also driven increasing congenital syphilis rates in the US (73). In early 

2019, the CDC noted increases since 2013 in reporting of both injection drug use 

(including heroin use) and sex with a person who injects drugs among women and 

MSW newly diagnosed with syphilis (34, 36). Therefore, the opioid epidemic might have 

played a role in the recent rise in new syphilis diagnoses, particularly in women and 

MSW.  

In rural areas and the Southern United States, the opioid epidemic has 

progressed rapidly, with increases in opioid sales, ED visits for overdose, and opioid-

related mortality rates (37, 51, 66, 74, 75). Many rural areas were naïve to IDU before 

the rise in non-medical opioid use (75). Opioid prescribing rates have been shown to be 

higher in rural and micropolitan areas (76). North Carolina in particular has a high 

number of residents with opioid prescriptions (77). High prescribing rates in the state 

may be fueled in part by the high density of hospitals and physicians across the state. 

North Carolina experienced many years with dramatic increases in opioid- and heroin-

related overdose and deaths (37, 48, 78), From 2011 through 2016 alone, there were 

over 61,000 naloxone administrations for opioid overdose by emergency medical 

services in North Carolina (79). Statewide, there was a 73% increase in opioid-related 

deaths from 2005-2015 (80). Of particular concern, from 2010 through 2012, the 
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Southern US saw a >180% increase in rates of death due to heroin overdose (81). 

Heroin and fentanyl are increasingly involved in opioid-related overdoses in North 

Carolina—the proportion of opioid overdose deaths in North Carolina involving heroin 

and fentanyl steadily increased from 18% in 2010 to 69% in 2016 (78). 

The burden of syphilis is especially high in North Carolina, with the rate of 

reported primary and secondary syphilis cases in 2016 ranking 8th in the United States 

(72) and surpassing the national reported case rate. Syphilis, like HIV, is transmitted 

through sexual contact and may also be associated with risky sexual behaviors among 

drug users (82, 83). Although syphilis is treatable with penicillin, syphilis infection is 

associated with additional adverse outcomes. Specifically, syphilis infection increases 

the risk of HIV co-infection, and women of child-bearing age who contract syphilis are at 

risk of passing the infection to their infants, resulting in congenital syphilis infection (72, 

82).  

Significance 

Substantial efforts have been focused on curbing opioid prescribing rates, but 

overdose deaths continue to rise. In response, thousands of lawsuits have been filed 

against Purdue and other pharmaceutical companies, with millions of dollars in 

settlements already to date. Numbers of syphilis cases have also been steadily 

increasing even among populations not normally considered to be at highest risk of 

syphilis infection. This study provides a unique opportunity to use >10 years of existing 

data from multiple data sources to provide timely insight on adverse outcomes related to 

opioid use as the epidemic continues to unfold. The results of this study will inform 

future intervention research to prevent OUD-related outcomes among pain patients. It 
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also serves as a hypothesis-generating study for future work investigating links between 

opioid use and incident syphilis infections.  

Innovation 

This dissertation made use of multiple large data sources to understand the 

relationship between opioid prescriptions, overdose, and diagnosed syphilis. By 

harnessing linked datasets from a large provider of health insurance in North Carolina 

and public death records, we had access to extensive data on >20% of adult North 

Carolina residents over 13 years from 2006 through 2018 to analyze individual-level 

risks of opioid overdose by initial prescribing trajectory and clinical indication. 

Additionally, by harnessing ZIP code-level linkages between surveillance data on 

diagnosed cases of early (primary, secondary, and early latent) syphilis from the North 

Carolina Division of Public Health (NC DPH) Communicable Diseases Branch (CDB) 

and Emergency Department (ED) records from The North Carolina Disease Event 

Tracking and Epidemiologic Collection Tool (NC DETECT), we were able to analyze 

population-level associations between trends in opioid overdoses and newly diagnosed 

syphilis infections in North Carolina from 2008 through 2017. These data sources 

provided us with a timely and unique opportunity to take advantage of existing data to 

answer pertinent questions on the opioid crisis on a large scale as it continues to unfold.  

In Aim 1, we used a rigorous approach to overcome past methodological issues 

in estimating the effect of long-term opioid therapy on the risk of opioid overdose among 

patients newly initiating opioid therapy for pain management. The literature lacks a 

consistent definition of long-term opioid therapy. Most studies use approaches that 

either do not adequately account for consistent exposure to prescription opioids or 
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require long periods of follow-up to determine long-term opioid therapy, which may 

introduce selection bias while simultaneously introducing potential measurement error 

by associating future opioid prescriptions with the initial treatment episode after large 

gaps in treatment. Additionally, to our knowledge, only few studies have directly 

assessed overdose risk by the initial clinical indication for initiating opioid treatment.  

In Aim 2, we expanded on previous research suggesting potential associations 

between the opioid epidemic and rising syphilis cases in the United States by using a 

spatiotemporal regression approach to examine state-wide population-level 

associations between opioid overdoses and syphilis diagnoses. To our knowledge, this 

study is the first to examine links between these epidemics in this way. Our approach 

considers the likely spatially dependent nature of both the opioid epidemic and incident 

syphilis diagnoses to infer potential associations. To our knowledge, this study is also 

among the first to examine the recent increases in primary and secondary syphilis 

diagnoses in the US in the context of the opioid epidemic. Given recent rises in syphilis 

diagnosis rates, especially among groups that tend to be at lower risk of infection, this is 

extremely timely. The results of this analysis have the potential to lay the groundwork 

for future modeling analyses of opioid use disorders and syphilis infections.  
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CHAPTER III: METHODS 
 

Overview 

The overall goal of this dissertation is to examine adverse outcomes related to 

opioid use in North Carolina. Longitudinal insurance claims data were used to estimate 

the effect of long-term use of prescription opioids on risk of opioid overdose in opioid-

naïve individuals initiating opioid therapy for pain management, stratified by clinical 

indication (Aim 1). Aggregate surveillance data were then used to examine the 

spatiotemporal association between opioid overdoses, as a proxy for nonmedical opioid 

use and heroin or illicit synthetic opioid use, and diagnosed cases of early (primary, 

secondary, and early latent) syphilis in North Carolina (Aim 2).  

In the first aim, we examined the association between duration of prescription 

opioid use and nonfatal and fatal opioid overdose in individual-level data from privately 

insured patients in North Carolina. Specifically, our purpose was to study the 

association between long-term use of prescription opioid use and clinically recognized 

fatal or nonfatal opioid overdose using a rigorous definition of long-term use that makes 

use of days of supply to better capture true long-term use. Further, we examined 

whether this association differed by clinical indication at the time of the first opioid 

prescription, stratifying by acute pain or postsurgical pain versus chronic pain. We 

hypothesized that long-term use is associated with increased risk of opioid overdose, 

and that this risk differs by clinical indication at the time of initiation of treatment with 
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prescription opioids.  

In the second aim, we examined the spatiotemporal association between opioid 

overdose, a proxy for nonmedical use of prescription opioids or heroin and fentanyl use 

in a given area, and diagnosed early syphilis in North Carolina. We hypothesized that 

rates of opioid overdose would be positively associated with rates of syphilis diagnoses 

in space and time. Figure 3.1 depicts the conceptual model for all analyses in this 

dissertation. 

Figure 3.1 Conceptual Model 
 

Aim 1 

Data Source 

In this individual-level analysis, we used 13 years of de-identified claims data 

from a large provider of private health insurance in North Carolina covering about one-

fifth of North Carolina’s population, from 2006 through 2018. These longitudinal 

healthcare data include member demographics, residence, pharmacy claims, and 

inpatient and outpatient claims with data on dates of service and billed diagnoses and 
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procedures. Insurance claims were linked to North Carolina death records using a 

hierarchical matching algorithm, starting with exact matches and moving down the exact 

match hierarchy and moving onto fuzzy matching in the event that none of the exact 

match criteria were met (Figure 3.2). Fuzzy matches were visually inspected for 

accuracy. 

Figure 3.2. Matching algorithm 
 

 
 
Study Population 

We used a new-user design (84), identifying opioid-naïve individuals initiating 

prescription opioids (Table 3.1) for pain management between July 1, 2006 and July 1, 

2018. Eligible patients were aged 18-64, living in NC, and actively insured. Patients 

were required to have six months (180 days) of continuous insurance enrollment 

(washout period) prior to their index date. 
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Table 3.1. Prescription opioids 
 
Opioid Ingredient 
Codeine  
Dihydrocodeine  
Fentanyl 
Hydrocodone 
Hydromorphone 
Morphine 
Oxycodone 
Oxymorphone 
Pentazocine 
Propoxyphene 
Tapentadol 
Tramadol 
Excluding formulations used to treat cough, cold, and allergies. This include opioids in combination with: 
chlorpheniramine, gauifenesin, bromodiphenhydramine, pseudoephedrine, brompheniramine, calcium, 
pryilamine, phenylpropanolamine, phenylephrine, promethazine, dexbrompheniramine, 
diphenhydramine, chlorcyclizine, terpin, phos/gg, triprolidine, homatropine, carbinoxamine. 

 

For surgical patients, the index date was defined as (1) the date of outpatient 

surgery or final day of an inpatient stay for an inpatient surgery event if the first opioid 

prescription was billed to insurance £14 days before the date of outpatient surgery or 

first day of an inpatient stay for an inpatient surgery event (Figure 3.3A), or (2) the 

prescription claim date if the first opioid prescription was filled £14 days after a surgery 

event (Figure 3.3B). Among patients without a surgery event, the index date was 

defined as the date of the first opioid prescription claim £14 days after a pain diagnosis 

(Figure 3.3B). 
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Figure 3.3. Timelines of: (A) Index date definition for preoperative prescriptions, 
(B) Index date definition for postsurgical or nonsurgical prescriptions, and (C) 
Overall study timeline 
 

 

In order to ensure patients were opioid naïve at their index date, we excluded 

patients if they had evidence of prescription claims for opioid analgesics, opioid 

overdose, opioid use disorder (OUD), or medication-assisted treatment for OUD during 

the 180-day washout period prior to the index date. Patients were also excluded if they 

had a cancer diagnosis using all-available lookback or a surgery within 180 days prior to 

the index date. These patients were excluded due to the potential complex nature of 

their pain conditions and treatment regimens. Patients were followed forward 90 days 

from the index date for exposure classification and were excluded if they experienced 

one or more of 1) opioid overdose, 2) death, 3) disenrollment, 4) an invasive surgery, or 

5) cancer diagnosis in that 90-day period (Figure 3.4). The impact of excluding 

overdoses (n=82) in the first 90 days of follow-up was evaluated in a sensitivity analysis.  
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Figure 3.4 Aim 1 study flowchart 
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Classification of indication for initial prescription 

Our definition of a derived clinical indication of pain management included 

postsurgical pain, defined as patients undergoing invasive surgery as classified by the 

Healthcare Cost and Utilization Project (HCUP) (85) using Current Procedural 

Terminology (CPT) codes, diagnosis of acute pain(22, 86-88) using International 

Classification of Diseases, 9th Revision (ICD-9-CM) and 10th Revision (ICD-10-CM), 

Clinical Modification (Table 3.2), or diagnosis of chronic pain (22, 86-88) using ICD-9-

CM and ICD-10-CM codes (Table 3.3).  

We used a hierarchical algorithm to assign a derived clinical indication, assuming 

that (1) patients with a surgical indication (Figures 3.3A and 3.3B) received an opioid 

prescription related to that surgery, (2) patients without an indication of surgery who had 

a diagnosis of acute pain (Figure 3.3B) received an opioid prescription related to the 

acute pain diagnosis, and (3) patients without evidence of surgery or acute pain who 

had a chronic pain diagnosis £14 days prior to the index prescription received the 

prescription for the chronic pain condition (Figure 3.3B).  
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Table 3.2. ICD-9-CM and ICD-10-CM Diagnostic Codes for Acute Pain 
Acute Pain 

ICD-9-CM Description  ICD-10-CM Description 
282.62 Sickle cell anemia  D57 Sickle cell anemia 
338.11, 
338.12, 
338.18, 
338.19 

Other nervous system 
disorders 

 G89.11, G89.12, 
G89.18 

Other nervous 
system disorders 

522.5, 522.7 Disorders of teeth and 
jaw 

 K04.6, K04.7 Disorders of teeth 
and jaw 

574 Biliary tract disease  K80, K87 Biliary tract disease 
577 Pancreatic disorders 

(not diabetes) 
 K85-K86 Pancreatic disorders 

(not diabetes) 
592 Genitourinary  L08.89 Skin and 

subcutaneous tissue 
infections 

733 Pathological fracture  M48.5 Other 
spondylopathies 

800-804, 850-
854 

Intracranial injury; skull 
and face fractures 

 M80, M84.4 Pathological fracture 

805, 807-829 Fractures  M84.75, M99.1, 
S00-S99, T08, 
T14-T19, T71, 
T73, T74.01-
T74.02, T75.4, 
T79 

Injury 

830-839 Joint disorders and 
dislocations; trauma-
related 

 T20-T28, T30-
T32 

Burns** 

840-848 Sprains and strains  N13.9, N13.2, 
N20, N22 

Genitourinary** 

860-869, 900-
904, 925-929 

Crushing injury or 
internal injury 

 R52 Pain, not elsewhere 
classified 

870-897 Open wounds  V00-V99, W00-
W99, X00-X99, 
Y00-Y38 

E codes 

910-924 Superficial injury; 
contusion 

   

930-939, 951-
951, 953-959 

Other injuries and 
conditions due to 
external causes 

   

940-949 Burns    
806, 952 Spinal cord injury    
E800-E999 E codes    
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Table 3.3. ICD-9-CM and ICD-10-CM Diagnostic Codes for Chronic Pain 
Chronic Pain 

