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ABSTRACT

Chong Jin: Statistical Methods in Intra-Tumor Heterogeneity

(Under the direction of Wei Sun and Danyu Lin)

A tumor sample of a single patient often includes a conglomerate of heterogeneous cells. While

its genetic and transcriptomic sequencing data represent a mixture of signals from different cell types,

they can be further deconvolved so that we can get down to the level of each homogeneous component

and test the association between the composition and some interesting response variables.

Understanding intra-tumor heterogeneity through deconvolution of genetic data may help us

identify useful biomarkers to guide the practice of precision medicine. While popular methods exist,

they usually do not jointly consider copy number aberrations and somatic point mutations and their

timings under a valid statistical framework.

Differential expression using RNA sequencing data of bulk tissue samples (bulk RNA-seq) is a very

popular and effective approach to study many biomedical problems. However, most tissue samples

are composed of different cell types. Differential expression analysis without accounting for cell type

composition cannot separate the changes due to cell type composition or cell type-specific expression.

In addition, cell type-specific signals may be masked or even misrepresented, especially for relatively

rare cell types.

In Chapter 2 of the proposed dissertation, we develop a new statistical method, SHARE (Statistical

method for Heterogeneity using Allele-specific REads and somatic point mutations), that reconstructs

clonal evolution history using whole-exome sequencing data of matched tumor and normal samples.

Our method jointly models copy number aberrations and somatic point mutations using both total

and allele-specific read counts. Cellular prevalence, allele-specific copy number and multiplicity of

point mutations within each subclone can be estimated by maximizing the model likelihood. We apply

our method to infer the subclonal composition in tumor samples from TCGA colon cancer patients.
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In Chapter 3, we propose a new framework to address these limitations: Cell Type Aware analysis

of RNA-seq (CARseq). CARseq employs a negative binomial regression approach to fully utilize the

count features of RNA-seq data to improve statistical power. After evaluating its performance in

simulations, we apply CARseq to compare gene expression of schizophrenia/autism subjects versus

controls. Our results show that these two neurodevelopmental disorders differ from each other

in terms of cell type composition changes and genes related to different types of neurotransmitter

receptors were differentially expressed in neuron cells. We also discover some overlapping signals of

differential expression inmicroglia, supporting the two diseases’ similarity through immune regulation.
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CHAPTER I: LITERATURE REVIEW

1.1 Intra-tumor heterogeneity reconstruction using DNA sequencing data

Tumor initiation and progression involves gradual evolution from normal cells to cancer cells

(Hanahan and Weinberg, 2000; Greaves and Maley, 2012). Tumor sequencing can provide important

insights for tumor characteristics and treatment options. For example, recently it was shown that so-

matic mutation load estimated from sequencing data is associated with the efficacy of immunotherapy

(Schumacher and Schreiber, 2015). Sequencing of multiple tumor biopsies from each patient, both

from primary and metastasis regions, portrays a complex cancer genomic landscape highlighted by a

branched evolutionary path of tumor growth (Gerlinger et al., 2012).

Collecting multiple tumor samples per patient is often impractical and thus many researchers and

clinicians often face the daunting challenge to infer intra-tumor heterogeneity (ITH) from one tumor

sample. A promising solution is to sequence a larger number of single cells. However, single-cell DNA

sequencing data have poor quality due to very limited input materials (Wang et al., 2014). In addition,

it is cost prohibitive to sequence a large number of cells, and even if one can afford to sequence tens of

thousands of cells, it is still challenging to unbiasedly select these cells from billions of cells of the bulk

sample. In this paper, we focus on in-silico approaches that estimate the subclonal structure of tumor

cells based on DNA sequencing data from a single tumor sample.

Consider a evolutionary tree of tumor progression. The root of this tree is a normal cell that

acquires somatic mutations gradually and evolves into a cancerous cell, which is the founding subclone

of all tumor cells. Following previous works, we use the infinite site model for somatic point mutations

(SPMs), which assumes one locus can only be mutated once. For somatic copy number aberrations

(SCNAs), we assume each of the two alleles of a locus can only be mutated once, which is slightly more

general than the assumption that each locus can only be mutated once (Li and Li, 2014).
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1.1.1 Overview of computational methods for ITH

The study of intra-tumor heterogeneity (ITH) has attracted considerate amount of attention in the

recent years. Many methods have been developed to infer ITH using somatic copy number aberration

(SCNA) only (Van Loo et al., 2010; Carter et al., 2012; Oesper et al., 2013, 2014; Shen and Seshan, 2016) or

somatic point mutation (SPM) only while either assuming SCNA is known (Roth et al., 2014; Deshwar

et al., 2015; Chedom-Fotso et al., 2016) or only applicable to SCNA free regions (Miller et al., 2014;

Hajirasouliha et al., 2014; El-Kebir et al., 2015; Yuan et al., 2015; Malikic et al., 2015). A few methods

have jointly analyzed both SCNA and SPM. CHAT (Li and Li, 2014) estimates the cellular frequencies

of SCNA and SPM, while accounting for the uncertainty of their order of occurrences, yet subclonal

configurations are not estimated. BayClone2 (Lee et al., 2014) considers both SCNAs and SPMs and

develops a new class of Bayesian feature allocation models to characterize subclonal copy number,

but stops short of exploiting the phylogenetic relation between SCNAs and SPMs. CloneHD (Fischer

et al., 2014) employs hidden Markov models (HMM) to couple SCNAs and SPMs without defining a

phylogenetic tree. Instead of formulating a statistical model. EXPANDS (Andor et al., 2014) minimizes

a heuristic error-term to combine SCNAs and SPMs to estimate subclonal cellular proportions.

Collecting tumor sequencing data becomes increasingly popular in clinical settings and typically

one sample is collected per patient (Frampton et al., 2013). To assess the association between somatic

mutations and clinical outcomes, it is important to take into account of ITH. Towards this goal, a

statistical method to discern ITH of SCNA and SPM in a likelihood framework will be very useful,

which can be subsequently combined with hypothesis testing step in association studies. Canopy

(Jiang et al., 2016) can almost serve this purpose but it was mainly designed for in-depth analysis of

multiple samples of one patient and its computational efficiency limits its application for large-scale

studies of thousands of patients. This motivates us to develop this new method, Statistical method for

Heterogeneity using Allele-specific REads and somatic point mutations (SHARE), which provides a

likelihood inference framework to study ITH of SCNA and SPM, while emphasizing the situation that

there is only one sample per patient.
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1.1.2 GenoCNV and GenoCNA

Being an earlier attempt in literature to reconstruct copy number in the presence of normal cells,

GenoCNV and genoCNA are developed to extract genotype and copy number calls from Illumina SNP

arrays (Sun et al., 2009). As their names suggest, genoCNV is used to detect copy number change caused

by germline mutation while genoCNA is suited to detect copy number change arising from somatic

mutations, which is prevalent in tumor tissues. The novelty of the method is that genoCNA takes

normal tissue contamination into account, and can also utilize paired tumor-normal tissue information

when available. Both genoCNV and genoCNA can determine genotype of specific regions. The key

input data are LRR (Log R Ratio) and BAF (B Allele Frequency) for all SNPs specified. LRR quantifies

the overall copy number while BAF measures the allelic contrast. Other important parameters include

the SNP names, positions of all the SNPs, population frequency of B allele, etc. GenoCNA also allows

for adding paired tumor-normal tissue information to improve the result.

In the modeling strategy of genoCNV and genoCNA, two continuous time HMMs with discrete

states representing genotypes are set up to describe LRR and BAF output. The two HMMs share

the same states and transition probability but different emission probability. For SCNA, the nine

states include the consideration of normal tissue contamination. LRR is modeled using the mixture

of a uniform distribution to represent noise and a normal distribution of signal, while BAF can be

decomposed into a uniform component and several truncated normal components. To solve the MLEs

of the parameters in HMM, the Baum-Welch algorithm is employed. This computation intensive part

is implemented using the C language in the genoCN software package. The Baum-Welch algorithm is

iterated until the parameters converge.

In real data, genoCNV has a performance comparable to PennCNV for HapMap individuals, and

genoCNA performs better than PennCNV in SCNA analysis using TCGA data. This is mainly because

of the presence of normal tissue contamination invalidates some of the assumptions specifically

designed for CNV studies in PennCNV, while genoCNA prevails at this point. The tumor purity

estimation tested on TCGA data shows that the data-driven method gives a lower estimate than
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clinically-estimated tumor purity, which suggests that the latter may not accurate. However, it is

important to mention that genoCNA may fail when the chromosomal background is not diploid.

1.1.3 ASCAT

Similar to genoCNA, although ASCAT is technically not a method for ITH (Van Loo et al., 2010),

it is still worth mention since the copy numbers derived from ASCAT is still widely used as the input

of some popular ITH methods that accept a precomputed copy number, e.g., pyclone (Roth et al., 2014).

The authors develop a method called ASCAT (Allele-Specific Copy number Analysis of Tumors) to

compute the allel-specific copy number of tumors from Illumina SNP array data, with normal tissue

infiltration considered. The program can report aberrant tumor cell fraction, ploidy, gains, losses, loss

of heterozygosity (LOH), copy number-neutral events, and allelic skewness.

As a preprocessing step before running ASCAT, ASPCF (allele-specific piecewise constant fitting)

is used to preprocess SNP data to reduce noise. Themain component of ASPCF is a penalized optimiza-

tion criterion, which seeks to approximate LRR and BAF data using two piecewise constant functions

with as few change points as possible. The change points that agree between piecewise constant

functions derived from LRR and BAF are kept. The input parameters are designated beforehand.

After LRR and BAF are preprocessedwith ASPCF, ASCAT is used to give estimates of ρ, percentage

of aberrant cells, and φt , tumor ploidy. The LRR and BAF at each locus can be written as a function

of ρ, φt and the underlying copy numbers of the two alleles. Thus the underlying copy numbers can

be calculated given given LRR, BAF, ρ and φt . Then ρ and φt are estimated as the ones that bring

the corresponding copy number profile the minimum distance to a integer number solution. To

evaluate the solution, aberration reliability score measures how well the ASCAT-predicted integer

copy numbers match the data.

To validate ASCAT, it is first applied to a dilution series of tumor sample mixed with different

portions of normal sample. The derived allele-specific copy number is consistent. Second, the

copy number measured by Feulgen photocytometry gives credence to the computational method.

Finally, ASCAT is proven by copy numbers obtained using FISH experiments, which tends to slightly
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underestimate copy number when compared with ASCAT. Notably, there are cases that ASCAT would

fall, especially when LRR is overly noisy even after ASPCF segmentation.

1.1.4 CloneHD

The cloneHD software (Fischer et al., 2014), written in C++, is a likelihood-based HMMmodel

that integrates three data sources: copy number aberrations, B allele frequency and somatic SNVs

from whole-genome sequencing data with 1 kb resolution. It can work on multiple samples from one

patient. Unlike other methods that performs segmentation first, it relies on filterHD, a fuzzy data

segmentation scheme that gives state transition probabilities for each locus.

The cloneHD software uses geometric distributions as prior to induce penalties. They derive

posterior of SCNA, use it to obtain BAF prior, and then use the SCNA and BAF posterior to get SNV

prior. They use a heuristic BIC to perform model selection.

Limitations of this method include not considering tree structure, which would impose more

restrictions on the subclonal copy numbers and multiplicities of point mutations.

1.1.5 EXPANDS

EXPANDS (Andor et al., 2014), provided as an R package, is a method to estimate the cellular

frequency of subpopulations (SP) in tumor samples. Conceptually, it is somewhat similar to the pyclone

method, since both of them attempt to obtain the distribution of variant allele frequencies (VAFs)

across somatic point mutations, and then cluster those VAFs. However, the cluster means provide

an estimate of the cellular prevalence of mutations instead of subclones. For example, if a set of

mutations occur in two subclones, assuming there is no SCNA and the mutations occur in one of

the two alleles, then the cellular prevalence of these mutations is the one half of the summation of

the cellular prevalence of the two subclones. The “one half” factor is due the assumption that the

mutations occur on one of the two alleles.

Their nomenclature is somewhat unorthodox, in that they group somatic point mutations together

with LOH events, and they use B allele ploidy to refer to multiplicity of point mutations. For each
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locus in each SP, they define total ploidy in tumor cells, total ploidy in normal cells, B allele ploidy

in tumor cells, and B allele ploidy in normal cells. Then they define an error-term that comprises

of SCNA and SNV, convert that to Pl( f ), the probability that the mutation of locus l occurs in a

fraction f of cells, and then use K-L divergence as a measure of distance to cluster on the distributions

associated with each locus.

Not explained in their journal article, the R package provides more functionalities. The vignette

shows how to get phylogenetic relations between the SPs, i.e., infer copy number of each segment of

each SP by assigning copy number of clustered SNVs, and then do a neighbor-joining clustering. Also

provided in their vignette is a guide on how to use the method on multiple samples, but they do not

actually provide the data to run their example script.

1.1.6 Canopy

Canopy (Jiang et al., 2016) is a Bayesian method to recover tree structure from tumor samples.

Unlike our proposed method, it is mainly designed to jointly analyze multiple samples from the same

subject, where Canopy can unleash its full potential when the clustering steps of SPMs provides

enough simplification in the otherwise computationally demanding steps. The input of Canopy is

very similar to what we designate as input of our program, except that Canopy takes segmental major

and minor copy numbers instead of our program taking segmental LRR and BAF.

The following lists the input of Canopy:

R A matrix of mutant allele read depth. Each column is a sample and each row is a SPM. This is

equivalent to XMki in our program.

X A matrix of total read depth. Each column is a sample and each row is a SPM. This is equivalent to

XMki + XNki in our program.

WM A matrix of observed major copy number. Each column is a sample and each row is a segment.

This is similar to nAl in our program, although in Canopy we know the major copy number for

each segment using other methods. In simulation, we can provide the true nAl .
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Wm A matrix of observed minor copy number. Each column is a sample and each row is a segment.

This is similar to nBl in our program.

epsilonM Standard deviation ofWM. Related to σk in our method, it can be provided as a scalar or

a matrix the same dimension asWM.

epsilonm Standard deviation ofWm.

C A matrix that specifies which segments have multiple SCNA events. It is based on a manual

inspection of the LRR-BAF plots of multiple samples , and does not need to be specified in our

simulation settings if we analyze one sample at a time.

Y A matrix that specifies which SPMs are on known SCNA segments. Each column is a segment and

each row is a SPM. This is related to mk in our program, but in a different coding scheme.

To improve the convergence of MCMC, especially when the VAF of mutations show clear cluster

patterns, canopy.cluster can be used to perform a binomial clustering of SPMs using EM algorithm.

It can then create psuedo-SPMs corresponding to each cluster that can be used in subsequent MCMC

sampling.

Themost time-consuming step is canopy.sample, wheremultiple chainswith random initiations

are sampled according to multiple update rules every iteration: sample SPM positions, sample clonal

proportions, sample major and minor copy number, and sample whether SPM falls in the major or

minor copy number. The results are saved every writeskip iterations.

To collect the sampling results, canopy.postmerges the chains by only keeping the positions

with larger likelihood values, so that the number of positions left is nomore than five times the length of

a chain after burn-in and thinning. Subsequently, the function removes the extremes of the likelihood

values and remove the less visited configurations with the cutoff specified by post.config.cutoff.

1.1.7 PhyloWGS

PhyloWGS (Deshwar et al., 2015) is an earlier method that is similar to Canopy. In their modeling

decision, normal cells count as a subclone. The differences are:
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• PhyloWGS conceptualizes SCNA in a similar way as SPM. In fact, they need to transform SCNA

into “pseudo” SPM in their model. Fortunately, they have provided a parser to transform a more

widely used SCNA input file as their input.

• They use tree-structured stick-breaking process. This enables them to travel through all possible

number of subclones within a single MCMC chain. (The default number of burn-in samples is

1000 and the default number of MCMC samples is 2500. They also don’t run multiple chains by

default.)

In PhyloWGS, while not a method as foolproof as Canopy, it is possible to compute entropy by

extracting cellular frequency and tree structure from the JSON output.

1.2 Cell type-specific differential expression from RNA sequencing data

Next-generation RNA sequencing has been generating massive amounts of expression data that

deepen our knowledge across a spectrum of diseases, and it is still going strong after more than a

decade of success. Towards the long term goal of effective prevention and treatment, researchers often

compare transcriptomes of samples grouped by different clinical outcomes, hoping to elucidate the

molecular characteristics and mechanisms of the underlying disease.

Differential expression analysis aims to identify the association between mRNA expression and

covariates of interest. As an indispensable tool to hunt down possible biological mechanisms, it has

long been part of the repertoire of a bioinformatician since its inception. The common practice in bulk

RNA-seq analysis involves performing a transcriptome-wide screening for possible signals, and then a

pathway-level enrichment analysis would ensue, generally based on some combination of gene-level

(adjusted) p-value and log fold change (LFC) estimates. They can be obtained from some widely used

methods, including edgeR (Robinson et al., 2010), voom (Law et al., 2014), and DESeq2 (Love et al., 2014),

where borrowing information across genes through empirical Bayes methods to improve small sample

performance is a recurring theme. While being able to regress on a couple of covariates, these testing

methods do not offer the option to incorporate cell type composition, and any interpretation will rest
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upon the evidence gathered at the mixture level. Thus their results could be driven by differential cell

type composition, and cell type-specific expression could be obscured especially when a cell type is

relatively rare.

Cell type-specific differential expression test seeks to answer whether a gene is differentially

expressed within a given cell type as if we can isolate purified cells under a microscopic scale. Single

cell RNA-seq data, with cell types annotations from either marker genes or external references such

as SingleR (Aran et al., 2019), virtually meet the canonical definition of transcriptome profiling after

cell type purification. There are already a wealth of methods analyzing cell type-specific differential

expression through single cell RNA-seq data (Wang et al., 2019). Methods specially tailored to single

cell RNA-seq data require attention to the excess of zeros in read counts, e.g. by using a zero-inflated

Poisson model in SCDE (Kharchenko et al., 2014) or by using a hurdle model in MAST (Finak et al.,

2015). While the advancement of single cell RNA-seq techniques can provide unparalleled direct

knowledge about individual cell types, large-scale single cell RNA-seq studies are less feasible than

those using bulk RNA-seq due to budget considerations. It has also been reported that single-cell

isolation and sequencing may introduce artifacts that can skew cellular proportions when compared

to traditionally recognized approaches such as immunohistochemistry (IHC) estimates (Newman et al.,

2019).

In the following subsections, we review a few methods about deconvolution of bulk RNA se-

quencing data and then highlight a couple of methods about cell type-specific differential expression

analysis.

1.2.1 Cell type composition deconvolution

1.2.1.1 CIBERSORT

CIBERSORT (Newman et al., 2015) is a machine learning method developed to estimate cell type

proportions from gene expression profiles in bulk tissue. It relies on a linear assumption that the

observed expression is the sum of cell type-specific expression weighted by cellular proportions.

Following this idea, they carefully constructed a signature matrix that contains only a subset of genes

9



which are differentially expressed between different leukocyte cell types while removing genes with a

high expression in solid tumor cell lines. To improve the stability of the deconvolution, number of

signature genes is chosen to minimize the condition number. A support vector regression method

is used to estimate cell type proportions. While CIBERSORT is validated in the deconvolution of

microarray expression data, it can also be tailored to work on RNA-seq data, though the normalization

process is different.

CIBERSORTx(Newman et al., 2019), the successor to CIBERSORT, is more conscious of the

common practice of constructing the reference from single cell RNA-seq data, and supports B-mode

and S-mode to remove unwanted platform-specific effects.

We will focus on the explanation of a special feature of CIBERSORTx, high-resolution purification,

which allows for expression reconstruction at the sample level. The high-resolution expression

purification is similar to NMF, where a matrix of expression is decomposed as the sum of multiple

matrices of expression.

According to Page 31 of Supplementary Materials of CIBERSORTx, they have:

diag(Gi,·,·F) = Mi,·, 1 ≤ i ≤ n,

where for each gene i, Gi,·,· is a k × c expression matrix, with c indexing the cell types, F is a c × k

cellular frequency matrix,Mi,· is the mixture expression across k samples.

NMF will not give a unique solution unless we have more regularity conditions (Gillis, 2014).

For identifiability purposes, CIBERSORTx high-resolution expression purification requires several

assumptions:

1. The algorithm is applied to each gene separately.

2. Underlying phenotypic class structure can be revealed by ordering bulk gene expression data.

In Supplementary Fig. 8 of CIBERSORTx, using an example by reconstructing bulk tissue by mixing

scRNAseq data of five major pancreatic islet cell types of Type 2 Diabetes and normal subjects, they

showed that fold change of cell type-specific gene expression was highly correlated with fold change
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of reconstructed bulk gene expression, and it was also highly correlated with enrichment of case vs.

control samples and high vs. low expression groups.

Assumption 2 is not expected to be easily justifiable in very general mixture datasets. Also

detrimental to the logic of ordering bulk gene expression data, we can see in Supplementary Fig. 8(a)

of CIBERSORTx that the scale of fold change in bulk is much smaller than the scale of fold change in

purified cell types, as suggested by the regression line in that figure.

The steps in their high-resolution purification—performed gene by gene—can be summarized as

follows:

1. Estimate cell type-specific expression. This is similar to how they obtain group-mode expres-

sion. They first apply NNLS on bootstrapped samples with a sample size around 4-5 fold greater than

the number of cell types. Then they get two kinds of p-values testing whether the cell type-specific

expression is zero or not. One is based on the empirical proportion of zeros observed using bootstrap-

ping, and the other is based on a one group t-test based on the mean and variance estimated using

bootstrapping. They combine two p-values using Fisher’s method. If the p-value of a gene/cell type

pair is less than 0.05 (by default), the cell type is included in high-resolution purification.

2. Sort the bulk gene expression. The samples remain sorted in subsequent steps.

3. When assuming a change point t can partition the samples into two groups, t is chosen so that

the L2 reconstruction loss is minimized when the groupwise cell type-specific expression is estimated

using subjects partitioned by the change point.

4. Cell type-specific test between two groups are partitioned by the optimal t. They get two kinds

of p-values when testing whether the cell type-specific expression are different between two groups.

One is based on the distribution of |g∗
2
− g1 |, where g∗

2
is the bootstrapped cell type-specific expression

in group 2 (note that they didn’t opt to use the bootstrapped g∗
1
instead of g1 in the statistic), and the

other is based on a two group t-test based on the mean and variance estimated using bootstrapping

(This is actually similar to what CARseq would do if Wald test is used and there is no batch effects to

adjust for). They combine two p-values using Fisher’s method.
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5. Refine the groupwise cell type-specific expression. If a cell type is not significantly expressed, it

is removed from the model. Then the groupwise cell type-specific expression is shrinked closer to

each other, the shrinkage being determined by the cell type-specific differential expression test in Step

4.

6. Smooth cell type-specific expression. Before step 6, the expression only has two values according

to which side of t a sample resides after their expression is sorted. To obtain expression that is different

in each sample, they use a sliding window of length w to obtain cell type-specific expression in each

window. They pad the results so that we now have cell type-specific expression for every sample.

Afterwards, they said they use least squares to individually fit the sample-specific expression coefficients

to the groupwise cell type-specific expression for each cell type. It is not quite clear how it is done, but

I suspect that rescaling the sample-specific expression coefficients to the groupwise cell type-specific

expression would work.

7. Restore the original ordering of samples.

8. Repeat steps 1 to 7 for all genes.

While the high-resolution purification leads to a fairly straightforward application of cell type-

specific differential expression testing, this application is not recommended due to possible inflation

of type I error.

1.2.1.2 ICeD-T

ICeD-T is a more recent method of reference-based cell type deconvolution (Wilson et al., 2019).

Compared to CIBERSORT, it offers a few features:

1. ICeD-T is a likelihood-based framework where the gene expression deconvolution is done on a

non-log scale while enjoying the benefits of variance stabilization through log-normal distribution.

2. ICeD-T explicitly models the aberrant genes through the incorporation of a component with

inflated variance, therefore automatically down-weighting their contribution to the cell fraction

estimates. In contrast, since CIBERSORT relies on a support vector regression model, the genes that

fit the model very well (within some margin) do not actually affect the cell fraction estimates.
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3. In ICeD-T, while the cell fraction estimates are non-negative, we actually rarely get really small

cell fraction estimates even for the less abundant cell types. In CIBERSORT, however, the raw cell

fraction estimates from support vector regression can even be negative, only later forced to be zero.

Cell fraction estimates being zero will greatly reduce the applicability of cell type-specific differential

expression analysis methods.

4. Optionally, ICeD-T allows for the user-specified tumor purity and variance weights.
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CHAPTER 2: INFERRING INTRA-TUMOR HETEROGENEITY

SCNA is abundant in many solid tumors, such as breast cancer or colon cancer, and a SCNA may

cover a long segment of the genome, such as one chromosome arm. Whenever a SPM occurs in a

SCNA region, one needs to disentangle the influence of subclone structure and SCNA on this SPM.

Multiplicity of point mutations are complicated by the order of somatic point mutation (SPM) and

somatic copy number alteration (SCNA). For example, consider a SPM on A allele and a SCNA that

doubles A allele. If the SPM happens first, the multiplicity of the SPM is 2 after SCNA, and if the SCNA

happens first, the multiplicity of the SPM is 1. This motivates us to develop this newmethod, Statistical

method for Heterogeneity using Allele-specific REads and somatic point mutations (SHARE), which

provides a likelihood inference framework to study ITH of SCNA and SPM, while emphasizing the

situation that there is only one sample per patient.

2.1 Likelihood model

2.1.1 Likelihood Model for SCNA

We have developed a complete pipeline to work with raw exome-seq data (Fig. 2.3). First consider

the SCNA data from bulk tissue. We assume the exome-seq data are available from both tumor and

matched normal samples. After running pipelines for quality control (QC), read mapping and counting,

we obtain the total number of reads for the ith gene, denoted by Yi , and the number of allele-specific

reads, denoted by YiA and YiB for the two alleles A and B respectively. Denote the corresponding

counts in matched normal sample by YNi , YNiA, and YNiB, respectively. We filter out those genes with

small number of reads or with significant allelic imbalance in normal sample, which implies mapping

bias. Let d and dN be the total number of reads in the normal and tumor sample, respectively. We

define Log R Ratio (LRR) as ri = log
2
[(Yi/d)/(YNi/dN )], and assume ri follows a normal distribution.
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Because B allele is arbitrarily decided, we model the allele-specific read count YiB given Zi = YiA +YiB

by a mixture of binomial distribution:

0.5 fB(YiB |Zi, bi) + 0.5 fB(YiB |Zi, 1 − bi)

with success probability bi < 0.5. bi is often referred to as B allele frequency (BAF). We jointly segment

LRR (ri) and BAF (bi) using a modified circular binary segmentation (CBS) method (Olshen et al.,

2004). Given the likelihood function for LRR and BAF, we segment LRR and BAF simultaneously

and evaluate change-points by likelihood ratio statistic. We have implemented this algorithm in an R

package named blueHouse.

We define a copy number state by the allele-specific copy numbers of two alleles, denoted by

nAl and nBl for the lth state. By setting a maximum copy number a priori, the total number of copy

number states, denoted by L, is known. For example, if the maximum copy number is 3 and there is

only one subclone, there are 6 copy number states: Null (homozygous deletion), A/B, AA/BB, AB,

AAA/BBB, and AAB/ABB. This concept can be generalized to the situation with more than one

subclone, where the copy number states are dictated by an array of nAsl and nBsl with the subscript

s ∈ {1, . . . , S} for the sth subclone.

If the kth segment belongs to the lth copy number state, we assume the mean value of LRR and

BAF of the segment, referred to as segmental LRR and BAF, follows normal distribution:

r̄k ∼ fN(µl, σ
2

k ) and
¯bk ∼ fN(πl, τ

2

k ),

where µl = log
2
[{2(1 − ρ) + ρ(nAl + nBl)} /φ], ρ is tumor purity (the proportion of tumor cells in

this tumor sample), φ is ploidy (the genome-wide average copy number of all cells in the tumor sample),

the variance terms σ2

k and τ2

k are within-segment variances of LRR and BAF, and

πl = [1 − ρ + ρnBl]/[2 − 2ρ + ρ(nAl + nBl)].
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Although
¯bl is bounded by [0, 1], the normal distribution assumption is reasonable because the

observed BAF does not reach these boundaries unless a tumor sample is 100% of pure tumor cells,

which is unlikely in practice. After we flip
¯bl around 0.5, ¯bl is bounded by [0, 0.5], and we need to

use some heuristic rules to set
¯bl = 0.5 in segments where evidence favors allelic balance. The log

likelihood function r̄ = (r̄1, ..., r̄K)
T
and

¯b = ( ¯b1, ..., ¯bK)
T
in the K segments can be written as

L(ρ, φ, α |{σ2

k }, {τ
2

k }, r̄, ¯b) =
K∏

k=1

L∑
l=1

{
αl fN

(
r̄k

����µl, σ
2

k

)
fN

(
¯bk

����πl, τ
2

k

)}
,

where α = (α1, ..., αL)
T
are the mixture proportion of the L mixture components.

Due to subclones, the copy numbers nAl and nBl are likely fractions instead of integers. Assuming

there are S subclones in total. For any genes that belong to the lth component, let nAsl and nBsl be

their integer copy numbers in the sth subclone. Let qs be the proportion of cells from the sth subclone,

then

∑S
s=1

qs = 1, nAl =
∑S

s=1
qsnAsl , and nBl =

∑S
s=1

qsnBsl .

To encourage the selection of a model with moderate and infrequent copy number change, we

add two geometric distributions to the model to control the magnitude and multitude of possible

change. Because we assume for each allele, there is at most one SCNA event, it follows that nAsl = 1

or one other value, denoted by n∗Al , and similarly we can define n∗Bl . That is to say, for copy state

l , we define n∗Al (or n∗Bl ) as the copy number of A (or B) allele after the most recent change. We

introduce cl B |n∗Al − 1| + |n∗Bl − 1| to quantify the magnitude of copy number change and let

dl denote if subclonal allele-specific copy number changes is present. This inspires us to specify

αl B P(l |ξ, θ) = e−(ξcl+θdl )∑L
l=1

e−(ξcl+θdl )
. The parameters ξ and θ can be estimated in our method.

2.1.2 Likelihood model for SPM

Next, we consider the model for somatic point mutation (SPM) data from bulk tissue. Let XNki

and XMki be the number of sequence reads harboring normal (germline) and mutant allele of the ith

(i = 1, ...,mk ) somatic point mutation of the kth segment. Assuming the kth segment belongs to the
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sth clone of the lth copy number state, we model XMki by a mixture of binomial distribution

h(XMki |Xki, {nAsl}, {nBsl}, ρ, ε, {ωl j}) =

mk∏
i=1

[
1

Xki
ε +

tl∑
j=1

fB(XMki ; Xki, pl j) (1 − ε)ωl j

]
, (2.1)

where

pl j =
ρ
∑S

s=1
qshl js(nAsl, nBsl)

2(1 − ρ) + ρ
∑S

s=1
qs(nAsl + nBsl)

.

Here j indexes four situations: the somatic mutation does not occur, it occurs after SCNA event

and thus with copy number 1, or it occurs before SCNA event, and thus with copy number nAsl or

nBsl . We employ indicators Ukl ∈ {1, . . . , tl} to specify possible patterns of multiplicities of point

mutations of all subclones under copy state l . When Ukl = j , the multiplicity of point mutations can

be computed by functions hl js(nAsl, nBsl) ∈ {0, 1, nAsl, nBsl}.

The mixture of binomial distributions is intended to be flexible to adapt possible patterns of

multiplicities of point mutations. The mixture proportion ωl j = Pr (Ukl = j) is the probability that a

somatic point mutation on segment k belongs to the jth pattern of multiplicities of point mutations

assuming copy state l , satisfying
∑tl

j=1
ωl j = 1. We also introduce a known error rate ε to accommo-

date circumstances where a somatic point mutation cannot be explained by multiplicities of point

mutations predicted according to copy state. In other words, somatic point mutations are uninfor-

mative so we need to apply a discrete uniform distribution. For example, a somatic point mutation

located on a focal copy number change not captured by joint segmentation cannot provide hints on

subclone proportions. We assume ε = 0.01. To simplify the notation, we denote ΘSPM = ({ωl j}) and

input data Ψ = ({σ2

k }, {τ
2

k }, r̄, ¯b, {XMki}, {Xki}).
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2.1.3 Model specification

We explicitly specify the computational problem to obtain maximum likelihood estimate. We will

maximize:

L=

K∏
k=1

L∑
l=1

{
αl fN

(
r̄k

����µl, σ
2

k

)
fN

(
¯bk

����πl, τ
2

k

) mk∏
i=1

[
1

Xki
ε +

tl∑
j=1

fB(XMki ; Xki, pl j) (1 − ε)ωl j

]}
,

(2.2)

with respect to

α, ρ, φ, q, {ωl j},

where

fN

(
r̄k

����µl, σ
2

k

)
=

1√
2πσ2

k

exp[−(r̄k − µl)
2)/(2σ2

k )],

fN

(
¯bk

����πl, τ
2

k

)
=

1√
2πτ2

k

exp[−( ¯bk − πl)
2)/(2τ2

k )],

pl j =
ρ
∑S

s=1
qshl js(nAsl, nBsl)

2(1 − ρ) + ρ
∑S

s=1
qs(nAsl + nBsl)

,

fB(XMki ; Xki, pl j) =

(
Xki

XMki

)
pXMki

l j (1 − pl j)
Xki−XMki,

and

µl = log
2
[{2(1 − ρ) + ρ(nAl + nBl)} /φ] ,

πl = [1 − ρ + ρnBl]/[2 − 2ρ + ρ(nAl + nBl)],

qs ≥ 0,

S∑
s=1

qs = 1,

αl =
e−(ξcl+θdl)∑L

l=1
e−(ξcl+θdl)

, αl ≥ 0,

L∑
l=1

αl = 1,
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nAl =

S∑
s=1

qsnAsl, nBl =

S∑
s=1

qsnBsl,

nAl ≥ nBl,

ωl j ≥ 0,

tl∑
j=1

ωl j = 1.

As an extension, we derive the model when there are multiple tumor samples with indices

n ∈ {1, . . . , N} sequenced from the same subject:

L=

K∏
k=1

L∑
l=1

{
αl

N∏
n=1

[
fN

(
r̄nk

����µnl, σ
2

nk

)
fN

(
¯bnk

����πnl, τ
2

nk

) ]
mk∏
i=1

tl∑
j=1

ωl j

N∏
n=1

[
1

Xnki
ε + (1 − ε) fB(XMnki ; Xnki, pnl j)

]}
. (2.3)

2.1.4 Choice of nAsl and nBsl

One intuitive approach to maximize the likelihood function is to choose the number of L and

initial values of nAsl and nBsl through a joint clustering of segmental LRR and BAF, and then devise

a way to update the variables in each iteration. However, this leads to a very challenging integer

programing problem since nAsl and nBsl take integer values. Our solution to this problem is to choose

fixed nAsl and nBsl . Note that nAsl and nBsl can be expressed in a single matrix if we consider each of

them as a matrix and concatenate the two matrices by rows:



nA11 nA12 nA13 . . . nA1L

nA21 nA22 nA23 . . . nA2L

...
...

...
. . .

...

nAS1 nAS2 nAS3 . . . nASL

nB11 nB12 nB13 . . . nB1L

nB21 nB22 nB23 . . . nB2L

...
...

...
. . .

...

nBS1 nBS2 nBS3 . . . nBSL
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Each column of the matrix above corresponds to a copy number state by which segments can be

grouped. Each row of the matrix corresponds to each subclone restricted to either the A allele (upper

half matrix) or B allele (lower half matrix). 2S integer subclonal allele-specific copy numbers jointly

determine a copy state.

Suppose nmax is a known upper bound of subclonal total copy number nAsl +nBsl so that their pos-

sible values are {0, 1, . . . , nmax}. When we consider all possible combinations, except when S = 1, i.e.,

when the tumor cell population is homogeneous, the exhaustive approach would be computationally

intractable.

Therefore, to reduce the number of copy states to a manageable level, we assume for each segment,

the allele-specific copy number of one allele can be altered at most once. To formalize, consider a

binary phylogenetic tree of tumor cell evolution. Normal cells are defined to be the root in the binary

tree, and for notation simplicity they are defined as subclone 0, with nA0l = nB0l = 1. At most one

edge connecting any two subclones r and s in the phylogenetic tree is allowed to have nArl , nAsl ,

and at most one edge connecting any two subclones r and s is allowed to have nBrl , nBsl .

Furthermore, since the bounds [0, 0.5] of BAF imply nAl ≥ nBl , we only include copy states which

satisfy nAsl > nBsl for some s, or nAsl = nBsl for all s ∈ {1, . . . , S}. During the optimization, we

enforce nAl ≥ nBl by swapping {nAsl : s ∈ {1, . . . , S}} with {nBsl : s ∈ {1, . . . , S}} when for some l ,

nAl < nBl .

Under the assumptions, L exhibits quadratic growth with respect to nmax and exhibits exponential

growth with respect to S. In practice, S = 5 would be more than adequate for sequencing data without

an ultra high coverage.

2.2 Optimization

2.2.1 EM algorithm to calculate the profile likelihood

We need to optimize:
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K∑
k=1

log

{
L∑

l=1

[
akl(ξ, θ)

mk∏
i=1

(
tl+1∑
j=1

fkil jωl j

)]}
where

akl(ξ, θ) =
e−(ξcl+θdl)∑L

l=1
e−(ξcl+θdl)

fN

(
r̄k

����µl, σ
2

k

)
fN

(
¯bk

����πl, τ
2

k

)
,

and

fkil j = fB(XMki ; Xki, pl j) (1 − ε) for j ∈ {1 . . . tl}, fkil(tl+1) =
1

Xki
ε,

and for notation simplicity, we let ωl(tl+1) = 1 for all l .

Under the multi-sample scenario, we need to optimize:

K∑
k=1

log

{
L∑

l=1

[
akl(ξ, θ)

N∏
n=1

mk∏
i=1

(
tl+1∑
j=1

fnkil jωl j

)]}
where

akl(ξ, θ) =
e−(ξcl+θdl)∑L

l=1
e−(ξcl+θdl)

N∏
n=1

fN

(
r̄nk

����µnl, σ
2

nk

)
fN

(
¯bnk

����πnl, τ
2

nk

)
,

and

fnkil j = fB(XMnki ; Xnki, pnl j) (1 − ε) for j ∈ {1 . . . tl}, fnkil(tl+1) =
1

Xnki
ε .

We iterate between the step to update ωl j , and the step to update ξ and θ.

The step to update ωl j :

We maximize the following Q-function with respect to {ωl j}:

Q(ω;ω(m)) =
L∑

l=1

K∑
k=1

γ
(m)
kl

[
mk∑
i=1

log

(
tl+1∑
j=1

fkil jωl j

)]
, s.t.

tl∑
j=1

ωl j = 1, ∀l ∈ {1 . . . tl},

where in the (m + 1)th iteration, the posterior probability of the kth segment under copy state

l ∈ {1, . . . , L} is given by:
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γkl B Pr

(
zk = l

���r̄k, ¯bk, α
(m)
l , β

(m)
kl

)
=

pN
(
r̄k

���µl, σ
2

k

)
pN

(
¯bk

���πl, τ
2

k

)
α
(m)
l β

(m)
kl∑L

l=1
pN

(
r̄k

���µl, σ
2

k

)
pN

(
¯bk

���πl, τ
2

k

)
α
(m)
l β

(m)
kl

=
akl(ξ, θ)

∏mk

i=1

(∑tl+1

j=1
fkil jωl j

)
∑L

l=1
akl(ξ, θ)

∏mk

i=1

(∑tl+1

j=1
fkil jωl j

) , (2.4)

where unobserved variable zk = l if and only if the kth segment is under copy state l .

Fortunately, this optimization problem is separable. For every l , we maximize:

Q(ωl·;ω
(m)
l· ) =

K∑
k=1

γ
(m)
kl

[
mk∑
i=1

log

(
tl+1∑
j=1

fkil jωl j

)]
, s.t.

tl∑
j=1

ωl j = 1.

In the step to update ξ and θ, we get α
(m+1)

l using Newton or quasi-Newton methods.

2.2.2 Optimization of the profile likelihood

To maximize the likelihood, we simplify by maximizing the profile likelihood with respect to ρ, φ

and q:

max

α,{ωl j }
L(α, ρ, φ, q, {ωl j}),

since the profile likelihood is easy to calculate using the EM algorithm explained in the previous

section.

Since the profile likelihood is continuous, we recommend the global and gradient-free optimiza-

tion algorithm NLOPT_GN_DIRECT_L (Gablonsky and Kelley, 2001) wrapped in R package nloptr

(Johnson, 2014). We use 500 as the maximum number of the profile likelihood evaluation and bound

ρ ∈ [10
−5
, 1 − 10

−5
], φ ∈ [1, 5], and rs ∈ [10

−5
, 1]. The bounds on the ploidy can be justified by the

ploidy range reported in the literature.
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After the optimization, we can calculate an alternate version of ploidy φ̃ by

φ̃ = 2(1 − ρ) + ρ

K∑
k=1

wk · {the most probable (nAl + nBl) for kth segment}.

In whole exome sequencing, the wk ’s are the proportion of genes, making φ the ploidy of the tumor

sample restricted to the exome. This makes sense because we don’t have any information for the

non-coding regions. φ̃ is arguably a more robust version of ploidy than the model-based φ since it is

based on estimated copy numbers instead of how much LRR has shifted away from 0, which can be

influenced by read-depth corrections.

2.3 Model selection

The number of subclones, the evolution tree structure, and the maximum total copy number

need to be predetermined before we optimize the profile likelihood. We use BIC to perform model

selection:

−2 log L+ [(S − 1)N + 4] log(2NK) + [(S − 1)N + S + 4] log

(
1 + N

K∑
k=1

mk

)
,

where 2NK is the number of observations providing copy number information, N
∑K

k=1
mk is the

number of observations providing information from somatic point mutations, (S − 1)N + 4 is the

number of free parameters attributed to q, α, ρ and φ, and somatic point mutations belonging to

the lth copy state has additional degrees of freedom of tl − 1, approximately S, from the mixing

proportions ωl j .