ICD-9-CM Description  ICD-10-CM Description 
307.81 Miscellaneous mental 

health disorders 
 A18.01, A18.02 Tuberculosis of other 

organs 
338.21, 
338.22, 
338.28, 
338.29, 338.4 

Other nervous system 
disorders 

 A52.16 Late syphilis 

346.0-346.5, 
346.7-346.9 

Headache, migraine  E08.610, E08.618, 
E09.610, E09.618, 
E10.610, E10.618, 
E11.610, E11.618 

Diabetes mellitus 
with complications 

346.6 Acute cerebrovascular 
disease 

 G43, G44.209 Headache, including 
migraine 

710, 725-726, 
727-729 

Other connective tissue 
disease 

 G89.21, G89.22, 
G89.28, G89.29, 
R26.2 

Other nervous 
system disorders 

711 Infective arthritis and 
osteomyelitis 

 M00.00, M01, 
M02.1, M02.3-
M02.9 

Infective arthritis and 
osteomyelitis 

712 Gout  M02.0, M02.2, 
M12.1, M13, M14.6, 
M14.8, M36.1-
M36.4, R29.4 

Other non-traumatic 
joint disorders 

713, 716, 
718.1-718.9, 
719 

Other non-traumatic 
joint disorders 

 M04.2, M04.8, 
M04.9 

Immunity disorders 

714-715, 
720.0 

Rheumatoid arthritis 
and osteoarthritis 

 M05-M08, M12, 
M14.6, M14.8, M15-
M19, M45, M48.8 

Rheumatoid arthritis 
and osteomyelitis 

716.1, 717-
718 

Joint disorders and 
dislocations, trauma-
related 

 M11 Gout 

718.4 Other acquired 
deformities 

 M12.5, M22, M23, 
M24.0-M24.3, 
M24.6-M24.9, 
M43.3-M43.5 

Joint disorders and 
dislocations; trauma-
related 

720.1, 721-
724 

Spondylosis; 
intervertebral disc 
disorders; other back 
problems 

 M20.1, M20.6 Acquired foot 
deformities 

727.1 Acquired foot 
deformities 

 M24.5, M43.8X9 Other acquired 
deformities 

   M32-M34, M35, 
M36.0, M36.8, M60-
M62, M63.8, M65-
M67, M75-M79, 
R25.2, R29.898 

Systemic lupus and 
connective tissue 
disorders 

   M43.2, M48.0-M48, 
M49.8, M50, M51, 
M53, M54, 
M62.830, M96, 
M99.2 

Spondylosis; 
intervertebral disc 
disorders, other back 
problems 

   Q68.6 Other congenital 
anomalies 
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Exposure 

We defined long-term opioid therapy (LTOT) using the date of fill and days’ 

supply to calculate the total days of supply of prescribed opioids received and timing of 

receipt. Our definition of LTOT required ³1 prescription in each of three 30-day periods 

within the 90-day exposure definition period after the index date (89), with a cumulative 

days’ supply of opioids received totaling ³60 days. A prescription was determined to 

occur in a 30-day period if it was dispensed in that period, or if the date of fill plus days’ 

supply fell within that 30-day period. When overlapping prescriptions of the same 

ingredient occurred, we used a seven-day rule such that if the start date was within 

seven days of the end date of the previous prescription, this was assumed to reflect an 

early refill and the start date of that prescription was pushed forward to the end date of 

the previous prescription (90). If the overlap was greater than seven days, the 

prescriptions were assumed to truly overlap and treated as such. Patients with <60 

days’ supply of opioids dispensed and without consistent exposure in each of the 30-

day periods were classified as short- to medium-term opioid therapy (SMTOT). 

Patients were followed forward 90 days from the index date. On day 90, the 

anchoring date, patients were classified as exposed to LTOT or SMTOT (Figure 3.3C). 

We conducted sensitivity analyses (described in “Sensitivity Analyses” below) of our 

exposure definition to examine the robustness of our findings to varying definitions of 

LTOT. 

Follow-up time 

We followed patients forward from the anchoring date (index date plus 90 days) 

until the first of 1) nonfatal or fatal opioid overdose (outcome), 2) loss of eligible 
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insurance coverage (censoring event), 3) cancer diagnosis (competing risk) (91, 92), 4) 

death due to causes other than opioid overdose (competing risk), 5) administrative 

censoring three years after the anchoring date, or 6) administrative censoring at the end 

of the study period (September 30, 2018). 

Outcome 

Our outcome of interest was the first fatal or nonfatal opioid overdose within three 

years of initiating prescription opioids for pain management. In insurance claims, 

clinically recognized opioid overdose was defined using ICD-9-CM and ICD-10-CM 

diagnosis codes in inpatient, outpatient, and emergency department (ED) claims (Table 

3.4). In linked death records, fatal opioid overdose was defined using ICD-10 codes and 

a combination of underlying and contributing cause of death (Table 3.5) (86). 

Table 3.4. ICD-9-CM and ICD-10-CM Diagnostic Codes for Opioid Overdose in 
Claims Data 
 

ICD-9-CM ICD-10-CM 
965.00 T40.1X1A, T40.1X4A 
965.01 T40.0X1A, T40.0X4A 
965.02 T40.2X1A, T40.2X4A 
965.09 T40.3X1A, T40.3X4A 
E850.0 T40.4X1A, T40.4X4A 
E850.1 T40.601A, T40.604A 
E850.2 T40.691A, T40.694A 

 F11.12, F11.120, F11.121, F11.122, 
F11.129 

 F11.22, F11.220, F11.221, F11.222, 
F11.229 

 F11.92, F11.920, F11.921, F11.922, 
F11.929 
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Table 3.5. ICD-10 Codes for Fatal Opioid Overdose in Death Records 
 
Underlying Cause*  Contributing Cause 
X40  T40.0 
X41  T40.1 
X42  T40.2 
X43  T40.3 
X44  T40.4 
X60   
X61   
X62   
X63   
X64   
X85   
Y10   
Y11   
Y12   
Y13   
Y14   

*The death must have a both an underlying cause code and contributing cause code. 

Competing Events 

Competing events after the anchoring date were treated as competing risks 

rather than censoring events in Aim 1 analyses (91, 92). These competing events 

included death not due to opioid overdose, identified in death records, cancer diagnosis 

in insurance claims. Censoring competing events infers the assumption that a patient 

can still experience the outcome of interest following the competing event, which can 

introduce bias into our effect estimates. By treating death not due to opioid overdose as 

a competing event, we recognize that a patient who dies due to other causes cannot go 

on to experience an opioid overdose event. Similarly, once a patient is diagnosed with 

cancer, they are then no longer part of a population of patients without a history of 

cancer. In this analysis that uses an all-available lookback to define cancer history, a 

patient diagnosed with cancer cannot then transition back to a non-cancer state and 

cannot experience an opioid overdose as a patient without a history of cancer.  
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Clinical and Demographic Characteristics 

Clinical and demographic characteristics were identified a priori as potential 

confounders based on a directed acyclic graph (DAG) (Figure 3.5). Characteristics 

identified at the time of the index prescription included derived clinical indication 

(surgery, acute pain, or chronic pain), initial dose of opioids received in morphine 

milligram equivalents (MMEs), initial days’ supply, opioid duration of action (e.g., 

extended release), demographics (sex, age), and year of initiation. Additional clinical 

conditions £180 days prior to the index opioid prescription included benzodiazepine or 

other anxiolytics use, selective serotonin reuptake inhibitor (SSRI) or other 

antidepressant use, gabapentin use, depression, anxiety or post-traumatic stress 

disorder (PTSD), substance use disorders excluding OUD (e.g. alcohol use disorder), 

and chronic obstructive pulmonary disease (COPD). We also identified any diagnosed 

acute or chronic back pain, injury pain, neuropathic pain, arthritic (rheumatoid or 

osteoarthritis) pain, or other pain within 180 days prior to the index date. Finally, we 

identified any inpatient or ED visit within 30 days prior to the index date.  
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Figure 3.5. Directed acyclic graph of hypothesized relationships of key variables 
in Aim 1 

Statistical analyses 

We first described the proportion of opioid-naïve patients exposed to LTOT following 

surgery or pain diagnosis by the above covariates.  

Our primary aim was to examine the association between LTOT and risk of 

clinically recognized nonfatal or fatal opioid overdose. The causal diagram in Figure 3.5 

outlines the hypothesized associations between the exposure, outcome, and potential 

confounders of our association of interest.  

We used stabilized inverse probability of treatment weights (IPTW) to account for 

measured confounding. To create IPTW, propensity scores were derived from a 

multivariate logistic regression model estimating the probability of LTOT as a function of 

measured covariates described above. We stabilized the IPTW by dividing the 

probability of treatment by the propensity score (Formula 1). To improve confounding 

(1) 
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control, we used restricted cubic spline terms for continuous covariates where 

appropriate, determined using the Akaike information criterion (AIC).  

!"#$! =	
"'	()! = *)

"'	()! = *|-!)
 

To account for informative censoring, we estimated time-varying stabilized 

inverse probability of censoring weights (IPCW) using pooled logistic regression at 6-

month intervals over the duration of follow-up, multiplying weights over time as shown in 

Formula 2, where Di is an indicator of whether the patient did not drop out prior to time q 

and Li is a vector of covariates as defined above. Total inverse probability weights (IPW) 

were calculated by multiplying IPTW by IPCW. To minimize the impact of extreme 

weights, we truncated IPW at the upper and lower 0.02%. We used the Aalen-Johansen 

estimator of the cumulative incidence function accounting for competing risks of cancer 

diagnosis or death not due to opioid overdose and weighted by truncated IPW, as 

shown in Formula 3 (91, 92). Robust variance estimators were used to obtain 

conservative 95% confidence intervals (CI). We calculated risk differences (RD) at 6 

months, 1 year, 2 years, and 3 years.   
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Our secondary aim was to examine modification of the association between 

LTOT and risk of opioid overdose, stratifying by chronic pain versus acute pain or 

surgery. We re-estimated IPTW and IPCW, including derived indication in the numerator 

(2) 

(3) 

(1) 
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of the stabilized weights and stratifying the cumulative incidence function by derived 

indication. We examined magnitude of stratum-specific estimates and confidence 

interval overlap for evidence of meaningful modification by derived clinical indication. 

Sensitivity analyses 

We conducted two sensitivity analyses of our exposure definition. First, we 

relaxed our definition of LTOT to ³1 prescription in each of the three 30-day periods 

within the 90-day exposure definition period after the index date, without a requirement 

for cumulative days of supply. We then re-estimated IPTW and IPCW and repeated the 

above analyses. Next, we created a multi-category definition of duration of opioid 

therapy, categorizing patients as short-term (<30 days’ supply), medium-term (30-59 

days), and long-term (³60 days). We re-estimated IPTW using multinomial logistic 

regression and repeated the above analyses.  

Next, we investigated the threat of survivor bias due to our 90-day exposure 

classification window and the resulting exclusion of overdoses experienced in those 90 

days. To do so, we included patients with a fatal or nonfatal opioid overdose during the 

90-day exposure classification window who met all other inclusion and exclusion 

criteria. We first characterized the time distribution of opioid overdose events within 90 

days of the index date. Next, among patients experiencing an opioid overdose at any 

point, we examined predictors of experiencing a fatal or nonfatal opioid overdose within 

those first 90 days of the index date compared to ³90 days after the index date. For 

each covariate outlined in “Patient Factors”, we examined the distribution of each factor, 

using Fisher’s exact test to test for differences in categorical variables, and the Mann-

Whitney U test in the case of continuous variables. Variables with a p-value of <0.05 
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were considered strongly predictive of opioid overdose within the first 90 days following 

the index date. 

Aim 2 

Data Sources 

In this ecological analysis of aggregate data, we used surveillance data of 

syphilis diagnoses from the North Carolina Division of Public Health HIV/STD/Hepatitis 

Surveillance Unit and emergency department (ED) visits from the North Carolina 

Disease Event Tracking and Epidemiologic Collection Tool (NC DETECT) (93), a 

syndromic surveillance system that contains data from North Carolina EDs, Poison 

Control, and emergency medical services. Population characteristics for US Zip Code 

Tabulation Areas (ZCTA) and counties in North Carolina were obtained from US census 

data, using American Community Survey (ACS) 5-year estimates from 2012 (94) and 

2017 (95). 

Syphilis Diagnoses 

We examined all diagnoses of early (primary, secondary, and early latent 

syphilis) reported between January 1, 2008 and December 31, 2017 to the North 

Carolina Division of Public Health HIV/STD/Hepatitis Surveillance Unit. Cases 

diagnosed in these early stages represent more recent infections and thus are more 

proximate measures of incident syphilis infections. Syphilis is a reportable disease; 

therefore, surveillance data are expected to contain all diagnosed infections. Residential 

county and 5-digit ZIP code were extracted for each diagnosed person. Cases with a 

missing or incorrectly entered ZIP code or a residence outside North Carolina were 

excluded from analysis.  
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Emergency Department Visits for Opioid Overdose  

As a proxy for opioid use, we enumerated emergency department (ED) visits for 

possible opioid overdose from the North Carolina Disease Event Tracking and 

Epidemiologic Collection Tool (NC DETECT) (93). For this analysis, we obtained a 

limited dataset containing visit date, county, 5-digit ZIP code, chief complaint, and 

International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) 

and 10th Revision (ICD-10-CM) diagnosis and procedure codes for all ED visits from 

January 1, 2008 to December 31, 2017. NC DETECT collects data from >100 EDs in 

NC, following a 2005 statewide mandate requiring all civilian EDs to report certain data 

to the state (96).  