In practice, as the number of subclones is unknown, we iterate through a range of number of

subclones, e.g., from one to five. Usually BIC will first decrease and then increase with the number of

subclones. We record the number of subclones that will give us the lowest BIC. Then the problem boils

down to determining BIC given number of subclones, where we go through all possible evolution

tree structures, and record the tree structure that will give us the lowest BIC. Now we arrive at the
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innermost layer of the model selection problem. To determine BIC given number of subclones and

evolution tree structure, we pick a moderately large number, say 10, as the maximum total copy

number nmax so that the model is complex enough to explain a majority segments and simple enough

so that optimization speed is not compromised. We maximize the profile likelihood to obtain the

optimal ρ, φ and q. After that, we expand the copy number states by setting nmax to a large number,

say 30, and run the EM algorithm to get updated α, ωl j , σ
2
and τ2

.

2.4 Simulation

We use PhyloWGS to compare with our method, SHARE, under three scenarios:

1. Samples have a large number of subclonal copy number aberrations;

2. Samples have a large number of copy number aberrations but no subclonal copy number

aberrations;

3. Samples have no copy number aberration at all.

In PhyloWGS, different SCNAs can have different cellular prevalences. This is similar to our

approach, but they only allow one SCNA on each segment. Their program accepts (integer) allele-

specific copy numbers and their respective cellular prevalences obtained from other software.

We compare our method with PhyloWGS by simulating multiple batches of 500 samples with 250

somatic point mutations, with varying levels of subclonal copy number aberration in each batch. Since

PhyloWGS requires integer-valued copy number of tumor cells and cellular proportions of SCNAs as

part of its input, these values are computed using ASCAT, a copy number calling method that accounts

for purity, modified to get input in the form of simulated segmented LRR and BAF. Using ASCAT

to provide copy numbers essentially restricts PhyloWGS from considering subclonal SCNA. In fact,

methods such as Battenberg (Nik-Zainal et al., 2012), FACETS (Shen and Seshan, 2016) and TITAN (Ha

et al., 2014) are all equipped with some functionalities of calling subclonal SCNA without the help

from SPM, but there is no consensus that they are better than ASCAT on exome-seq data (Shen and

Seshan, 2016; Van Loo, 2018).
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The result of SHARE in Fig. 2.4 and result of PhyloWGS in Fig. 2.5 are very similar when there is

only clonal CNA. When there is subclonal CNA (subfigures b and e), since ASCAT does not model

subclonal CNA, this will affect the estimation of purity; ASCAT favors a solution with a higher ploidy

even though consideration of subclonal CNA could be a better fit (subfigures a and d). Moreover,

when there is no copy number change, ASCAT always gives 1 as the purity estimate. Since PhyloWGS

does not have a native way to estimate purity, we resort to use the cellular proportion of all subclones

inferred by PhyloWGS as its purity estimate. The estimation of purity in PhyloWGS is less accurate

compared to SHARE in the simulations (subfigures c and f).

The simulation results show that modeling SCNA and SPM together can help to resolve some of

the identifiability issues of subclonal SCNA and SPM at the expense of a more complicated model and

a longer running time.

2.5 Results

2.5.1 TCGA COAD samples

We apply our model to 400 TCGA COAD whole-exome sequencing samples. The details of

processing the data are described in the Online Supplementary Materials.

First, we provide a case study of sample TCGA-A6-5656, one of the 400 TCGA COAD samples,

in Fig. 2.6. Using our method, the estimated purity is 0.816 and the estimated ploidy is 2.023. Three

subclones are identified, forming a linear clonal tree with cellular proportions of 0.444, 0.446 and 0.110,

respectively.

Fig. 2.6 (a) illustrates gene-level Log R Ratio (LRR), segmental LRR andmodel-predicted segmental

LRR. In obtaining LRR, the normal sample that can generate most signals in LRR (“best match”) is

chosen instead of thematched normal sample. Fig. 2.6 (b) illustrates gene-level B Allele Frequency (BAF),

segmental BAF, and model-predicted segmental BAF. The agreement between segmental and model-

predicted values demonstrates that except for focal copy number changes, our model successfully

captures most of copy number alterations.
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Fig. 2.6 (c) illustrates mutant allele frequency along the genome. A strength of our model is the

incorporation of somatic point mutations, which can crack open the door of intra-tumor heterogeneity

not characterized by somatic copy number alterations. From the figure, most of the observed mutant

allele frequency can be explained by possible levels of mutant allele frequency predicted by our fitted

model.

Fig. 2.6 (d), (e) and (f) show the total and allele-specific copy number in the subclones. SHARE

picks the best model as the model with 3 subclones and a linear clonal tree structure using BIC. The

majority of copy number alterations takes place before formation of the founding subclone, which

favors the hypothesis that copy number alteration is a driving force in tumor progression. Additional

copy number alterations take place on chromosome 7 and 13 in subclone 3. Our model can also recover

the timing of somatic point mutations.

After displaying details about the result of one colon cancer sample, we now describe the result of

the joint analysis of 400 TCGA colon cancer samples.

Fig. 2.7 provides a summary of results of the COAD samples. In Fig. 2.7 (a), the majority of samples

have a purity from 0.4 to 0.9 and a ploidy from 2 to 3. The estimated distribution of ploidy φ justifies a

lower bound of 1 and an upper bound of 5 imposed on ploidy during optimization. We also provide

an alternative measure of ploidy φ̃ in Fig. 2.7 (b), which is, simply put, a weighted average of the

segmental copy numbers. This measurement is more robust than the model-based ploidy estimate

since it does not rely on read-depth corrections in obtaining LRRs. The alternative measurement

of ploidy suggests that the majority of samples have a ploidy from 2 to 4, which is consistent with a

tumor history experiencing either no whole-genome doubling, or one whole-genome doubling with

subsequent deletions.

Fig. 2.7 (c) summarizes the distribution of estimated number of subclones and clonal tree structure

index of the TCGA COAD samples being investigated. The maximum number of subclones considered

in the experiment is 5. We see the prevalence of intra-tumor heterogeneity from the overwhelming

number of samples with > 1 number of subclones. Inferred from the data, the most frequent number

of subclones is 3. For the estimated clonal tree structure, we see that nearly a half of the samples fall
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into the “tree structure index = 1” category, suggesting that these tumor samples may have undergone

a linear evolution.

Fig. 2.7 (d) illustrates tumor entropy, defined as −
∑S

s=1
qs log qs , as a measure of heterogeneity

of tumor to predict patient survival (Jiang et al., 2014). The violin plot implies that tumor entropy is

a better measurement than the number of subclones to characterize heterogeneity, as there is some

overlap of entropy distribution between tumor samples with different number of subclones.

Figs. 2.7 (e) and (f) constitute a comparison of SHARE results with ABSOLUTE results reported in

a pan-cancer study (Zack et al., 2013). Despite the fact that ABSOLUTE takes processed data from

SNP 6.0 array while our SHARE takes whole exome sequencing data, the comparison reveals a very

similar ploidy estimate for a majority of samples. A comparison of SHARE purity and ABSOLUTE

purity also reveals similar estimates for a majority of samples. ABSOLUTE has a greater tendency

to provide an estimate with purity = 1, the unlikely case that the bulk tumor consists of pure tumor

cells, as ABSOLUTE is not blessed with the information from point mutations. We conclude that

while SHARE can provide ploidy and purity estimates generally consistent with ABSOLUTE results,

it has the advantage of using whole exome sequencing data to explicitly model subclones and provide

subclonal copy number estimates.

As a comparison to SHARE entropy estimates, we also derive entropy estimates from PhyloWGS

in a similar way as we use it to obtain entropy estimates from simulation data. While the purity

estimates from SHARE and ASCAT already start to differ in Fig. 2.8 (a), the entropy estimates from

SHARE and PhyloWGS are more different, probably since in a two-step approach such as ASCAT plus

PhyloWGS, we tend to overestimate purity and underestimate entropy when subclonal SCNA is not

accounted for.

We investigate whether entropy is associated with cellular proportion of immune cells derived

from bulk RNA-seq data using CIBERSORT (Newman et al., 2015). Full results are reported in Sup-

plementary Materials. The top hits among immune cell types to correlate with SHARE entropy are

CD8+ T cells and M1 Macrophages (Figs. 2.8 (c) and (d)), which can participate in immune surveillance.

When there is a higher proportion of CD8+ T cells and M1 Macrophages, more neoantigens are sup-
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pressed. Therefore, intra-tumor heterogeneity measured by entropy is decreased. Entropy estimates

from PhyloWGS (Figs. 2.8 (e) and (f)), however, does not have a significant correlation with cellular

proportion estimates to support this hypothesis.

We also fit a Cox proportional hazards model to investigate whether entropy, either from SHARE

or PhyloWGS, is associated with patient survival. Since PhyloWGS fails to provide an entropy estimate

in a few samples, there are slightly fewer observations. Age, tumor stage, mutation burden, entropy

and entropy by mutation burden are included as covariates in the model. We use a likelihood ratio

test to see if entropy is significantly associated with survival. After eliminating the entropy and

entropy by mutation burden terms and re-fitting the model, we take the two fold of the likelihood

difference between the full model and the reduced model. Using PhyloWGS entropy, the likelihood

ratio statistic is 5.72 and we have a p-value of 0.057 under a χ2
distribution with 2 degrees of freedom.

As a comparison, using SHARE entropy, the likelihood ratio statistic is 7.45 and we have a p-value of

0.024 under a χ2
distribution with 2 degrees of freedom. This analysis suggests that SHARE entropy

is more predictive of patient survival than PhyloWGS entropy.

2.5.2 Hugo et al. Melanoma Anti-PD-1 Response Data

Hugo et al. (Hugo et al., 2016) reported tumor response after anti-PD-1 treatment in melanoma

patients. It has been suggested that clonal mutation burden (McGranahan et al., 2016), defined as log10

number of somatic point mutations that appear in more than 99% of the tumor cells, could be a better

predictor of immunotherapy response. To compare SHARE and Canopy, we use each of them on

whole-exome sequencing data of pre-treatment melanoma samples to reconstruct tumor phylogeny

using a resample of somatic point mutations. Then we infer which somatic point mutations are clonal

and calculate clonal mutation burden using all somatic point mutations, the number of which can be

as high as tens of thousands.

We have decided to remove SRR4289744 from our analysis. There is almost no copy number

aberration in this sample and the VAF of most somatic point mutations are all very low, which suggests

that it is very difficult to infer intra-tumor heterogeneity of this sample.

28



We now have three measures of neoantigen quantity: mutation burden (Fig. 2.9 (a)), SHARE

mutation burden (Fig. 2.9 (b)), and PhyloWGS mutation burden (Fig. 2.9 (c)). Uisng a two-sided

Jonckeheere-Terpstra test (Jonckheere, 1954; TERPSTRA, 1952), we test for whether there is a significant

trend among three three response groups for each definition of mutation burden. The results show

that using SHARE, we can define a clonal mutation burden that associates with tumor response better

than PhyloWGS mutation burden, which is actually slightly worse than the vanilla version of mutation

burden in terms of the association.

2.6 Tables and figures

Property EXPANDS CHAT BayClone2 CloneHD PhyloWGS PyClone Canopy SHARE

Models subclonal SCNA + + + + + − + +

Constructs phylogeny − − − − + − + +

Considers the order of SCNA and SPM − + − − + + + +

Does not require known CN estimates + + + + − − − +

Provides cellular frequency of subclones − − + + + − + +

Table 2.1: Overview of some subclone reconstruction methods that jointly infer from SCNA (somatic

copy number alterations) and SPM (somatic point mutations): EXPANDS (Andor et al., 2014), CHAT

(Li and Li, 2014), BayClone2 (Lee et al., 2016), CloneHD (Fischer et al., 2014), PhyloWGS (Deshwar et al.,

2015), PyClone (Roth et al., 2014), Canopy (Jiang et al., 2016), and SHARE (our proposed method).

Covariate Est. p-value

Age 0.03 1.3e-3

Stage II vs. I 0.45 0.36

Stage III vs. I 1.37 5.0e-3

Stage IV vs. I 2.42 1.2e-6

MB −1.56 4.5e-2

SHARE entropy 5.58 7.2e-3

SHARE entropy by MB 2.16 7.1e-3

Table 2.2: Survival analysis of TCGA colon cancer patients using Cox proportional hazards model.

This is the model with SHARE entropy as a covariate. The number of observations is 386 and the

number of events is 86, with 11 observations deleted due to missingness. The log-likelihood of the

model with SHARE entropy is −414.30. MB: Mutation Burden defined as total number of somatic

point mutations in log10 scale.
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Figure 2.1: A fabricated example of clonal evolution tree. A cell in a homogeneous aggregate is

represented by an eclipse in a cloud. The gray cloud indicates the normal cells in the bulk tumor

while the pink clouds indicate tumor subclones. Circles and stars indicate genomic loci; hollow shapes

are for reference alleles and filled shapes are for mutant alleles. In the founding subclone, the locus

represented by circle is mutated and the A allele is amplified. Two subclones are derived from the

founding subclone, one by a deletion on a segment of the B allele and the other one by a mutation on

the A allele.
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SCNASCNA

Figure 2.2: Multiplicity of point mutations are complicated by the order of somatic point mutation

(SPM) and somatic copy number alteration (SCNA). If we already know that at a genomic location,

SPM happens and SCNA affects the genome by doubling A allele, timing and the allele where the

point mutation is located jointly determine the multiplicity of point mutation. In our model, (α)
can be distinguished from the other three scenarios by multiplicity of point mutation. (δ) can be

distinguished from (β) and (γ) through informative reads that harbor both somatic variants and phased

germline variants (Chedom-Fotso et al., 2016) (not provided in our model). The scenarios (β) and (γ) are
indistinguishable. Cells marked by eclipse with dashed borders are transient and cannot be detected

in bulk cells. At any given genomic location, only one of the four scenarios can be the underlying

mechanism.
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SNP 6.0 CEL files

of normal samples

SNP genotype

Phased genotype

Imputed genotype

Heterozygous SNPs

Exome-seq BAM

files of paired tumor

and normal samples

Allele-specific reads

Gene-level allele-

specific read counts

Segmented

LRR and BAF

Somatic point

mutations

Model estimates

SNP genotyping (Birdseed)

Phasing (SHAPEIT)

Imputation (IMPUTE2)

Extracting allele-specific reads (R::asSeq)

Read counting (R::GenomicAlignments)

Segmentation (R::BlueHouse)

Somatic SPM calling (MuTect2/Strelka)

Figure 2.3: A schematic diagram of pipeline to prepare the input data for our model. Rounded

rectangles represent data and arrows represent data processing steps. Here we obtained heterozygous

SNPs from SNP array data. If SNP array data are not available, GATK has an established pipeline to

perform germline variant calling using whole exome sequencing data.
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Covariate Est. p-value

Age 0.03 1.3e-3

Stage II vs. I 0.48 0.34

Stage III vs. I 1.35 5.6e-3

Stage IV vs. I 2.40 1.4e-6

MB 2.25 1.1e-2

PhyloWGS entropy 4.76 5.2e-2

PhyloWGS entropy by MB −2.00 3.2e-2

Table 2.3: Survival analysis of TCGA colon cancer patients using Cox proportional hazards model.

This is the model with PhyloWGS entropy as a covariate. The number of observations is 379 and the

number of events is 84, with 11 observations deleted due to missingness. The log-likelihood of the

model with SHARE entropy is −403.19. MB: Mutation Burden defined as total number of somatic

point mutations in log10 scale.
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Figure 2.4: Results of simulations on SHARE. (a) (d) SHARE purity and entropy compared to true

values on 500 simulations with subclonal CNA. (b) (e) SHARE purity and entropy compared to true

values on 500 simulations with clonal CNA only. (c) (f) SHARE purity and entropy compared to true

values on 500 simulations without clonal CNA.
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Figure 2.5: Results of simulations on PhyloWGS. Purity and copy number estimates are taken from

ASCAT given segmented LRR and BAF. (a) (d) ASCAT purity and PhyloWGS entropy compared to

true values on 500 simulations with subclonal CNA. (b) (e) ASCAT purity and PhyloWGS entropy

compared to true values on 500 simulations with clonal CNA only. (c) (f) PhyloWGS purity and entropy

compared to true values on 500 simulations without clonal CNA. Since ASCAT will not give valid

purity estimates when there is no copy number change, the purity is the proportion of the founding

subclone in PhyloWGS result and entropy is calculated from the proportion of other subclones.
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Figure 2.6: Results of SHARE on sample TCGA-A6-5656. (a) Log R Ratio (LRR). Each point represents

a gene. Red segments represent segmental LRRs taken as the input in our model. Blue segments

represent predicted segmental LRRs based on the output of our model. (b) B Allele Frequency (BAF).

Each point represents a gene. Red segments represent segmental BAFs taken as the input in our model.

Blue segments represent predicted segmental BAFs based on the output of our model. (c) Mutant allele

frequency. Bigger diamonds indicate a somatic point mutation with higher read depth. Blue segments

represent predicted segmental levels of mutant allele frequency based on the output of our model. (d),

(e), and (f) show estimated copy number (CN) of all the subclones in our model. Black, thick segments

represent total copy number while blue, thin segments represent allele-specific copy number of A
allele. The estimated purity is 0.816 and the estimated ploidy is 2.023. Three subclones are identified,

forming a linear clonal tree with cellular proportions of 0.444, 0.446 and 0.110, respectively.
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Figure 2.7: Results of SHARE on TCGA COAD samples. (a) Scatterplot of model-based ploidy of all

cells (y axis) and estimated tumor purity (x axis) using SHARE. Each point indicates a tumor sample.

(b) Model-based SHARE ploidy of all cells (y axis) compared with SHARE ploidy calculated by taking

a weighted average of copy number states (x axis), which is an alternative version. (c) Barplots of

estimated number of subclones. Samples with the same estimated number of subclones but different

clonal tree structure index are stacked together and colored differently. Grey color stands for linear

evolution tree; for other clonal tree structures, see Supplementary Materials. (d) Violin plots of tumor

entropy. Each point indicates a tumor sample. Clonal tumor samples, whose entropy equal to zero,

are not displayed. (e) A comparison of estimated tumor purity using SHARE (y axis) and estimated

tumor purity using ABSOLUTE (x axis). (f) A comparison of estimated tumor ploidy using SHARE (y

axis) and estimated tumor ploidy using ABSOLUTE (x axis).
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Figure 2.8: Comparison of SHARE and PhyloWGS on TCGA COAD samples. Copy number and

purity are called using a modified version of ASCAT. (a) SHARE purity vs. ASCAT purity of the 400

TCGA colon cancer samples. (b) PhyloWGS entropy vs. PhyloWGS entropy. (c) Proportion of CD8

T cells inferred by CIBERSORT vs. SHARE entropy. (d) Proportion of M1 macrophages inferred by

CIBERSORT vs. SHARE entropy. (e) Proportion of CD8 T cells inferred by CIBERSORT vs. PhyloWGS

entropy. (f) Proportion of M1 macrophages inferred by CIBERSORT vs. PhyloWGS entropy.
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Figure 2.9: Mutation burden (MB) (a), SHARE mutation burden (b) and PhyloWGS mutation burden

(c) of Hugo et al. dataset, broken down by response. The p-values are calculated using a two-sided

Jonckheere-Terpstra test for ordered differences.
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CHAPTER 3: CELL TYPE-AWARE DIFFERENTIAL EXPRESSION ANALYSIS

Differential expression analysis using RNA-seq data is a widely used approach to identify the

association between gene expression and covariates of interest. RNA-seq data are often collected

from bulk tissue samples, most of which comprise a heterogeneous population of different cell types.

Several recent studies have demonstrated that studying cell type-specific gene expression and cell

type composition is crucial for many scientific and clinical questions; for example, classifying neuron

subtypes (Pavlov and Tracey, 2017), identifying genes and cell types related to Zika virus infection

(Nowakowski et al., 2016) or melanoma (Zhang et al., 2018). Most methods for differential expression

studies using bulk RNA-seq data (Robinson et al., 2010; Leng et al., 2013; Love et al., 2014) do not

consider cell type compositions. A few exceptions include csSAM (Shen-Orr et al., 2010) and TOAST

(Li et al., 2019), which are designed for continuous gene expression data and do not fully utilize the

count features of RNA-seq data. There are also a few methods with similar goals that were developed

for DNA methylation data (Zheng et al., 2018; Luo et al., 2019).

We develop a framework of cell type aware analysis of RNA-seq data (CARseq). We assume cell

type compositions have been estimated by an existing method based on reference gene expression

of purified cells (Newman et al., 2019; Wilson et al., 2019). CARseq takes the input of bulk RNA-seq

data and cell type fraction estimates and performs two tasks: comparison of cell type compositions

and cell type-specific differential expression (CT-specific-DE). For CT-specific-DE, CARseq employs

a negative binomial regression approach to fully utilize the count features of RNA-seq data, which

can substantially improve the statistical power. CARseq is a tribute to both the tradition that the

gene expression of a mixture is the summation of non-negative expression of each cell type (i.e.,

deconvolution on a linear scale) (Zhong and Liu, 2012), and that cell type-independent covariates are

adjusted on a log scale. Our shrunken estimates of log fold change (LFC), currently unaddressed in
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other methods (Shen-Orr et al., 2010; Li et al., 2019), produces a robust and interpretable quantification

of CT-specific DE. We benchmark CARseq together with other methods under various simulation

setups, illustrating CARseq has the highest power while maintaining type I error control. For example,

in a comparison versus TOAST by simulated data with 25 cases vs. 25 controls, CARseq can improve

the power by 2 to 4 folds.

We apply CARseq to assess gene expression difference of schizophrenia (SCZ) or autism spectrum

disorder (ASD) subjects versus healthy controls. SCZ and ASD are two severe neuropsychiatric

disorders that are likely caused by disruption of brain development in early life (particularly in

the prenatal and early postnatal period) due to environmental exposure combined with genetic

predispositions (Cattane et al., 2018). Two diseases have shared vulnerability genes and overlapping

symptoms (Anttila et al., 2018). For example, ASD is characterized by deficit social interaction and

repetitive behaviors, which are similar to the negative symptoms (“negative” means taking away from

normal state) of SCZ including social withdrawal and impaired motivation. There are also many

differences, however, between the two diseases. For example, ASD is an early childhood disease (onset

at 6 months to 3 years old) and most SCZ are diagnosed at young adulthood. Compared with ASD,

SCZ has additional positive symptoms (“positive” means addition to the normal state) of delusions and

hallucinations. The underlying biological mechanisms of the two diseases are not very well understood

yet. Our results bring some new insight into the difference and connection between the two diseases.

For example, we have observed an imbalance of excitation/inhibition neurons in SCZ but not ASD,

which may explain the hallucination symptom in SCZ but not ASD (Jardri et al., 2016). We have also

found these two diseases have overlapping signals of CT-specific DE in microglia, supporting the

connections of the two diseases through inflammation and oxidative stress (Prata et al., 2017).

Analyzing single cell RNA-seq (scRNA-seq) data is a promising solution for cell type-aware analy-

sis. However, due to high cost and logistic difficulties (e.g., collection of high quality tissue samples,

unbiased sampling of single cells), currently, it is very challenging, if not infeasible, to collect scRNA-

seq data from large cohorts. If the massive amount of existing bulk RNA-seq data could be re-analyzed

to study CT-specific expression and cell type composition, it could bring paradigm-shifting changes
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to many fields. Our work is one step towards this goal and our results on SCZ and ASD illustrate the

power of this CARseq framework, which can be applied to other diseases or conditions.

3.1 Results

3.1.1 Introduction to cell type-aware analysis

To assess the associations between cell type fractions and the covariate of interest, one needs

to pay attention to the compositional nature of the data, e.g., we cannot modify the proportion of

one cell type without altering the proportion of at least one other cell type (Aitchison and Egozcue,

2005). Therefore, following a commonly used practice for compositional data analysis, we transform

the k cell type fractions to k − 1 log ratios: log of the fraction of each cell type (other than the

reference) vs. a reference cell type. We choose excitatory neuron as our reference cell type because it

is the most abundant cell type in our studies and the results are easier to explain (e.g., when studying

excitation/inhibition imbalance).

The more challenging part is to assess CT-specific-DE, while we only observe expression in bulk

samples where the variability can come from both CT-specific expression and cell type fractions.

Our model is built around the assumption that the expression in bulk samples is the summation of

CT-specific expression weighted by cell fractions in linear scale (Figure 3.10). The model also allows

the inclusion of cell type-independent covariates, such as age, gender, batch etc.

3.1.2 Benchmarking methods through simulations

3.1.2.1 Simulation setup

We first use a simulation study to evaluate the power and type I error of CT-specific-DE by our

method and two existing methods: csSAM (Shen-Orr et al., 2010) and TOAST (Li et al., 2019). csSAM

assesses CT-specific-DE by a two-step approach: estimation of CT-specific expression followed by

testing by permutations. It has lower power than TOAST (Li et al., 2019) and it cannot account for

covariates. TOAST and CARseq are more similar since they both combine the estimation of CT-
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Figure 3.10: Each grouped bar illustrates the total expression of a gene in a bulk sample (the volume of

the grouped bar) that is the summation of gene expression from individual cell types (each bar). The

depth of each grouped bar is proportional to the covariate-adjusted read-depth. The width of each

bar is proportional to its cell fraction, and the height of each bar is proportional to the CT-specific

expression. The left/right three columns show three case/control samples, respectively. Our method

estimates the mean value of CT-specific expression for case and control groups separately. In this toy

example, cell type 1 (pink) has twice expression in cases than controls, while cell type 2 (green) and cell

type 3 (blue) are not differentially expressed.

specific expression and CT-specific-DE testing in one likelihood framework that allows adjustment

for covariates. The difference is that CARseq adopts the negative binomial model that allows modeling

of gene expression decomposition on a linear scale. In contrast, TOAST uses a linear model that is

less desirable to model count data. An alternative is to use TPM (transcripts per million) to replace

count, which is a linear transformation of counts after adjusting for gene length and read-depth. We

evaluated the performance of TOAST using both counts and TPM and the latter delivers better results,
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so we reported the results of TOAST using TPM and left the results using counts in Supplementary

Materials (Figures 3.19-3.22).

We simulated CT-specific expression data that mirror the gene expression data from single nucleus

RNA-seq (snRNA-seq) of human brains (Hodge et al., 2019). We simulated the cell fractions to resemble

our estimates from the Common Mind Consortium (CMC) bulk RNA-seq data (Fromer et al., 2016)

(Figure 3.31). Three cell types were simulated. Cell type 1, intended to imitate the excitatory neuron,

taking the lion’s share of around 60% of the cells in each sample. The other two cell types, with

much smaller fractions, were intended to represent inhibitory neurons and non-neuron cells. We also

simulated a covariate in the mold of RNA integrity number (RIN) and specified the distribution of

its effect size based on estimates of RIN effect from the CMC data. More details of the simulation

procedure can be found in Section B.1 of the Supplementary Materials.

3.1.2.2 CARseq has substantially higher power than other methods

The benchmark consists of simulations in different sample sizes and different patterns of differ-

ential expression (Figure 3.11). With covariates provided, both CARseq and TOAST can control false

discovery rate (FDR) very well, with CARseq having an edge in power. When covariates are missing,

the model misspecification might result in inflated type I error under some replicates, regardless

of the method being used. Nevertheless, the simulation results demonstrated that CARseq is more

powerful than TOAST, which is more powerful than csSAM, and correct specification of covariates

can improve power and ensure the control of FDR. It worth noting the power of CT-specific-DE can

be low when the sample size is small (e.g., n = 50, 25 cases vs. 25 controls), due to the uncertainty to

estimate CT-specific expression. This is also the situation where CARseq shows much higher power

than TOAST, with two to four folds of improvement (Figure 3.11(A)).

3.1.2.3 CARseq is robust to noise in cell fraction estimates or cell size factors

We use the true cell type fractions in the above simulations. Next we demonstrate that plugging

in the estimates of cell type fractions that have reasonable deviations from true values will not lead
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Figure 3.11: The FDR vs. sensitivity of several methods testing for CT-specific DE, when (a) the covariate

is provided to the method, and (b) when the covariate is not provided to the method. The ratio of

TOAST’s sensitivity to CARseq’s when the covariate is provided (hence type I error has been controlled)

is illustrated in the boxplot. There are 10 simulation replicates for each combination of sample size

(columns) as the total number of case-control samples and patterns of differential expression (rows).

For each replicate, there are 2,000 genes following the pre-specified pattern of differential expression

and 8,000 genes with no differential expression in any of the three cell types. In the notation for the

pattern of differential expression, the three numbers separated by underscores each represent the

fold change in each cell type. In this simulation setup, only cell type 1 is differentially expressed. The

vertical line indicates the intended FDR level of 0.1. Note that csSAM does not support the inclusion

of covariates; the scales of the x-axis in the two subfigures are different.

to a discernible decrease in power or increase in type I error. Specifically, we added a zero-centered

Gaussian noise with a standard deviation of 0.1 to the cell fractions on a logit scale and rescaled the cell

fractions so that their summation is 1 for each sample (Figure 3.23). Using this noisy cell type fraction

estimates, the sensitivity and FDR for CT-specific-DE are very similar to the noise-free scenario in

Figure 3.11. A major limiting factor for accurate cell type fraction estimation is the availability of

reference data of CT-specific expression. With the quick development of single cell techniques and

large scale project such as human cell atlas (Regev et al., 2017), we expect that relatively accurate

estimation of cell type fractions will be available in more tissue types.
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Cell size factor is another source of uncertainty. Most computational methods estimate the

fraction of gene expression instead of the fraction of cells for each cell type. If one cell type has on

average more expression per cell, a cell size factor correction is needed to estimate cell fractions. The

cell fractions are needed for CARseq since it directly models count data. In contrast, when using TPM

to quantify expression level in TOAST, there is no need to adjust for cell size factor. To interrogate the

performance of CARseq when the cell size factor is misspecified, we intentionally applied wrong size

factors (1.2, 1, 1) instead of the true ones (1, 1, 1) when evaluating CT-specific-DE. This misspecification

of cell size factor slightly reduces the power of CARseq, though it still has higher power than TOAST.

Only under extreme and unrealistic misspecification of cell size factor (e.g., (2, 1, 1) vs. true values of

(1,1,1)) does the power of CARseq drops to become similar to that of TOAST (Figure 3.26).

3.1.2.4 CARseq delivers more accurate and reproducible estimates of effect sizes

CARseq quantify the effect size of CT-specific-DE by log fold change or shrunken log fold change

(see Method Section for more details). TOAST defines the effect size as β/(µ + β/2), where µ is

base-line expression in one group, and β is the gene expression difference between two groups. To

make the results more comparable between CARseq and TOAST, we amend the effect size definition

in TOAST and propose to define LFC as log(|µ + β|) − log(|µ|). To examine the reproducibility of

effect size estimation, we divided the samples in a simulation replicate into two subsets of equal sizes

and then compare the effect size estimates in the two subsets. It is clear that CARseq’s shrunken log

fold change is best reproduced between the two subsets (Figure 3.12). For example, when sample size

is 25 cases vs. 25 controls for each subset (middle panel of Figure 3.12), the Spearman correlation of

effect size estimates between the two replicates are 0.71, 0.53, 0.13, and 0.08 for effect size qualified by

CARseq shrunken LFC, CARseq LFC, TOAST LFC, and TOAST effect size, respectively.

3.1.3 CARseq: comparing schizophrenia subjects versus controls

Schizophrenia (SCZ) is a severe neuropsychiatric disorder that affects approximately 1% of word-

wide population (Owen et al., 2016). There is strong evidence from both human and animal studies
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Figure 3.12: The reproducibility of effect size estimation among 2,000 differentially expressed genes

in cell type 1 (fold change of 2 or log fold change of 0.7) when CARseq and TOAST are applied to a

simulation dataset of a mixture of three cell types where only cell type 1 is differentially expressed. A

Spearman correlation coefficient for the reproducibility of effect size estimates is added at the top

right corner of each plot.

that support a neurodevelopmental model of SCZ: perturbation of early neurodevelopment during

pregnancy (e.g., by environmental factors such as maternal stress or infections), combined with a

genetic predisposition (the heritability of SCZ is estimated to be roughly 80%) (Owen et al., 2016). We

applied CARseq to study the gene expression of SCZ patients vs. controls using the bulk RNA-seq

data of prefrontal cortex samples, generated by the CommonMind Consortium (CMC) (Fromer et al.,
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2016), hereafter referred to as CMC-SCZ study. After filtering out the outlier samples reported by

Fromer et al. (Fromer et al., 2016), we had 250 SCZ subjects and 277 controls.
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Figure 3.13: CARseq on gene expression data between schizophrenia (SCZ) and controls. (A) Estimated

cell fractions by ICeD-T sorted by increasing fractions of excitatory neurons. (B) The effect size of

case-control status on relative cell fractions against excitatory neurons (log ratio of the cell type

of interest vs. excitatory neuron). The standard errors are denoted by bars. (C) CT-specific DE in

excitatory neurons and inhibitory neurons in significantly enriched pathways. Only genes with a

p-value less than 0.05 are shown. (D) Gene set enrichment analysis results on REACTOME pathways.

Three top pathways were shown for each cell type, ranked by -log10 q value with the sign of normalized

enrichment score (NES). Positive NES indicates enrichment of genes with small p-values.
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We estimated cell type proportions for six cell types: excitatory neurons (Exc), inhibitory neurons

(Inh), astrocyte (Astro), microglia (Micro), oligodendrocyte (Oligo) using CIBERSORT (Newman et al.,

2015) and ICeD-T (Wilson et al., 2019). The estimates from these two methods are highly correlated,

thoughwith some noticeable differences (Figures 3.31-3.32). We examinedwhether relative cell fractions

with respect to excitatory neuron are associated with the case-control status while accounting for

a set of covariates including log transformed read depth, age, gender, RNAseq QC metrics, batch

effects, genotype PCs, as well as two surrogate variables that were estimated conditioning on cell type

fractions (Figure 3.13(A), seeMethod section for details of the covariates used in our analysis). We found

that the relative cellular abundance of the inhibitory neuron quantified by ICeD-T is significantly

higher in SCZ samples than control samples (p-value 1.5 × 10
−5
), and there is a similar trend for cell

fraction estimates by CIBERSORT, though the difference is not significant (p-value 0.12). There is

also a trend of relative depletion of oligodendrocyte, though it is not significant (p-values 0.32 for

ICeD-T and 0.12 for CIBERSORT).

Since cell type fraction estimates from CIBERSORT and ICeD-T are highly correlated, we present

the CARseq results using cell type fractions estimated by ICeD-T for simplicity. CARseq found 1

differentially expressed gene (DEG) (q-value < 0.1) in astrocytes, 138 DEGs in microglia, and 656 DEGs

in oligodendrocytes (see Figure 3.34 for p-value distributions). In contrast, TOAST identified 3 DEGs

in inhibitory neurons, 30 DEGs in microglia, and 1 DEG in oligodendrocytes (See Figure 3.36 for

p-value distributions). Both methods could control type I error/FDR, indicated by the fact that if the

case-control label was permuted, the only false discovery (q-value < 0.1) is 1 gene in microglia reported

by CARseq, and the p-value distribution is uniform (Figures 3.35 and 3.37). These results are consistent

with our simulation results that CARseq can identify DEGs with a higher power than TOAST, while

controlling FDR.

Although we did not find any DEGs in inhibitory neurons or excitatory neurons at q-value cutoff

0.1, gene set enrichment analysis (GSEA) using the rankings of all the genes by their CT-specific DE p-

values recover some interesting pathways (Figure 3.13(D)). For inhibitory neurons, we found that genes

involved in unblocking or negative regulation of NMDA receptors are enriched. This is very relevant
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since NMDA hypofunction is a key contributor to the SCZ disease process and they are involved

in excitation/inhibition imbalance (Owen et al., 2016). The majority of the inhibitory-neuron-DE

genes in NMDA pathways have lower expression levels in SCZ subjects than controls (Figure 3.13(C),

Figure 3.42), consistent with the hypofunction of NMDA. We found that the heat shock related genes

are enriched in the DE genes in excitatory neurons, and they tend to have higher expression in SCZ

subjects than controls (Figure 3.13(C), Figure 3.42). This is consistent with previous findings that heat

shock response plays a crucial role in the response of brain cells to prenatal environmental insults

(Lin et al., 2014).

Next, we shift our attention to glial cells. For microglia, we found the pathways of innate immune

system and cell cycle are enriched in the CT-specific-DE genes and they are over-expressed in SCZ

subjects than controls (Figure 3.13(D), Figure 3.43), supporting the observations of activation of

microglia in SCZ subjects (Prata et al., 2017). It is interesting that these pathways are also enriched in

oligodendrocyte, but they are down regulated in SCZ subjects than controls (Figure 3.13(D), Figure 3.43),

suggesting inactivation of oligodendrocyte. We also found Slit-Robo signaling pathway is down/up

-regulated in microglia and oligodendrocyte, respectively (Figure 3.43). Slit-Robo signaling pathway

is involved in the neurogenesis and migration of neuronal precursors toward the lesions, and glial

cells are also involved in these processes (Kaneko et al., 2018). Our findings suggest microglia and

oligodendrocyte may take different roles in this process in SCZ subjects.

3.1.4 CARseq: comparing ASD subjects versus controls

Autism spectrum disorder (ASD) affect more than 1% of population, with heritability estimated to

be 68% to 96% (Lord et al., 2020). Individuals with ASD are often impaired in social communication

and social interaction, and limit themselves to repetitive behaviors and interests from an early age

(Lord et al., 2020). There is abundant evidence supporting the neurodevelopmental model for ASD.

Large-scale ASD genetic studies have identified hundreds of ASD risk genes that are mutated more

frequently in ASD subjects than controls (Satterstrom et al., 2020). We analyzed the bulk RNA-seq

data from ASD subjects and controls, published by a UCLA group (Parikshak et al., 2016; Gandal et al.,
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2018), hereafter referred to as UCLA-ASD study. They reported findings on 251 post-mortem samples

of frontal and temporal cortex and cerebellum for 48 ASD subjects versus 49 controls and found

significantly differentially expressed genes in cortex but not in cerebellum (Parikshak et al., 2016). In

this study, we focus on frontal cortex region based on positive findings of DE genes in this earlier

study and that it matches the brain region of SCZ data analyzed in this paper. After filtering by brain

regions, we ended up with 42 ASD subjects and 43 control subjects (See Method section for details).

Comparing relative cell type fractions (with respect to excitatory neurons) between ASD subjects

and controls, we found the relative abundance of astrocyte is significantly higher in ASD subjects

than controls (p = 0.021 and 0.024 for cell type fractions estimated by ICeD-T and CIBERSORT,

respectively, Figure 3.14(A)). Microglia also show a trend of higher relative abundance in ASD subjects

than controls. These observations support the hypothesis that pro-inflammatory maternal cytokines

in the developing brain can lead to neuroinflammation and proliferation of astrocyte and microglia

(Petrelli et al., 2016).

CARseq reports 232 DEGs (q-value < 0.1) in excitatory neurons and 855 DEGs in inhibitory neurons,

and no DEGs in the other four cell types (Figure 3.47). TOAST recovers 2 DEGs in excitatory neurons

and no DEGs in the other five cell types (Figure 3.49). We also sought to evaluate the FDR control by

repeating our analysis after permuting case/control labels (Figure 3.48 and 3.50) and noticed inflation

of type I error in some permutations. This is likely due to the fact that the model is mis-specified

after permuting case/control labels, and small sample size and/or unaccounted covariates could

further exaggerate such effects. Thus the results of this analysis should be interpreted with caution.

Nevertheless, as discussed next, we observed expected functional category enrichment and some

consistent signals between SCZ and ASD, suggesting our analysis in this dataset with relatively small

sample size still captures meaningful signals.

First, we considered a list of 328 autism risk genes curated by Simons Foundation Autism Research

Initiative (SFARI). Most of these risk genes were identified because they harbor more disruptive

mutations in the ASD cases than the general population. We found that these ASD risk genes are

significantly enriched among the DE genes in inhibitory neurons (p-value 5.8 × 10
−7
) and excitatory
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Figure 3.14: CARseq on the autism spectrum disorder (ASD) bulk expression data. (A) Estimated

cell fractions by ICeD-T sorted by increasing fractions of excitatory neurons. (B) The effect size of

case-control status on relative cell fractions against excitatory neurons (log ratio of the cell type of

interest vs. excitatory neuron). The standard errors are denoted by bars. (C) Gene set enrichment

analysis results in -log10 p value with the sign of normalized enrichment score (NES) of the SFARI gene

set, a curated list of 328 autism risk genes. (D) Gene set enrichment analysis results on REACTOME

pathways. Three top pathways were shown for each cell type, ranked by -log10 q value with the sign of

normalized enrichment score (NES). Positive NES indicates enrichment of genes with small p-values.

neurons (p-value 3.3 × 10
−4
), and they are significantly depleted among the DE genes in microglia (p-

value 2.9 × 10
−7
) (Figure 3.14(C), Table 3.8). Our findings are consistent with the results reported using

snRNA-seq data (Velmeshev et al., 2019). Enrichment by TOAST results is consistent with CARseq for
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microglia (4.1 × 10
−4
), but not significant for inhibitory neurons (p-value 0.14) or excitatory neurons

(p-value 0.89). In contrast, no enrichment is found from DE analysis on bulk tissue by DESeq2 (Love

et al., 2014) (p-value 0.66).

The pathways enriched in DE genes of excitatory or inhibitory neurons include more generic and

broad pathways such as “neuronal system” and “antigen processing”, and more specific ones such as

“synthesis of PIPs ” and “RAB regulation of trafficking”. Both “synthesis of PIPs” and “RAB regulation

of trafficking” are related to one type of glutamate receptors named AMPA receptor (McCartney et al.,

2014; Hausser and Schlett, 2019). The log fold changes of DE genes show that these two pathways are

up-regulated in inhibitory neurons of ASD subjects, but down-regulated in excitatory neurons of ASD

subjects (Figure 3.55). Such up/down-regulation pattern is much cleaner in “synthesis of PIPs” than

“RAB regulation of trafficking”. This suggests the relevance of AMPA activity in the pathophysiology

of ASD. Genes in the antigen processing pathways tend to be up-regulated in inhibitory neurons

but down-regulated in excitatory neurons (Figure 3.55), suggesting increased/decreased interactions

with the immune system in inhibitory neurons and excitatory neurons, respectively. The enriched

pathways in glial cells include those related to translation initiation, elongation, and “Response of

EIF2AK4 (GCN2) to amino acid deficiency”. It has been shown that dysregulation of translation can

cause neurodegeneration (Ishimura et al., 2016), which is corroborated by our findings that suggest

their connections with ASD.