Possible cases of opioid overdose were identified using a combination of chief 

complaint text searches and diagnosis codes. ICD-9-CM codes have been shown to 

have high specificity, but low sensitivity (97, 98); therefore, this study additionally makes 

use of chief complaint. Included cases met at least one of the following criteria: (a) 

“Narcan” or “naloxone” recorded in chief complaint, (b) terms in chief complaint 

indicating overdose (e.g. poison, overdose, loss of consciousness, etc.) in combination 

with involvement of an opioid (e.g., heroin, opioid, etc.), (c) ICD-9-CM and ICD-10-CM 

diagnosis codes for opioid poisoning or intoxication, or (d) chief complaint indicating 

overdose and diagnosis code for opioid-related disorders (See Table 3.6 for all search 

terms and ICD codes used) (93). Cases with missing or incorrectly entered ZIP code or 

a residence outside North Carolina were excluded from this analysis.  
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Table 3.6. Opioid Overdose Case Definitiona,b 
Criterion # Chief Complaint Diagnosis Codes 

ICD-9-CM ICD-10-CM 
1 Narcan OR naloxone   
2 Any of:  

poison*; overdose* OR overdoes*; 
averdose*; averdoes*; "over dose*"; 
overose*; nodding; nod; snort*; 
ingest*; injest*; intoxic*; 
unresponsiv*; "loss of 
consciousness"; syncop*; "shortness 
of breath"; "altered mental status"; od  
 

AND 
 
Any of:  
heroin; herion; hod; speedball; 
"speed ball"; dope; opioid; opiod; 
opoid; opiate; opate; opium; opuim; 
opum; methadone; suboxone; 
oxyco*; oxyi*; percoc*; vicod*; 
fentan*; hydrocod*; morphin*; 
codeine; codiene; codene; oxymor*; 
dilaud*; hydromor*; tramad*; 
suboxin*; buprenorphine 

  

3  965.00, 
965.01, 
965.02, 
965.09, 
E850.0, 
E850.1, 
E850.2 
 

T40.1X1A, T40.1X4A, 
T40.0X1A, T40.0X4A, 
T40.2X1A, T40.2X4A, 
T40.3X1A, T40.3X4A, 
T40.4X1A, T40.4X4A, 
T40.601A, T40.604A, 
T40.691A, T40.694A, 
F11.12, F11.120, 
F11.121, F11.122, 
F11.129, F11.22, 
F11.220, F11.221, 
F11.222, F11.229, 
F11.92, F11.920, 
F11.921, F11.922, 
F11.929 

4 Any of:  
poison*; overdose*; overdoes*; 
averdose*; averdoes*; "over dose*"; 
overose*; od; nodding; nod; snort*; 
ingest*; injest*; intoxic*; 
unresponsiv*; "loss of 
consciousness"; syncop*; "shortness 
of breath"; "altered mental status")  

 

AND F11.[129]0 

aTo meet the definition of possible opioid overdose, a patient had to meet one of the four criteria. For 
criteria 1 and 2, designation is made in terms of chief complaint. For criterion 3, the designation is made 
based on diagnosis code. For criterion 4, the designation is made based on both chief complaint and 
diagnosis code. 
bThis definition has been adapted from NC DETECT Opioid Overdose/Unintentional – Beta case 
definition, https://ncdetect.org/case-definitions/ 
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Population Data and Rate Estimation 

Characteristics of interest from the ACS for North Carolina ZCTAs and counties 

included percentage of the population aged 20-24 and 25-34, percent Black or African 

American, percent Hispanic, unemployment rate, poverty rate, percent completing high 

school (or equivalent), percent female, and population density. 

Annual counts of syphilis diagnoses were converted to incident diagnosis rates 

by dividing the annual number of diagnosed cases among residents of a given 

geographic area by the total population estimate from the ACS in that area in a given 

year. Similarly, the annual overdose rate was calculated as the number of overdose 

events in EDs among residents of each geographic area in a given year, divided by the 

total population in that area in that year. We multiplied both quantities by 100,000 to 

express rates as counts per 100,000 people.  

Observation Units 

The primary geographic observation unit for this analysis was ZCTA. ZIP codes 

from NC DETECT and syphilis surveillance data were mapped to ZCTAs (hereafter 

referred to as ZIP codes), which were then used to join these data to census data and 

mapping files. As detailed under “Ancillary Analyses” below, we used counties as the 

geographic observation unit in sensitivity analyses. 

Spatial smoothing 

Spatial local empirical Bayes estimation (99) was used to smooth both syphilis 

and overdose rates in order to reduce noise due to mapping rare events in areas with 

small populations. Such events could lead to extreme differences across boundaries 

that may be artifacts created by the specific geographic boundaries used and not 
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representative of the true underlying local diagnosis and overdose rates. This approach 

shrinks estimators towards a local mean based on neighborhoods defined using 

contiguity weighting matrices (99). 

Regression Analyses  

Smoothed syphilis and overdose rates were truncated at the 99th percentile to 

minimize the impact of extreme outliers and were transformed using a natural log + 1 

transformation to correct for overdispersion inherent to rare disease data.  

We first used Ordinary Least Squares (OLS) regression models of syphilis rates 

regressed on overdose rates, using smoothed data for each year. OLS regression 

assumes independence in model residuals. In order to test for spatial dependence, we 

ran Moran’s I tests on residuals from yearly OLS models, which demonstrated 

significant spatial autocorrelation of model residuals. We then proceeded with using 

spatial autoregressive panel data regression models with fixed effects (Formula 4), 

including a term for spatial lag of the dependent variable (syphilis rates) and a spatially 

lagged error term (100, 101). 

@,$ = A$@,$ + C,$D + E, + F,$ 

F,$ = G$F,$ + H,$														6 = 1,2, … , # 

where ynt = (y1t, y2t, . . . , ynt) 0 is an n × 1 vector of observations on the dependent variable for 
time period t;  
Xnt is an n × k matrix of nonstochastic time-varying regressors for time period t. Xnt may also 
contain spatial lag of exogenous covariates; cn is an n × 1 vector of individual effects;  
unt is an n × 1 vector of spatially lagged error;  
vnt = (v1t, v2t, . . . , vnt) 0 is an n × 1 vector of innovations, and vit is i.i.d. across i and t with 
variance σ 2 ;  
and W is a n × n spatial weighting matrix 
 

Results from these models can be interpreted in three parts: the direct 

association, indirect association, and total association (102). The direct association is 

(4) 
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the association between the independent variable and the dependent variable in a given 

ZIP code. The indirect association is the spillover impact from neighboring areas. The 

total association is the sum of the indirect and direct association.  

We used a weighting matrix of first-order (queen) contiguity neighbors in our 

primary analyses (103). Queen neighbors share a common edge or vertex. In order to 

determine whether any spatial association between overdose rates and syphilis 

diagnoses varied over time, we included an interaction term between log overdose rate 

and time (in years). We assessed significance of the spatial lag, spatial error, and 

interaction terms using a significance threshold of 0.05.  

Ancillary Analyses 

In an ancillary analysis, we aimed to explore a more causal interpretation of 

opioid use as a driver of syphilis incidence. While a true causal analysis could not be 

conducted due to the ecological nature of this study, we recognized that there are 

factors that may be driving both epidemics. We identified a priori population-level 

characteristics likely to be associated with both overdose rates and syphilis rates (that 

is, potential confounders for which adjustment would be warranted in a causal analysis). 

These characteristics included ACS estimates of all covariates listed above except race, 

which was explored in a modification analysis detailed below (2, 104-106). We modeled 

covariates using restricted cubic splines and examined variance inflation factors for 

potentially problematic collinearity, finding none. We repeated the above regression 

analyses, this time adjusting for these potential confounders. Additionally, we explored 

possible effect measure modification, including an interaction term between overdose 

rates and an indicator for whether the percentage of the population identifying as Black 
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or African American in a given ZIP code was above or below the median percentage 

across all NC ZIP codes. 

To examine the extent to which the opioid epidemic might have played a role in 

the recent rise in new syphilis diagnoses in women and MSW specifically, we conducted 

analyses limiting syphilis diagnoses to: (1) women only, and (2) women and MSW, 

excluding men who report having sex with other men. We used all syphilis diagnoses in 

primary analyses due to 1) small case counts, and 2) missing data on gender of sexual 

partners and potential for misclassification of MSW status.  

Results of spatial analyses can be highly sensitive to the level of data 

aggregation, also known as the Modifiable Area Unit Problem (107), as well as the 

specification of neighbors in weighting matrices (103). Thus, we conducted sensitivity 

analyses to examine the impact of using: (3) raw rates instead of spatial empirical 

Bayes smoothed rates, (4) county-level rather than ZIP code-level data aggregation, (5) 

rook (neighbors that share a common edge) contiguity rather than queen contiguity 

weighting matrices, and (6) contiguity weighting matrices with both first- and second-

order queen neighbors (neighbors of neighbors), with first-order neighbors assigned a 

weight of 1 and second-order neighbors assigned a weight of 0.5. To address potential 

sensitivities of results to other design choices, we conducted two further sensitivity 

analyses in which we: (7) lagged syphilis rates by one year relative to overdose rates in 

order to account for time from syphilis infection to diagnosis, and (8) used only the first 

overdose event among people who overdosed multiple times in a year to examine the 

possible impact of multiple overdose events per person inflating overdose rates relative 
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to the number of people experiencing an opioid overdose in areas with small population 

size.  

Software 

In Aim 1, data management was completed in SAS 9.4 (Cary, NC) and all 

analyses were conducted in R v3.6.0 (108, 109). In Aim 2, data processing, spatial 

smoothing, and visualization were completed in R v3.6.1 (108) and spatial regression 

analyses were done in Stata 16 (College Station, TX) (101). Appendix 1 lists all R 

packages used. 

Ethical Approval 

The institutional review board of the University of North Carolina at Chapel Hill 

approved all analyses in Aim 1 and determined the secondary analysis of existing data 

in Aim 2 to be exempt from further review. 
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CHAPTER IV: LONG-TERM OPIOID THERAPY AND RISK OF OPIOID OVERDOSE 
BY DERIVED CLINICAL INDICATION: AN OBSERVATIONAL COHORT STUDY OF 

PRIVATELY INSURED PATIENTS IN NORTH CAROLINA 
 

Introduction 

Opioid overdoses account for more than two-thirds of drug-related deaths in the 

United States (US) (1, 2) and one-third of emergency department (ED) visits for nonfatal 

overdoses involving drugs (3). The US opioid epidemic resulted in >440,000 deaths 

from 1999 through 2018 (1) and >300,000 ED visits for nonfatal opioid overdose in 2017 

alone (3). While much of this epidemic has been driven in recent years by heroin and 

illicit synthetic opioids, prescription opioids remain a significant contributor to opioid-

related morbidity and mortality (4). Prescription opioid use often precedes initiation of 

heroin and synthetic opioids (5-12).  

Prescription opioids have an important role in pain management (110). In a 

survey of US adults, 55% reported recent pain (13), and the Centers for Disease 

Control and Prevention (CDC) estimates that >20% of US adults experience chronic 

pain (14). Many of these individuals receive prescription opioids to manage their pain; 

15% of the US population filled at least one opioid prescription in 2018 (15). While the 

annual volume of written prescriptions for opioids has declined nationwide since 2012 

after years of steady increases, the average days of opioid supply per prescription have 

increased since 2006 (15, 41). In 2016, the CDC released guidelines for opioid 
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prescribing, recommending that providers minimize the duration of opioid therapy in 

pain patients (16).  

Long-term use of prescription opioids often begins with treatment of acute (17-

20) and post-surgical pain (17, 21-23) that then extends past the window of normal 

healing (20, 60). Long-term opioid therapy (LTOT) has been shown to be associated 

with opioid use disorders (OUD) and opioid overdose (24, 25). Much work has been 

done on incidence and risk factors for LTOT in three main contexts: (1) post-surgical 

settings, (2) chronic, non-cancer pain patients, and (3) any opioid prescription 

regardless of indication. The definition of LTOT varies widely across studies (26, 27), 

with many studies not accounting for consistent long-term use of prescription opioids 

following initiation of opioid therapy (27). Furthermore, few studies have examined the 

relationship between opioid therapy duration and opioid overdose according to the initial 

pain management indication (28), Patients with chronic non-cancer pain may initiate 

opioid therapy with a clinical goal of long-term therapy, and treatment recommendations 

differ for patients with chronic pain compared to patients treated for acute or post-

surgical pain (16).  

Our objective was to examine the three-year risk of fatal or nonfatal opioid 

overdose by duration of opioid therapy while applying a rigorous definition of LTOT 

requiring consistent exposure to opioid therapy. We further assessed whether the 

relationship between duration of opioid therapy and opioid overdose differed for patients 

with a chronic pain indication compared to a surgical or acute pain condition for their 

initial opioid prescription.  
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Methods 

Data Source 

We used 13 years of de-identified claims data from a large provider of private 

health insurance in North Carolina (NC) covering about one-fifth of NC’s population from 

2006 to 2018. These longitudinal healthcare data include member demographics, 

residence, pharmacy claims, and inpatient and outpatient claims with data on dates of 

service and billed diagnoses and procedures. Insurance claims were linked to NC death 

records using a hierarchical matching algorithm (Figure 3.2).  

Study Population 

We used a new-user design (84), identifying opioid-naïve individuals initiating 

prescription opioids (Table 3.1) for pain management between July 1, 2006 and July 1, 

2018. Eligible patients were aged 18-64, living in NC, and actively insured. Patients 

were required to have six months (180 days) of continuous insurance enrollment 

(washout period) prior to their index date.  

For surgical patients, the index date was defined as (1) the date of outpatient 

surgery or final day of an inpatient stay for an inpatient surgery if the first opioid 

prescription was billed to insurance £14 days before the date of outpatient surgery or 

first day of an inpatient stay for an inpatient surgery event (Figure 3.3A), or (2) the 

prescription claim date if the first opioid prescription was filled £14 days after a surgery 

event (Figure 3.3B). Among patients without a surgery event, the index date was 

defined as the date of the first opioid prescription claim £14 days after a pain diagnosis 

(Figure 3.3B). 



 

 

41 

41 

In order to ensure patients were opioid naïve at their index date, we excluded 

patients if they had evidence of prescription claims for opioid analgesics, opioid 

overdose, opioid use disorder (OUD), or medication-assisted treatment for OUD during 

the 180-day washout period prior to the index date. Patients were also excluded if they 

had a cancer diagnosis using all-available lookback or surgery within 180 days prior to 

the index date. These patients were excluded due to the potentially complex nature of 

their pain conditions and treatment regimens. Patients were followed forward 90 days 

from the index date for exposure classification and were excluded if they experienced 

one or more of 1) opioid overdose, 2) death, 3) disenrollment, 4) an invasive surgery, or 

5) cancer diagnosis in that 90-day period (Figure 3.4). The impact of excluding 

overdoses (n=82) in the first 90 days of follow-up was evaluated in a sensitivity analysis.   

Classification of clinical indication for initial prescription 

Our definition of a derived clinical indication of pain management included post-

surgical pain, defined as patients undergoing invasive surgery as classified by the 

Healthcare Cost and Utilization Project (HCUP) (85) using Current Procedural 

Terminology (CPT) codes, diagnosis of acute pain (22, 86-88) using International 

Classification of Diseases, 9th Revision (ICD-9-CM) and 10th Revision (ICD-10-CM), 

Clinical Modification (Table 3.2), or diagnosis of chronic pain (22, 86-88) using ICD-9-

CM and ICD-10-CM codes (Table 3.3).  

We used a hierarchical algorithm to assign a derived clinical indication, assuming 

that (1) patients with a surgical indication (Figures 3.3A, 3.3B) received an opioid 

prescription related to that surgery, (2) patients without an indication of surgery who had 

a diagnosis of acute pain (Figure 3.3B) received an opioid prescription related to the 
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acute pain diagnosis, and (3) patients without evidence of surgery or acute pain who 

had a chronic pain diagnosis £14 days prior to the index prescription received the 

prescription for the chronic pain condition (Figure 3.3B).  

Exposure 

We defined long-term opioid therapy (LTOT) using the date of fill and days’ 

supply to calculate the total days of supply of prescribed opioids received and timing of 

receipt. Our definition of LTOT required ³1 prescription in each of the three 30-day 

periods within the 90-day exposure definition period after the index date (89), with a 

cumulative days’ supply of opioids received totaling ³60 days. A prescription was 

determined to occur in a 30-day period if it was dispensed in that period, or if the date of 

fill plus days’ supply fell within that 30-day period. When overlapping prescriptions of the 

same ingredient occurred, we used a seven-day rule such that if the start date was 

within seven days of the end date of the previous prescription, this was assumed to 

reflect an early refill and the start date of that prescription was pushed forward to the 

end date of the previous prescription (90). If the overlap was greater than seven days, 

the prescriptions were assumed to truly overlap and treated as such. Patients with <60 

days’ supply of opioids dispensed and without consistent exposure in each of the 30-

day periods were classified as short- to medium-term opioid therapy (SMTOT). 

Patients were followed forward 90 days from the index date. On day 90, the 

anchoring date, patients were classified as exposed to LTOT or SMTOT (Figure 3.3C). 

We conducted sensitivity analyses (described in “Sensitivity Analyses” below) of our 

exposure definition to examine the robustness of our findings to varying definitions of 

LTOT. 
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Follow-up time 

We followed patients forward from the anchoring date (index date plus 90 days) 

until the first of 1) nonfatal or fatal opioid overdose (outcome), 2) loss of eligible 

insurance coverage (censoring event), 3) cancer diagnosis (competing risk) (91, 92), 4) 

death due to causes other than opioid overdose (competing risk), 5) administrative 

censoring three years after the anchoring date, or 6) administrative censoring at the end 

of the study period (September 30, 2018). 

Outcome 

Our outcome of interest was the first fatal or nonfatal opioid overdose within three 

years of initiating prescription opioids for pain management. In insurance claims, 

clinically recognized opioid overdose was defined using ICD-9-CM and ICD-10-CM 

diagnosis codes in inpatient, outpatient, and emergency department (ED) claims (Table 

3.4). In linked death records, fatal opioid overdose was defined using ICD-10 codes and 

a combination of underlying and contributing cause of death (Table 3.5) (86).  

Patient factors 

Clinical and demographic characteristics were identified a priori as potential 

confounders based on a directed acyclic graph (DAG). Characteristics identified at the 

time of the index prescription included derived clinical indication (surgery, acute pain, or 

chronic pain), initial dose of opioids received in morphine milligram equivalents (MMEs), 

initial days’ supply, opioid duration of action (e.g., extended release), demographics 

(sex, age), and year of initiation. Additional clinical conditions £180 days prior to the 

index opioid prescription included benzodiazepine or other anxiolytics use, selective 

serotonin reuptake inhibitor (SSRI) or other antidepressant use, gabapentin use, 



 

 

44 

44 

depression, anxiety or post-traumatic stress disorder (PTSD), substance use disorders 

excluding OUD (e.g. alcohol use disorder), and chronic obstructive pulmonary disease 

(COPD). We also identified any diagnosed acute or chronic back pain, injury pain, 

neuropathic pain, arthritic (rheumatoid or osteoarthritis) pain, or other pain within 180 

days prior to the index date. Finally, we identified whether any inpatient or ED visit 

occurred within 30 days before the index date.  

Statistical analyses 

We first described the proportion of opioid-naïve patients exposed to LTOT 

following surgery or pain diagnosis by the above covariates.  

Our primary aim was to examine the association between LTOT and risk of 

clinically recognized nonfatal or fatal opioid overdose. We used stabilized inverse 

probability of treatment weights (IPTW) to account for measured confounding. To create 

IPTW, propensity scores were derived from a multivariable logistic regression model 

estimating the probability of LTOT as a function of measured covariates described 

above. To improve confounding control, we used restricted cubic spline terms for 

continuous covariates where appropriate, determined using the Akaike information 

criterion (AIC). To account for informative censoring due to disenrollment prior to 

administrative censoring at three years or end of study period, we estimated time-

varying stabilized inverse probability of censoring weights (IPCW) using pooled logistic 

regression at six-month intervals over the duration of follow-up, multiplying weights over 

time. Total inverse probability weights (IPW) were calculated by multiplying IPTW by 

IPCW. To minimize the impact of extreme weights, we truncated IPW at the upper and 

lower 0.02%. We used the Aalen-Johansen estimator of the cumulative incidence 
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function accounting for competing risks of cancer diagnosis or death not due to opioid 

overdose and weighted by truncated IPW (91, 92). Robust variance estimators were 

used to obtain conservative 95% confidence intervals (CI). We calculated risk 

differences (RD) at six months, one year, two years, and three years.   

Our secondary aim was to examine modification of the association between 

LTOT and risk of opioid overdose, stratifying by chronic pain versus acute pain or 

surgery. We re-estimated IPTW and IPCW, including derived indication in the numerator 

of the stabilized weights and stratifying the cumulative incidence function by derived 

indication. We examined the magnitude of stratum-specific estimates and confidence 

interval overlap for evidence of meaningful modification by derived clinical indication. 

Sensitivity analyses 

We conducted two sensitivity analyses of our exposure definition. First, we 

relaxed our definition of LTOT to ³1 prescription in each of the three 30-day periods 

within the 90-day exposure definition period after the index date, without a requirement 

for cumulative days of supply. We then re-estimated IPTW and IPCW and repeated the 

above analyses. Next, we created a multi-category definition of duration of opioid 

therapy, categorizing patients as short-term (<30 days’ supply), medium-term (30-59 

days), and long-term (³60 days). We re-estimated IPTW using multinomial logistic 

regression and repeated the above analyses.  

Next, we investigated the threat of survivor bias due to our 90-day exposure 

classification window and the resulting exclusion of overdoses experienced in those 90 

days. To do so, we included patients with a fatal or nonfatal opioid overdose during the 

90-day exposure classification window who met all other inclusion and exclusion 
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criteria. We first characterized the time distribution of opioid overdose events within 90 

days of the index date. Next, among patients experiencing an opioid overdose at any 

point, we examined predictors of experiencing a fatal or nonfatal opioid overdose within 

those first 90 days of the index date compared to ³90 days after the index date. For 

each covariate outlined in “Patient Factors”, we examined the distribution of each factor, 

using Fisher’s exact test to test for differences in categorical variables, and the Mann-

Whitney U test in the case of continuous variables. Variables with a p-value of <0.05 

were considered strongly predictive of opioid overdose within the first 90 days following 

the index date. 

Software 

Data management was completed in SAS 9.4 (Cary, NC). All analyses were 

conducted in R v3.6.0 (see Appendix 1 for packages used) (108, 109). 

Ethical Approval 

This study was approved by the institutional review board of the University of 

North Carolina at Chapel Hill. 

Results 

We identified 492,983 eligible patients initiating prescription opioids for pain 

management between July 1, 2006 and July 1, 2018 (Figure 3.4). The mean age of 

patients was 43 years (SD 12 years) and 50% were female (Table 4.1). Most had a 

derived clinical indication of acute pain (32%) or surgery (35%). Thirteen percent had 

filled a prescription for benzodiazepines in the six months prior to the index date, 12% 

had received an SSRI, and 3% had filled a prescription for gabapentin. The majority of 

patients received an initial opioid dose of 20 to 49 MMEs (56%) and the most common 
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days’ supply of the initial prescription was 4-7 days (45%). Extended-release opioids 

were not commonly prescribed (<1%).  

Long-term Opioid Therapy 

Of patients newly initiating prescription opioids for pain management, 8,582 

(1.7%) went on to receive long-term opioid therapy (LTOT). Patients exposed to LTOT 

were more likely to fall into the 45-54 or 55-64 age ranges compared to younger age 

ranges and were majority male (Table 4.1). Most patients (76%) who went on to receive 

LTOT had chronic pain as the clinical indication at the time of the first prescription, 

compared to 32% of patients with short- to medium-term opioid therapy (SMTOT). 

Counter-intuitively, patients who went on to receive LTOT were less likely than patients 

exposed to SMTOT to receive an initial dose of 50-89 MMEs (11% vs. 21%) or ³90 

MMEs (8% vs. 10%) but were more likely to receive longer initial days’ supply. 

Patients who went on to receive LTOT were also more likely than patients with 

SMTOT to have had prescriptions for benzodiazepines (26% vs. 12%), SSRIs (18% vs. 

12%) or other antidepressants (20% vs. 9%), or gabapentin (13% vs. 3%) in the six 

months prior to their index date. Comorbidities were also more common in those 

receiving LTOT. Covariates were well balanced after weighting with stabilized IPTW 

(Figure 4.1).  

Follow-up 

Median length of follow-up was 792 days (IQR: 318-1095 days) following the 

anchoring date. Patients with LTOT contributed less follow-up (median 643 days, IQR: 

267-1095) than patients with SMTOT (median 795 days, IQR: 319-1095), due to the 

distribution of those experiencing competing risk of death not due to opioid overdose 
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(LTOT: n=56 [0.7%]; SMTOT: n=979 [0.2%]) or cancer diagnosis (n=363 [4.2%]; 

n=19,542 [4.0%]), opioid overdose (n=40 [0.5%]; n=341 [0.1%]), and disenrollment prior 

to administrative censoring (n=4,550 [53%]; n=245,612 [51%]). 

Risk of opioid overdose 

We identified 381 opioid overdose events within three years of follow-up after the 

anchoring date. Seventeen percent (n=64) of opioid overdose events were fatal. The 

proportion of overdose events that were fatal was higher among patients with LTOT 

(20%) compared to patients exposed to SMTOT (16%).  

The crude overall three-year risk of opioid overdose was 0.1% (95% CI: 0.1-0.1), 

and the crude cumulative incidence of opioid overdose was consistently higher in 

patients with LTOT than patients with SMTOT (Figure 4.2). Among patients exposed to 

LTOT, the crude three-year risk of opioid overdose was 0.7% (95% CI: 0.5-1.0), 

compared to 0.1% (95% I: 0.0-0.1) among patients exposed to SMTOT.  

In weighted analyses to address confounding and informative censoring, the 

cumulative incidence of opioid overdose in the LTOT group within the first year of 

follow-up remained consistently higher than the risk of opioid overdose in patients with 

SMTOT (Figure 4.3). The three-year risk of opioid overdose was 0.7 percentage points 

(RDw= 0.007, 95% CI: 0.001,0.013) higher in the LTOT group compared to patients with 

SMTOT (Table 4.2).  

In analyses stratified by derived clinical indication, patients who were exposed to 

LTOT in each stratum were at increased risk of opioid overdose compared to SMTOT 

through three years of follow-up (Figure 4.4). Stratified estimates did not differ 

significantly from each other at any point during follow-up, so we cannot infer 
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meaningful modification by initial clinical indication (Figure 4.5). These results are 

imprecise at later points of follow-up due to small case counts and should be interpreted 

with caution.  

Sensitivity Analyses 

In our first sensitivity analysis, we examined the impact of using evidence of a 

prescription each month with no minimum days of supply to define LTOT. Using this 

definition, 25,423 (5.2%) patients had LTOT. The trend in the risk of opioid overdose 

among patients with LTOT compared to patients with SMTOT was similar to estimates 

from the primary analysis, but estimates were attenuated towards the null (Table 4.2, 

Figure 4.6).  