3.1.5 Comparing DE testing by CARseq versus DESeq2

DESeq2 (Love et al., 2014) is a good representative of existing methods for DE analysis of bulk

tissue samples. In both SCZ and ASD analyses, most findings from DESeq2 were not identified as CT-

specific-DE genes (Figure 3.41 and 3.54). An immediate question is whether those DESeq2 DE genes are

differentially expressed in one ormore cell types, or theymay reflect confounding effect due to cell type

compositions. In our default analysis, DESeq2 does not take any cell type composition as covariates.

After accounting for cell type compositions (by including log ratios of cell type compositions), DEseq2

identified more DE genes using the CMC-SCZ data (from 1,009 to 1,888, with an intersection of 810 at
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q-value 0.1, Table 3.5), suggesting that these DE genes are differentially expressed in one or more cell

types, but with a relatively small effect sizes and thus were missed by CARseq. In contrast, for the

UCLA-ASD data, DESeq2 identified much less DE genes after accounting for cell type compositions

(from 1063 to 481, with an intersection of 185 at q-value 0.1, Table 3.5), suggesting that many DEseq2

DE genes in ASD are indeed confounded by cell type compositions.

3.1.6 Concordant microglia-specific DE genes between SCZ and ASD

We found an interesting pattern that genome-widemicroglia-specific-DEp-values show significant

correlations between SCZ and ASD (Figure 3.15(A), correlation 0.14 and p-value < 2 × 10
−16

). In

addition, the fold changes of microglia DE genes in different pathways also show consistent patterns

between SCZ and ASD (comparing Figure 3.43(A) vs. 3.49(A)): up-regulation in innate immune system

and cell cycle, and down-regulation in translation, slit-robo signaling pathway, and influenza infection.

We further study the overlapping DE genes. Using a liberal p-value cutoff of 0.05, we identified 1,674

and 355 microglia-specific-DE genes in SCZ and ASD studies, respectively, with an overlap of 65

genes. This overlap is significantly larger than 33 overlaps expected by chance (p-value 9.6 × 10
−9

by Chi-squared test). Several REACTOME pathways are over-represented by these 65 genes (by R

package goseq, Figure 3.15(B), Table 3.9). Note that this over-representation analysis is different from

GSEA, which uses genome-wide rankings, and here we only consider these 65 genes. In addition to

the pathways that have been identified by GSEA, we found some new ones. One interesting finding is

“Selenoamino acid metabolism”. Since selenium-dependent enzymes prevent and reverse oxidative

damage in brain, our findings support that selenium-dependent enzymes could mediate the relation

between antioxidants and SCZ/ASD (Raymond et al., 2014; Greenhalgh et al., 2020).
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Figure 3.15: (A) The correlationmatrix of -log10(Microglia-specific-DE p-values) (calculated by CARseq)

between CMC-SCZ and UCLA-ASD studies. (B) The REACTOME pathways that are over-represented

by the 65 genes with microglia-specific-DE p-values smaller than 0.05 in both CMC-SCZ and UCLA-

ASD studies.

3.2 Discussion

SCZ and ASD are two prevalent neuropsychiatric disorders with profound burdens on the affected

individuals, their families, and society. Previous studies have identified genetic and environmental

factors that contribute to disease risks. However, our understanding of the molecular mechanisms

that connect these risk factors with disease onset is still incomplete, and insight on such molecular

mechanisms is crucial for more effective treatment and prevention. For example, several SCZ drugs

work at molecular level to interact with neurotransmitters. However, it is not clear which cell types

are more relevant for the functioning of the drugs. Analysis of gene expression in postmortem brain

samples is an effective approach to study such molecular mechanisms, though traditional methods for

DE analysis cannot separate the effects of cell type compositions and cell type-specific gene expression

changes. To the best of our knowledge, we present the first cell type aware analysis of postmortem

gene expression data from SCZ and ASD.

The molecular mechanisms underlying SCZ and ASD can be divided into two categories: alter-

ations in neurotransmitter systems and stress-associated signaling including immune/inflammatory-

related processes and oxidative stress (Cattane et al., 2018). NMDA and AMPA are two types of
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receptors for neurotransmitter glutamate. We found evidence for hypofunction of NMDA in SCZ

(particularly in inhibitory neurons) and dysregulation of AMPA in ASD. While excitation-inhibition

(E-I) imbalance has been suggested as a common feature of SCZ and ASD, we found the relative

fractions of inhibitory neurons versus excitatory neurons is higher in SCZ than controls, but are

similar between ASD and controls. This is consistent with previous finding that the hypofunction

of NMDA could cause E-I imbalance (Kehrer et al., 2008) and our finding that NMDA pathway is

perturbed in SCZ but not in ASD. In addition, it has been shown that E-I imbalance is the underlying

mechanism for hallucination (Jardri et al., 2016), which is a symptom of SCZ but not ASD. Thus our

finding of E-I imbalance in SCZ but not in ASD may explain part of the symptom difference between

the two diseases. A recent study also found no E-I difference between ASD and controls (Ajram et al.,

2017).

Stress-associated signaling in SCZ and ASD has been widely studied. For example, animal studies

show that prenatal stress referred as maternal immune activation (regardless the cause such as infection

by different pathogens or immune stimulation) can lead to SCZ or ASD (Prata et al., 2017), implying

the role of immune system in disease pathology. Microglia is the tissue resident macrophages in brain

and plays a central role in immune response in brain. We found microglia-specific DE genes have

significant overlap between SCZ and ASD and they have higher expression in SCZ/ASD subjects than

in controls, suggesting microglia are in more active states in SCZ/ASD than controls, and pointing to

the relevance of several biological processes including translation regulation and oxidative damage.

The relative proportion of astrocyte is significantly higher in ASD than controls, and there is a trend of

higher abundance of microglia in ASD than controls. The relative fractions of astrocyte and microglia

are similar between SCZ and controls, though.

These analyses are enabled by our computational framework CARseq, a framework for cell type-

aware analysis of RNA-seq data from bulk tissue samples. CARseq require the estimates of cell type

fractions, which relies on reference of cell type-specific gene expression data. We expect with the

development of human cell atlas (Regev et al., 2017), such resource in other tissues will be generated in

the near future, and thus enable CARseq analysis in broader tissues and relevant diseases.
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A practical consideration of using CARseq is that it may have limited power when the sample size

is small. This is the price that we have to pay for the uncertainty of estimating CT-specific expression

from bulk RNA-seq data. As a rule of thumb, we do not recommend using CARseq when the sample

size minus the number of covariates is smaller than 20. For large studies, e.g., with hundreds of samples,

it may worth considering a new study design to generate scRNA-seq data in a subset of samples, and

generate bulk RNA-seq data from all the samples. The scRNA-seq data can be used to generate cell

type-specific gene expression reference for cell type fraction estimation, which can be used for the

CARseq analysis on bulk RNA-seq data. In addition, the scRNA-seq data can also be used to validate

the results of CARseq.

3.3 Methods

3.3.1 Likelihood function of CARseq model

LetTji be the RNA-seq read count (or fragment count for paired-end reads) for gene j ∈ {1, . . . , J}

and sample i ∈ {1, . . . , n}, where J is the total number of genes and n is the number of bulk samples.

We denote the cell fraction for cell type h ∈ {1, . . . ,H} in the i-th sample by ρ̂hi .

We assume Tji follows a negative binomial distribution: Tji ∼ fNB(µ ji, φ j), with mean value µ ji

and dispersion parameter φ j . Since deconvolution on a linear (non-log) scale yields better accuracy

(Zhong and Liu, 2012), we let:

µ ji =

H∑
h=1

ρhi µ̃ jih,

where µ̃ jih is the mean expression of the j-th gene in the h-th cell type of the i-th sample. The above

deconvolution states that the expected total read count is the summation of expected CT-specific

read count weighted by cell fractions across all cell types h ∈ {1, . . . ,H}. In practice, cell fraction

estimates ρ̂hi are used in place of ρhi .

We model the relation between µ̃ jih and M0 CT-specific covariates through a log link function,

which is commonly used for negative binomial regression: µ̃ jih = dβj0i exp

( ∑M0

m=1
γ jhmxihm

)
, where

di is the sequencing read depth of sample i, γ jhm and xihm are the regression coefficient observed data
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for the m-th covariate. In all the analyses of this paper, we use 75 percentile of the expression across

all the genes within a sample.

The effect sizes ofmany covariatesmay not vary across cell types. For example, since RNA integrity

number (RIN) quantifies sample RNA quality, it would associate with observed gene expression in the

same way regardless of the original cell type. By separating cell type-independent covariates from

CT-specific covariates, we can construct a model with less degrees of freedom. Suppose M out of M0

parameters are CT-specific and the rest K = M0 − M parameters are cell type-independent, we have:

µ̃ jih = dβj0i exp

(
K∑

k=1

β j kwik

)
exp

(
M∑

m=1

γ jhmxihm

)
,

where wik is the value of the k-th cell type-independent covariate in sample i.

The log-likelihood can be maximized using iteratively weighted least squares (IWLS) with some

tweaks (Supplementary Materials Section A). After that, we can construct likelihood ratio statistics to

conduct the CT-specific-DE tests. Although the likelihood-based testing framework can be generalized

to accommodate a variety of tasks (Li et al., 2019), e.g., test for a continuous variable or test for a linear

combination of regression coefficients, our main focus in the article is CT-specific-DE tests among

two or more groups.

We noted that CARseq reports large LFC estimates in some cell types, which probably reflect

estimation uncertainty, particularly for the cell types with low proportion or when the sample size is

small. To mitigate this problem, we developed a shrunken LFC estimation procedure, see Section A.5

in Supplementary Materials for details.

3.3.2 Comparison with other methods.

There are a few alternatives to our methods, though they were indeed developed for different

purposes and not best suited for RNA-seq data analysis. TOAST (Li et al., 2019) is a method for

CT-specific DE or differential methylation analysis. It uses a linear model that is more flexible than our

negative binomial model to handle different types of data, though for RNA-seq count data with a very

strong mean-variance relationship, a linear model that assumes homogeneous variance has to choose
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between variance stabilization (e.g., by log-transformation of gene expression) or deconvolution in

linear scale. All the analysis performed in real data has been done using both CARseq and TOAST and

additional results for TOAST are available in Supplementary Figures.

Accounting for observed/unobserved confounding covariates is crucial for DE analysis, and the

unobserved covariates can be estimated by surrogate variable analysis (SVA) (Leek et al., 2012). In

simulation data, we found that not accounting for relevant covariates can lead to inflated type I error.

This limits the application of csSAM that cannot adjust for covariates in a lot of practical settings. For

this reason, we did not apply csSAM in real data analysis.

It is worth mentioning that CIBERSORTx (Newman et al., 2019) provides a high-resolution

mode that can provide CT-specific expression estimates for each sample. It is very helpful for data

exploration, but not appropriate for differential expression testing since it relies on many assumptions

that create some dependency in the final output. The authors of CIBERSORTx did not recommend

using such high-resolutionmode for differential expression analysis. However, it could be a convenient

and attractive approach for practitioners. To warn against it, we demonstrate this approach could

bring inflated type I error by simulation studies (Figures 3.19-3.22).

3.3.3 Estimation of cell type compositions

We use two reference-based methods to estimate cell type compositions of bulk tissue samples:

CIBERSORT (Newman et al., 2015) and ICeD-T (Wilson et al., 2019). CIBERSORT is a popular method

that use a support vector regression to estimate cell type proportions. ICeD-T is a likelihood-based

method that model gene expression using log-normal distribution. It allows a subset of genes to be

“aberrant” in the sense that the CT-specific gene expression of such genes are inconsistent between

bulk tissue samples and external reference. Such aberrant genes are down-weighted in estimating cell

type proportions.

We generated CT-specific gene expression reference using snRNA-seq data from the middle

temporal gyrus (MTG) of the human brain (Hodge et al., 2019). This is not a perfect match for the

bulk RNA-seq data that are from pre-frontal cortex (PFC). We have compared MTG with another
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snRNA-seq data generated from human PFC as well as other brain regions using DroNC technique.

The CT-specific gene expression is similar between the two datasets, except for endothelial cells. We

chose to use MTG data to generate reference since it has much higher depth and better coverage,

making it more similar to bulk RNA-seq data. We exclude endothelial in our analysis since there are

only 8 endothelial cells in MTG data and its expression has very weak similarity to the endothelial

cells from DroNC data. See Supplementary Materials Section B.2.1 for more details.

A related question is that when estimating cell type fractions, an implicit assumption is that the

signature genes’ cell type-specific expression level does not change in different conditions. Then it

seems to be a contradiction when we assess its DE. A more rigorous approach is to assess DE only

for non-signature genes. However, since cell fractions are estimated using hundreds of genes with

robust models, removing any one signature gene will not lead to a noticeable change of cell type

fraction estimates. Therefore, it is as if we assess DE of a signature gene without using it as part of the

signature matrix. On the other hand, if too many genes within the signature gene set are detected

to be differentially expressed, the accuracy of the cell type fraction estimates is questionable, and an

alternative signature gene set should be selected.

3.3.4 CARseq analysis for SCZ

The gene expression data and sample characteristics data were downloaded from CommonMind

Consortium (CMC) Knowledge Portal (see section URLs). We include the following covariates in our

CARseq CT-specific DE analysis:

• log transformed read-depth (75 percentile of gene expression across all the genes within a

sample),

• institution (a factor of three levels for the three institutes where the samples were collected),

• age, gender, and PMI (Post-mortem interval),

• RIN (RNA integrity number) and its square transformation RIN
2
,
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• a batch variable “Libclust”, which is clusters of library batches into 8 groups,

• two genotype PCs, and two surrogate variables.

The surrogate variables were calculated after accounting for cell type compositions. Specifically, we

add the log ratios of cell type compositions (with excitatory neuron as baseline) as the covariates and

then calculate surrogate variables using R function sva from R package sva (Leek et al., 2012).

The covariates selected in our model are mostly similar to those included in the original analysis

(Fromer et al., 2016) except two differences. One is that we included two instead of five genotype PCs

in our analysis since other PCs are not associated with gene expression data (Figures 3.16). Surrogate

variables were computing using the R package “sva” (Leek et al., 2012). Two surrogate variables are

included because adding these two surrogate variables increased the variance explained (R2
) in a linear

model to fit log-scale mixture expression from 0.55 to 0.68, while more surrogate variables offered a

comparably limited increase in R2
. Prior to inclusion in the model, all the continuous covariates were

scaled to ensure numerical stability (Love et al., 2014).

3.3.5 CARseq analysis for ASD

The gene expression data (expected read counts derived from RSEM) were downloaded from

Freeze1 of PsychENCODE Consortium (PEC) Capstone Collection, and the accompanying meta data

and clinical data were downloaded from PsychENCODE Knowledge Portal, see Section URLs for the

exact links. There are 341 samples from 100 individuals. We kept the samples from BrodmannArea 9

(BA9), including 89 samples from 85 individuals. Four individuals have duplicated samples and we

chose the one with higher RIN. These 85 individuals include 42 ASD subjects and 43 controls, and

they were from two brain banks: 53 from Autism Tissue Program (ATP) and 32 from NICHD, see

Parikshak et al. (Parikshak et al., 2016) for more details of this dataset.

We examined the association between each potential covariates and genome-wide gene expression

and found PMI and Sex are not associated with gene expression, as evidenced by a uniform distribution

of p-values, therefore we removed these two covariates and used the following covariates in our

analysis.
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• log transformed read-depth (75 percentile of gene expression across all the genes within a

sample),

• BrainBank (a factor of two levels),

• SequencingBatch (a factor of 3 levels),

• age, RIN (RNA integrity number),

• four sequencing surrogate variables (SeqSVs).

The SeqSVs, which are the notations used by Parikshak et al. (Parikshak et al., 2016) are PCs derived

from sequencing QC metrics. We used 4 principal components because they explained 99% of the

variance of the sequencing metrics. Prior to inclusion in the model, all the continuous covariates were

scaled to ensure numerical stability (Love et al., 2014).

3.3.6 Gene set enrichment analysis

The gene set enrichment was done on REACTOME pathways downloaded from https://www.

gsea-msigdb.org/gsea/msigdb/download_file.jsp?filePath=/msigdb/release/7.1/c2.

cp.reactome.v7.1.symbols.gmt. There are originally 1,532 pathways, of which 1,090 pathways

have a size between 10 and 1,000 genes.

For each cell type, we used “fgseaMultilevel" function in “fgsea" R package to simultaneously

calculate p-values and normalized enrichment scores (NES) across the 1,090 pathways without any

weights (fgseaMultilevel argument gseaParam = 0) in a gene list ranked by potentially CT-specific

p-values from the differential expression analysis. The p-values across the 1,090 pathways were

then converted to q-values using “get_qvalues_one_inflated" in our CARseq package. Next, we

collected in a table all the candidates of the pathway-cell type pairs satisfying NES > 0 (genes in

the pathway tend to have smaller p-values), and sorted them by the rank of increasing q-values and

decreasing NES within each cell type. We then deduplicated the pathways by only retaining the first

appearance of each pathway in the table. The top N pathway-cell type pairs were subsequently chosen.

For illustrative purposes, N was picked to be 3 in our paper.
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In the Main Figures, the primary differential expression method was CARseq, and the top path-

ways were defined by GSEA results from genes ranked by CARseq CT-specific-DE p-values. In the

Supplementary Figures, we also reported heatmaps featuring top pathways defined by GSEA results

based on rankings by TOAST CT-specific-DE p-values.

3.3.7 Optimization of regression coefficients through IWLS

For each gene, we have K + MH regression coefficients and an overdispersion parameter φ j to

estimate. Wewill have an initial value of φ j , and estimate regression coefficients and the overdispersion

parameter until convergence.

Fromnowon, assumewe already know the overdispersion parameter. The problem is tomaximize

the log-likelihood with respect to regression coefficients β j k and γ jhm.

Let the cell type-specific mean expression weighted by cell fractions be

µ jih := di exp

(
K∑

k=1

β j kwik

)
ρ̂hi exp

(
M∑

m=1

γ jhmxihm

)
,

satisfying

µ ji =

H∑
h=1

µ jih,

then

∂µ jih

∂β j k
= wik µ jih,

∂µ jih

∂γ jhm
= xihmµ jih = z jihmµ jih,

when we introduce z jihm := xihm for generality.

The bulk RNA-seq log-likelihood function is:

` j =

n∑
i=1

[
log Γ(Tji+φ j)− log Γ(φ j)− log Γ(Tji+1)+φ j log φ j +Tji log µ ji−(Tji+φ j) log(φ j + µ ji)

]
.
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We further define

d ji :=
φ j

µ ji(φ j + µ ji)
,

r ji :=
(Tji − µ ji)φ j

µ ji(φ j + µ ji)
.

Once we have defined µ jih, z jihk and r ji , we can rewrite the score function:

∂` j

∂β j k
=

n∑
i=1

wikr jiµ ji,

∂` j

∂γ jhm
=

n∑
i=1

z jihmr jiµ jih,

Now we derive the information matrix. First, let

B jik :=
∂r ji

∂β j k
=

wikφ j µ ji(µ
2

ji − 2Tjiµ ji − Tjiφ j)

µ2

ji(µ ji + φ j)
2

,

G jigp :=
∂r ji

∂γ jgp
=

z jigpφ j µ jig(µ
2

ji − 2Tjiµ ji − Tjiφ j)

µ2

ji(µ ji + φ j)
2

.

Second,

∂2` j

∂β jpβ j k
=

n∑
i=1

[
B jipwik µ ji +

∂(wik µ ji)

∂β jp
r ji

]
=

n∑
i=1

[
B jipwik µ ji + wikwipµ jir ji

]
,

∂2` j

∂γ jgpβ j k
=

n∑
i=1

[
G jigpwik µ ji +

∂(wik µ ji)

∂γ jgp
r ji

]
=

n∑
i=1

[
G jigpwik µ ji + wik z jigpµ jigr ji

]
,

∂2` j

∂γ jgpγ jhm
=

n∑
i=1

[
G jigpz jihmµ jih +

∂(z jihmµ jih)

∂γ jgp
r ji

]
.

Then we calculate the expectations with respect to the observed read counts Tji . Observe that

E[r ji] = 0,
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E[B jik] = −
wikφ j µ ji

µ ji(µ ji + φ j)
,

E[G jigp] = −
z jigpφ j µ jig

µ ji(µ ji + φ j)
.