In our second sensitivity analysis we used a categorical exposure of short-term 

use (<30 days’ supply), monthly prescriptions of 30-59 days’ supply, or ³60 total days of 

prescription opioids received. Using this definition, 474,549 (96%) patients did not 

receive a prescription each month or filled <30 days of supply, 9,862 (2%) had a 

prescription each month with cumulative days of supply of 30-59 days of opioids, and 

8,582 (1.7%) received ³60 days of prescription opioids in the 90 days following the 

index date. The absolute risk differences comparing patients exposed to ³60 days of 

prescription opioids to patients prescribed <30 days were comparable to results from 

the primary analysis (Figure 4.6). The cumulative incidence among patients prescribed 

30-59 days of opioids was consistently higher than among patients prescribed <30 days 

through three years of follow-up, but the magnitude of the absolute risk difference was 

smaller than the absolute risk difference comparing ³60 days of prescription opioids to 
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<30 days (Table 4.2, Figure 4.6). These results suggest a dose-response relationship 

between duration of opioid therapy in the first 90 days and subsequent overdose risk. 

Finally, we examined outcomes occurring <90 days after the index date 

compared to ³90 days after the index date. There were 82 opioid overdose events <90 

days following the index date, ten (12%) of which were fatal, and the median time to 

overdose was 36 days (IQR: 16-54 days). Among patients experiencing an opioid 

overdose at any time after the index date (n=463), the distribution of patient factors was 

similar between patients overdosing within 90 days and patients overdosing ³90 days 

after the index date. Among those with an overdose, only a history of ED visit within 30 

days before the index date (p=0.018) was associated with a higher likelihood of that 

overdose occurring within the first 90 days rather than >90 days after the index date.  

Discussion 

In this sample of patients with private insurance in North Carolina who initiated 

prescription opioid therapy for a clinical indication of acute pain, chronic pain, or 

surgery, the cumulative incidence of opioid overdose among patients receiving long-

term opioid therapy (LTOT) in the first 90 days was persistently higher than among 

patients receiving short- to medium-term opioid therapy (SMTOT). Our estimates of risk 

of opioid overdose by duration of opioid therapy were robust to varying definitions of 

opioid therapy. Less conservative definitions of opioid therapy in this study still 

demonstrated an increased risk of opioid overdose among patients exposed to LTOT, 

as well as a dose-response relationship between duration of opioid therapy in the first 

90 days and subsequent overdose risk when using a categorical exposure definition. 
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We did not find meaningful modification of the relationship between duration of opioid 

therapy and risk of opioid overdose by initial derived clinical indication.  

Our findings are consistent with existing evidence that long-term opioid use puts 

patients at higher risk of adverse outcomes, including OUD and overdose (24, 111), and 

emphasize the importance of the 2016 CDC prescribing guidelines that called on 

physicians to minimize the duration of opioid therapy for pain management (16). While 

prescription opioids have an important role in pain management, the clinical benefit of 

long-term opioid therapy compared to treatment with non-opioid analgesics has been 

called into question (16). 

Within our population of patients initiating prescription opioid therapy for pain 

management, 1.7% went on to have LTOT. This is lower than many (27, 112), but not 

all (27, 113), previous estimates of LTOT incidence after surgery or for chronic pain 

management among opioid-naïve patients. As noted in a recent review of long-term 

opioid therapy definitions (27), there is no consistent definition of LTOT. Our definition of 

LTOT is more conservative than has been used in many previous studies (27, 112),  

requiring consistent monthly exposure to prescription opioids with at least 60 total days 

of supply of prescribed opioids dispensed in the three months following a pain diagnosis 

or surgery. This conservative definition focuses on ensuring consistent exposure to 

opioid therapy following a clinical indication compared to definitions that simply look at 

whether the patient has an active prescription at some point in the future, which may 

lead to classification of a later separate prescription of possibly different etiology as 

related to the initial episode of opioid therapy despite a gap in treatment. Our approach 

minimized the likelihood that we were evaluating patients exposed to repeated short-
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term episodes of opioid therapy, but instead were measuring overdose risk in patients 

continuously exposed to opioid therapy. Relaxing our definition of LTOT to monthly 

exposure to prescription opioids with no requirement for days of supply dispensed within 

the first 90 days resulted in 5.2% of patients transitioning to LTOT in our population, 

consistent with the range of previous estimates using more relaxed definitions of LTOT 

in opioid-naïve patients (27, 111, 114).  

In our secondary aim, we examined modification of the relationship between 

LTOT and opioid overdose by the initial derived clinical indication. Presumably 

unintended long-term use has been noted as a troubling adverse outcome of 

postsurgical and acute pain management, where opioid therapy continues past the 

expected window of healing (17, 22, 23, 111, 112, 114, 115). Several challenges in 

managing chronic non-cancer pain that can increase risk of OUD and opioid overdose 

have been noted in previous research, including dose escalations and hyperalgesia 

(116, 117), tapering or stoppage of opioids (16, 118), and use of long-acting opioids 

instead of short-acting opioids in pain management (119, 120). However, we did not find 

strong evidence of modification by initial derived clinical indication for treatment with 

opioid analgesics. 

Consistent with previous work, patients exposed to LTOT in our population had 

higher prevalence of several baseline characteristics that are known risk factors for 

opioid overdose, including benzodiazepine use, receiving an extended-release 

formulation (119), diagnosed substance use disorder, depression and anxiety, and 

COPD (23, 27, 114, 121, 122). These findings suggest that patients who transition to 

LTOT have several clinical comorbidities and co-medication use at baseline that not 
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only have been shown to increase risk of LTOT, but also of opioid-related morbidity and 

mortality. We controlled for these factors using IPTW and still saw increased risk of 

opioid overdose among patients exposed to LTOT. While our analytic approach was 

methodologically rigorous, our results may be subject to residual confounding due to the 

use of insurance claims, which may under-measure important confounders such as 

substance use disorders and mental health conditions. Insurance claims also do not 

capture information such as socioeconomic status, which may result in unmeasured 

confounding.  

Our study makes use of a diverse population of privately insured patients 

representing one-fifth of the population of NC over 13 years during the height of the 

opioid epidemic. While many previous studies have examined prescription opioid use in 

specific surgical or chronic pain cohorts, we used a broad population of patients 

initiating opioid therapy for postsurgical or non-surgical pain management. However, it 

is important to note that because this study makes use of data from a population of 

patients with private insurance in NC, our results may not generalize to the broader US 

population. Our target population was also restricted to patients without a history of 

cancer; therefore, our results may not generalize to patients who are receiving 

prescription opioids to manage cancer-related pain.   

To measure the long-term risk of opioid overdose by duration of opioid therapy, 

we restricted our population of patients to those with 90 days of follow-up after their 

index date. This approach excluded those with acute outcomes occurring within the first 

90 days after the index date, which could have led to survivor bias. In sensitivity 

analyses, we found that history of an ED visit within 30 days prior to the index date was 
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the only significant difference between those experiencing acute events versus events 

after 90 days, suggesting that there was likely not a strong measurable selective 

pressure leading to survivor bias in our primary analyses. We further accounted for 

selection bias due to missed outcomes after 90 days by applying IPCW to correct for 

informative censoring.  

There are several additional limitations to consider when interpreting these 

results. This study makes use of insurance claims to measure prescription opioid use 

and key confounders of the relationship between LTOT and opioid overdose. Pharmacy 

claims only capture prescriptions that were filled and billed to a patient’s insurance but 

do not capture medications that were paid for out of pocket or illicit opioid use and do 

not measure what the patient actually consumed, which could lead to exposure 

misclassification. However, we used a definition of LTOT that we believe more 

adequately captures true consistent long-term opioid use following an initial prescription 

in opioid-naïve patients than prior definitions. Opioid overdoses are known to be under-

measured in claims data and electronic health records (97). Fatal opioid overdoses are 

also likely under-measured in mortality records (123), but by taking advantage of linked 

death records we were able to identify fatal events that may be missed in insurance 

claims data. Additionally, we do not expect differential sensitivity of outcome 

classification by duration of opioid therapy and, therefore, do not expect under-

measurement of opioid overdoses to be a significant source of bias. Further, diagnostic 

codes for clinically recognized opioid overdose have high specificity, meaning clinically 

recognized opioid overdoses are likely true opioid overdoses.  
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Conclusions 

In conclusion, even though a small minority of patients initiating opioid therapy 

had LTOT, this subset of patients was at notably higher risk of opioid overdose. We 

found that 1.7% of patients who initiated prescription opioid analgesics following surgery 

or a pain diagnosis went on to have monthly exposure to prescription opioids with ³60 

total days’ supply within 90 days of the index prescription, and there was evidence of a 

dose-response relationship between duration of opioid therapy and risk of opioid 

overdose as exposure to opioid therapy increased. The literature lacks a standard 

definition of LTOT, and this analysis utilized a more conservative definition of LTOT 

than most previous studies. Future work should examine this definition of LTOT in other 

patient populations. While opioid therapy has an important role in pain management, 

these findings confirm the importance of the CDC guidelines to minimize the duration of 

opioid therapy whenever possible.  
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Table 4.1. Baseline demographic and clinical characteristics 
    Overall SMTOT LTOT 
    (n=492983) (n=484401) (n=8582) 
Age (mean (SD))  42.87 (12.3)  42.80 (12.3) 46.67 (11.0) 
Derived clinical indication (%)    

 Surgery 174159 (35.3)  173193 (35.8)    966 (11.3)  

 Acute pain 157067 (31.9)  155983 (32.2)   1084 (12.6)  

 Chronic pain 161757 (32.8)  155225 (32.0)   6532 (76.1)  
Age category (%)    

 18-24  43733 (8.9)   43472 (9.0)    261 (3.0)  

 25-34  93958 (19.1)   92771 (19.2)   1187 (13.8)  

 35-44 120077 (24.4)  118205 (24.4)   1872 (21.8)  

 45-54 131137 (26.6)  128315 (26.5)   2822 (32.9)  

 55-64 104078 (21.1)  101638 (21.0)   2440 (28.4)  
Sex (%)    

 Male 245455 (49.8)  240659 (49.7)   4796 (55.9)  

 Female 247528 (50.2)  243742 (50.3)   3786 (44.1)  
Year (%)    

 2006  30344 (6.2)   29859 (6.2)    485 (5.7)  

 2007  59018 (12.0)   58056 (12.0)    962 (11.2)  

 2008  53586 (10.9)   52719 (10.9)    867 (10.1)  

 2009  49969 (10.1)   49096 (10.1)    873 (10.2)  

 2010  44511 (9.0)   43779 (9.0)    732 (8.5)  

 2011  39017 (7.9)   38334 (7.9)    683 (8.0)  

 2012  35539 (7.2)   34929 (7.2)    610 (7.1)  

 2013  34459 (7.0)   33806 (7.0)    653 (7.6)  

 2014  36249 (7.4)   35492 (7.3)    757 (8.8)  

 2015  37816 (7.7)   37010 (7.6)    806 (9.4)  

 2016  30289 (6.1)   29740 (6.1)    549 (6.4)  

 2017  29474 (6.0)   29010 (6.0)    464 (5.4)  

 2018  12712 (2.6)   12571 (2.6)    141 (1.6)  
Pain: Back or neck (%) 156187 (31.7)  151388 (31.3)   4799 (55.9)  
Pain: Arthritis (%)  41677 (8.5)   40068 (8.3)   1609 (18.7)  
Pain: Injury (%) 182179 (37.0)  180214 (37.2)   1965 (22.9)  
Pain: Neuropathic (%)  39530 (8.0)   37976 (7.8)   1554 (18.1)  
Pain: Other pain (%) 316901 (64.3)  310092 (64.0)   6809 (79.3)  
Benzodiazepines (%)  62176 (12.6)   59926 (12.4)   2250 (26.2)  
Anxiolytics (%)   9034 (1.8)    8751 (1.8)    283 (3.3)  
SSRI (%)  58289 (11.8)   56786 (11.7)   1503 (17.5)  
Other antidepressants (%)  45592 (9.2)   43917 (9.1)   1675 (19.5)  
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Table 4.1 Continued Overall SMTOT LTOT 
Gabapentin (%)  13338 (2.7)   12233 (2.5)   1105 (12.9)  
Depression (%)  35613 (7.2)   34461 (7.1)   1152 (13.4)  
Anxiety or PTSD (%)  40604 (8.2)   39320 (8.1)   1284 (15.0)  
Substance Use Disorder (%)   6065 (1.2)    5806 (1.2)    259 (3.0)  
COPD (%)  11633 (2.4)   11232 (2.3)    401 (4.7)  
Initial dose (MME) (%)    

 <20MMEs  62484 (12.7)   59310 (12.2)   3174 (37.0)  

 20-<50MMEs 277687 (56.3)  273888 (56.5)   3799 (44.3)  

 50-<90MMEs 104029 (21.1)  103107 (21.3)    922 (10.7)  

 90+MMEs  48783 (9.9)   48096 (9.9)    687 (8.0)  
Initial days' supply (%)    

 0-3 Days' Supply 160750 (32.6)  160226 (33.1)    524 (6.1)  

 4-7 Days' Supply 223785 (45.4)  222538 (45.9)   1247 (14.5)  

 8-14 Days' Supply  65819 (13.4)   64790 (13.4)   1029 (12.0)  

 15-30 Days' Supply  41898 (8.5)   36413 (7.5)   5485 (63.9)  

 >30 Days' Supply    731 (0.1)     434 (0.1)    297 (3.5)  
Emergency department visit (%) 133040 (27.0)  131752 (27.2)   1288 (15.0)  
Inpatient visit (%)  52888 (10.7)   52075 (10.8)    813 (9.5)  
Extended-release opioid (%)   3384 (0.7)    2826 (0.6)    558 (6.5)  