It follows that

E

[
∂2` j

∂β jpβ j k

]
= −

n∑
i=1

wikwipφ j µ
2

ji

µ ji(µ ji + φ j)
= −

n∑
i=1

wikwipd jiµ
2

ji,

E

[
∂2` j

∂γ jgpβ j k

]
= −

n∑
i=1

wik z jigpφ j µ jiµ jip

µ ji(µ ji + φ j)
= −

n∑
i=1

wik z jigpd jiµ jiµ jip,

E

[
∂2` j

∂γ jgpγ jhm

]
= −

n∑
i=1

z jihmz jigpφ j µ jimµ jip

µ ji(µ ji + φ j)
= −

n∑
i=1

z jihmz jigpd jiµ jihµ jip.

We now have the information matrix. Let us define D j as the n-dimension diagonal matrix with

diagonal elements as d ji, i ∈ {1, 2, . . . , n}. Define X j as matrix with n rows and K + HM columns:

©«

µ j1w11 · · · µ j1w1k · · · µ j1w1K µ j11z j111 µ j12z j121 · · · µ j1hz j1hm · · · µ j1H z j1HM

...
...

...
...

µ jiwi1 · · · µ jiwik · · · µ jiwiK µ ji1z ji11 µ ji2z ji21 · · · µ jihz jihm · · · µ jiH z jiHM

...
...

...
...

µ jnwn1 · · · µ jnwnk · · · µ jnwnK µ jn1z jn11 µ jn2z jn21 · · · µ jnhz jnhm · · · µ jnH z jnHM

ª®®®®®®®®®®®®¬
Then the information matrix is

XT
j D j X j .

Define the column vector with (K + HM) rows when we concatenate β j k, k ∈ {1, 2, . . . ,K} and

γ jhm, h ∈ {1, 2, . . . ,H}, m ∈ {1, 2, . . . , M} as ˜β j , and the column vector with n rows as Y ∗j whose

each entry is Tji − µ ji . Then the score function is

XT
j D jY

∗
j .
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With the information matrix and score function formulated, using Fisher scoring method,

˜β
(k+1)

j = ˜β
(k)
j +

(
X (k)j

T
D(k)j X (k)j

)−1

X (k)j
T

D(k)j Y ∗j
(k),

or equivalently

˜β
(k+1)

j =
(
X (k)j

T
D(k)j X (k)j

)−1

X (k)j
T

D(k)j

(
X (k)j

˜β
(k)
j + Y

∗
j
(k)

)
.

Define

Z (k)j = X (k)j
˜β
(k)
j + Y

∗
j
(k),

Now we see that
˜β
(k+1)

j is the solution of a weighted least squares with response vector Z (k)j , design

matrix X (k)j , andweights D(k)j . Applying this iteratively, we should now have an optimization algorithm

with quadratic convergence speed.

3.3.8 Practical considerations in IWLS

In practice, however, the vanilla version of IWLS will not work as intended, to put it mildly. From

now on, we will focus on a typical use case where xihm’s are group labels taking binary {0, 1} values.

Unlike negative binomial regression without cell types, where IWLS will generally converge nicely to

a finite estimate as in a typical GLM framework, now we would start to see cases that the estimates of

some γ jhm’s tend to negative infinity. This phenomenon is more prominent when the sample size is

smaller or the expected cell fraction is lower. Intuitively, since deconvolution is done on a non-log

scale (Zhong and Liu, 2012), when the standard error of cell type-specific expression on a non-log

scale is large, the estimate of cell type-specific expression may become zero or even negative without

a non-negativity constraint implied through the log-scale modeling of expression. Meanwhile, some

µ jih’s may decrease to 0, which means some columns of X (k)j may decrease to 0’s, thus the condition

number of X (k)j
T

D(k)j X (k)j becomes either extremely large or infinity. As a result, the IWLS iterations

will get stuck somewhere when some regression coefficient estimates reach the vicinity of negative

infinity, and where it may get stuck depends on the initial values.
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One issue standing out is that the negative log-likelihood is not always decreasing during the

iterations. To solve the issue, recall that the search direction is:

p(k) =
(
X (k)j

T
D(k)j X (k)j

)−1

X (k)j
T

D(k)j Y ∗j
(k).

We find the step size ρu
that guarantees sufficient decrease in negative log-likelihood, also called the

Armijo condition (Nocedal and Wright, 2006):

−` j( ˜β
(k)
j + ρ

u p(k)) ≤ −` j( ˜β
(k)
j ) + cρu[− Û̀j( ˜β

(k)
j )]

T p(k),

where we take c as 1e−4, ρ as 0.5, and u as the smallest non-negative integer that makes the inequality

hold. The process of finding the right step size is called backtracking line search.

While backtracking line search will facilitate the convergence of iterations, it does not directly

address the singularity problem. To solve this, our approach (“optimization on a non-log scale”) is to

re-parametrize the cell type-specific regression coefficients by letting γ̃ jhm = exp(γ jhm), γ̃ jhm ≥ 0:

µ̃ jih = di exp

(
K∑

k=1

β j kwik

)
M∏

m=1

γ̃xihm
jhm .

Then we minimize the negative log-likelihood using IWLS exactly as what is stated above, except

that we need to set z jihm = xihm/γ jhm and that the weighted least squares performed at each iteration

need to be replaced with non-negative weighted least squares. Bounded variable least squares (Stark

and L. Parker, 1995) specifying γ̃ jhm ≥ 1e−30 is the actual implementation being adopted here. When

boundary restraints are taken good care of, the IWLS algorithm with backtracking line search and

non-negative least squares will converge to theMLE fairly easily. We further note that although not the

default option used in the analyses, setting an uninformative prior of N(0, 1e6) and using iteratively

reweighted ridge regression will also lead to the convergence to the same MLE as we obtained using

optimization on a non-log scale. This is the optimization strategy used in DESeq2, and more on that

will be covered in the “Shrunken log fold change” section.
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3.3.9 Estimation of the overdispersion parameter

To initialize the overdispersion parameter, we take the overdispersion parameter estimated by

sampling x∗im from xihm, h ∈ {1, . . . ,H} and solving a negative binomial regression: Tji ∼ fNB(µ ji, φ j)

and µ ji = di exp

( ∑K
k=1

β j kwik +
∑M

m=1
γ∗jmx∗im

)
. We take the MLE of φ j as the initial value of the

overdispersion parameter. The MLE of β j k is also used to initialize the regression coefficients β j k ,

and the MLE of γ∗jm is replicated across H cell types to populate the initial value of γ j km.

The bulk RNA-seq log-likelihood is:

` j =

n∑
i=1

[
log Γ(Tji+φ j)− log Γ(φ j)− log Γ(Tji+1)+φ j log φ j +Tji log µ ji−(Tji+φ j) log(φ j + µ ji)

]
.

And define the Cox-Reid adjusted profile log-likelihood as:

`CR

j (φ j) = ` j(φ j) −
1

2

log(det(XT
j D j(φ j)X j))

where D j(φ j) and X j have been defined in the previous section “Practical considerations in IWLS” and

their calculation involves combining cell type-specific covariates, cell type-independent covariates,

and estimated cell fractions.

The Cox-Reid approximate conditional inference (Cox and Reid, 1987) was proposed to estimate

negative binomial overdispersion in the analysis of SAGE data to control type I error in small-sample

tests (Robinson and Smyth, 2008). The adjustment term −1

2
log(det(XT

j D j(φ j)X j)) is derived from the

observed information of φ j . Since then, the conditional maximum likelihood estimate has been used

by edgeR (Robinson et al., 2010) and DESeq2 (Love et al., 2014) to reduce the bias of overdispersion

estimation, and thus the hypothesis testing of differential expression becomes more conservative than

using the MLE of overdispersion parameter.

The overdispersion parameter is updated after the regression coefficients are estimated using

IWLS by doing a one-dimensional optimization on the adjusted profile likelihood of φ j introduced
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above. The process of updating regression coefficients and then the overdispersion parameter will

continue until the overdispersion parameter will not be changed for more than 0.1 on a log scale.

Since cell type-specific differential expression usually requires a larger sample size to detect

cell type-specific expression variability, overdispersion estimation is done gene by gene. This is

different from the default options of edgeR (Robinson et al., 2010) and DESeq2 (Love et al., 2014), where

mean-overdispersion relationship across genes is leveraged to generate moderated estimation of

overdispersion parameters. This approach could improve the sensitivity and specificity of differential

expression tests when dealing with very small sample sizes. However, with sample of modest size,

there is not a clear-cut case supporting its necessity (Zhou et al., 2011).

3.3.10 Cell type-specific tests using likelihood ratio statistics

We introduce likelihood ratio statistics to test cell type-specific expression. Although the general

testing framework is very flexible to be inclusive of all kinds of tests discussed in TOAST (Li et al.,

2019), we only emphasize on the application that the test is about whether there is cell type-specific

differential expression analysis across groups.

Consider the cell type-specific expression:

µ̃ jih := di exp

(
K∑

k=1

β j kwik

)
exp

(
M∑

m=1

γ jhmxihm

)
.

Under the full model, γ jhm is the cell type-specific mean expression in cell type h and group m,

controlled for other covariates. Then xihm = 1 when sample i belongs to group m, and xihm = 0

otherwise.

Under the reduced model, within a certain cell type h, there is no differential expression across

groups. Instead, the expression is always γ jhm regardless of which group sample i belongs to. Without

loss of generality, let us suppose that the cell type-specific expression stays at γ jh1. In this way, xih1 = 1

and xihm = 0, m ∈ {2, . . . , M}, and the corresponding γ jhm’s are no longer possible to estimate since
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they are not included in the reduced model as a matter of fact. Thus, during estimation of regression

coefficients, these pairs of h and m are left out of the IWLS algorithm.

Once we have the log-likelihood under the full model and the reduced model, we can calculate

the likelihood ratio statistics and compare it to a chi-squared distribution with M − 1 degrees of

freedom. This approximation to the distribution of the statistics is asymptotic (a t distribution has

been proposed as an alternative in the literature), and is only appropriate when the true parameter is

not on the boundary. Biologically speaking, the cell type-specific expression should indeed be always

positive. However, in a finite sample case, the closeness to a boundary case might change the null

distribution into a mixture distribution without a closed-form expression and more complex than a

mixture chi-squared distribution (Self and Liang, 1987; Molenberghs and Verbeke, 2007). With that

being said, when the sample size is moderately large, any departure from the asymptotic distribution

is commonly too small to warrant much scrutiny.

3.3.11 Shrunken log fold change

While a sufficiently small p-value from a differential expression test can be interpreted as statistical

significance in the association between expression and the parameter of interest, it does not indicate

the biological strength of association. Log fold change (LFC) is up to this task. It is customary to plot

LFC and p-value of genes on a scatterplot—aptly named as volcano plot—and dictate which genes are

candidates for further investigation using both LFC and p-value thresholds. LFC can also be used in

gene ontology (GO) or gene set enrichment analysis (GSEA).

Nevertheless, the interpretation of LFC can be difficult especially when the sample size is small and

the variability is large. Smaller studies tend to report large LFCs even when the differential expression

is absent (The Brainstorm Consortium et al., 2018). Shrunken log fold change is a stabilized estimation

of the strength of differential expression. Notably, since deconvolution is done on a non-log scale,

without any shrinkage, the estimated cell type-specific expression can go to zero due to the (implicit)

constraint that cell type-specific expression is non-negative, and the raw LFC goes to positive or

negative infinity. A similarly hard-to-interpret scenario can be found in TOAST results, where the
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estimated cell type-specific expression can even become negative, and thus LFC has no definition.

These ill-posed problems severely limit the use cases of raw LFC to quantify the strength of cell

type-specific expression. With a prior that is sufficiently informative, such as an empirical Bayes

prior, the shrunken log fold change is generally finite and easier to interpret. Furthermore, if the

whole experiment is replicated or if it is replicated with a larger sample size, the consistency between

replicated studies would be better if the shrunken LFC, instead of the raw LFC, is used as the measure

of the strength of differential expression (Love et al., 2014).

The shrunken log fold change implemented in CARseq largely follows that in DESeq2 (Love et al.,

2014), though there are some subtleties of CARseq implementation. The additive structure of mixture

expression depending on cell type-specific expression in CARseq requires some weak shrinkage on

the cell type-specific group mean. Though an unconventional choice, it compresses the estimated

group mean towards zero on a log scale and mitigates the optimization difficulties when any estimate

of cell type-specific expression approaches the boundary. Another pertinent distinction lies in CARseq

forgoing the moderation of overdispersion parameters. Although this does not affect the raw LFC, the

adaptation of moderated overdispersion parameter can further stabilize the shrunken LFC, resulting

the impression that DESeq2 produces more aggressively shrunken log fold change.

Recall that when setting the design matrix, to code a factor with multiple levels, the default choice

is to set the first level as intercept and code each other level as a contrast with the first. While the

designation of which level as intercept will not affect estimation and testing without a prior, the

asymmetric application of prior to contrasts will be problematic. Therefore, we borrow the concept

of expanded design matrix from DESeq2. Essentially, we set the group mean γ jh0 of cell type-specific

expression as intercept, and code each level as a constrast with the group mean by γ jhm. Without

setting a prior on the contrasts, the design matrix is singular and the linear model is not estimable.

With a prior on the contrasts, however, the estimation can still proceed. The contrasts have been

applied with a comparatively strong prior and the group mean has a weaker prior.

In a normal designmatrix, there are HM cell type-specific variables. In an expanded designmatrix,

for each cell type h, there are M contrasts γ jhm and one group mean γ jh0, so there are H(M + 1) cell

70



type-specific variables altogether. When applying the empirical Bayes prior to log fold change, the K

cell type-independent variables are not being penalized on. This is because we assume the parameters

of interest are the cell type-specific ones. The posterior of LFC will be shrunken towards zero with a

prior of zero-centered normal distribution:

β̂ j
MAP

= arg max

[
` j( ˜β

∗

j ) + P( ˜β∗j )
]
,

where
˜β
∗

j is the column vector with K + H(M + 1) rows when we concatenate β j k, k ∈ {1, 2, . . . ,K}

and γ jhm, h ∈ {0, 1, 2, . . . ,H}, m ∈ {1, 2, . . . , M}, and

P( ˜β∗j ) =
H∑

h=1

−γ2

jh0

2σ2

0

+

H∑
h=1

M∑
m=1

−γ2

jhm

2τ2

h

.

To estimate the empirical Bayes prior, we first estimate theMLEs on a log scale of cell type-specific

expression across genes. Any infinite values are excluded in the calculation of empirical distribution

afterwards. We set a comparatively weak prior on the cell type-specific group means as N(0, 10
4).

The inclusion of such a prior is to require the posterior of the cell type-specific group means to be

finite. Then we compute all combinations of contrasts between levels of each cell type h, collect the

constrasts belonging to each cell type together, and align the 0.95 quantile of the empirical distribution

of the absolute value of all the cell type-specific contrasts with the 0.975 quantile of a zero-centered

normal distribution N(0, σ2). Note that the prior is the same for different cell types, because we do

not have a preponderance of evidence favoring the other choice. We now have a comparatively strong

prior on the cell type-specific contrasts.

The update rule in iteratively reweighted ridge regression (Park, 2006; Love et al., 2014) is:

˜β
∗(k+1)

j =
(
X∗(k)j

T
D(k)j X∗(k)j + λI

)−1

X∗(k)j
T

D(k)j

(
X∗(k)j

˜β
(k)
j + Y

∗
j
(k)

)
,

where I is the identity matrix, λ is a vector of length K+H(M+1) obtained by taking ˜β
∗

j and replacing

β j k with 0 and γ jhm with 1/σ2

m, D j is the n-dimension diagonal matrix with diagonal elements as
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d ji =
φ j

µji(φ j+µji)
, i ∈ {1, 2, . . . , n}, Y ∗j is a column vector with n rows whose each entry is Tji − µ ji . ,

and X∗j is a matrix with n rows and K + H(M + 1) columns:

©«

µ j1w11 · · · µ j1w1k · · · µ j1w1K µ j11x110 µ j12x120 · · · µ j1h x1hm · · · µ j1H x1HM

...
...

...
...

µ jiwi1 · · · µ jiwik · · · µ jiwiK µ ji1xi10 µ ji2xi20 · · · µ jih xihm · · · µ jiH xiHM

...
...

...
...

µ jnwn1 · · · µ jnwnk · · · µ jnwnK µ jn1xn10 µ jn2xn20 · · · µ jnh xnhm · · · µ jnH xnHM

ª®®®®®®®®®®®®¬
.

3.3.12 Miscellaneous notes on the CARseq model

3.3.12.1 Relation between CARseq model and TOAST model

The major difference between CARseq and TOAST is that the former employs a negative binomial

distribution while the latter uses a linear model that is consistent with normal distribution assumption.

In addition, the way to connect the mean expression in bulk tissue to CT-specific expression are

different. Here we demonstrate the relation of these two approaches.

Note that µ ji is the expected total read count of gene j and sample i. As TOAST does not allow

for cell type-independent variables β j k ’s, which are actually possible to be recast into cell type-specific

variables at the expense of added degrees of freedom, and it does not model sample-level read depth

di ’s, we will adjust for them when comparing the CARseq model and the TOAST model.

µ ji

di exp

( ∑K
k=1

β j kwik

) = H∑
h=1

ρ̂hi exp

(
M∑

m=1

γ jhmxihm

)
,

Let ξ jhm = exp(γ jhm) − 1. It follows that

µ ji

di exp

( ∑K
k=1

β j kwik

) = H∑
h=1

[
ρ̂hi

M∏
m=1

(1 + ξ jhm)
xihm

]
.
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When |ξ jhm | � 1 and |xihmξ jhm | � 1, the above equation can be approximated by:

H∑
h=1

[
ρ̂hi

M∏
m=1

(1 + xihmξ jhm)

]
≈

H∑
h=1

[
ρ̂hi

(
1 +

M∑
m=1

xihmξ jhm

)]
.

In the typical circumstance where xihm ∈ {0, 1} are group indicators, the “approximately equal to”

relations are all “equal to” relations.

We now arrive at a form very close to how the measurement in TOAST is modeled with cellular

proportion as main effects, which are parametrized below using ηhi ’s, and proportion by covariate as

interactions:

H∑
h=1

[
M∑

m=1

(ρ̂hiη jh + xihm ρ̂hiξ jhm)

]
.

3.3.12.2 Connections between cell fractions, cell type-specific transcript fractions and cell size

We explain how to convert between cell fractions in the model involving read counts, ρhi , and

cell fractions in the model involving TPM, ρTPM

hi . Suppose j is a subscript for gene, i is a subscript for

sample, and h is a subscript for cell types. The reference of purified cell types are denoted using γ jh.

Gene lengths are ` j .

We can obtain cell fractions when we have counts from both mixture and purified cell types.

Specifically, the counts of purified cell types are the average of total counts of all cells belonging to a

cell type. The reference of purified cell types can be prepared using single cell RNA-seq data. In this

way, cell types with a higher expression will have a higher total read counts, and there is no need to

adjust for different cell sizes of cell types.

When we obtain cell fractions by deconvolving mixture expression in TPM, such as by CIBER-

SORT or ICeD-T, we need to adjust for cell size to obtain cell fractions in the literal sense.

Suppose the total read counts follow a negative binomial distribution:

Tji ∼ fNB(di

H∑
h=1

ρhiγ jh, φ j).
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Taking expectation gives:

E[Tji] = di

H∑
h=1

ρhiγ jh,

E[Tji/` j] = di

H∑
h=1

(ρhiγ jh/` j).

Since the total number of genes G is very large, using Approximations for Mean and Variance of

a Ratio, we get:

E

[ Tji/` j∑G
j=1
(Tji/` j)

]
≈

E[Tji/` j]

E[
∑G

j=1
(Tji/` j)]

= di

H∑
h=1

ρhi

∑G
j=1
(γ jh/` j)

E[
∑G

j=1
(Tji/` j)]

(γ jh/` j)∑G
j=1
(γ jh/` j)

.

Define

rhi =

∑G
j=1
(γ jh/` j)

E[
∑G

j=1
(Tji/` j)]

,

and we have mixture expression and cell type-specific expression in TPM:

E[TTPM

ji ] = di

H∑
h=1

ρhirhiγ
TPM

jh .

If we add up all the genes

G∑
j=1

E[TTPM

ji ] =

G∑
j=1

di

H∑
h=1

ρhirhiγ
TPM

jh ,

we get

H∑
h=1

diρhirhi = 1.

Define

ρTPM

hi = diρhirhi,

which follows that

ρTPM

hi ∝ ρhi

G∑
j=1

(γ jh/` j).

74

http://www.stat.cmu.edu/~hseltman/files/ratio.pdf
http://www.stat.cmu.edu/~hseltman/files/ratio.pdf


This justifies us to define the total number of transcripts in a cell:

sh =

G∑
j=1

(γ jh/` j)

as the cell size to convert between ρTPM

hi and ρhi .

3.3.13 FDR control procedure

We use q-value to control FDR (Storey and Tibshirani, 2003). The calculation of q-value requires

an estimate of the overall proportion of null p-values π̂0. We use the following formula that specifically

accommodates the situation where a proportion of p-values equal to 1, implemented in function

get_qvalues_one_inflated of R package CARseq:

π̂0 = (proportion of p value = 1) + 2 × (proportion of p value > 0.5 and < 1).

3.3.14 URLs

snRNA-seq data for CT-specific expression reference,

file human_MTG_gene_expression_matrices_2018-06-14.zip, downloaded from

http://celltypes.brain-map.org/api/v2/well_known_file_download/694416044.

CommonMind Consortium (CMC) Knowledge Portal:

https://www.synapse.org/#!Synapse:syn2759792/wiki/69613.

CMC gene expression data:

https://www.synapse.org/#!Synapse:syn3346749

CMC gene expression meta data:

https://www.synapse.org/#!Synapse:syn18103174

CMC clinical data:

https://www.synapse.org/#!Synapse:syn3275213.
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PEC Capstone Collection:

https://www.synapse.org/#!Synapse:syn12080241

UCLA-ASD gene expression data:

https://www.synapse.org/#!Synapse:syn8365527

UCLA-ASD gene expression meta data:

https://www.synapse.org/#!Synapse:syn5602933

UCLA-ASD clinical data:

https://www.synapse.org/#!Synapse:syn5602932

SFARI ASD risk genes:

https://gene.sfari.org/database/human-gene/

3.3.15 Code availability

The codes for generating CT-specific gene expression reference panel are included in GitHub

repository scRNAseq_pipelines (https://github.com/Sun-lab/scRNAseq_pipelines). we

have analyzed three scRNA-seq datasets: MTG, dronc, and psychENCODE, and the codes were saved

in corresponding folders. The codes to compare different references and generate final references

were saved in folder _brain_cell_type.

The codes for CARseq analyses (including simulation, and analyses of SCZ and ASD datasets) were

included in GitHub repository CARseq_pipelines (https://github.com/Sun-lab/CARseq_

pipelines). The file reproducible_figures.html has the code to generate most Figures in

this paper. The R package CARseq were deposited at GitHub repository CARseq (https://github.

com/Sun-lab/CARseq).
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3.4 Supplementary Materials for Data Analyses

3.4.1 Details of simulations

3.4.1.1 Steps of generating simulations

1. For every gene, fit real mixture read count using negative binomial (NB) regression with an

offset term of log read depth, with an effect of RNA integrity number (RIN), but without the

effects representing the cell type composition.

2. Collect the intercept terms across all the genes, and fit the mean and standard deviation of gene

expression.

3. Cell type-specific gene expressions in the reference matrix for each gene, along with the RIN

effect size, overdispersion parameter and the gene length, are simulated using a multivariate

log-normal distribution. The correlation between reference expression of different cell types is

set as the median of all pairwise correlations between reference gene expression of different

cell types. This is to mirror the correlation structure of the reference matrix, whose entries are

computed from MTG single cell data with 6 labeled cell types. The correlations account for

gene lengths and similarity between cell types.

4. Compute expected mixture expression using the reference matrix from (3), cell fractions we

have simulated before, and RIN per sample and its gene-specific effect size we have simulated

before.

5. Generate mixture read counts using NB distribution with overdispersions simulated from a

log-normal distribution fitted using overdispersion estimates from (1).

3.4.1.2 Details of simulations

We benchmarked CARseq against csSAM 1.2.4, TOAST 0.99.8, CIBERSORTx high-resolution

mode, and DESeq2 1.24.0. When expression is quantified from next-generation sequencing data, these
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methods of testing differential expression typically either require read counts (modeled by CARseq

and DESeq2) or TPM (modeled by CIBERSORTx, csSAM, and TOAST). If cell fractions are known,

we can conduct cell type-specific differential expression tests. While reference-free methods have

been documented (Zaitsev et al., 2019), in most practices, reference matrix containing the expression

of purified cells are preferred to estimate the cell fractions of cell types.

We generated read count data of bulk tissue as a mixture of three cell types. The pre-specified

number of samples was selected to be 50, 100, and 200, and then was divided equally into case and

control groups. The total number of genes was 10,000, among which 2,000 genes had spiked-in cell

type-specific differential expression between groups.

The read counts in mixture samples were generated from a negative binomial distribution:

t ji ∼ NB(µ ji, θ j),

with the mean structure being

µ ji = di exp

(
K∑

k=1

β j kwik

)
H∑

h=1

(
ρ̂hi

M∏
m=1

γxihm
jhm

)
.

We set the simulation to include H = 3 cell types, M = 2 effects that are cell type-specific

(case/control groups), and K = 1 batch effect that is cell type-independent (RIN).

We generated cell fractions ρhi using Dirichlet distribution with parameters estimated from cell

fractions estimated using ICeD-T without weights and adjusted by cell sizes. Here the cell fractions ρhi

reflected the actual proportion of cells of each cell type, rather than the proportion of transcripts that

can be assigned to a cell type ρTPM

hi that resulted from the deconvolution on the scale of TPM. If the

cell fraction estimates were obtained from the deconvolution of TPM, which would be the case when

ICeD-T or CIBERSORT was used, an adjustment of cell size was applied through ρhi =
ρTPM

hi
/sh∑

h ρ
TPM

hi
/sh

.

See “Notes about cell fractions and cell size” for a more detailed description.

The number of cell types H was 3, a simplification of the reference matrix with 6 cell types

constructed fromMTG single cell data. This was achieved by retaining excitatory (“Exc”) and inhibitory
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(“Inh”) neurons while bundling the other cell types (“Other”), mainly glial cells, together after using

ICeD-T or CIBERSORT to estimate cell fractions in real data analysis. The collapsed cell fractions are

then used to fit a Dirichlet distribution. The estimate of the concentration parameter of the Dirichlet

distribution was (30.10, 4.94, 12.91), which was subsequently used to generate cell fractions of each

sample.

To set realistic parameters in data simulation, we used CARseq to fit a model of read counts with

CMC data as the mixture data and MTG single cell data as the reference. For every gene, we fitted the

model without cell types and differential expression between sample groups:

t ji ∼ NB(µ ji, θ j),

and the mean structure is

µ ji = di exp(β j1wi1)γ j .

di is sample-level read depth taken as the third quartile of highly expressed genes, which are 20,614

genes with the third quartile of read counts across samples being larger than 20. wi1 is the RIN per

sample, a batch effect to adjust for. Both di and wi1 are known when fitting the model using CMC

data.

For observed read counts t ji , we fitted a negative-binomialmodel usingCARseq to obtain estimates

of the triple (β j1, γ j, θ j).

In the scatterplot of the triple (β j1, γ j, θ j) across 20,614 highly expressed genes in the log scale (one

exception is β j1, which is already parametrized in the log scale), we noticed that multivariate Gaussian

distribution is a good approximation after we remove 31 genes with a much higher overdispersion than

the others. We compute and base our simulation on the estimated covariance matrix of expression,

batch effect, and overdispersion.

After getting an idea of how multiple parameters jointly distributed in real data, we went on to

generate data that could mirror what we had found. The β j1 estimates above do not involve cell types.

This was a deliberate choice: if we directly fitted a model with cell type-specific expression using
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CARseq, we would be facing with a large proportion of zeros in estimated cell type-specific expression.

These zeros arise because it would be hard to accurately estimate cell type-specific expression when

the variance of cell fractions was low.

To mitigate the problem, when generating the reference matrix, we assumed that the expected

expression of every cell type γ jh followed a log-normal distribution with the same mean and variance

across cell types, and the mean and variance of mixture expression γ j can be used as a substitute.

However, we needed to add correlation between cell types to make the expression pattern to be more

realistic, as in a large number of genes, the gene expression would be similar across cell types, the

most prominent examples being the housekeeping genes. We also noticed that gene expression and

gene lengths are positively correlated. Gene lengths were needed to calculate TPM to generate the

input data of csSAM and CIBERSORTx.

To estimate the correlation between cell type-specific gene expression γ jh, and the correlation

between gene expression γ jh and gene lengths ` j , we usedMTG single cell data to create an average cell

expression for 6 cell types, and estimated the correlation structure between cell type-specific expression

γ jh, h ∈ {1, . . . , 6}, and gene lengths ` j , all in log scale. We then took the median of all pairwise

correlations of gene expression between cell types and fill it into the correlation matrix to simulate

data, and likewise take and use in simulation the median of all correlations between cell type-specific

expression and gene lengths. We assumed the correlation was zero between gene lengths and batch

effect, and between gene lengths and overdispersion. This completed the specification of covariance

matrix of three cell types, batch effect, overdispersion and, gene lengths. Thus we generated the tuple

(γ j1, γ j2, γ j3, β j1, θ j, ` j) under log scale except for β j1 using a multivariate Gaussian distribution:
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log γ j1

log γ j2

log γ j3

β j1

log θ j

log ` j



∼ N

©«



−0.60

−0.60

−0.60

−0.09

2.40

7.98



,



3.39 2.58 2.58 −0.24 0.19 0.35

2.58 3.39 2.58 −0.24 0.19 0.35

2.58 2.58 3.39 −0.24 0.19 0.35

−0.24 −0.24 −0.24 0.05 0.07 0.00

0.19 0.19 0.19 0.07 0.64 0.00

0.35 0.35 0.35 0.00 0.00 0.83



ª®®®®®®®®®®®®®®®¬

.

The batch effect variable, RIN wi1, was generated using a normal distribution with mean and

variance estimated from variables collected in CMC data:

log wi1 ∼ N(7.61, 0.89).

We generated read depths di using log-normal distribution with mean and variance estimated

from mixture expression of CMC data:

log di ∼ N(6.70, 0.27).

To create input data for CIBERSORTx, we needed the signature matrix of a few hundred of

signature genes where only one of the several cell types dominated the mixture expression. To select

the signature genes, for each cell type, we collected the top 100 genes with the largest fold change of

its gene expression compared to gene expression from all other cell types in the non-log scale. As an

example, the signature genes associated with cell type 1 are the top 100 genes sorted in descending

order by the fold change γ j1/(γ j2 + γ j3).

The signature genes were then merged into a list and deduplicated, a step that might not be

needed since we did not find any duplicated genes in the simulation. The TPM of both mixture and

reference gene matrices were calculated with all genes. We also incorporated the batch effect from

RIN to construct adjusted reference matrix for CIBERSORTx, which brought relatively accurate
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CIBERSORTx cell fraction estimates:

γ̃ jh =
1

n

n∑
i=1

exp(β j1wi1)γ jh,

γ̃TPM

jh =
γ̃ jh/` j∑G

j=1
(γ̃ jh/` j)

.

We specified the pattern of differential expression we would like to spike in as c = (c1, c2, c3)

so that we were able to obtain group-specific mean γ jhm from reference mean γ jh. Among 10,000

genes, suppose 8,000 genes were not differentially expressed between case and control samples, which

means γ jhm = γ jh; 1,000 genes expressed differently (measured by fold change) in one cell type among

case samples, which means γ jh2 = chγ jh1 = chγ jh; and 1,000 genes expressed differently in the same

cell type among control samples, which means γ jh1 = chγ jh2 = chγ jh. Then we calculated µ ji and

generated the observed mixture read count matrix with each entry t ji following a negative binomial

distribution. Using the same approach, we implemented more complicated patterns of differential

expression where more cell types were differentially expressed. The test we implemented in the

simulation studies has the null hypothesis γ jh1 = γ jh2 for any gene j and cell type h, which says the

cell type-specific mean are the same across two groups when controlled for other covariates.

3.4.1.3 Methods to benchmark

1. CARseq (w/ and w/o clinical variables)

R/simulation_test_CARseq.R

Input 1: read counts; true cell fractions.

Input 2: read counts; cell fractions from CIBERSORTx without using B mode and adjusted for

cell size.

Output: p-value for every gene/cell type pair.

To use CARseq, the cell fraction estimates are required. We recommend to use ICeD-T or

CIBERSORT to obtain the cell fraction estimates ρ̂hi that sum up to 1 for every sample i.
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Here the cell fractions are true cell fractions. Since CIBERSORTx will first estimate cell fractions

before high-resolution expression analysis, and to reflect the fact that we actually would not

know true cell fractions when using CARseq, we also include a set of analysis of CARseq

accounting for RIN while using cell fractions from CIBERSORTx without B mode correction.

CARseq has the a higher power than csSAM while controlling for type I error. One possible

reason is CARseq can leverage discrete distributions, which would provide a higher power.

Another reason is csSAM does not allow for the incorporation of known batch effects. The third

reason is csSAM uses permutation test, and the power is generally lower than model-based tests

when the model holds for the data.

2. csSAM (w/o clinical variables) csSamWrapper with nonNeg = TRUE as other methods does not

allow negative expression values

R/simulation_test_csSAM.R

Input: TPM; the true cell fractions in the scale of TPM (can be alternatively called the cell

type-specific transcript fractions).

When we assume the cell sizes are all the same across different cell types, the cell fractions do

not need to be adjusted.

Output: FDR for every gene/cell type pair.

3. CIBERSORTx high resolution “Tutorial 5 - Impute Gene Expression, High-Resolution Mode”

(w/ and w/o clinical variables; w/ and w/o batch correction)

R/simulation_test_CIBERSORTx.R

Input: TPM; signature matrix adjusted for batch effect RIN in TPM.

Output: p-value for every gene/cell type pair after we conduct linear regression for purified

expression on sample label while adjusting for the batch effect RIN.
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CIBERSORTx high-resolution mode can be considered as a more heuristic approach instead of

to a rigorous statistical model. Therefore, it is no surprise that type I error cannot be properly

controlled in other cell types not being differentially expressed themselves.

4. TOAST (w/ and w/o clinical variables; using TPM)

R/simulation_test_TOAST_TPM.R

Input 1: read counts; true cell fractions.

Input 2: TPM; true cell fractions in the scale of TPM.

Output: p-value for every gene/cell type pair.

TOAST uses a linear regression model. Based on our experience, it is better to supply TPM

instead of read counts, as TPM is already adjusted for read depth, while the read depth needs to

be included as a covariate when modeling read counts. Read counts, in contrast, is better to be

modeled using a generalized linear model to fully utilize the mean-variance structure. Unless

specifically mentioned, we use TPM instead of read counts as the input of TOAST. The code to

run TOAST using read counts is included as R/simulation_test_TOAST_count.R.

As TOAST used a linear regression model, it actually allows for negative estimates of cell type-

specific expression. While this is not biologically possible, it does not affect statistical modeling.

This is not the case in CARseq, where the cell type-specific expression has to be non-negative to

satisfy the model requirements of a non-negative mean in a negative binomial regression.

TOAST claimed that there is no consensus on whether to deconvolve under log scale or non-log

scale. Based on our knowledge, for RNA-seq data, it is a general practice to deconvolve under a

non-log scale while modeling the covariates under a log scale.

The authors of TOAST wanted to make the effect of additional covariates proportional to

baseline expression, but due to the limitation of linear regression, they had to model them using

interaction terms. While this makes their model more flexible, we worry about the splurge on

degrees of freedom especially when these parameters are not of interest in the sense of testing.
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3.4.1.4 Explanation of rare occurrences of inflated type I error when the covariate is not provided

To only highlight major problems in the figures, we need to display the FDR in a more stable

way. When its definition is ill-defined (0/0 = NaN) or almost ill-defined (the denominator, or the total

discoveries, is no greater than 5), the FDR is set to 0 and the sensitivity is set to 0.

In the plots, FDR and type I error refer to false discoveries in the 8000 non-DE genes in a certain

cell type. Be careful that “power” and “sensitivity” refer to discoveries in the 2000 DE genes, which

can be either true or false depending on which cell type is differentially expressed; the information is

coded in the “DE pattern” of fold changes between two groups.

In general, the simulation performs as expected. CARseq strikes a good balance between control-

ling type I error and being powerful.

We find that CARseqwould produce inflated type I error in very few caseswhen the covariate (RIN)

is not provided. The inflated type I error we see in simulation setup n_200_DE_pattern_2_1_1_-

replicate_1 (without covariates) is caused by the collinearity between RIN and cell fractions of

cell type 2 in one group. In general, in a regression framework, if there is considerable correlation

between an effect to test and an effect not included in the model, then the problem of inflated type I

error could arise. When RIN is not included in the model, the variation in expression attributed to

RIN effect is instead falsely attributed to differential expression in cell type 2:

> cor.test(clinical_variables[101:200], rho[101:200,2])

Pearson's product-moment correlation

data: clinical_variables[101:200] and rho[101:200, 2]

t = -3.0656, df = 98, p-value = 0.002807

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.4652033 -0.1055285
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sample estimates:

cor

-0.295815

> cor.test(clinical_variables[1:100], rho[1:100,2])

Pearson's product-moment correlation

data: clinical_variables[1:100] and rho[1:100, 2]

t = 1.5444, df = 98, p-value = 0.1257

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.04359692 0.34025758

sample estimates:

cor

0.1541411

As this symptom is not a methodological pitfall of CARseq, other algorithms can also manifest

inflation of type I error when the variable to test is correlated to a batch effect not incorporated in

the model. Since the cell type-specific test in csSAM is conceptually the same as CARseq without

batch effects, when CARseq_without_RIN is plagued with inflated type I error, csSAM is also bound

to fail. An example can be found in simulation setup n_200_DE_pattern_2_1_1_replicate_1.

When randomly generated RIN is highly correlated with group labels, DESeq2 could have inflated

type I error among non-DE genes. An example can be found at DESeq2_without_RIN in simulation

setup n_100_DE_pattern_4_1_1_replicate_1.
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3.4.1.5 Code description for simulations

First, R/simulation_step1_get_distribution_of_parameters_from_real_data.R fits

models from CMC data using MTG single cell data as reference. Second, the joint distribution of fitted

parameters is used to generate simulation data in R/simulation_step2_simulate_data.R. There

are separate code snippets starting with R/simulation_step3 to run each method in the simula-

tion folder. Then we use R/simulation_step4_compare_methods_multiple_replicates.R

to calculate metrics to compare the methods across ten replicates. The methods of using CIBERSORTx

high resolution mode and TOAST with read counts are summarized in R/simulation_step4_-

compare_methods_multiple_replicates.R where only one replicate has been investigated.

3.4.2 Details of real data analyses

3.4.2.1 Deconvolution of bulk tissue using reference from single cell data

Estimates of cell fractions were obtained using a reference of cell type-specific expression con-

structed from MTG snRNA-seq data, which was generated using SMART-Seq v4 Ultra Low Input

RNA Kit, which is an improved version of SMART-seq2 protocol (Hodge et al., 2019). We used both

ICeD-T (without weights) and CIBERSORT to estimate cell fractions.

We analyzed theMTGsnRNA-seq data (https://github.com/Sun-lab/scRNAseq_pipelines/

blob/master/MTG/human_MTG.html followed by an R code step1_expression_signature.R

in the same folder) using a pipeline that is slightly different from the original paper, mostly based

on Bioconductor workflows for scRNAseq (Lun et al., 2016). Then we clustered all the cells/nuclei

using K-means, ranging from 10 to 20 clusters. Based on manual inspection, we choose to compare

the annotated cell type labels with K-means with 15 clusters, as shown below.

Astro Endo Exc Inh Micro Oligo OPC unknown

1 0 0 0 1279 0 0 0 15

2 0 0 1867 0 0 0 0 24

3 0 1 8 11 0 310 1 12
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4 0 0 260 0 0 0 0 22

5 287 0 12 1 0 2 4 21

6 0 0 1494 0 0 0 0 73

7 0 0 1483 0 0 0 0 17

8 0 0 1552 1 0 0 0 15

9 0 0 1 1210 0 0 0 4

10 0 0 2 4 62 1 0 9

11 0 0 0 835 0 0 0 3

12 1 8 16 807 1 0 233 35

13 0 0 326 1 0 0 0 7

14 0 0 1798 1 0 0 0 38

15 0 0 1654 1 0 0 0 28

There is a high consistency between our clustering results and annotated cell types. To generate

the cell type-specific gene expression profile for each cell type, we select those clusters that are either

is the largest cluster for this cell type or includes more than 200 cells of this cell type. This helps us

filter out some cells for each cell type. In total, we kept 15,465 nuclei for the following analysis and

they are separated into 7 cell types:

Cell_Type nCells_All

1 Inh 4131

2 Exc 10434

3 Oligo 310

4 OPC 233

5 Astro 287

6 Micro 62

7 Endo 8

We compared this MTG snRNAseq data (SMART-Seq v4) with another snRNA-seq dataset gener-

ated using drop-seq technique named DroNc-seq (Habib et al., 2017) (hereafter referred to as DroNC
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data). We have re-analyzed DroNC data using a pipeline similar to the one for MTG data (https://

github.com/Sun-lab/scRNAseq_pipelines/blob/master/dronc/dronc_seq.html followed

by an R code step1_expression_signature.R in the same folder) and selected the cells belonging

to each cell type by taking intersections of clustering results and cell type labels provided by Habib et

al. (Habib et al., 2017). DroNC data includes human hippocampus and PFC from five adults. There are

11,585 nuclei from 11 cell types, and we also consider a subset of them (4,536 nuclei) from PFC since it

matches the tissues of bulk RNA-seq data.

Cell_Type nCells_All nCells_PFC

1 exCA3 630 8

2 exCA1 179 0

3 exPFC 3107 3072

4 ASC 1584 339

5 GABA 1154 758

6 ODC 2582 167

7 exDG 1380 0

8 END 68 8

9 MG 223 19

10 OPC 533 165

11 NSC 145 0

In the above table, exCA3, exCA1, exPFC, and exDG are four types of excitatory neurons or gluta-

matergic neurons. ASC is astrocyte. GABA is GABAergic interneuron or inhibitory neuron. ODC is

oligodendrocyte. END is endothelial cell. MG is microglia. OPC is oligodendrocyte precursor cell.