 



 

 

Table 4.2. Weighted risk differences for opioid overdose through 3 years of follow-up using varying definitions of 
duration of prescription opioid therapy 
 

Exposure Definition 6 months   1 year   2 years   3 years 
RD 95% CI   RD 95% CI   RD 95% CI   RD 95% CI 

LTOT: 60+ vs. <60 days 0.001 0.000-0.002 
 

0.002 0.000-0.004 
 

0.004 0.001-0.007 
 

0.007 0.001-0.013 
LTOT: Monthly vs. short-term 0.001 0.000-0.001 

 
0.001 0.000-0.001 

 
0.002 0.001-0.003 

 
0.002 0.001-0.004 

Categorical: 30-59 vs. <30 days 0.000 0.000-0.001 
 

0.001 0.000-0.002 
 

0.001 0.000-0.002 
 

0.002 0.000-0.003 
Categorical: 60+ vs. <30 days 0.001 0.000-0.002   0.002 0.000-0.004   0.004 0.001-0.007   0.007 0.013-0.001 
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Figure 4.1. Covariate balance  
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Figure 4.2. Cumulative incidence of opioid overdose by duration of use, crude 
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Figure 4.3. Weighted cumulative incidence of opioid overdose by duration of 
opioid therapy 
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Figure 4.4. Cumulative incidence of opioid overdose by duration of use, stratified 
by clinical indication 
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Figure 4.5. Weighted risk difference comparing LTOT to short-term opioid use, 
stratified by clinical indication  
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Figure 4.6. Weighted risk difference of opioid overdose comparing longer 
duration of use to short-term use by varying exposure definitions 
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CHAPTER V: SYPHILIS IN THE CONTEXT OF THE OPIOID EPIDEMIC: A 
SPATIOTEMPORAL ANALYSIS USING NORTH CAROLINA SURVEILLANCE DATA, 

2008-2017 
 

Introduction 

Syphilis rates have steadily increased in the United States (US) since 2001 (35, 

124), with the majority of diagnosed syphilis infections occurring in men who have sex 

with men (MSM) (35). Since 2013, rapid increases in diagnosed syphilis have also 

surfaced among women and in men who have sex with women (MSW). Rising syphilis 

rates among women have also driven increasing congenital syphilis rates in the US 

(125). In early 2019, the Centers for Disease Control and Prevention (CDC) noted 

increases since 2013 in reporting of both injection drug use (including heroin use) and 

sex with a person who injects drugs among women and MSW newly diagnosed with 

syphilis (36, 124).   

Alongside increased syphilis rates, the US has experienced a public health crisis 

of opioid overdoses, driven in early years by nonmedical prescription opioid use and 

followed closely by a recent upswing in use of heroin and illicit synthetic opioids (48, 63, 

126, 127). In 2015 and 2016, nearly two million people in the US were estimated to 

have an opioid use disorder (OUD) and in 2016, >900,000 people reported heroin use 

within the last year (43, 44, 126). Opioids accounted for more than 350,000 deaths from 

1999 though 2016 (42, 49, 126) and opioid-related poisonings led to >140,000 

emergency department (ED) visits in 2015 alone (126).  
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In addition to risk of overdose and mortality, drug use can also be associated 

with behaviors that can lead to transmission of infectious diseases (30-32). A recent 

report highlighted a “converging public health crisis” as a result of the opioid epidemic 

driving increases in both viral and bacterial infectious diseases (33). The link between 

injection drug use and HIV and hepatitis C virus (HCV) infection through needle-sharing 

behaviors is well documented, with recent attention focused on HIV and HCV outbreaks 

among persons who inject opioids (PWIO) (66-69). Drug use can also be associated 

with condomless sex (31) and exchanging sex for drugs or money (70, 71); these 

sexual behaviors, in addition to sex with PWIO, may provide opportunities and efficient 

routes for sexual transmission of syphilis. Therefore, the opioid epidemic might have 

played a role in recent rises in new syphilis diagnoses, particularly in women and MSW.  

HIV and HCV outbreaks have been shown to spread in networks of PWIO (66, 

69) and have been modeled using spatial methods (128). Spatial regression methods 

may likewise provide insights into potential correlations between the opioid epidemic 

and rising syphilis rates, since both opioid use (37) and syphilis infections (38-40) can 

be spatially dependent. In this ecological, hypothesis-generating study, we utilized 

communicable disease and ED surveillance data to examine whether rates of primary, 

secondary, and early latent syphilis were spatiotemporally associated with ED visits for 

opioid overdose (a proxy for nonmedical opioid use) in North Carolina (NC) from 2008 

through 2017.  
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Methods  

Syphilis Diagnoses 

We examined all diagnoses of early (primary, secondary, and early latent) 

syphilis reported between January 1, 2008 and December 31, 2017 to the North 

Carolina Division of Public Health (NC DPH) HIV/STD/Hepatitis Surveillance Unit. 

Cases diagnosed in these early stages represent more recent infections and thus are 

more proximate measures of incident syphilis infections. Syphilis is a reportable 

disease; therefore, surveillance data are expected to contain all diagnosed infections. 

Residential county and 5-digit ZIP code were extracted for each diagnosed person. 

Persons with missing or incorrectly entered ZIP codes or residences outside NC were 

excluded from analysis.  

Emergency Department Visits for Opioid Overdose  

As a proxy for opioid use, we enumerated emergency department (ED) visits for 

possible opioid overdose within the North Carolina Disease Event Tracking and 

Epidemiologic Collection Tool (NC DETECT) (93), a syndromic surveillance system 

containing data from NC EDs, Poison Control, and emergency medical services. We 

obtained a limited dataset with visit date, county, 5-digit ZIP code, chief complaint, and 

International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) 

and 10th Revision (ICD-10-CM) diagnosis and procedure codes for all ED visits from 

January 1, 2008 through December 31, 2017. NC DETECT collects data from >100 EDs 

in NC, following a 2005 statewide mandate requiring all civilian EDs to report certain 

data to the state (129).  
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Possible cases of opioid overdose were identified using a combination of chief 

complaint text searches and diagnosis codes. ICD-9-CM codes have been shown to 

have high specificity, but low sensitivity (97, 98); therefore, this study additionally makes 

use of chief complaint (See Table 3.6 for all search terms and ICD codes used) (93). 

Cases with missing or incorrectly entered ZIP codes or residence outside NC were 

excluded from analysis.  

Population Data and Rate Estimation 

Population characteristics for US ZIP Code Tabulation Areas (ZCTA) and 

counties in NC were obtained from US census data, using American Community Survey 

(ACS) 5-year estimates from 2012 (94) and 2017 (95). Characteristics of interest 

included percentage of the population aged 20-24 and 25-34, percent Black or African 

American, percent Hispanic, unemployment rate, poverty rate, percent completing high 

school (or equivalent), percent female, and population density. 

Annual counts of syphilis diagnoses were converted to incident diagnosis rates 

by dividing the annual number of diagnosed cases among residents of a given 

geographic area by the total population estimate from the ACS in that area in a given 

year. Similarly, annual overdose rates were calculated as the number of overdose 

events in EDs among residents of each geographic area in a given year, divided by the 

total population in that area in that year. We multiplied both quantities by 100,000 to 

express rates as counts per 100,000 people.  

Observation Units 

The primary geographic observation unit for this analysis was ZCTA. ZIP codes 

from NC DETECT and syphilis surveillance data were mapped to ZCTAs (hereafter 
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referred to as ZIP codes), which were then used to join these data to census data and 

mapping files. As detailed under “Ancillary Analyses” below, we used counties as the 

geographic observation unit in sensitivity analyses. 

Spatial smoothing 

Spatial local empirical Bayes estimation (99) was used to smooth both syphilis 

and overdose rates in order to reduce noise due to mapping rare events in areas with 

small populations. Such events could lead to extreme differences across boundaries 

that may be artifacts created by specific geographic boundaries used and not 

representative of the true underlying local diagnosis and overdose rates. 

Regression Analyses  

Smoothed syphilis and overdose rates were truncated at the 99th percentile to 

minimize the impact of extreme outliers and transformed using a natural log + 1 

transformation to correct for overdispersion inherent to rare disease data.  

To descriptively assess associations between syphilis diagnosis and opioid 

overdose rates, we first used Ordinary Least Squares (OLS) regression models of 

syphilis rates regressed on overdose rates, using smoothed data for each year. 

However, because Moran’s I tests on residuals from yearly OLS models demonstrated 

significant spatial autocorrelation of model residuals, we then used spatial 

autoregressive panel data regression models with fixed effects, including a term for 

spatial lag of the dependent variable (syphilis rates) and a spatially lagged error term 

(100). Results from these models can be interpreted in three parts: the direct 

association, indirect association, and total association (102). The direct association is 

the association between the independent variable and the dependent variable in a given 
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ZIP code. The indirect association is the spillover impact from neighboring areas. The 

total association is the sum of the indirect and direct association.  

We used a weighting matrix of first-order (queen) contiguity neighbors in our 

primary analyses (103). Queen neighbors share a common edge or vertex. To 

determine whether any spatial association between overdose rates and syphilis 

diagnoses varied over time, we included an interaction term between log overdose rate 

and time (in years). We assessed significance of the spatial lag, spatial error, and 

interaction terms using a significance threshold of 0.05.  

Ancillary Analyses 

In an ancillary analysis, we aimed to explore a more causal interpretation of 

opioid use as a driver of syphilis incidence. While a true causal analysis could not be 

conducted due to the ecological nature of this study, we recognized that there are 

factors that may be driving both epidemics. We identified a priori population-level 

characteristics likely to be associated with both overdose rates and syphilis rates (that 

is, potential confounders for which adjustment would be warranted in a causal analysis). 

These characteristics included ACS estimates of all covariates listed above except race, 

which was explored in a modification analysis detailed below (2, 104-106). We modeled 

covariates using restricted cubic splines and examined variance inflation factors for 

potentially problematic collinearity, finding none. We repeated the above regression 

analyses, this time adjusting for these potential confounders. Additionally, we explored 

possible effect measure modification, including an interaction term between overdose 

rates and an indicator for whether the percentage of the population identifying as Black 
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or African American in a given ZIP code was above or below the median percentage 

across all NC ZIP codes. 

To examine the extent to which the opioid epidemic might have played a role in 

the recent rise in new syphilis diagnoses in women and MSW specifically, we conducted 

analyses limiting syphilis diagnoses to: (1) women only, and (2) women and MSW, 

excluding men who report having sex with other men. We used all syphilis diagnoses in 

primary analyses due to 1) small case counts, and 2) missing data on gender of sexual 

partners and potential for misclassification of MSW status.  

Results of spatial analyses can be highly sensitive to the level of data 

aggregation, also known as the Modifiable Area Unit Problem (107), as well as the 

specification of neighbors in weighting matrices (103). Thus, we conducted sensitivity 

analyses to examine the impact of using: (3) raw rates instead of spatial empirical 

Bayes smoothed rates, (4) county-level rather than ZIP code-level data aggregation, (5) 

rook (neighbors that share a common edge) contiguity rather than queen contiguity 

weighting matrices, and (6) contiguity weighting matrices with both first- and second-

order queen neighbors (neighbors of neighbors), with first-order neighbors assigned a 

weight of 1 and second-order neighbors assigned a weight of 0.5. To address potential 

sensitivities of results to other design choices, we conducted two further sensitivity 

analyses in which we: (7) lagged syphilis rates by one year relative to overdose rates in 

order to account for time from syphilis infection to diagnosis, and (8) used only the first 

overdose event among people who overdosed multiple times in a year to examine the 

possible impact of multiple overdose events per person inflating overdose rates relative 
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to the number of people experiencing an opioid overdose in areas with small population 

size.  

Ethics Statement 

The Institutional Review Board at the University of North Carolina at Chapel Hill 

determined this secondary analysis of existing data to be exempt from further review. 

Software  

Data processing, spatial smoothing, and visualization were completed in R 3.6.1 

(108) (Appendix 1 lists R packages). Spatial regression analyses were completed in 

Stata 16 (College Station, TX) (101). 

Results 

Diagnoses of early (primary, secondary, or early latent) syphilis reported to NC 

DPH with verifiable NC ZIP codes increased from 518 (5.4 per 100,000 population) in 

2008 to 1,889 (18.8 per 100,000 population) in 2017 (Figure 5.1). Over the same period, 

the number of ED visits for possible opioid overdose increased from 2,792 (29.3 per 

100,000 population) in 2008 to 9,231 (91.8 per 100,000 population) in 2017. These 

trends mirror those in official reports (130, 131), with minor differences likely attributable 

to restriction here to individuals reporting an NC ZIP code and the inclusion of chief 

complaint in the definition of opioid overdose. Prior to 2013, high case rates of both 

opioid overdoses and syphilis diagnoses were limited to smaller geographic areas but 

became much more widespread by 2017 (Figure 5.2).  

There was an early weak inverse association between opioid overdoses and 

incident diagnoses of early syphilis at the ZIP code level from 2008 through 2013, which 

then reversed to a significant positive association from 2015 through 2017 (Figure 5.3). 
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This positive association from 2015 through 2017 occurred during the three years with 

the highest syphilis rates in NC (Figure 5.1). In 2017, a one percent increase in the ZIP-

code-level log overdose rate corresponded to a 0.18 percent increase in the mean log 

syphilis rate (95% CI: 0.14, 0.21). Most of the observed relationship was due to the 

direct association (0.15 percent) between the rate of people visiting EDs for possible 

opioid overdose and the rate of newly diagnosed syphilis cases in an area (Figure 5.3).  