NSC is neuronal stem cell.

Then we compare the cell type-specific gene expression data fromDroNC (all cells or only the cells

in PFC) vs. MTG data. We added up all the counts per gene across all the cells and make comparison,

and collapse four types of excitatory neurons of DroNC data into one category. Detailed comparison

of astrocyte and endothelial cell are shown in Supplementary Figures 3.27 and 3.28, respectively, and
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similar figures for other cell types can be found at https://github.com/Sun-lab/scRNAseq_

pipelines/tree/master/_brain_cell_type/figure. It is clear that MTG data does not have

much more cells than DroNC data, but the total read count is often 100 times more than DroNC

data. Overall, gene expression of the same cell type are similar between MTG and DroNC, except

endothelial, possibly due to small number endothelial cells (Supplementary Figure 3.29). We chose

to use MTG data to generate reference since it has much higher depth and better coverage, making

it more similar to bulk RNA-seq data. We exclude endothelial in our analysis since there are only

8 endothelial cells in MTG data and its expression has very weak similarity to the endothelial cells

from DroNC data. The small number of cells also make the next step of selecting genes with cell

type-specific expression much harder.

Next we selected around 120-130 genes per cell type for 6 cell types: excitatory neurons (Exc),

inhibitory neurons (Inh), astrocyte (Astro), microglia (Micro), oligodendrocyte (Oligo), and oligoden-

drocyte precursor cell (OPC) by differential expression testing using MAST (Finak et al., 2015). All

the genes we chose have FDR < 0.001 and fold change large than 2. Among these genes, we chose

those with smallest FDR and largest fold changes. Specifically, we did a percentile grid search of FC >

quantile(FC,pp) and FDR < quantile(FDR,1-pp) until there are anywhere between 120 and 130 genes

for some percentile pp.

Since the deconvolution was done in the scale of TPM, which have adjusted for cell level read-

depth, the cell type fraction estimates from CIBERSORT of ICeD-T are the fraction of expression

from each cell types, not necessary the fraction of cells, if the total amount of RNA molecules are

different across cell types. For each cell type, we estimate cell size factor and such it to adjust cell

fraction estimates. Similar procedure has been used in earlier studies for immune cell types (Racle

et al., 2017). See section 3.3.12.2 for details on transformation between cell fraction by expression and

cell fraction by the number of cells.
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3.4.2.2 Additional details of real data analyses

In the differential expression analysis, only about 20,000 genes whose third quartile of read counts

are larger than 20 are included. The sample depth is defined by the third quartile of read counts among

the aforementioned genes.

The surrogate variables were calculated using the “sva” R package using a linear model with

transformed datamatrix as response and covariates included in the differential expression as predictors.

To control for cell fractions, the log transformed cell fraction estimates from ICeDT are also included.

To annotate the genes, particularly to match gene names and calculate gene lengths to calcu-

late TPMs, we used “Homo_sapiens.GRCh37.70.processed.gtf.gz” for the SCZ dataset and

“gencode.v19.annotation.gtf.gz” for the ASD dataset as the GENCODEGTF files. Gene lengths

are defined by the length of the union of all exons. The annotated gene expressions were wrapped in

the “SummarizedExperiment” container.

Cell fractions were estimated using both CIBERSORT and ICeD-T. The input of the cell type

deconvolution methods were bulk gene expression in TPMs and reference matrix fromMTG. For

ICeD-T, we used the unweighted version. For CIBERSORT, we used their website interface of https:

//cibersort.stanford.edu/index.php.

Default options were adoped in running CARseq, TOAST, and DESeq2. The gene expression was

supplied in the form of TPM for TOAST, and the cell fraction estimates were not adjusted for cell

sizes. CARseq and DESeq2 required read counts, and CARseq also demanded cell fraction estimates

adjusted for cell sizes. The p-values obtained from each method and cell type were transformed to

q-values using a code snippet in the “CARseq” package.
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3.5 Supplementary Tables

SCZ ASD

CARseq TOAST DESeq2 CARseq TOAST DESeq2

Astro 1 0 0 0

Exc 0 0 232 2

Inh 0 3 835 0

Micro 138 30 0 0

Oligo 656 1 0 0

OPC 0 0 0 0

bulk 1009/1888/810 1063/481/185

Table 3.4: Number of differentially expressed genes by cell type and method using a q-value cutoff
of 0.1, including DESeq2 for bulk samples. The results of DESeq2 include 3 numbers: the number of

findings without accounting for cell type compositions, after accounting for cell type compositions,

and their intersection.

SCZ (#case = 250, #ctrl = 277) ASD (#case = 42, #ctrl = 43)

Estimate Std. error p-value Estimate Std. error p-value
Astro

ICeDT −0.003 0.027 0.899 0.217 0.092 0.021

CIBERSORT −0.049 0.039 0.210 0.406 0.176 0.024

Inh

ICeDT 0.093 0.021 <0.001 −0.037 0.063 0.557

CIBERSORT 0.055 0.035 0.121 −0.005 0.101 0.965

Micro

ICeDT 0.002 0.039 0.968 0.107 0.093 0.253

CIBERSORT −0.014 0.043 0.744 0.107 0.097 0.278

Oligo

ICeDT −0.041 0.042 0.323 −0.160 0.147 0.279

CIBERSORT −0.076 0.048 0.116 −0.165 0.169 0.331

OPC

ICeDT 0.008 0.029 0.777 0.127 0.073 0.085

CIBERSORT −0.024 0.032 0.444 0.060 0.051 0.244

Table 3.5: Associations between relative cell type fractions and case-control status, assessed by a linear

model with log ratio of cell fractions (with Exc neurons as baseline) as response, adjusted for other

covariates.
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Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Astro.ICeDT 527 0.146 0.046 0.023 0.121 0.158 0.416

Exc.ICeDT 527 0.592 0.078 0.303 0.551 0.642 0.751

Inh.ICeDT 527 0.109 0.032 0.021 0.087 0.134 0.191

Micro.ICeDT 527 0.021 0.012 0.005 0.014 0.026 0.087

Oligo.ICeDT 527 0.086 0.045 0.018 0.053 0.112 0.308

OPC.ICeDT 527 0.046 0.020 0.006 0.033 0.054 0.129

Astro.CIBERSORT 527 0.103 0.062 0.000 0.071 0.108 0.493

Exc.CIBERSORT 527 0.784 0.096 0.350 0.752 0.846 0.957

Inh.CIBERSORT 527 0.017 0.012 0.000 0.008 0.024 0.066

Micro.CIBERSORT 527 0.007 0.008 0.000 0.000 0.010 0.059

Oligo.CIBERSORT 527 0.088 0.056 0.012 0.049 0.113 0.405

OPC.CIBERSORT 527 0.001 0.005 0 0 0 0.50

Table 3.6: Summary of deconvolution results from ICeDT (Wilson et al., 2019) and CIBERSORT

(Newman et al., 2019) for CMC data (Fromer et al., 2016), combining schizophrenia patients and

controls.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Astro.ICeDT 85 0.121 0.056 0.042 0.089 0.132 0.456

Exc.ICeDT 85 0.585 0.086 0.226 0.552 0.634 0.710

Inh.ICeDT 85 0.130 0.036 0.013 0.109 0.151 0.227

Micro.ICeDT 85 0.018 0.014 0.005 0.011 0.020 0.110

Oligo.ICeDT 85 0.084 0.058 0.010 0.045 0.102 0.359

OPC.ICeDT 85 0.062 0.022 0.025 0.047 0.071 0.137

Astro.CIBERSORT 85 0.066 0.077 0.000 0.022 0.069 0.551

Exc.CIBERSORT 85 0.794 0.121 0.177 0.755 0.864 0.939

Inh.CIBERSORT 85 0.040 0.020 0.001 0.028 0.051 0.107

Micro.CIBERSORT 85 0.003 0.008 0 0 0.001 0

Oligo.CIBERSORT 85 0.097 0.078 0.007 0.048 0.117 0.516

OPC.CIBERSORT 85 0.0001 0.001 0 0 0 0.006

Table 3.7: Summary of deconvolution results from ICeDT (Wilson et al., 2019) and CIBERSORT

(Newman et al., 2019) for the UCLA-ASD data (Parikshak et al., 2016), combining ASD patients and

controls.
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Cell type Astro Exc Inh Micro Oligo OPC

CARseq 0.051 (1.6) 3.3e−4 (2.4) 5.8e−7 (3.2) 2.9e−7 (−3.2) 3.6e−3 (2.0) 1.9e−5 (2.8)

TOAST 0.12 (−1.4) 0.89 (0.66) 0.14 (−1.3) 4.1e−4 (−2.3) 0.36 (1.1) 0.55 (−0.91)

Table 3.8: Gene Set Enrichment Analysis (GSEA) results for 328 ASD risk genes curated by SFARI.

GSEA were run using the rankings of all the genes by CT-specific-DE p-values. The number is the

parenthesis is the normalized enrichment score (NES). Positive NES means ASD risk genes tend to

have smaller p-values, while negative NES means ASD risk genes tend to have larger p-values.

category pval nDE nCat qval

EUKARYOTIC TRANSLATION ELONGATION 1.70E-05 6 90 0.0098

RESPONSE OF EIF2AK4 GCN2 TO AMINO ACID DEFICIENCY 2.50E-05 6 98 0.0098

SELENOAMINO ACID METABOLISM 3.70E-05 6 105 0.0098

SRP DEPENDENT COTRANSLATIONAL PROTEIN TARGETING

TOMEMBRANE

4.50E-05 6 109 0.0098

NONSENSE MEDIATED DECAY NMD 4.60E-05 6 113 0.0098

EUKARYOTIC TRANSLATION INITIATION 6.00E-05 6 117 0.0107

CELLULAR RESPONSES TO EXTERNAL STIMULI 1.70E-04 10 487 0.0236

INFLUENZA INFECTION 1.80E-04 6 149 0.0236

INTEGRIN CELL SURFACE INTERACTIONS 2.70E-04 4 73 0.0319

REGULATION OF EXPRESSION OF SLITS AND ROBOS 3.00E-04 6 160 0.0322

EXTRACELLULAR MATRIX ORGANIZATION 5.70E-04 6 237 0.0548

RRNA PROCESSING 6.20E-04 6 188 0.0548

SIGNALING BY ROBO RECEPTORS 8.60E-04 6 204 0.0708

FCGR ACTIVATION 1.30E-03 2 11 0.0999

Table 3.9: Over-representation of functional categories among the 65 genes with marginal DE signals

(p-value < 0.05) in microglia in both SCZ and ASD studies. The column of nDE is the number of DE

genes within each category and the column nCat is the number of genes within that category.
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3.6 Supplementary Figures
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Figure 3.16: The FDR vs. sensitivity of several methods testing for CT-specific DE, when a confounding covariate

is provided (a) or it is missing (b). There are 10 simulation replicates for each combination of total sample size

with equal number of cases and controls (columns, e.g., n = 50 means 25 cases + 25 controls) and pattern of

differential expression (rows). The notation for each pattern represents the fold changes in cell type 1, 2, and 3,

respectively. For example, 2_2_1 indicates that both cell type 1 and cell type 2 are differentially expressed between

the case and control groups by a fold change of 2 and cell type 3 are equivalently expressed between cases and

controls. For each replicate, there are 2,000 genes following the pre-specified pattern of differential expression

and 8,000 genes with no differential expression in any of the three cell types. The vertical line indicates the

intended FDR level of 0.1. Note that csSAM does not support the inclusion of covariates, and that the scales of

the x axis in the two subfigures are different.
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Figure 3.17: Similar to Figure 3.16, but with different patterns of differential expression where cell type 1 is

over-expressed and cell type 2 is under-expressed.
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Figure 3.18: Similar to Figure 3.16, but with different patterns of differential expression where only cell type 2 is

differentially expressed.
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Figure 3.19: Results of this figure use the same simulation setup up as Figure 3.11 in main text, in terms sample

sizes and effect sizes. The difference is that here we have one replicate per method (still with 2,000 DE genes

and 8,000 non-DE genes per replicate), and more methods to compare. B_mode for CIBERSORT refers to their

Bulk-mode batch correction (B-mode) that seek to correct the batch effect between reference and bulk RNA-seq

data.
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Figure 3.20: Similar to Figure 3.16 except comparing more methods with one replicate per method.
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Figure 3.21: Similar to Figure 3.17 except comparing more methods with one replicate per method .
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Figure 3.22: Similar to Figure 3.18 except comparing more methods with one replicate per method .
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Figure 3.23: Noise in cell fraction estimates compared to the truth in a simulation with sample size 50 (25 cases

vs. 25 controls).
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Figure 3.24: The FDR vs. sensitivity of several methods testing for CT-specific DE, when a confounding

covariate is provided (a) or it is missing (b). A zero-centered Gaussian noise with a standard deviation of 0.1 is

added to the cell fractions estimates on a logit scale. There are 10 simulation replicates for each combination of

total sample size with equal number of cases and controls (columns, e.g., n = 50 means 25 cases + 25 controls)

and pattern of differential expression (rows). The notation for each pattern represents the fold changes in cell

type 1, 2, and 3, respectively. For example, 2_1_1 indicates that both cell type 1 is differentially expressed between

the case and control groups by a fold change of 2 and cell type 2 and cell type 3 are equivalently expressed

between cases and controls. For each replicate, there are 2,000 genes following the pre-specified pattern of

differential expression and 8,000 genes with no differential expression in any of the three cell types. The vertical

line indicates the intended FDR level of 0.1. Note that csSAM does not support the inclusion of covariates, and

that the scales of the x axis in the two subfigures are different.
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Figure 3.25: The FDR vs. sensitivity of several methods testing for CT-specific DE, when a confounding

covariate is provided (a) or it is missing (b). The cell size factor is misspecified; we intentionally apply a list

of wrong size factors (1.2, 1, 1) in the inference and testing instead of the true size factors (1, 1, 1) used in data

simulation. There are 10 simulation replicates for each combination of total sample size with equal number of

cases and controls (columns, e.g., n = 50 means 25 cases + 25 controls) and pattern of differential expression

(rows). The notation for each pattern represents the fold changes in cell type 1, 2, and 3, respectively. For example,

2_1_1 indicates that both cell type 1 is differentially expressed between the case and control groups by a fold

change of 2 and cell type 2 and cell type 3 are equivalently expressed between cases and controls. For each

replicate, there are 2,000 genes following the pre-specified pattern of differential expression and 8,000 genes

with no differential expression in any of the three cell types. The vertical line indicates the intended FDR level

of 0.1. Note that csSAM does not support the inclusion of covariates, and that the scales of the x axis in the two

subfigures are different.
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Figure 3.26: Similar to Figure 3.25 except the cell size factors are extremely misspecified to be 2, 1, 1.
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Figure 3.27: Compare astrocyte-specific gene expression of 10,151 genes derived from DroNC and MTG data.

The top panel shows the distribution of gene expression in log transformed raw counts. Note that the counts

are summation across 1584, 339, and 287 cells for all DroNC data, DroNC PFC only, and MTG, respectively. The

lower panel shows pair-wise scatter plots.
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Figure 3.28: Compare endothelial-specific gene expression of 10,151 genes derived from DroNC and MTG data.

The top panel shows the distribution of gene expression in log transformed raw counts. Note that the counts

are summation across 68, 8, and 8 cells for all DroNC data, DroNC PFC only, and MTG, respectively. The lower

panel shows pair-wise scatter plots.
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(A) DroNC all cells (B) DroNC PFC cells

(C) MTG

Figure 3.29: Correlations of genome-wide gene expression (10,151 genes) within each dataset, while the diagonals

of the three panels were replaced by the correlation of (A) DroNC (all cells) vs. MTG (B) DroNC (PFC cells)

vs. MTG, and (C) DroNC (all cells) vs. MTG. GABA: GABAergic interneurons or inhibitory neurons; Gluta:

glutamatergic neurons or excitatory neurons; ODC: oligodendrocytes; OPC: oligodendrocyte precursor cells;

ASC: astrocytes; MG: microglia; END: endothelial cells.
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Linear Model: Type 3 pvalues

Figure 3.30: The p-values for each covariate vs. genome-wide gene expression for the schizophrenia study,

assessed by a linear model for log-transformed gene expression. Cell type proportions were included as log

ratios, e.g., log_Astro is log(Astro proportion/Excitatory neuron proportion).
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Figure 3.31: Box plots of cell type fraction estimates for CMC data.

0.0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4
ICeDT

C
IB

E
R

S
O

R
T

Astro

0.4

0.6

0.8

0.3 0.4 0.5 0.6 0.7
ICeDT

C
IB

E
R

S
O

R
T

Exc

0.00

0.02

0.04

0.06

0.05 0.10 0.15
ICeDT

C
IB

E
R

S
O

R
T

Inh

0.00

0.02

0.04

0.06

0.025 0.050 0.075
ICeDT

C
IB

E
R

S
O

R
T

Micro

0.0

0.1

0.2

0.3

0.4

0.1 0.2 0.3
ICeDT

C
IB

E
R

S
O

R
T

Oligo

0.00

0.01

0.02

0.03

0.04

0.05

0.05 0.10
ICeDT

C
IB

E
R

S
O

R
T

OPC

Figure 3.32: Scatter plots of cell type fraction estimates for CMC data.
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Figure 3.33: R2
explained by increasing number of surrogate variables for CMC data (Fromer et al., 2016).
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Figure 3.34: CARseq p-value distribution in the SCZ study.
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Figure 3.35: CARseq p-value distribution in the SCZ study where the case-control label has been permuted to

reflect the null distribution.
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Figure 3.36: TOAST p-value distribution in the SCZ study.
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Figure 3.37: TOAST p-value distribution in the SCZ study where the case-control label has been permuted to

reflect the null distribution.

Figure 3.38: DESeq2 p-value distribution in the SCZ study where the case-control label is either unpermuted

or permuted.
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Figure 3.39: DESeq2 volcano plot in the SCZ study.
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Figure 3.40: REACTOME GSEA ranked by TOAST in the SCZ study.
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Figure 3.41: Venn plot of DEGs (q-value < 0.1) in the SCZ study.
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Figure 3.42: Shrunken log fold change estimates (SCZ vs. controls) for genes belonging to some REACTOME

pathways. Panel A includes all the pathways related with NDMA. Panels B and C include the pathway identified

by GSEA in excitatory/inhibitory neurons, from either SCZ or ASD studies. Only the genes with CT-specific-DE

p-value (comparing SCZ vs. controls) smaller than 0.05 are shown.
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Figure 3.43: Shrunken log fold change estimates (SCZ vs. controls) for genes belonging to the REACTOME

pathways identified by GSEA in microglias or oligodendrocytes, from either SCZ or ASD studies. Only the

genes with CT-specific-DE p-value (comparing SCZ vs. controls) smaller than 0.05 are shown.
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Linear Model: Type 3 pvalues

Figure 3.44: The p-values for each covariate vs. genome-wide gene expression for the ASD study, assessed

by a linear model for log-transformed gene expression. Cell type proportions were included as log ratios, e.g.,

log_Astro is log(Astro proportion/Excitatory neuron proportion). The analyses for this figure were done

using 82 out of 85 samples with non-missing PMI values.
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Figure 3.45: Box plots of cell type fraction estimates for UCLA-ASD data.
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Figure 3.46: Scatter plots of cell type fraction estimates for UCLA-ASD data.
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Figure 3.47: CARseq p-value distribution in the ASD study.
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Figure 3.48: CARseq p-value distribution in the ASD study where the case-control label has been permuted to

reflect the null distribution.
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Figure 3.49: TOAST p-value distribution in the ASD study.
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Figure 3.50: TOAST p-value distribution in the ASD study where the case-control label has been permuted to

reflect the null distribution.

Figure 3.51: DESeq2 p-value distribution in the ASD study where the case-control label is either unpermuted

or permuted.
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Figure 3.52: DESeq2 volcano plot in the ASD study.

126



Figure 3.53: REACTOME GSEA ranked by TOAST in the ASD study.
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Figure 3.54: Venn plot of DEGs (q-value < 0.1) in the ASD study.
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Figure 3.55: Shrunken log fold change estimates (ASD vs. controls) for genes belonging to some REACTOME

pathways. Panel A includes all the pathways related with NDMA. Panels B and C include the pathways identified

by GSEA in excitatory/inhibitory neurons, from either SCZ or ASD studies. Only the genes with CT-specific-DE

p-value (comparing ASD vs. controls) smaller than 0.05 are shown.
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Figure 3.56: Shrunken log fold change estimates (ASD vs. controls) for genes belonging to the REACTOME

pathways identified by GSEA in microglias or oligodendrocytes, from either SCZ or ASD studies. Only the

genes with CT-specific-DE p-value (comparing ASD vs. controls) smaller than 0.05 are shown.
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Figure 3.57: Volcano plot of -log10(q-value) vs. shrunken log fold change (LFC) for differentially expressed

genes (DEGs) in SCZ (left panel) and ASD (right panel) inferred by CARseq. Only genes passing a q-value cutoff

of 0.1 and an absolute value of LFC > 0.01 are shown. Top 10 CT-specific DEGs are labeled for each study.
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