In the ancillary analysis with adjustment for potential confounders, we found a 

similar trend to that seen in unadjusted analyses (Figure 5.4a). A modification analysis 

demonstrated meaningful modification by the percentage of the population in a given 

ZIP code identifying as Black or African American, using the median across NC ZIP 

codes as a cut-point (Figure 5.4b). Trends over time were similar in both strata, but the 

magnitude of the association differed. Specifically, areas where the percentage of the 

population identifying as Black or African American was below the median had a weakly 

negative-to-null association between opioid overdose rates and syphilis rates before 

2014, followed by a strong positive association after 2014. Areas above the median 

demonstrated a negative association prior to 2014, followed by a weaker positive 

association from 2015 through 2017.  

When restricting our population to (1) women, and (2) women and MSW, the 

overall trend remained consistent with that seen in primary analyses, although 

overdose-syphilis associations were attenuated toward the null in most years (Figure 

5.5). Sensitivity analyses showed similar relationships between aggregate opioid 

overdose rates and syphilis rates when using different weighting matrices (Figure 5.6), 

county-level data instead of ZIP code data (Figure 5.7), and raw rates instead of 
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smoothed rates (Figure 5.8). Using all overdose events instead of the first overdose 

event per person per year produced similar results (Figure 5.9), as did the analysis 

using lagged syphilis rates (Figure 5.10).  

Discussion 

To our knowledge, this ecological study is among the first to analyze syphilis 

diagnosis rates in the context of the opioid epidemic using spatial regression methods. 

Recent US surveillance reports have noted increases in self-reported injection drug use, 

heroin use, or sex with a person who injects drugs among women and MSW diagnosed 

with early syphilis (36, 124). We sought to identify possible population-level associations 

between rates of ED visits for opioid overdose, a proxy for opioid use in a ZIP code, and 

rates of early syphilis diagnoses, accounting for the spatial nature of these epidemics. 

We found a weak inverse relationship prior to 2014 and a strong positive association 

from 2015 through 2017, when rates of early syphilis and ED visits for opioid overdose 

both increased substantially.  

Our results suggest that recent rises in early syphilis cases may be 

spatiotemporally associated with the opioid epidemic, consistent with recent CDC 

reports that prevalence of self-reported heroin use, injection drug use, or sex with a 

person who injects drugs among women and MSW diagnosed with early syphilis more 

than doubled from 2013 through 2017 (36). These factors were reported by a notable 

proportion of women and MSW diagnosed with early syphilis in 2017, ranging from 3% 

of MSW reporting heroin use to 12% of women reporting sex with a person who injects 

drugs (36). Individuals who use opioids nonmedically and PWIO have been shown to be 

at higher risk of engaging in condomless sex, having sex with a person who injects 
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drugs, and exchanging sex for drugs or money (30-32, 132). These factors could 

provide opportunities for efficient transmission of syphilis in sexual networks of persons 

who use opioids. Previous outbreaks of syphilis have been similarly hypothesized to be 

a consequence of trends in drug use; a resurgence of syphilis among MSW in the 

1980s and 1990s was associated with crack-cocaine use (133, 134).   

While opioid use may be related to syphilis diagnoses in women and MSW, it is 

important to note that the majority of the syphilis epidemic remains concentrated among 

MSM (35, 105, 135); 63% of newly diagnosed cases of early syphilis in NC in 2017 

occurred in men reporting sex with men (135), and MSM still make up much of the 

recent increase in syphilis diagnoses nationwide (125). Recent data have shown that 

while syphilis diagnoses continue to rise among MSM, a positive trend in reported 

opioid use and injection drug use among MSM diagnosed with syphilis has not been 

observed in individual-level surveillance data (124). When we restricted syphilis 

diagnoses to women and MSW, we found a similar overall trend to what was seen in 

primary analyses utilizing all syphilis diagnoses in NC. While these results should be 

interpreted with caution due to small case counts, they do suggest that opioid use is 

associated with rising syphilis rates in women and MSW specifically in recent years. 

The majority of syphilis diagnoses in NC in 2017 were made in Black/African 

American men (105), whereas the national rate of opioid overdoses is highest among 

white individuals (126). When stratifying by the percentage of the population identifying 

as Black or African American falling above or below the state median, our results 

suggest that any positive association between opioid use and syphilis diagnoses in 
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recent years may be most pronounced in areas where smaller percentages of the 

population identify as Black or African American. 

This study benefits from the use of state surveillance data on syphilis diagnoses 

and ED visits. Surveillance data are expected to contain all diagnosed syphilis 

infections, and NC DETECT collects data from over 100 EDs in NC. Our opioid 

overdose case definition makes use of chief complaint in addition to diagnosis codes, 

which likely improves sensitivity by including cases that could have been missed if only 

diagnosis codes were used to identify opioid overdoses (97). However, it is worth noting 

that inclusion of chief complaint may also increase the likelihood of false positives. 

Finally, this study uses spatial models to account for spatial dependency in the potential 

relationship between opioid use and syphilis rates. Our finding that spatial 

autoregressive models are more appropriate than OLS regression when modelling 

sexually transmitted infections is consistent with findings from spatial regression 

analyses of sexually transmitted infections in Texas (136) and nationally (104, 106). 

We cannot establish individual-level causal mechanisms in this ecological study, 

so while our results demonstrate a significant positive association between opioid 

overdose rates and syphilis rates since 2015, these results are only correlational. Rising 

syphilis rates may be attributable to methamphetamine (36) or other drug use in women 

and MSW (70), or to other societal factors contributing to the opioid epidemic. The 

opioid crisis has also become intertwined with decreased labor force participation (137), 

and opioid sales and overdoses are correlated with poverty and unemployment (138). In 

NC, persons living in high-poverty areas are also more likely to be diagnosed with 

syphilis (135). Our ancillary pseudo-causal analysis demonstrated a trend consistent 
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with that seen in our primary analysis after adjustment for relevant population-level 

confounders of the relationship between opioid use and syphilis transmission; however, 

these results should be interpreted with caution. 

There are several additional limitations to consider when interpreting the results 

of this study. We used ED visits for opioid overdose as a proxy for nonmedical 

prescription opioid use, heroin use, and illicit synthetic opioid use in a geographical 

area. This is likely an imperfect measure that underestimates not only all opioid 

overdoses (since many do not reach the ED and not all EDs report to the state), but 

also the drug use for which it serves as a proxy. However, nonmedical opioid use and 

heroin use in an area are hard to measure directly, and ED visits for opioid overdose 

likely capture a portion of overall trends. We also note that rising opioid overdose rates 

may be due in part not only to increasing prevalence of nonmedical opioid use and 

injection use, but also increased potency of illicit opioids (2, 139). Additionally, while 

syphilis surveillance records are expected to capture all diagnosed infections, these 

data cannot inform us about the true incidence of syphilis infection, as a portion of 

incident infections are not diagnosed (105). Finally, there could be a non-trivial role of 

spatial patterns in healthcare seeking behaviors such that areas where people are more 

likely to present for syphilis testing are also areas where people are more likely to 

present to the ED for opioid overdose, rather than being treated in the field. Model 

results showed that a spatially lagged error term contributed significantly, suggesting 

there are important spatially dependent explanatory variables omitted from our adjusted 

models. 
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Conclusions  

As the US has struggled to curb the opioid epidemic, syphilis diagnoses have 

also surged. Future analyses should further investigate possible causal links between 

opioid use and syphilis diagnoses with individual-level data, accounting for 

spatiotemporal clustering of these epidemics. Screening for OUD among persons newly 

diagnosed with syphilis could be indicated in order to improve linkage to OUD treatment 

services. Similarly, to combat rising rates of new syphilis cases and congenital syphilis, 

identification of individuals known to misuse prescription opioids or PWIO for increased 

syphilis testing may aid detection of new syphilis cases and allow for initiation of 

treatment to break the chain of transmission.  
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Figure 5.1. Early syphilis and opioid overdose case counts in North Carolina, 
2008-2017 
 

 

 



 

Figure 5.2. Rates of (A) early syphilis diagnoses and (B) ED visits for opioid overdose, 2008-2017, using local 
empirical Bayes smoothing estimators  

 

80 



 

 
81 

Figure 5.3. Unadjusted association between opioid overdose and early syphilis 
ratesa 

 
a
Zip code aggregation of spatial Empirical Bayes smoothed rates, first order (Queen) weights matrix, spatial lag of 

syphilis rate and error, rates transformed using log(rate+1) transformation 
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Figure 5.4. A. Adjusteda association between opioid overdose and early syphilis 
rates,b B. Adjustedc association between opioid overdose and early syphilis 
rates,b accounting for modification by percentage of the population identifying as 
Black or African American falling above or below the state median 
 
A. 

B. 

a
Adjusted for percentage of the population age 20 to 24 and age 25 to 34, percent Hispanic, 

unemployment rate, poverty rate, percent completing high school (or equivalent),  
  percent female, and population density 
b
Zip code aggregation of spatial Empirical Bayes smoothed rates, first order (Queen) weights matrix, 

spatial lag of syphilis rate and error, rates transformed using log(rate+1) transformation 
c
Adjusted for percentage of the population age 20 to 24 and age 25 to 34, percent Hispanic, 

unemployment rate, poverty rate, percent completing high school (or equivalent), percent     female, and 
population density  
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Figure 5.5. Unadjusted total association between opioid overdose and early 
syphilis ratesa using early syphilis case rates among 1) all diagnosed early 
syphilis cases, 2) women only, or 3) women and MSW 
 

aZip code aggregation of spatial Empirical Bayes smoothed rates, first order (Queen) weights matrix, 
spatial lag of syphilis rate and error, rates transformed using log(rate+1) transformation 
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Figure 5.6. Unadjusted total association between opioid overdose and early 
syphilis rates,a comparing weighting matrices 
 

aZip code aggregation of spatial Empirical Bayes smoothed rates, spatial lag of syphilis rate and error, 
rates transformed using log(rate+1) transformation 
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Figure 5.7. Unadjusted association between opioid overdose and early syphilis 
rates,a county-level aggregation 
 

aCounty aggregation of spatial Empirical Bayes smoothed rates, first order (Queen) weights 
matrix, spatial lag of syphilis rate and error, rates transformed using log(rate+1) transformation 
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Figure 5.8. Unadjusted total association between opioid overdose and early 
syphilis rates,a comparing smoothed and raw rates 
 

aZip code aggregation of rates, spatial lag of syphilis rate and error, rates transformed using 
log(rate+1) transformation 
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Figure 5.9. Unadjusted total association between opioid overdose and early 
syphilis rates,a comparing all overdose events to first overdose event per person 
per year 
 

aZip code aggregation of spatial Empirical Bayes smoothed rates, spatial lag of syphilis rate and 
error, rates transformed using log(rate+1) transformation 
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Figure 5.10. Unadjusted total association between opioid overdose and early 
syphilis rates,a examining a one-year lag of early syphilis diagnosis rates 
 

aZip code aggregation of spatial Empirical Bayes smoothed rates, spatial lag of syphilis rate and 
error, rates transformed using log(rate+1) transformation 
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CHAPTER VI: CONCLUSIONS 
 

Summary of Findings 

 This dissertation study was motivated by two public health challenges currently 

facing the United States: (1) a devastating epidemic of opioid-related morbidity and 

mortality, and (2) marked increases in syphilis incidence, including in women and in 

men who have sex with women (MSW). Prescription opioid use often precedes initiation 

of heroin and illicit synthetic opioids and remains a significant contributor to opioid-

related morbidity and mortality. Given this, as well as recent increases among women 

and MSW newly diagnosed with syphilis in reporting of both injection drug use, heroin 

use, and sex with a person who injects drugs, it is important to understand how initial 

exposure to prescription opioids can place people at higher risk of opioid-related 

adverse outcomes including opioid overdose, and how nonmedical use of opioids may 

be linked to rising syphilis rates.  

 In order to better understand opioid overdose risk among privately insured 

patients initiating opioid therapy in North Carolina, we first sought to examine the 

relationship between prescribing trajectory and risk of opioid overdose by initial clinical 

indication using causal inference methods. We then explored population-level 

spatiotemporal relationships between the opioid epidemic and syphilis infections in 

North Carolina using spatial regression methods to analyze aggregate surveillance data 
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of emergency department visits for suspected opioid overdose and diagnosed cases of 

early (primary, secondary, and early latent) syphilis in North Carolina.  

 The first aim of this dissertation study used longitudinal insurance claims data 

from a large, private health insurance company in North Carolina from 2006 through 

2018. We identified 492,983 patients initiating opioid therapy for pain management, of 

whom 1.7% went on to have long-term opioid therapy (LTOT) using a more rigorous 

definition of LTOT than has been used in many previous studies. In this patient cohort, 

we found that exposure to LTOT significantly increased three-year risk of opioid 

overdose after accounting for relevant baseline confounders and informative censoring. 

Additionally, we found a dose-response relationship between duration of use and risk of 

opioid overdose, confirming the importance of the CDC guidelines to reduce the 

duration of opioid therapy. Finally, we did not find meaningful modification of the 

relationship between duration of opioid therapy and overdose risk by initial derived 

clinical indication.  

 The second aim made use of surveillance data of diagnosed cases of early 

syphilis and suspected emergency department visits for opioid overdose in North 

Carolina from 2008 through 2017. Using spatial regression methods of aggregate rate 

data, we found that recent increases in early syphilis cases in North Carolina may be 

associated with the opioid epidemic in space and time, both in the full study population 

and when we restricted syphilis diagnoses to women and MSW. This relationship held 

in an ancillary pseudo-causal analysis that adjusted for relevant population-level 

confounders.  
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 Taken together, the results of this dissertation demonstrate that patients exposed 

to long-term opioid therapy are at higher risk of opioid overdose, and that, since 2015, 

opioid overdoses (as a proxy for nonmedical opioid use) are associated with early 

syphilis diagnoses in space and time. These findings confirm the importance of the CDC 

recommendation to reduce duration of opioid therapy in patients initiating prescription 

opioid therapy for pain management and lend support for state legislation in North 

Carolina to limit prescription durations for treatment of acute and post-surgical pain with 

opioid analgesics (140). They also are consistent with recent findings from the CDC of 

increased prevalence of drug use or sex with a person who uses drugs among women 

and MSW receiving syphilis diagnoses (36). 

Strengths and Limitations 

The strengths and limitations of this dissertation will be considered in the context 

of the main threats to internal and external validity in epidemiologic research. 

Confounding 

Uncontrolled confounding is one of the key threats to internal validity in 

observational studies. In the first aim of this dissertation study, the assumption of no 

unmeasured confounding implies that patients exposed to long-term opioid therapy are 

exchangeable with patients exposed to short- to medium-term opioid therapy. A small 

minority of patients in this analysis were exposed to long-term opioid therapy; however, 

we found important differences between patients in each exposure group by key 

confounders that had been identified a priori based on a directed acyclic graph (DAG) 

(e.g., sex, prevalence of painful conditions, benzodiazepine use, depression). We used 

a rigorous methodological approach of inverse probability of treatment weighting (92) to 
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address potential confounding by indication (141). However, our results may be subject 

to residual confounding due to the use of insurance claims, which may undermeasure 

important confounders such as substance use disorders and mental health conditions. 

Insurance claims also do not include all potential confounders (e.g., socioeconomic 

status), which may result in unmeasured confounding.  

In Aim 2, we conducted an ecological analysis to identify population-level 

associations between opioid overdoses, a proxy for nonmedical opioid use, and early 

syphilis diagnoses. Our approach could not infer causation and, therefore, we did not 

consider potential confounding of our hypothesized exposure-outcome relationship in 

primary analyses. However, we recognized that there are factors that may be driving 

both epidemics. In a pseudo-causal ancillary analysis, we identified a priori population-

level characteristics likely to be associated with both overdose rates and syphilis rates 

(that is, potential confounders for which adjustment would be warranted in a causal 

analysis). There is also particular concern regarding population density in spatial 

analyses (142), which was accounted for in adjusted analyses in combination with the 

potential population-level confounders discussed above. 

Measurement 

There were several key variables used in this dissertation study that may have 

been subject to bias from measurement error. In Aim 1, we used insurance claims to 

capture our exposure and key confounder variables. We relied on insurance claims and 

linked mortality records to measure outcomes of fatal or nonfatal opioid overdose. As 

mentioned in “Confounding” above, insurance claims may under-measure key 

covariates (e.g. substance use disorders or depression). This may occur because these 
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conditions are inconsistently diagnosed or treated by providers who bill their services to 

a patient’s private insurance.  

Our exposure of long-term opioid therapy may also be subject to measurement 

error. Patients may pay for some opioid prescriptions out of pocket, which may make 

them appear as though they are not continuing to receive prescription opioids. Similarly, 

patients classified as exposed to long-term opioid therapy may have filled prescriptions 

that they did not consume. In order to assess potential bias arising from exposure 

misclassification, we conducted several sensitivity analyses of our definition of long-

term opioid therapy and found that our results were robust to varying exposure 

definitions. Additionally, we used a primary definition of long-term opioid therapy that we 

believe more adequately identifies true long-term use of prescription opioids than what 

has been used in many previous studies of long-term opioid therapy.  

Insurance claims and mortality records likely undermeasure our outcome of 

opioid overdoses (97). However, by linking insurance claims to mortality records, we 

were able to identify fatal overdoses that may have been missed in claims data. We 

also do not expect differential misclassification of opioid overdose by exposure status. 

Therefore, we believe that the threat of bias due to outcome misclassification is minimal. 

Further, outcomes captured in our datasets are likely true opioid overdoses due to 

documented high specificity of diagnostic codes in detecting opioid overdose (97).  

 In Aim 2, we used emergency department visits for opioid overdose as a proxy 

for nonmedical prescription opioid use, heroin use, and illicit synthetic opioid use in a 

geographical area. As described above, diagnostic codes have low sensitivity and may 

miss many cases of opioid overdose. To improve our detection of opioid overdoses, we 
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additionally made use of chief complaint in our definition of probable opioid overdose in 

emergency department surveillance data. While this approach may have increased the 

threat of false positives, we believe this threat is minimal and that the addition of chief 

complaint to our case definition improved our ability to capture a portion of overall 

trends in opioid overdose as a proxy for nonmedical opioid use, heroin use, and illicit 

synthetic opioid use in a geographical area. Our definition of syphilis cases utilized 

cases diagnosed in primary, secondary, and early latent stages, which are indicative of 

recent infection and thus a suitable measure of incidence of syphilis within a given year. 

We assessed potential measurement error of incident syphilis infections by 

incorporating a time lag in sensitivity analyses. While surveillance records are expected 

to contain all diagnosed infections, undiagnosed cases in the early stages of infection 

(primary, secondary, and early latent) are missed in this data source. Early syphilis 

infections accounted for only 65% of all reported newly diagnosed syphilis cases in NC 

in 2017 (105).  

 Spatial rate data may be subject to additional sources of measurement error. 

Mapping rare events in areas with small populations could lead to extreme differences 

across boundaries that may be artifacts created by specific geographic boundaries used 

and not representative of the true underlying local diagnosis and overdose rates. To 

account for this, we used spatial local empirical Bayes estimation (99) to smooth both 

syphilis and overdose rates and compared results of smoothing to results using raw rate 

data. Results of spatial analyses can also be highly sensitive to the level of data 

aggregation, also known as the Modifiable Area Unit Problem (107), as well as the 

specification of neighbors in weighting matrices (103). To assess these threats, we 
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conducted multiple sensitivity analyses using different levels of data aggregation and 

weighting matrices and found that our results were robust. 

Selection 

 In Aim 1, entry into the risk set required both the presence of an insurance claim 

for a filled opioid prescription as well as an accompanying insurance claim indicating a 

pain diagnosis or surgery. Insurance claims may miss individuals who are prescribed 

opioids for pain management and pay for their prescriptions out of pocket, as well as 

patients who are prescribed opioids for pain without rigorous documentation of the pain 

condition. Additionally, we were unable to measure outcomes in patients who 

disenrolled prior to administrative censoring. Informative censoring may occur if patients 

who are more likely to experience an opioid overdose are also be more likely to 

disenroll from their private insurance plan. We applied time-varying inverse probability 

of censoring weights to account for selection bias stemming from informative censoring 

based on measured covariates. 

 In Aim 2, we used aggregate data of all diagnosed cases of early syphilis and 

emergency department visits for opioid overdose. These data sources cannot capture 

patients who do not present to the emergency department for possible opioid overdose, 

or patients who do not present for syphilis testing. However, our data are expected to 

contain all diagnosed cases of syphilis, and NC DETECT contains data from >100 

emergency departments in North Carolina.  

Survivor Bias and Temporality  

Pharmacoepidemiologic research using insurance claims data may be subject to 

issues of immortal time bias (143, 144) and temporality (84). This may occur if patients 
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are followed from a defined start of study follow-up without consideration of prevalent 

users of the drug of interest versus patients newly initiating treatment. We accounted for 

this possibility by implementing a new-user design (84, 145) that required patients to 

meet a six-month washout period during which they could have no documented use of 

prescription opioids or evidence of opioid use disorders. However, as discussed above, 

pharmaceutical claims may under-measure conditions such as opioid use disorders and 

prescriptions paid for out of pocket are not captured in claims data. An additional 

potential source of immortal time bias can arise during the window of exposure 

classification, since our definition of long-term opioid therapy required 90 days of follow-

up for exposure differentiation. In order to reduce the threat of immortal time bias during 

these 90 days, we restricted analyses to patients with at least 90 days of continuous 

enrollment following entry into the study cohort. Further, we assessed the threat of 

survival bias by examining potential selective pressure by baseline covariates that may 

lead patients to overdose in the first 90 days of follow-up as opposed to after our 90-day 

exposure definition window. We did not find evidence of strong selective pressure, with 

the exception of a recent emergency department visit. 

Generalizability 

The data source used in Aim 1 includes individuals insured by a large provider of 

private health insurance that insures a diverse population of patients. However, this 

dataset does not include uninsured individuals or those on Medicare/Medicaid and is 

restricted to a single state in the southeastern United States. Therefore, primary study 

findings may not be generalizable to the broader population of patients prescribed 

opioid therapy for pain management in the United States. Similarly, Aim 2 utilized data 
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from North Carolina surveillance systems and the results from this spatiotemporal 

analysis may not generalize to the broader United States population. 

Public Health Implications and Future Directions 

Future research building on our analyses of risk of opioid overdose among 

patients exposed to long-term opioid therapy are warranted, as are analyses further 

probing observed associations between the opioid epidemic and rising syphilis rates.  

To further explore the risks of opioid use disorders and opioid overdose among 

pain patients treated with prescription opioids, methodologically rigorous causal 

inference methods accounting for the time-varying nature of exposure to long-term 

opioid therapy and time-varying confounding should be employed to disentangle crucial 

points in clinical decision-making that impact risk adverse outcomes related to 

nonmedical use of opioids. First, analyses should investigate the time-varying nature of 

the relationship between initial duration of opioid therapy and risk of opioid use 

disorders including opioid overdose. Our analyses in this dissertation restricted patients 

to those with at least 90 days of continuous enrollment in order to define exposure to 

long-term opioid therapy. Consequently, we removed overdose events within those first 

90 days. A rigorous time-varying approach may be able to more thoroughly scrutinize a 

dose-response effect of cumulative opioid exposure on overdose risk. Additionally, time-

varying approaches that analyze the impact that treatment decisions surrounding 

continuation versus discontinuation of opioid therapy may have on subsequent risk of 

opioid overdose could inform clinical decision-making for physicians treating patients 

receiving opioid therapy for pain management.  
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As noted in the limitations section, while pharmaceutical claims contain rich 

patient data, there are analytical challenges that come with analyzing insurance claims 

data. Future work integrating big data linkages between insurance claims and electronic 

health records could aid in investigations of the impact of measurement error and 

selection bias in opioid research using claims data. These linkages could also provide 

insight on questions of external validity by including a population of patients treated 

regardless of insurance status. 

Finally, future analyses investigating possible causal links between opioid use 

and syphilis diagnoses with individual-level data, accounting for spatiotemporal 

clustering of these epidemics, are warranted. Linkages between insurance claims, 

electronic health records, and surveillance records of diagnosed cases of early syphilis 

will inform future studies making use of causal inference methods to examine possible 

causal links between the opioid epidemic and syphilis.  

In conclusion, this dissertation confirmed that patients exposed to long-term 

opioid therapy are at increased risk of opioid overdose compared to patients exposed to 

shorter durations of opioid therapy, and that this association likely follows a dose-

response relationship. Further, we found evidence of spatiotemporal associations 

between the opioid epidemic and recent increases in diagnosed syphilis rates in North 

Carolina. These results support prescribing guidelines that clinicians minimize opioid 

therapy duration when opioid treatment is deemed clinically necessary for pain 

management. Additionally, screening for opioid use disorders among persons newly 

diagnosed with syphilis may be useful in improving linkage to treatment services for 

opioid use disorders. Similarly, to combat rising rates of new syphilis cases and 
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congenital syphilis, identification of individuals known to misuse prescription opioids or 

persons who inject opioids for increased syphilis testing may aid in detection of new 

syphilis cases and enable treatment initiation to break the chain of transmission. 
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APPENDIX 1: R PACKAGES USED IN ANALYSES 
 
Source: CRAN package repository https://cran.r-project.org/ 

Package Version 
broom 0.5.5 
cobalt 4.1.0 
cowplot 1.0.0 
dplyr 1.0.0 
forcats 0.5.0 
foreign 0.8-72 
gganimate 1.4.5 
ggplot2 3.3.1 
ggsci 2.9 
glue 1.4.1 
haven 2.3.1 
here 0.1 
knitr 1.28 
labelled 2.2.2 
lubridate 1.7.9 
magrittr 1.5 
maps 3.3.0 
nnet  
purrr 0.3.4 
RColorBrewer 1.1-2 
readr 1.3.1 
rlang 0.4.6 
rmarkdown 2.2 
rms  
sf 0.9-3 
spData 0.3.5 
spdep  1.1-3 
stringr 1.4.0 
survival 3.1-11 
survminer 0.4.6 
tableone 0.11.1 
tibble 0.3.1 
tidyr 1.1.0 
tidyverse(109) 1.3.0 
viridis 0.5.1 
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APPENDIX 2: DISCLAIMERS 
 

The NC Department of Health and Human Services (DPH) does not take 

responsibility for the scientific validity or accuracy of methodology, results, statistical 

analyses, or conclusions presented. 

The North Carolina Disease Event Tracking and Epidemiologic Collection Tool 

(NC DETECT) is an advanced, statewide public health surveillance system. NC 

DETECT is funded with federal funds by North Carolina Division of Public Health (NC 

DPH), Public Health Emergency Preparedness Grant (PHEP), and managed through a 

collaboration between NC DPH and the University of North Carolina at Chapel Hill 

Department of Emergency Medicine's Carolina Center for Health Informatics (UNC 

CCHI). The NC DETECT Data Oversight Committee does not take responsibility for the 

scientific validity or accuracy of methodology, results, statistical analyses, or 

conclusions presented.  

The content is solely the responsibility of the authors and does not necessarily 

represent the official views of the National Institutes of Health. 
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